Sample records for space shuttle primary

  1. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  2. Space Shuttle Orbiter Reaction Jet Driver (RJD): Independent Technical Assessment/Inspection (ITA/I) Report, Version 1.0

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; Kichak, Robert A.; Davis, Mitchell; Williams, Glenn; Thomas, Walter, III; Slenski, George A.; Hetzel, Mark

    2005-01-01

    The Space Shuttle Program (SSP) has a zero-fault-tolerant design related to an inadvertent firing of the primary reaction control jets on the Orbiter during mated operations with the International Space Station (ISS). Failure modes identified by the program as a wire-to-wire "smart" short or a Darlington transistor short resulting in a failed-on primary thruster during mated operations with ISS can drive forces that exceed the structural capabilities of the docked Shuttle/ISS structure. The assessment team delivered 17 observations, 6 findings and 15 recommendations to the Space Shuttle Program.

  3. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  4. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  5. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  6. Space Shuttle Project

    NASA Image and Video Library

    1992-09-12

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  7. Space Shuttle Project

    NASA Image and Video Library

    1992-09-12

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  8. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  9. Space shuttle propulsion systems

    NASA Technical Reports Server (NTRS)

    Bardos, Russell

    1991-01-01

    This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.

  10. Space shuttle/food system study. Volume 2, Appendix F: Flight food and primary packaging

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis and selection of food items and primary packaging, the development of menus, the nutritional analysis of diet, and the analyses of alternate food mixes and contingency foods is reported in terms of the overall food system design for space shuttle flight. Stowage weights and cubic volumes associated with each alternate mix were also evaluated.

  11. Parking Lot and Public Viewing Area for STS-4 Landing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  12. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  15. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  16. STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  17. Enterprise - First Tailcone Off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  19. STS Challenger Mated to 747 SCA for Initial Delivery to Florida

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Shuttle orbiter Challenger atop NASA's Boeing 747 Shuttle Carrier Aircraft (SCA), NASA 905, after leaving the Dryden Flight Research Center, Edwards, California, for the ferry flight that took the orbiter to the Kennedy Space Center in Florida for its first launch. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  20. STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The first rays of the morning sun light up the side of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs for the Kennedy Space Center, Florida, with the orbiter from STS-35 attached to its back. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. The space shuttle program: a policy failure?

    PubMed

    Logsdon, J M

    1986-05-30

    The 5 January 1972 announcement by President Richard Nixon that the United States would develop during the 1970's a new space transportation system-the space shuttle-has had fundamental impacts on the character of U.S. space activities. In retrospect, it can be argued that the shuttle design chosen was destined to fail to meet many of the policy objectives established for the system; the shuttle's problems in serving as the primary launch vehicle for the United States and in providing routine and cost-effective space transportation are in large part a result of the ways in which compromises were made in the 1971-72 period in order to gain White House and congressional approval to proceed with the program. The decision to develop a space shuttle is an example of a poor quality national commitment to a major technological undertaking.

  2. Evaluation of a metal fuselage panel selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Wennhold, W. F.

    1974-01-01

    The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.

  3. AFFTC commander Brig. Gen. Curtis Bedke experienced a Shuttle approach and landing in NASA's Shuttle Training Aircraft from STS-114 commander Eileen Collins

    NASA Image and Video Library

    2005-03-29

    Brig. Gen. Curtis Bedke, commander of the Air Force Flight Test Center at Edwards Air Force Base, received some first-hand insight on how to fly a Space Shuttle approach and landing, courtesy of NASA astronaut and STS-114 mission commander Eileen Collins. The series of proficiency flights in NASA's modified Grumman Gulfstream-II Shuttle Training Aircraft were in preparation for the STS-114 mission with the shuttle Discovery. Although NASA's Kennedy Space Center in Florida is the primary landing site for Space Shuttle missions, flight crews also practice the shuttle's steep approach and landing at Edwards in case weather or other situations preclude a landing at the Florida site and force a diversion to Edwards AFB.

  4. STS-71 Mission Highlights Resources Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-71 Space Shuttle Orbiter Atlantis Commander Robert L. Gibson, Pilot Charles J. Precourt, Mission Specialists, Ellen S. Baker, Bonnie J. Dunbar, Gregory J. Harbaugh, and Payload Specialists, Norman E. Thagard, Vladimir Dezhurov, and Gennadiy Strekalov present an overview of their mission. It's primary objective is the first Mir docking with a space shuttle and crew transfer. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; on orbit activities; rendezvous with Mir; Shuttle/Mir joint activities; undocking; and the shuttle landing.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1990-10-06

    Launched aboard the Space Shuttle Discovery on October 6, 1990 at 7:47:15 am (EDT), the STS-41 mission consisted of 5 crew members. Included were Richard N. Richards, commander; Robert D. Cabana, pilot; and Bruce E. Melnick, Thomas D. Akers, and William M. Shepherd, all mission specialists. The primary payload for the mission was the European Space Agency (ESA) built Ulysses Space Craft made to explore the polar regions of the Sun. Other main payloads and experiments included the Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment and the INTELSAT Solar Array Coupon (ISAC).

  6. Large area emulsion chamber experiments for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1985-01-01

    Emulsion-chamber experiments employing nuclear-track emulsions, etchable plastic detectors, metal plates, and X-ray films continue to demonstrate high productivity and potential in the study of cosmic-ray primaries and their interactions. Emulsions, with unsurpassed track-recording capability, provide an appropriate medium for the study of nucleus-nucleus interactions at high energy, which will likely produce observations of a phase change in nuclear matter. The many advantages of emulsion chambers (excellent multitrack recording capability, large geometry factor, low apparatus cost, simplicity of design and construction) are complemented by the major advantages of the Space Shuttle as an experiment carrier. A Shuttle experiment which could make a significant advance in both cosmic-ray primary and nucleus-nucleus interaction studies is described. Such an experiment would serve as a guide for use of emulsions during the Space Station era. Some practical factors that must be considered in planning a Shuttle exposure of emulsion chambers are discussed.

  7. Shuttle Enterprise Mated to 747 SCA in Flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, departed NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Carried by the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. Shuttle Enterprise Mated to 747 SCA on Ramp

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, before departing NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Seen here atop the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  9. STS-43 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

  10. STS-43 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-09-01

    The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

  11. Aeromedical Lessons from the Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2005-01-01

    This paper presents the aeromedical lessons learned from the Space Shuttle Columbia Accident Investigation. The contents include: 1) Introduction and Mission Response Team (MRT); 2) Primary Disaster Field Office (DFO); 3) Mishap Investigation Team (MIT); 4) Kennedy Space Center (KSC) Mishap Response Plan; 5) Armed Forces Institute of Pathology (AFIP); and 6) STS-107 Crew Surgeon.

  12. Shuttle Discovery Overflight of Edwards Enroute to Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery overflies the Rogers Dry Lakebed, California, on 28 September 1995, at 12:50 p.m. Pacific Daylight Time (PDT) atop NASA's 747 Shuttle Carrier Aircraft (SCA). On its way to Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. Shuttle Columbia Mated to 747 SCA with Crew

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The crew of NASA's 747 Shuttle Carrier Aircraft (SCA), seen mated with the Space Shuttle Columbia behind them, are from viewers left: Tom McMurtry, pilot; Vic Horton, flight engineer; Fitz Fulton, command pilot; and Ray Young, flight engineer. The SCA is used to ferry the shuttle between California and the Kennedy Space Center, Florida, and other destinations where ground transportation is not practical. The NASA 747 has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. STS-39 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  15. STS-39 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-06-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  16. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  17. STS-68 on Runway with 747 SCA/Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. STS-68 on Runway with 747 SCA - Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  19. Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  20. Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, begins the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. STS-99 Commander and Pilot for the SRTM Mission, Practice Flight in the Shuttle Training Aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour, and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency). This tape shows Commander Kregel and Pilot Gorie getting on board the Shuttle Training Aircraft and practicing approaches for the shuttle landing.

  2. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Shuttle Discovery Mated to 747 SCA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Discovery rides atop '905,' NASA's 747 Shuttle Carrier Aircraft, on its delivery flight from California to the Kennedy Space Center, Florida, where it was prepared for its first orbital mission for 30 August to 5 September 1984. The NASA 747, obtained in 1974, has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. A second modified 747, no. 911, went in to service in November 1990 and is also used to ferry orbiters to destinations where ground transportation is not practical. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA 911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation is carried out at Dryden at the Mate-Demate Device, the large gantry-like structure that hoists the spacecraft to various levels during post-spaceflight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  5. KSC-99pp0988

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, NASA Administrator Daniel Goldin (foreground) talks with STS-93 Commander Eileen Collins beside the Space Shuttle orbiter Columbia following the successful completion of her mission. Marshall Space Flight Center Director Arthur G. Stephenson (far left) looks on. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  6. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  7. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. STS-66 Atlantis 747 SCA Ferry Flight Morning Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (SCA) during takeoff for a return ferry flight to the Kennedy Space Center from Edwards, California. The STS-66 mission was dedicated to the third flight of the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3), part of NASA's Mission to Planet Earth program. The astronauts also deployed and retrieved a free-flying satellite designed to study the middle and lower thermospheres and perform a series of experiments covering life sciences research and microgravity processing. The landing was at 7:34 a.m. (PST) 14 November 1994, after being waved off from the Kennedy Space Center, Florida, due to adverse weather. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  9. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Moonrise over Atlantis: the space shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, 31 March 1996. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Atlantis back to the Kennedy Space Center, Florida. Delivery of Atlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on April 6. The SCA returned to Edwards only minutes after departure. The right inboard engine #3 was exchanged, and the 747 with Atlantis atop was able to depart 11 April for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  10. STS-76 - SCA 747 Aircraft Takeoff for Delivery to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Boeing 747 Shuttle Carrier Aircraft leaves the runway with the Shuttle Atlantis on its back. Following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996. NASA 905, one of two modified 747's, was prepared to ferry Atlantis back to the Kennedy Space Center, FL. Delivery of Altlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on 6 April. The SCA #905 returned to Edwards with Atlantis aboard only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  11. Shuttle cryogenics supply system. Optimization study. Volume 5 B-4: Programmers manual for space shuttle orbit injection analysis (SOPSA)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.

  12. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. Columbus in the Atlantis payload bay during the STS-122 Mission

    NASA Image and Video Library

    2008-02-08

    S122-E-006275 (8 Feb. 2008) --- Backdropped against the blackness of space, the European Space Agency's Columbus laboratory and associated ESA hardware sit in the aft portion of Space Shuttle Atlantis' cargo bay on the eve of the shuttle's scheduled docking to the International Space Station. The addition of Columbus to the orbital outpost is one of the primary tasks of the STS-122 mission.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1995-03-13

    The STS-70 crew patch depicts the Space Shuttle Discovery orbiting Earth in the vast blackness of space. The primary mission of deploying a NASA Tracking and Data Relay Satellite (TDRS) is depicted by three gold stars. They represent the triad composed of spacecraft transmitting data to Earth through the TDRS system. The stylized red, white, and blue ribbon represents the American goal of linking space exploration to the advancement of all humankind.

  15. STS-58 Landing at Edwards with Drag Chute

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A drag chute slows the space shuttle Columbia as it rolls to a perfect landing concluding NASA's longest mission at that time, STS-58, at the Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, California, with a 8:06 a.m. (PST) touchdown 1 November 1993 on Edward's concrete runway 22. The planned 14 day mission, which began with a launch from Kennedy Space Center, Florida, at 7:53 a.m. (PDT), October 18, was the second spacelab flight dedicated to life sciences research. Seven Columbia crewmembers performed a series of experiments to gain more knowledge on how the human body adapts to the weightless environment of space. Crewmembers on this flight included: John Blaha, commander; Rick Searfoss, pilot; payload commander Rhea Seddon; mission specialists Bill MacArthur, David Wolf, and Shannon Lucid; and payload specialist Martin Fettman. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  16. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-07

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  17. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Moonrise over Atlantis: following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996, NASA 905, one of two modified Boeing 747 Shuttle Carrier Aircraft, was prepared to ferry Atlantis back to the Kennedy Space Center, FL. Delivery of Altlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on April 6. The SCA #905 returned to Edwards only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Moonrise over Atlantis following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996. NASA 905, one of two modified Boeing 747 Shuttle Carrier Aircraft (SCA), was readied to ferry Atlantis back to the Kennedy Space Center, Florida. Delivery of Atlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on 6 April. The SCA #905 returned to Edwards with Atlantis attached only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  19. Identification and status of design improvements to the NASA Shuttle EMU for International Space Station application.

    PubMed

    Wilde, R C; McBarron, J W; Faszcza, J J

    1997-06-01

    To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.

  20. STS-29 Landing Approach at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission approaches for a landing at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. STS-63 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Crew members assigned to the STS-63 mission included (front left to right) Janice E. Voss, mission specialist; Eileen M. Collins, pilot; (the first woman to pilot a Space Shuttle), James D. Wetherbee, commander; and Vladmir G. Titov (Cosmonaut). Standing in the rear are mission specialists Bernard A. Harris, and C. Michael Foale. Launched aboard the Space Shuttle Discovery on February 3, 1995 at 12:22:04 am (EST), the primary payload for the mission was the SPACEHAB-3. STS-63 marked the first approach and fly around by the Shuttle with the Russian space station Mir.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1990-11-16

    The 5 member crew of the STS-41 mission included (left to right): Bruce E. Melnick, mission specialist 2; Robert D. Cabana, pilot; Thomas D. Akers, mission specialist 3; Richard N. Richards, commander; and William M. Shepherd, mission specialist 1. Launched aboard the Space Shuttle Discovery on October 6, 1990 at 7:47:15 am (EDT), the primary payload for the mission was the ESA built Ulysses Space Craft made to explore the polar regions of the Sun. Other main payloads and experiments included the Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment and the INTELSAT Solar Array Coupon (ISAC).

  3. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing 16 May on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards AFB with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing May 16 on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  5. Shuttle Carrier Aircraft (SCA) Fleet Photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two Boeing 747 Shuttle Carrier Aircraft (SCA) are seen here nose to nose at Dryden Flight Research Center, Edwards, California. The front mounting attachment for the Shuttle can just be seen on top of each. The SCAs are used to ferry Space Shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are; three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  6. STS-76 crew after arrival at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Mission Commander Kevin P. Chilton (second from left) chats with Mission Specialist Shannon W. Lucid (left); Pilot Richard A. Searfoss and Mission Specialist Michael 'Rich' Clifford shortly after their arrival at KSC's Shuttle Landing Facility. The Space Shuttle Atlantis is scheduled to lift off on STS-76 around 3:35 a.m. EST, March 21, with one of the primary mission objectives being the third docking between the U.S. Shuttle and the Russian Space Station Mir.

  7. STS-64 and 747-SCA Ferry Flight Takeoff

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Discovery, mated to NASA's 747 Shuttle Carrier Aircraft (SCA), takes to the air for its ferry flight back to the Kennedy Space Center in Florida. The spacecraft, with a crew of six, was launched into a 57-degree high inclination orbit from the Kennedy Space Center, Florida, at 3:23 p.m., 9 September 1994. The mission featured the study of clouds and the atmosphere with a laser beaming system called Lidar In-Space Technology Experiment (LITE), and the first untethered space walk in ten years. A Spartan satellite was also deployed and later retrieved in the study of the sun's corona and solar wind. The mission was scheduled to end Sunday, 18 September, but was extended one day to continue science work. Bad weather at the Kennedy Space Center on 19 September, forced a one-day delay to September 20, with a weather divert that day to Edwards. Mission commander was Richard Richards, the pilot Blaine Hammond, while mission specialists were Jerry Linenger, Susan Helms, Carl Meade, and Mark Lee. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. Application of computer image enhancement techniques to shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    David, B. E.

    1986-01-01

    With the advent of frequent Space Transportation System Shuttle missions, photography from hyperaltitudes stands to become an accessible and convenient resource for scientists and environmental managers. As satellite products (such as LANDSAT) continue to spiral in costs, all but the most affluent consumer is finding Earth imagery from space to be more and more unavailable. Therefore, the potential for Shuttle photography to serve a wide variety of users is increasing. However, despite the popularity of photos from space as public relations tools and report illustrations, little work has been performed to prove their scientific worth beyond that as basic mapping bases. It is the hypothesis of this project that hand-held Earth photography from the Space Shuttle has potentially high scientific merit and that primary data can be extracted. In effect, Shuttle photography should be considered a major remote sensing information resource.

  9. STS-110 M.S. Smith, Ross, and Walheim in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- (Left to right) STS-110 Mission Specialists Steven Smith, Jerry Ross and Rex Walheim settle into their seats aboard Space Shuttle Atlantis prior to a simulated launch countdown. The simulation is part of Terminal Countdown Demonstration Test activities. TCDT also includes emergency egress training and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  10. Russian RSC Energia employees attach trunnions to DM

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Employees of the Russian aerospace company RSC Energia attach trunnions to the Russian-built docking module in the Space Station Processing Facility at KSC so that it can be mounted in the payload bay of the Space Shuttle orbiter Atlantis. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.

  11. STS-40 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  12. STS-40 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-07-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  13. Columbus in the Atlantis payload bay during the STS-122 Mission

    NASA Image and Video Library

    2008-02-08

    S122-E-006273 (8 Feb. 2008) --- Backdropped against a cloud-covered portion of Earth, the European Space Agency's Columbus laboratory and associated ESA hardware sit in the aft section of Space Shuttle Atlantis' cargo bay on the eve of the shuttle's scheduled docking to the International Space Station. The addition of Columbus to the orbital outpost is one of the primary tasks of the STS-122 mission.

  14. KSC-07pd0306

    NASA Image and Video Library

    2007-02-06

    KENNEDY SPACE CENTER, FLA. -- On the floor of the Space Station Processing Facility, astronauts Dan Tani (left) and Peggy Whitson practice working with a cover, something they may handle during an upcoming shuttle flight. With construction of the Space Station the primary focus of future shuttle missions, astronaut crews will be working with one or more of the elements and hardware already being processed in the SSPF. Photo credit: NASA/Kim Shiflett

  15. KSC-01pp1255

    NASA Image and Video Library

    2001-07-08

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist Janet Lynn Kavandi arrives at the KSC Shuttle Landing Facility to make final preparations for launch of Space Shuttle Atlantis July 12. The mission is the 10th assembly flight to the International Space Station and carries the Joint Airlock Module, which will become the primary path for spacewalk entry and departure using both U.S. spacesuits and the Russian Orlan spacesuit for EVA activity

  16. NASA Administrator Goldin talks with STS-93 Commander Collins at the SLF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Shuttle Landing Facility, NASA Administrator Daniel Goldin (foreground) talks with STS-93 Commander Eileen Collins beside the Space Shuttle orbiter Columbia following the successful completion of her mission. Marshall Space Flight Center Director Arthur G. Stephenson (far left) looks on. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  17. Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1991-09-12

    The STS-48 mission launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm. Five astronauts composed the crew including: John O. Creighton, commander; Kenneth S. Reightler, pilot; and Mark N. Brown, Charles D. (Sam) Gemar, and James F. Buchli, all mission specialists. The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).

  19. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation, volume 1

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1988-01-01

    This artist's concept drawing depicts the Tracking and Data Relay Satellite-C (TDRS-C), which was the primary payload of the Space Shuttle Discovery on the STS-26 mission, launched on September 29, 1988. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The deployment of TDRS-G on the STS-70 mission being the latest in the series, NASA has successfully launched six TDRSs.

  1. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    NASA Technical Reports Server (NTRS)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  2. Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1989-05-05

    The STS-30 mission launched aboard the Space Shuttle Atlantis on May 4, 1989 at 2:46:59pm (EDT) carrying a crew of five. Aboard were Ronald J. Grabe, pilot; David M. Walker, commander; and mission specialists Norman E. Thagard, Mary L. Cleave, and Mark C. Lee. The primary payload for the mission was the Magellan/Venus Radar mapper spacecraft and attached Inertial Upper Stage (IUS).

  4. Advanced Microbial Check Valve development. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

    1981-01-01

    The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

  5. STS-48 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

  6. Orbiter Interface Unit and Early Communication System

    NASA Technical Reports Server (NTRS)

    Cobbs, Ronald M.; Cooke, Michael P.; Cox, Gary L.; Ellenberger, Richard; Fink, Patrick W.; Haynes, Dena S.; Hyams, Buddy; Ling, Robert Y.; Neighbors, Helen M.; Phan, Chau T.; hide

    2004-01-01

    This report describes the Orbiter Interface Unit (OIU) and the Early Communication System (ECOMM), which are systems of electronic hardware and software that serve as the primary communication links for the International Space Station (ISS). When a space shuttle is at or near the ISS during assembly and resupply missions, the OIU sends groundor crew-initiated commands from the space shuttle to the ISS and relays telemetry from the ISS to the space shuttle s payload data systems. The shuttle then forwards the telemetry to the ground. In the absence of a space shuttle, the ECOMM handles communications between the ISS and Johnson Space Center via the Tracking and Data Relay Satellite System (TDRSS). Innovative features described in the report include (1) a "smart data-buffering algorithm that helps to preserve synchronization (and thereby minimize loss) of telemetric data between the OIU and the space-shuttle payload data interleaver; (2) an ECOMM antenna-autotracking algorithm that selects whichever of two phased-array antennas gives the best TDRSS signal and electronically steers that antenna to track the TDRSS source; and (3) an ECOMM radiation-latchup controller, which detects an abrupt increase in current indicative of radiation-induced latchup and temporarily turns off power to clear the latchup, restoring power after the charge dissipates.

  7. KSC-2009-6662

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, U.S. Air Force C-5 aircraft lands at the Shuttle Landing Facility, delivering the ExPRESS Logistics Carrier 3, or ELC-3. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-6664

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is offloaded from a U.S. Air Force C-5 aircraft. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  9. Evolution of area access safety training required for gaining access to Space Shuttle launch and landing facilities

    NASA Technical Reports Server (NTRS)

    Willams, M. C.

    1985-01-01

    Assuring personnel and equipment are fully protected during the Space Shuttle launch and landing operations has been a primary concern of NASA and its associated contractors since the inception of the program. A key factor in support of this policy has been the area access safety training requirements for badging of employees assigned to work on Space Shuttle Launch and Facilities. This requirement was targeted for possible cost savings and the transition of physical on-site walkdowns to the use of television tapes has realized program cost savings while continuing to fully satisfy the area access safety training requirements.

  10. KSC-2013-3235

    NASA Image and Video Library

    2013-08-09

    CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 4 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room was the most advanced of the control rooms used for shuttle missions and was the primary firing room for the shuttle's final series of launches before retirement. It is furnished in a more contemporary style with wood cabinets and other features, although it retains many of the computer systems the shuttle counted on to operate safely. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang

  11. STS-43 Atlantis, Orbiter Vehicle (OV) 104, crew insignia

    NASA Image and Video Library

    1999-11-09

    STS043-S-001 (6 Feb. 1991) --- Designed by the astronauts assigned to fly on the mission, the STS-43 patch portrays the evolution and continuity of the United States of America's space program by highlighting 30 years of American manned space flight experience - from Mercury to the space shuttle. The emergence of the space shuttle Atlantis from the outlined configuration of the Mercury space capsule commemorates this special relationship. The energy and momentum of launch are conveyed by the gradations of blue which mark the space shuttle's ascent from Earth to space. Once in Earth orbit, Atlantis' cargo bay opens to reveal the Tracking and Data Relay Satellite (TDRS) which appears in gold emphasis against the white wings of the space shuttle Atlantis and the stark blackness of space. A primary mission objective, the Tracking and Data Relay Satellite System (TDRSS) will enable almost continuous communication from Earth to space for future space shuttle missions. The stars on the patch are arranged to suggest this mission's numerical designation, with four stars left of Atlantis and three to the right. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  12. An Analysis of Potential Space Shuttle Cargo-Handling Modes of Operation

    NASA Technical Reports Server (NTRS)

    Whitacre, Walter E.

    1970-01-01

    This report attempts to indicate the current status of Space Shuttle cargo handling analysis. It is intended for use by the various organizations operating in support of the Space Shuttle effort who are investigating problems not necessarily affected by the frequent configuration and approach changes imposed on the primary task team and contractor personnel. The various studies have been analyzed and the results interwoven with the results of in-house efforts. The problems involved in orbital docking, payload extraction and transfer, cargo handling, and special-purpose missions are discussed and some tentative conclusions and recommendations are presented. This report has been reviewed and approved for release by the MSFC Shuttle Task Team. However, no statements made herein should be interpreted as position statements with respect to the Space Shuttle, the direction of future efforts, or intended methods of operation. This document reflects the view of the author, following analysis of the data available, and should not be construed as an official recommendation.

  13. STS-37 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-05-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  14. STS-37 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1988-04-26

    Five astronauts composed the STS-30 crew. Pictured (left to right) are Ronald J. Grabe, pilot; David M. Walker, commander; and mission specialists Norman E. Thagard, Mary L. Cleave, and Mark C. Lee. The STS-30 mission launched aboard the Space Shuttle Atlantis on May 4, 1989 at 2:46:59pm (EDT). The primary payload was the Magellan/Venus Radar mapper spacecraft and attached Inertial Upper Stage (IUS).

  16. KSC-99pp0987

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- The STS-93 crew pose in front of the Space Shuttle orbiter Columbia following their landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. From left to right, they are Mission Specialists Catherine G. Coleman (Ph.D.) and Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Commander Eileen Collins, and Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  17. KSC-99pp0986

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- STS-93 Commander Eileen Collins poses in front of the Space Shuttle orbiter Columbia following her textbook landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. On this mission, Collins became the first woman to serve as a Shuttle commander. Also on board were her fellow STS-93 crew members: Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history

  18. Stability test and analysis of the Space Shuttle Primary Reaction Control Subsystem thruster

    NASA Technical Reports Server (NTRS)

    Applewhite, John; Hurlbert, Eric; Krohn, Douglas; Arndt, Scott; Clark, Robert

    1992-01-01

    The results are reported of a test program conducted on the Space Shuttle Primary Reaction Control Subsystem thruster in order to investigate the effects of trapped helium bubbles and saturated propellants on stability, determine if thruster-to-thruster stability variations are significant, and determine stability under STS-representative conditions. It is concluded that the thruster design is highly reliable in flight and that burn-through has not occurred. Significantly unstable thrusters are screened out, and wire wrap is found to protect against chamber burn-throughs and to provide a fail-safe thruster for this situation.

  19. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  20. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  1. Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations

    NASA Technical Reports Server (NTRS)

    Cutri-Kohart, Rebecca M.

    2011-01-01

    The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.

  2. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  3. STS-45 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  4. STS-45 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1992-05-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  5. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000, carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  6. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000 carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  7. Mechanical Attachment of Reusable Surface Insulation to Space Shuttle Primary Structure

    NASA Technical Reports Server (NTRS)

    Fleck, R. W.; Lehman, J. K.

    1973-01-01

    Three methods of attaching surface insulation tiles to shuttle primary structure have been proposed: direct bond, mechanical attachment, and subpanels with standoffs. The direct bond approach is lightweight but is difficult to refurbish and inspect. The subpanel approach is heavier but allows for easy refurbishment since subpanels are easily removed and replaced. The mechanical attachment approach allows easy refurbishment and inspection and is lightweight when an efficient insulator is used between surface insulation tiles and primary structure.

  8. A comparison of the Shuttle remote manipulator system and the Space Station Freedom mobile servicing center

    NASA Technical Reports Server (NTRS)

    Taylor, Edith C.; Ross, Michael

    1989-01-01

    The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.

  9. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  10. STS-59 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

  11. A new era of space transportation. [Space Shuttle system utilization

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1976-01-01

    It is pointed out that founded on the experiences of Apollo, Skylab, and the Apollo/Soyuz mission an era is entered which will be characterized by a displacement of the interface between the experimenter and his experiment from the control center on the ground to the laboratory in orbit. A new world has been opened by going into space. Economic applications are related to the achievement of an enormous efficiency in world communications at a much lower cost. However, programs of space exploration and usage are under severe economic constraints. A primary tool to lower the cost of programs is to be the Space Transportation System using the Space Shuttle. It is emphasized that the Shuttle system is an international enterprise. Attention is also given to the results of the Viking missions, the Landsat satellites, and applications of space technology for science and commerce.

  12. KSC-96pc1287

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- A diversified mission of astronomy, commercial space research and International Space Station preparation gets under way as the Space Shuttle Columbia climbs skyward from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  13. KSC-96pc1286

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- A diversified mission of astronomy, commercial space research and International Space Station preparation gets under way as the Space Shuttle Columbia climbs skyward from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  14. KSC-95PC-1324

    NASA Image and Video Library

    1995-09-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Russian-built Docking Module is lowered for installation into the payload bay of the space shuttle Atlantis while it is in bay 2 of the Orbiter Processing Facility. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two spacecraft. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission. Photo Credit: NASA

  15. Landing of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-24

    STS125-S-062 (24 May 2009) --- Space Shuttle Atlantis touches down on Runway 22 at Edwards Air Force Base in California, ending the STS-125 mission to repair and upgrade NASA?s Hubble Space Telescope. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. The main landing gear touched down at 8:39:05 a.m. (PDT) on May 24, 2009. Nose gear touchdown was at 8:39:15 a.m. Wheel-stop was at 8:40:15 a.m., bringing the mission?s elapsed time to 12 days, 21 hours, 37 minutes, 9 seconds. Landing opportunities on May 22, May 23 and May 24 were waved off due to weather concerns at NASA?s Kennedy Space Center in Florida, the shuttle?s primary landing site. Through five spacewalks, the Hubble Space Telescope was refurbished and upgraded with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.

  16. Landing of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-24

    STS125-S-064 (24 May 2009) --- Space Shuttle Atlantis approaches landing on Runway 22 at Edwards Air Force Base in California, ending the STS-125 mission to repair and upgrade NASA?s Hubble Space Telescope. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. The main landing gear touched down at 8:39:05 a.m. (PDT) on May 24, 2009. Nose gear touchdown was at 8:39:15 a.m. Wheel-stop was at 8:40:15 a.m., bringing the mission?s elapsed time to 12 days, 21 hours, 37 minutes, 9 seconds. Landing opportunities on May 22, May 23 and May 24 were waved off due to weather concerns at NASA?s Kennedy Space Center in Florida, the shuttle?s primary landing site. Through five spacewalks, the Hubble Space Telescope was refurbished and upgraded with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.

  17. Landing of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-24

    STS125-S-063 (24 May 2009) --- Space Shuttle Atlantis approaches landing on Runway 22 at Edwards Air Force Base in California, ending the STS-125 mission to repair and upgrade NASA?s Hubble Space Telescope. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. The main landing gear touched down at 8:39:05 a.m. (PDT) on May 24, 2009. Nose gear touchdown was at 8:39:15 a.m. Wheel-stop was at 8:40:15 a.m., bringing the mission?s elapsed time to 12 days, 21 hours, 37 minutes, 9 seconds. Landing opportunities on May 22, May 23 and May 24 were waved off due to weather concerns at NASA?s Kennedy Space Center in Florida, the shuttle?s primary landing site. Through five spacewalks, the Hubble Space Telescope was refurbished and upgraded with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.

  18. Russian Docking Module is lowered

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Russian-built Docking Module (DM) is lowered for installation into the payload bay of the Space Shuttle Orbiter Atlantis while the spaceplane is in Orbiter Processing Facility bay 2. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission.

  19. KSC-2010-1325

    NASA Image and Video Library

    2010-01-20

    CAPE CANAVERAL, Fla. - At Launch Pad 39A at NASA's Kennedy Space Center in Florida, the crew members of space shuttle Endeavour's STS-130 mission take time out from their training to pose for a group portrait with space shuttle Endeavour as backdrop. From left are Mission Specialists Stephen Robinson and Nicholas Patrick, Commander George Zamka, Mission Specialist Kathryn Hire, Pilot Terry Virts and Mission Specialist Robert Behnken. The crew members of space shuttle Endeavour's upcoming mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. The primary payload on STS-130 is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. Endeavour's launch is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett

  20. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  1. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    The factors affecting the choice of the 156 inch diameter, parallel burn, solid propellant rocket engine for use with the space shuttle booster are presented. Primary considerations leading to the selection are: (1) low booster vehicle cost, (2) the largest proven transportable system, (3) a demonstrated design, (4) recovery/reuse is feasible, (5) abort can be easily accomplished, and (6) ecological effects are minor.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1990-01-08

    Five astronauts launched aboard the Space Shuttle Columbia on January 9, 1990 at 7:35:00am (EST) for the STS-32 mission. The crew included David C. Brandenstein, commander; James D. Weatherbee, pilot; and mission specialists Marsha S. Ivins, G. David Low, and Bonnie J. Dunbar. Primary objectives of the mission were the deployment of the SYNCOM IV-F5 defense communications satellite and the retrieval of NASA’s Long Duration Exposure Facility (LDEF).

  3. STS-31 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

  4. KSC-2009-6663

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to offload the ExPRESS Logistics Carrier 3, or ELC-3, from a U.S. Air Force C-5 aircraft. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-6665

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is removed from the cargo compartment of a U.S. Air Force C-5 aircraft. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  6. STS106-s-013

    NASA Image and Video Library

    2000-09-08

    STS106-S-013 (8 September 2000)--- This view of shock-wave condensation collars backlit by the Sun occurred during the launch of the Space Shuttle Atlantis on September 8, 2000. The scene was captured on 35mm motion picture film. One frame was digitized to make this still image. Although the primary effect is created by the forward fuselage of the Atlantis, secondary effects can be seen on the solid rocket booster (SRB) forward skirt, shuttle vertical stabilizer and wing trailing edge, behind the Space Shuttle Main Engines (SSME). The perfect on-time launch took place at 8:45:47 a.m. (EDT), September 8, 2000. Onboard the shuttle were astronauts Terrence W. Wilcutt, Scott D. Altman, Edward T. Lu, Richard A. Mastracchio and Daniel C. Burbank, along with cosmonauts Yuri I. Malenchenko and Boris V. Morukov who represent the Russian Aviation and Space Agency.

  7. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  8. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    NASA Technical Reports Server (NTRS)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  9. KSC-99pp0991

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  10. KSC-99pp0990

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and his daughter Tatinana prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander

  11. KSC-99pp0992

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander

  12. KSC-99pp0993

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  13. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  14. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  15. Putting the Power of Configuration in the Hands of the Users

    NASA Technical Reports Server (NTRS)

    Al-Shihabi, Mary-Jo; Brown, Mark; Rigolini, Marianne

    2011-01-01

    Goal was to reduce the overall cost of human space flight while maintaining the most demanding standards for safety and mission success. In support of this goal, a project team was chartered to replace 18 legacy Space Shuttle nonconformance processes and systems with one fully integrated system Problem Reporting and Corrective Action (PRACA) processes provide a closed-loop system for the identification, disposition, resolution, closure, and reporting of all Space Shuttle hardware/software problems PRACA processes are integrated throughout the Space Shuttle organizational processes and are critical to assuring a safe and successful program Primary Project Objectives Develop a fully integrated system that provides an automated workflow with electronic signatures Support multiple NASA programs and contracts with a single "system" architecture Define standard processes, implement best practices, and minimize process variations

  16. KSC-96PC1289

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- Vividly framed by a tranquil Florida landscape, the Space Shuttle Columbia lifts off from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1991-10-02

    The STS-48 crew portrait includes (front row left to right): Mark N. Brown, mission specialist; John O. Creighton, commander; and Kenneth S. Reightler, pilot. Pictured on the back row (left to right) are mission specialists Charles D. (Sam) Gemar, and James F. Buchli. The crew of five launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm (EDT). The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).

  18. A study of space shuttle structural integrity test and assessment. Part 1

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Poe, R. G.

    1972-01-01

    The ultrasonics technique for assessing the structural integrity of the primary surface of the space shuttle vehicles is discussed and evaluated. Analysis was made of transducers, transducer coupling test structure fabrication, flaws, and ultrasonic testing. Graphs of microphone response curves from the initial noise tests, accelerometer response curves from the final noise tests, and microphone curves from the final noise tests are included along with a glossary, bibliography, and results.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-02

    Launched aboard the Space Shuttle Atlantis on August 2, 1991, the STS-43 mission’s primary payload was the Tracking and Data Relay Satellite 5 (TDRS-5) attached to an Inertial Upper Stage (IUS), which became the 4th member of an orbiting TDRS cluster. The flight crew consisted of 5 astronauts: John E. Blaha, commander; Michael A. Baker, pilot; Shannon W. Lucid, mission specialist 1; James C. Adamson, mission specialist 2; and G. David Low, mission specialist 3.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-02

    Launched aboard the Space Shuttle Atlantis on August 2, 1991, the STS-43 mission’s primary payload was the Tracking and Data Relay Satellite 5 (TDRS-5) attached to an Inertial Upper Stage (IUS), which became the 4th member of an orbiting TDRS cluster. The flight crew consisted of five astronauts: John E. Blaha, commander; Michael A. Baker, pilot; Shannon W. Lucid, mission specialist 1; James C. Adamson, mission specialist 2; and G. David Low, mission specialist 3.

  1. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  2. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  3. Post-Challenger evaluation of space shuttle risk assessment and management

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the shock of the Space Shuttle Challenger accident began to subside, NASA initiated a wide range of actions designed to ensure greater safety in various aspects of the Shuttle system and an improved focus on safety throughout the National Space Transportation System (NSTS) Program. Certain specific features of the NASA safety process are examined: the Critical Items List (CIL) and the NASA review of the Shuttle primary and backup units whose failure might result in the loss of life, the Shuttle vehicle, or the mission; the failure modes and effects analyses (FMEA); and the hazard analysis and their review. The conception of modern risk management, including the essential element of objective risk assessment is described and it is contrasted with NASA's safety process in general terms. The discussion, findings, and recommendations regarding particular aspects of the NASA STS safety assurance process are reported. The 11 subsections each deal with a different aspect of the process. The main lessons learned by SCRHAAC in the course of the audit are summarized.

  4. KSC-385C-1296-02

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  5. KSC-385C-1298-02

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  6. KSC-385C-1297-06

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  7. KSC-385C-1298-05

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  8. KSC-385C-1297-11

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  9. KSC-385C-1298-06

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  10. KSC-385C-1296-01

    NASA Image and Video Library

    1985-04-13

    CAPE CANAVERAL, Fla. – At the Kennedy Space Center in Florida, the new space shuttle, Atlantis, arrives at the Shuttle Landing Facility. The shuttle is mounted atop the Shuttle Carrier Aircraft, a modified Boeing 747. Over the next seven months Atlantis will be prepared for its maiden voyage, STS-51J. Atlantis, NASA's fourth space-rated shuttle, was named after the two-masted boat that served as the primary research vessel for the Woods Hole Oceanographic Institute in Massachusetts from 1930 to 1966. The boat had a 17-member crew and accommodated up to five scientists who worked in two onboard laboratories, examining water samples and marine life. Like its predecessors, Atlantis was constructed by Rockwell International in Palmdale, Calif. The spacecraft was transported over land from Palmdale to Edwards Air Force Base on April 3, 1985 for the cross-country ferry flight to Kennedy. For more: http://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/atlantis-info.html Photo credit: NASA/Louie Rochefort

  11. KSC-2009-6667

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, arrives at the Space Station Processing Facility. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  12. Contents of payload bay of the STS-68 Space Shuttle Endeavour

    NASA Image and Video Library

    1994-09-30

    STS068-272-075 (30 September-11 October 1994) --- The darkness of space forms the backdrop for this scene of the Space Shuttle Endeavour's cargo bay, 115 nautical miles above a cloud covered Indian Ocean. The Space Radar Laboratory (SRL-2) Multipurpose Experiment Support Structure (MPESS) is seen at bottom frame. Also partially seen are other experiments including other components of the primary payload. They are the antenna for the Spaceborne Imaging Radar (SIR-C), the X-band Synthetic Aperture Radar (X-SAR), the device for Measurement of Air Pollution from Satellites (MAPS) and some Getaway Special (GAS) canisters.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1997-09-01

    Five astronauts and a payload specialist take a break from training at the Johnson Space Center (JSC) to pose for the STS-87 crew portrait. Wearing the orange partial pressure launch and entry suits, from the left, are Kalpana Chawla, mission specialist; Steven W. Lindsey, pilot; Kevin R. Kregel, mission commander; and Leonid K. Kadenyuk, Ukrainian payload specialist. Wearing the white Extravehicular Mobility Unit (EMU) space suits are mission specialists Winston E. Scott (left) and Takao Doi (right). Doi represents Japan’s National Space Development Agency (NASDA). The STS-87 mission launched aboard the Space Shuttle Columbia on November 19, 1997. The primary payload for the mission was the U.S. Microgravity Payload-4 (USMP-4).

  14. KSC-02pd0303

    NASA Image and Video Library

    2002-03-18

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  15. STS-110 M.S. Smith suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith relaxes during suit fit, which is part of Terminal Countdown Demonstration Test activities. The TCDT is held at KSC prior to each Space Shuttle flight to provide flight crews an opportunity to participate in simulated launch countdown activities. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  16. STS-110 M.S. Smith driving M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  17. STS-70 Discovery launch before tower clear (fish eye view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The fourth Space Shuttle flight of 1995 is off to an all-but- perfect start, as the Shuttle Discovery surges skyward from Launch Pad 39B at 9:41:55.078 a.m. EDT, July 13, 1995. On board for Discovery's 21st spaceflight are a crew of five: Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. Primary objective of Mission STS-70 is to assure the continued readiness of NASA's Tracking and Data Relay Satellite (TDRS) communications network which links Earth-orbiting spacecraft -- including the Shuttle -- with the ground. The 70th Shuttle flight overall also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1991-04-05

    Aboard the Space Shuttle Atlantis, the STS-37 mission launched April 5, 1991 from launch pad 39B at the Kennedy Space Center in Florida, and landed back on Earth April 11, 1991. The 39th shuttle mission included crew members: Steven R. Nagel, commander; Kenneth D. Cameron, pilot; Jerry L,. Ross, mission specialist 1; Jay Apt, mission specialist 2; and Linda M. Godwin, mission specialist 3. The primary payload for the mission was the Gamma Ray Observatory (GRO). The GRO included the Burst and Transient Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Experiment (OSSEE). Secondary payloads included Crew and Equipment Translation Aids (CETA); the Ascent Particle Monitor (APM); the Shuttle Amateur Radio Experiment II (SAREXII), the Protein Crystal Growth (PCG); the Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA); Radiation Monitoring Equipment III (RMEIII); and Air Force Maui Optical Site (AMOS).

  19. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-01

    The primary payload of the STS-43 mission, Tracking and Data Relay Satellite-E (TDRS-E) attached to an Inertial Upper Stage (IUS) was photographed at the moment of its release from the cargo bay of the Space Shuttle Orbiter Atlantis. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The launch of STS-43 occurred on August 2, 1991.

  20. STS-35 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1991-01-01

    The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1993-05-01

    Designed by members of the flight crew, the STS-58 insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering Spacelab Life Sciences ll highlight the primary mission of the second Space Shuttle flight dedicated to life sciences research. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the scheduled two-week duration of the longest Space Shuttle mission to date. The hexagonal shape of the patch depicts the carbon ring, a molecule common to all living organisms. Encircling the inner border of the patch is the double helix of DNA, representing the genetic basis of life. Its yellow background represents the sun, energy source for all life on Earth. Both medical and veterinary caducei are shown to represent the STS- 58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research intended to benefit all mankind.

  2. STS-41 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

  3. Russian RSC Energia employees inspect DM in SSPF

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Employees of the Russian aerospace company RSC Energia prepare to conduct final inspections of the Russian-built Docking Module in the Space Station Processing Facility at KSC. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.

  4. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  5. STS-62 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  6. Design and fabrication of metallic thermal protection systems for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Varisco, A.; Bell, P.; Wolter, W.

    1978-01-01

    A program was conducted to develop a lightweight, efficient metallic thermal protection system (TPS) for application to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements were generally derived from the space shuttle. A corrugation-stiffened beaded-skin TPS design was used as a baseline. The system was updated and modified to incorporate the latest technology developments and design criteria. The primary objective was to minimize mass for the total system.

  7. View of ISS taken during the STS-122 Approach

    NASA Image and Video Library

    2008-02-09

    S122-E-007027 (9 Feb. 2008) --- This digital still image of the International Space Station was photographed through an overhead window on the Space Shuttle Atlantis as the two spacecraft approached each other for a Feb. 9 docking. While STS-122 astronauts were recording photos of their home for the next several days, crew members aboard the ISS were clicking images of the shuttle, with the primary focus being on its thermal protection system.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-02

    These five NASA astronauts were the crew members for the STS-69 mission that launched aboard the Space Shuttle Endeavour September 7, 1995. Pictured on the front row (left to right) are David M. Walker, mission commander; and Kenneth D. Cockrell, pilot. On the back row (left to right) are Michael L. Gernhardt and James H. Newman, both mission specialists; and James S. Voss, payload commander. The mission’s two primary payloads included the Spartan 201-3 and Wake Shield Facility-2 (WSF-2).

  9. Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.

  10. Space Operations Center - A concept analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.

  11. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  12. Status of shuttle fuel cell technology program.

    NASA Technical Reports Server (NTRS)

    Rice, W. E.; Bell, D., III

    1972-01-01

    The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.

  13. STS-76 crew after arrival at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Mission Commander Kevin P. Chilton (left); Mission Specialists Linda M. Godwin and Shannon W. Lucid; Pilot Richard A. Searfoss and Mission Specialist Michael 'Rich' Clifford chat shortly after their arrival at KSC's Shuttle Landing Facility. Not shown is Payload Commander Ronald M. Sega. The astronauts' late-night arrival allows them to maintain the shift in their waking and sleeping hours, altered in preparation for their upcoming spaceflight. The Space Shuttle Atlantis is scheduled to lift off on STS-76 around 3:35 a.m. EST, March 21, with one of the primary mission objectives being the third docking between the U.S. Shuttle and the Russian Space Station Mir.

  14. Landing of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-24

    STS125-S-065 (24 May 2009) --- Space Shuttle Atlantis? drag chute is deployed as the spacecraft rolls toward wheels stop on Runway 22 at Edwards Air Force Base in California, ending the STS-125 mission to repair and upgrade NASA?s Hubble Space Telescope. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. The main landing gear touched down at 8:39:05 a.m. (PDT) on May 24, 2009. Nose gear touchdown was at 8:39:15 a.m. Wheel-stop was at 8:40:15 a.m., bringing the mission?s elapsed time to 12 days, 21 hours, 37 minutes, 9 seconds. Landing opportunities on May 22, May 23 and May 24 were waved off due to weather concerns at NASA?s Kennedy Space Center in Florida, the shuttle?s primary landing site. Through five spacewalks, the Hubble Space Telescope was refurbished and upgraded with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.

  15. Deployable-erectable trade study for space station truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Wright, A. S., Jr.; Bush, H. G.; Watson, J. J.; Dean, E. B.; Twigg, L. T.; Rhodes, M. D.; Cooper, P. A.; Dorsey, J. T.; Lake, M. S.

    1985-01-01

    The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss.

  16. STS-60 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

  17. STS-64 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

  18. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application. Volume 3, phase 3: Full size TPS evaluation

    NASA Technical Reports Server (NTRS)

    Baer, J. W.; Black, W. E.

    1974-01-01

    The thermal protection system (TPS), designed for incorporation with space shuttle orbiter systems, consists of one primary heat shield thermally and structurally isolated from the test fixture by eight peripheral guard panels, all encompassing an area of approximately 12 sq ft. TPS components include tee-stiffened Cb 752/R-512E heat shields, bi-metallic support posts, panel retainers, and high temperature insulation blankets. The vehicle primary structure was simulated by a titanium skin, frames, and stiffeners. Test procedures, manufacturing processes, and methods of analysis are fully documented. For Vol. 1, see N72-30948; for Vol. 2, see N74-15660.

  19. Selected tether applications in space: Phase 2. Executive summary

    NASA Technical Reports Server (NTRS)

    Thorson, M. H.; Lippy, L. J.

    1985-01-01

    The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1996-04-01

    The crew assigned to the STS-78 mission included (seated left to right) Terrence T. (Tom) Henricks, commander; and Kevin R. Kregel, pilot. Standing, left to right, are Jean-Jacques Favier (CNES), payload specialist; Richard M. Linneham, mission specialist; Susan J. Helms, payload commander; Charles E. Brady, mission specialist; and Robert Brent Thirsk (CSA). Launched aboard the Space Shuttle Columbia on June 20, 1996 at 10:49:00 am (EDT), the STS-78 mission’s primary payloads was the Life and Microgravity Spacelab (LMS). Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS.

  1. NASTRAN analysis of the 1/8-scale space shuttle dynamic model

    NASA Technical Reports Server (NTRS)

    Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.

    1973-01-01

    The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.

  2. KSC-2009-6671

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers unwrap the ExPRESS Logistics Carrier 3, or ELC-3, still nestled in its transportation case. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-6670

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers supervise the uncrating of the ExPRESS Logistics Carrier 3, or ELC-3. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  4. KSC-2009-6673

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the newly arrived ExPRESS Logistics Carrier 3, or ELC-3, is lifted high above the clean room floor. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-6668

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to uncrate the ExPRESS Logistics Carrier 3, or ELC-3. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  6. STS-93 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An overview of Flight STS-93 is presented. The primary objective of the STS-93 mission was to deploy the Advanced X-Ray Astrophysics Facility (AXAF), also known as the Chandra X-ray Observatory. The mission flew on the Columbia Shuttle, on July 22, 1999. This facility is the most sophisticated X-ray observatory ever built. Other payloads on STS-93 were: (1) the Midcourse Space Experiment (MSX), (2) Shuttle Ionospheric Modification with Pulsed Local Exhaust (SIMPLEX), (3) Southwest Ultraviolet Imaging System (SWUIS), (4) Gelation of Sols: Applied Microgravity Research (GOSAMR), Space Tissue Loss-B (STL-B), (5) Light Weight Flexible Solar Array Hinge (LFSAH), (6) Cell Culture Module (CCM), and (7) the Shuttle Amateur Radio Experiment-II (SAREX-II), (8) EarthKam, (9) Plant Growth Investigations in Microgravity (PGIM), (10) Commercial Generic Bioprocessing Apparatus (CGBA), (11) Micro-Electrical Mechanical System (MEMS), and (12) the Biological Research in Canisters (BRIC). The crew was: Eileen M. Collins, Mission Commander, the first female shuttle commander; Jeffrey S. Ashby, Pilot; Steven A. Hawley , Mission Specialist; Catherine G. Coleman, Mission Specialist; Michel Tognini (CNES), Mission Specialist. The video contains views of life aboard the space shuttle. This mission featured both a night launching and a night landing at the Kennedy Space Center.

  7. STS-50 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-50 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-eighth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of the following: an ET which was designated ET-50 (LUT-43); three SSME's which were serial numbers 2019, 2031, and 2011 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-051. The lightweight/redesigned RSRM's installed in each SRB were designated 360L024A for the left RSRM and 360M024B for the right RSRM. The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment 2 (SAREX-2) payloads. An additional secondary objective was to meet the requirements of the Ultraviolet Plume Instrument (UVPI), which was flown as a payload of opportunity.

  8. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  9. Selected tether applications in space: An analysis of five selected concepts

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.

  10. Space Shuttle Software Development and Certification

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Henderson, Johnnie A

    2000-01-01

    Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools

  11. SSME digital control design characteristics

    NASA Technical Reports Server (NTRS)

    Mitchell, W. T.; Searle, R. F.

    1985-01-01

    To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.

  12. STS-68 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.

  13. STS-114 Flight Day 13 and 14 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Flight Day 13, the crew of Space Shuttle Discovery on the STS-114 Return to Flight mission (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) hear a weather report from Mission Control on conditions at the shuttle's possible landing sites. The video includes a view of a storm at sea. Noguchi appears in front of a banner for the Japanese Space Agency JAXA, displaying a baseball signed by Japanese MLB players, demonstrating origami, displaying other crafts, and playing the keyboard. The primary event on the video is an interview of the whole crew, in which they discuss the importance of their mission, lessons learned, shuttle operations, shuttle safety and repair, extravehicular activities (EVAs), astronaut training, and shuttle landing. Mission Control dedicates the song "A Piece of Sky" to the Shuttle crew, while the Earth is visible below the orbiter. The video ends with a view of the Earth limb lit against a dark background.

  14. STS-93 Mission Specialist Tognini and daughter prepare to board aircraft for return flight to Housto

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and his daughter Tatinana prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  15. STS-93 Commander Collins poses in front of Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen Collins poses in front of the Space Shuttle orbiter Columbia following her textbook landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. On this mission, Collins became the first woman to serve as a Shuttle commander. Also on board were her fellow STS-93 crew members: Pilot Jeffrey S. Ashby and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history.

  16. The STS-93 crew pose in front of Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 crew pose in front of the Space Shuttle orbiter Columbia following their landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. From left to right, they are Mission Specialists Catherine G. Coleman (Ph.D.) and Stephen A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Commander Eileen Collins, and Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  17. STS-93 Mission Specialist Coleman and husband prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  18. STS-61 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  19. STS-110 M.S. Ross in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  20. STS-110 M.S. Morin in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Waiting his turn at driving the M-113 armored personnel carrier is STS-110 Mission Specialist Lee Morin. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  1. STS-110 Pilot Frick in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Pilot Stephen Frick waits inside the M-113 armored personnel carrier to begin training on driving the vehicle, which is part of Terminal Countdown Demonstration Test activities. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  2. STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa waits her turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Pilot Stephen Frick. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1996-02-01

    The crew assigned to the STS-77 mission included (seated left to right) Curtis L. Brown, pilot; and John H. Casper, commander. Standing, left to right, are mission specialists Daniel W. Bursch, Mario Runco, Marc Garneau (CSA), and Andrew S. W. Thomas. Launched aboard the Space Shuttle Endeavour on May 19, 1996 at 6:30:00 am (EDT), the STS-77 mission carried three primary payloads; the SPACEHAB-4 pressurized research module, the Inflatable Antenna Experiment (IAE) mounted on a Spartan 207 free-flyer, and a suite of four technology demonstration experiments known as Technology Experiments for Advancing Missions in Space (TEAMS).

  4. Contents of payload bay of the STS-68 Space Shuttle Endeavour

    NASA Image and Video Library

    1994-09-30

    STS068-267-079 (30 September-11 October 1994) --- The rear windows of the Space Shuttle Endeavour reflect sunlight in this view of part of the cargo bay, 115 nautical miles above the Earth. The Space Radar Laboratory (SRL-2) Multipurpose Experiment Support Structure (MPESS) is seen at bottom frame. Also partially seen are other experiments including other components of the primary payload. They are the antenna for the Spaceborne Imaging Radar (SIR-C), the X-band Synthetic Aperture Radar (X-SAR), the device for Measurement of Air Pollution from Satellites (MAPS) and some Getaway Special (GAS) canisters.

  5. KSC-01pp1274

    NASA Image and Video Library

    2001-07-11

    KENNEDY SPACE CENTER, Fla. -- Workers clean the mobile launcher platform on which sits Space Shuttle Atlantis. They are standing in front of one of two tail service masts on either side of the Shuttle, in front of each wing. The masts support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload

  6. STS-104 Atlantis on pad after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers clean the mobile launcher platform on which sits Space Shuttle Atlantis. They are standing in front of one of two tail service masts on either side of the Shuttle, in front of each wing. The masts support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload.

  7. STS-47 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1992-01-01

    The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

  8. STS-47 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1992-10-01

    The STS-47 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fiftieth Space Shuttle Program flight and the second flight of the Orbiter Vehicle Endeavour (OV-105). In addition to the Endeavour vehicle, the flight vehicle consisted of the following: an ET which was designated ET-45 (LWT-38); three SSME's which were serial numbers 2026, 2022, and 2029 and were located in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-053. The lightweight/redesigned RSRM that was installed in the left SRB was designated 360L026A, and the RSRM that was installed in the right SRB was 360W026B. The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload (containing 43 experiments--of which 34 were provided by the Japanese National Space Development Agency (NASDA)). The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-2 (SAREX-2), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA).

  10. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. Combined loading criterial influence on structural performance

    NASA Technical Reports Server (NTRS)

    Kuchta, B. J.; Sealey, D. M.; Howell, L. J.

    1972-01-01

    An investigation was conducted to determine the influence of combined loading criteria on the space shuttle structural performance. The study consisted of four primary phases: Phase (1) The determination of the sensitivity of structural weight to various loading parameters associated with the space shuttle. Phase (2) The determination of the sensitivity of structural weight to various levels of loading parameter variability and probability. Phase (3) The determination of shuttle mission loading parameters variability and probability as a function of design evolution and the identification of those loading parameters where inadequate data exists. Phase (4) The determination of rational methods of combining both deterministic time varying and probabilistic loading parameters to provide realistic design criteria. The study results are presented.

  13. KSC-95pc1013

    NASA Image and Video Library

    1995-07-13

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from Launch Pad 39B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV-103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence "Tom" Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit

  14. Test and analysis procedures for updating math models of Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1991-01-01

    Over the next decade or more, the Space Shuttle will continue to be the primary transportation system for delivering payloads to Earth orbit. Although a number of payloads have already been successfully carried by the Space Shuttle in the payload bay of the Orbiter vehicle, there continues to be a need for evaluation of the procedures used for verifying and updating the math models of the payloads. The verified payload math models is combined with an Orbiter math model for the coupled-loads analysis, which is required before any payload can fly. Several test procedures were employed for obtaining data for use in verifying payload math models and for carrying out the updating of the payload math models. Research was directed at the evaluation of test/update procedures for use in the verification of Space Shuttle payload math models. The following research tasks are summarized: (1) a study of free-interface test procedures; (2) a literature survey and evaluation of model update procedures; and (3) the design and construction of a laboratory payload simulator.

  15. Landing of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-24

    STS125-S-066 (24 May 2009) --- The STS-125 crew pose for a photo near Space Shuttle Atlantis on Runway 22 at Edwards Air Force Base in California following their landing which ended the STS-125 mission to repair and upgrade NASA?s Hubble Space Telescope. From the left are astronauts Mike Massimino, mission specialist; Gregory C. Johnson, pilot; Scott Altman, commander; Megan McArthur, John Grunsfeld, Andrew Feustel and Michael Good, all mission specialists. The main landing gear touched down at 8:39:05 a.m. (PDT) on May 24, 2009. Nose gear touchdown was at 8:39:15 a.m. Wheel-stop was at 8:40:15 a.m., bringing the mission?s elapsed time to 12 days, 21 hours, 37 minutes, 9 seconds. Landing opportunities on May 22, May 23 and May 24 were waved off due to weather concerns at NASA?s Kennedy Space Center in Florida, the shuttle?s primary landing site. Through five spacewalks, Hubble was refurbished and upgraded with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  17. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Major Accomplishments and Lessons Learned Detail Historical Timeline Analysis

    NASA Technical Reports Server (NTRS)

    Orr, James K.

    2010-01-01

    This presentation focuses on the Space Shuttle Primary Avionics Software System (PASS) and the people who developed and maintained this system. One theme is to provide quantitative data on software quality and reliability over a 30 year period. Consistent data relates to code break discrepancies. Requirements were supplied from external sources. Requirement inspections and measurements not implemented until later, beginning in 1985. Second theme is to focus on the people and organization of PASS. Many individuals have supported the PASS project over the entire period while transitioning from company to company and contract to contract. Major events and transitions have impacted morale (both positively and negatively) across the life of the project.

  18. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  19. A preliminary investigation of the environmental Control and Life Support Subsystems (EC/LSS) for animal and plant experiment payloads

    NASA Technical Reports Server (NTRS)

    Wells, H. B.

    1972-01-01

    A preliminary study of the environmental control and life support subsystems (EC/LSS) necessary for an earth orbital spacecraft to conduct biological experiments is presented. The primary spacecraft models available for conducting these biological experiments are the space shuttle and modular space station. The experiments would be housed in a separate module that would be contained in either the shuttle payload bay or attached to the modular space station. This module would be manned only for experiment-related tasks, and would contain a separate EC/LSS for the crew and animals. Metabolic data were tabulated on various animals that are considered useful for a typical experiment program. The minimum payload for the 30-day space shuttle module was found to require about the equivalent of a one-man EC/LSS; however, the selected two-man shuttle assemblies will give a growth and contingency factor of about 50 percent. The maximum payloads for the space station mission will require at least a seven-man EC/LSS for the laboratory colony and a nine-man EC/LSS for the centrifuge colony. There is practically no room for growth or contingencies in these areas.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2003-02-09

    This is the STS-115 insignia. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4. Following the installation of the segments utilizing both the shuttle and the station robotic arms, a series of three space walks completed the final connections and prepared for the deployment of the station's second set of solar arrays. To reflect the primary mission of the flight, the patch depicts a solar panel as the main element. As the Space Shuttle Atlantis launches towards the ISS, its trail depicts the symbol of the Astronaut Office. The star burst, representing the power of the sun, rises over the Earth and shines on the solar panel. The shuttle flight number 115 is shown at the bottom of the patch, along with the ISS assembly designation 12A (the 12th American assembly mission). The blue Earth in the background reminds us of the importance of space exploration and research to all of Earth's inhabitants.

  1. STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.

  2. KSC-2009-6672

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers attach a crane to the ExPRESS Logistics Carrier 3, or ELC-3, in preparations to lift it from its transportation case. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-6675

    NASA Image and Video Library

    2009-12-06

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the newly arrived ExPRESS Logistics Carrier 3, or ELC-3, is lowered onto a work stand in the clean room. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett

  4. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  5. Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay

    2007-01-01

    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  6. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  7. STS-72 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  8. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1992-08-01

    Five NASA astronauts and one Canadian payload specialist composed the STS-52 crew. Pictured on the back row, left to right, are Michael A. Baker, pilot; James B. Wetherbee, commander; and Steven G. Maclean, payload specialist. On the front row, left to right, are mission specialists Charles (Lacy) Veach, Tamara Jernigan, and William Shepherd. Launched aboard the Space Shuttle Columbia on October 22, 1992 at 1:09:39 p.m. (EDT), the crew’s primary objectives were the deployment of the Laser Geodynamic Satellite (LAGEOS II) and operation of the U.S. Microgravity Payload-1 (USMP-1).

  10. Results of an aerodynamic force and moment investigation of an 0.015-scale configuration 3 space shuttle orbiter in the NASA/ARC 3.5-foot hypersonic wind tunnel (OA58)

    NASA Technical Reports Server (NTRS)

    Dziubala, T. J.; Cleary, J. W.

    1974-01-01

    The primary objective of the test was to obtain stability and control data for the basic configuration and an alternate configuration for the Space Shuttle Orbiter. Pitch runs were made with 0 deg of sideslip at Mach numbers of 5.3, 7.3 and 10.3. Six-component force data and fuselage base pressures were recorded for each run. Shadowgraph pictures were taken at selected points. Model 420 was used for the tests.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1985-07-08

    The crew assigned to the STS-51G mission included (kneeling front left to right) Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Standing, left to right, are mission specialists Shannon W. Lucid, Steven R. Nagel, and John M. Fabian; and payload specialists Sultan Salman Al-Saud, and Patrick Baudrey. Launched aboard the Space Shuttle Discovery on June 17, 1985 at 7:33:00 am (EDT), the STS-51G mission’s primary payloads were three communications satellites: MORELOS-A for Mexico; ARABSAT-A , for Arab Satellite communications; and TELSTAR-3D, for ATT.

  12. STS-85 crew Tryggvason and Robinson during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Payload Specialist Bjarni V. Tryggvason and Mission Specialist Stephen K. Robinson go through countdown procedures aboard the Space Shuttle orbiter Discovery during Terminal Countdown Demonstration Test (TCDT) activities for that mission. The TCDT includes a simulation of the final launch countdown. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS- 2). Other STS-85 payloads include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  13. STS-110 Commander Bloomfield in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Commander Michael Bloomfield is eager to take his turn turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. To his left is Mission Specialist Steven Smith. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  14. STS-110 M.S. Smith and Ross in slidewire basket during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialists Steven L. Smith (left) and Jerry L. Ross (right) get ready to climb out of the slidewire basket, part of emergency egress equipment on the launch pad.. The crew is taking part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown, held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  15. STS-65 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

  16. STS-44 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

  17. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  18. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the Space Shuttle certification criteria closely. Based on this analysis, NASA can determine the need to receritfy the vehicles and to incorporate more stringent inspections throughout the process to minimize launch schedule impact. A highly skilled and experience workforce will be increasingly important for safe and reliable operations as the Space Shuttle vehicles and infrastructure continue to age.

  19. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  20. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers confirm the Multi-Purpose Logistics Module Donatello is safely in place on a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers confirm the Multi-Purpose Logistics Module Donatello is safely in place on a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Donatello is slowly lowered toward a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Donatello is slowly lowered toward a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  3. KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  4. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers help the Multi-Purpose Logistics Module Donatello settle onto a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers help the Multi-Purpose Logistics Module Donatello settle onto a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  6. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  7. KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  8. STS-70 Discovery launch startling the birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  9. STS-70 Discovery launch startled birds at ignition

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-13

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. This onboard photo depicts Florida’s Atlantic coast and the Cape Canaveral area as the backdrop for this scene of the INTELSAT VI’s approach to the Shuttle Endeavour.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-13

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. The 4.5 ton INTELSAT VI was successfully snared by three astronauts on a third EVA. In this photo, the satellite, with its newly deployed perigee stage, begins its separation from the Shuttle.

  12. STS-96 Mission Highlights. Part 2

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this second part of a three-part video mission-highlights set, on-orbit spacecrew activities performed on the STS-96 Space Shuttle Orbiter Discovery and the International Space Station are reviewed. The flight crew consists of Kent V. Rominger, Commander; Rick D. Husband, Pilot; and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette (Canadian), and Valery Ivanovich Tokarev (Russian). The primary goals of this mission were to work on logistics and resupply the International Space Station. This second part in the mission series features video from Flight Day 4-7 (FD 4-7). FD 4 of STS-96 presents astronauts Tammy Jernigan and Dan Barry completing the second longest space walk in shuttle history. Footage includes Jernigan and Barry transferring and installing two cranes from the shuttle's payload bay to locations on the outside of the station. The astronauts enter the International Space Station delivering supplies and prepare the outpost to receive its first resident crew, scheduled to arrive in early 2000 on FD 5. The video also captures the crew involved in logistics transfer activities within the Discovery/ISS orbiting complex. FD 6 includes footage of Valery Tokarev and Canadian astronaut Julie Payette charging out the final six battery recharge controller units for two of Zarya's power-producing batteries and all crew members' involvement in logistics transfer activities from the SPACEHAB module to designated locations in the International Space Station. With the transfer work of FD 6 all but complete, the astronauts conduct some additional work, installing parts of a wireless strain gauge system that will help engineers track the effects of adding modules to the station throughout its assembly. Moving the few remaining items from Discovery to the ISS, then closing a series of hatches within the station's modules leading back to the shuttle are the primary activities contained in FD 7. Final coverage features Discovery's astronauts finishing their work inside the International Space Station, closing all of the hatches and readying the shuttle's small thrusters to be fired to raise the entire complex's orbit in preparation for the undocking and departure set for FD 8.

  13. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  14. Report of the Space Shuttle Management Independent Review Team

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  15. Report of the Space Shuttle Management Independent Review Team

    NASA Astrophysics Data System (ADS)

    1995-02-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2006-12-09

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station’s robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station’s Oxygen Generation System.

  17. KSC-2010-1334

    NASA Image and Video Library

    2010-01-20

    CAPE CANAVERAL, Fla. - At Launch Pad 39A at NASA's Kennedy Space Center in Florida, the crew members of space shuttle Endeavour's STS-130 mission pose for a group portrait following a question-and-answer session with the media. From left are Commander George Zamka; Pilot Terry Virts; and Mission Specialists Kathryn Hire, Stephen Robinson, Nicholas Patrick and Robert Behnken. The crew members of space shuttle Endeavour's upcoming mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. The primary payload on STS-130 is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. Endeavour's launch is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett

  18. Expedition Six Commander Ken Bowersox at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition Six Commander Ken Bowersox pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  19. Expedition Six crew member Nikolai Budarin at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition Six crew member Nikolai Budarin, of the Russian Space Agency, pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  20. STS-113 Mission Specialist John Herrington at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. Upon launch, Herrington will become the first Native American in space. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  1. Use of outer planet satellites and asteroids as sources of raw materials for life support systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molton, P.M.; Divine, T.E.

    1977-01-01

    Industrialization of space and other space activities depend entirely on supply of materials from the Earth. This is a high cost route for materials supply. Space industrialization will require life support systems for maintenance and operation staff and these will of necessity be of a sophisticated nature. Use of raw materials obtained by an unmanned space shuttle, initially, and by manned shuttles later could significantly reduce the cost of life support in space. These raw materials could be obtained from small asteroids and satellites, and would consist of primary nutrients. Future development of such sources is discussed, including food productionmore » in automated asteroid-based facilities. The level of technology required is available now, and should become economical within a century.« less

  2. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  3. STS-73 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-73 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-second flight of the Space Shuttle Program, the forty-seventh flight since the return-to-flight, and the eighteenth flight of the Orbiter Columbia (OV-102). STS-73 was also the first flight of OV-102 following the vehicle's return from the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-73; three SSME's that were designated as serial numbers 2037 (Block 1), 2031 (PH-1), and 2038 (Block 1) in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-075. The RSRM's, designated RSRM-50, were installed in each SRB and the individual RSRM's were designated as 36OL050A for the left SRB, and 36OW050B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML)-2 payload.

  4. STS-72 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The flight crew of the STS-72 Space Shuttle Orbiter Endeavour Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists; Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA) present an overview of their mission, whose primary objective is the retrieval of two research satellites. The major activities of the mission will include retrieval of the Japanese Space Flyer Unit (SFU), which was launched aboard a Japanese H-2 rocket to conduct a variety of microgravity experiments. In addition, the STS-72 crew will deploy the AST-Flyer, a satellite, that will fly free of the Shuttle for about 50 hours. Four experiments on the science platform will operate autonomously before the satellite is retrieved by Endeavour's robot arm. Three of Endeavour's astronauts will conduct a pair of spacewalks during the mission to test hardware and tools that will be used in the assembly of the Space Station. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; retrieval of the Japanese Space Flyer Unit (SFU); suit-up and EVA-1; EVA-2; crew members performing various physical exercises; various earth views; and the night landing of the shuttle at KSC.

  5. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  6. STS-101: Flight Day Highlights / CAR

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the launch of STS-101, beginning with the pre-flight breakfast and the crew's introduction. The videotape next shows a pre-dawn view of the orbiter waiting the crew's arrival. The crew is shown getting into their space suits and then climbing onboard the shuttle. In this videotape we are shown a few of the crew getting into their places onboard the shuttle. We are also shown the newly designed "glass cockpit", which gives the pilot and the commander better views and are told that this is the first flight of the shuttle with the new design. After the hatch is closed, we see the shuttle launch into the night, followed by the Solid Rocket Boosters (SRB) separation.

  7. STS-110 crew in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With fellow crew members Mission Specialists Rex Walheim and Ellen Ochoa (waving her arm) and a trainer aboard, STS-110 Pilot Stephen Frick stirs up dust behind the M-113 armored personnel carrier as he practices driving it. The training is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  8. STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa practices driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. Accompanying her are fellow crew members Mission Specialist Rex Walheim (far left) and Pilot Stephen Frink (second from left). In front is the trainer. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  9. Expedition 6 flight engineer Nikolai Budarin suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 flight engineer Nikolai Budarin relaxes during suitup for launch. Budarin, who is with the Russian Space Agency, will be making his second Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  10. STS-110 M.S. Ross and Smith in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With STS-110 Mission Specialists Jerry Ross (far left) and Steven Smith (third from left) on board, Commander Michael Bloomfield scatters dust as he practices driving the M-113 armored personnel carrier. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-14

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. After securing the satellite with the Remote Manipulator System (RMS), the crew proceeded with preparing the satellite for its release into space.

  12. A space system for high-accuracy global time and frequency comparison of clocks

    NASA Technical Reports Server (NTRS)

    Decher, R.; Allan, D. W.; Alley, C. O.; Vessot, R. F. C.; Winkler, G. M. R.

    1981-01-01

    A Space Shuttle experiment in which a hydrogen maser clock on board the Space Shuttle will be compared with clocks on the ground using two-way microwave and short pulse laser signals is described. The accuracy goal for the experiment is 1 nsec or better for the time transfer and 10 to the minus 14th power for the frequency comparison. A direct frequency comparison of primary standards at the 10 to the minus 14th power accuracy level is a unique feature of the proposed system. Both time and frequency transfer will be accomplished by microwave transmission, while the laser signals provide calibration of the system as well as subnanosecond time transfer.

  13. STS-104 Atlantis on pad after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This view from above Space Shuttle Atlantis reduces the workers below to appearing like ants. Seen below the Shuttle is the opening over the exhaust hole containing flame detectors. On either side of the Atlantis, in front of the wings, are two tail service masts. The masts support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload.

  14. KSC-02pd1697

    NASA Image and Video Library

    2002-11-10

    KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Endeavour stands ready for launch on mission STS-113. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  15. KSC-08pd2916

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, ramps are in place for the offloading of the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  16. KSC-08pd2915

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers remove material from a cargo box before offloading the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  17. KSC-08pd2914

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, equipment is removed from the Russian Antonov AH-124-100 cargo airplane to facilitate offloading of the primary cargo, the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. The components are the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  18. KSC-97PC1208

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  19. KSC-97PC1206

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  20. KSC-97PC1209

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  1. KSC-97PC1204

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  2. KSC-97PC1202

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  3. KSC-97PC1203

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  4. KSC-97PC1210

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  5. KSC-97pc1205

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  6. KSC-97PC1207

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  7. STS-116 Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station's robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station's Oxygen Generation System.

  8. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-14

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. This onboard photo captures the free flying INTELSAT IV.

  10. Space Shuttle Orbiter Structures and Mechanisms

    NASA Technical Reports Server (NTRS)

    Gilmore, Adam L.; Estes, Lynda R.; Eilers, James A.; Logan, Jeffrey S.; Evernden, Brent A.; Decker, William S.; Hagen, Jeffrey D.; Davis, Robert E.; Broughton, James K.; Campbell, Carlisle C.; hide

    2011-01-01

    The Space Shuttle Orbiter has performed exceptionally well over its 30 years of flight experience. Among the many factors behind this success were robust, yet carefully monitored, structural and mechanical systems. From highlighting key aspects of the design to illustrating lessons learned from the operation of this complex system, this paper will attempt to educate the reader on why some subsystems operated flawlessly and why specific vulnerabilities were exposed in others. Specific areas to be covered will be the following: high level configuration overview, primary and secondary structure, mechanical systems ranging from landing gear to the docking system, and windows.

  11. Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle

    NASA Technical Reports Server (NTRS)

    Naylor, J. R.; Hynes, R. J.; Molnar, D. O.

    1974-01-01

    The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.

  12. Integrated guidance, navigation and control verification plan primary flight system. [space shuttle avionics integration

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The verification process and requirements for the ascent guidance interfaces and the ascent integrated guidance, navigation and control system for the space shuttle orbiter are defined as well as portions of supporting systems which directly interface with the system. The ascent phase of verification covers the normal and ATO ascent through the final OMS-2 circularization burn (all of OPS-1), the AOA ascent through the OMS-1 burn, and the RTLS ascent through ET separation (all of MM 601). In addition, OPS translation verification is defined. Verification trees and roadmaps are given.

  13. Space shuttle requirements/configuration evolution

    NASA Technical Reports Server (NTRS)

    Andrews, E. P.

    1991-01-01

    Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.

  14. STS-52 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1992-01-01

    The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

  15. STS-52 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1992-12-01

    The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

  16. STS-37 Payload Gamma Ray Observatory Pad-B in PCR

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The primary objective of the STS-37 mission was to deploy the Gamma Ray Observatory. The mission was launched at 9:22:44 am on April 5, 1991, onboard the space shuttle Atlantis. This videotape shows the Gamma Ray Observatory being placed in the payload bay of the shuttle. The Payload Changeout Room (PCR) and the clean room operations required to place the payload in the bay are shown.

  17. STS-70 Space Shuttle Mission Report - September 1995

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

  18. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello moves away from its stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello moves away from its stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  19. KENNEDY SPACE CENTER, FLA. - Overhead cables carry the Multi-Purpose Logistics Module Donatello from the payload canister (lower right) to a work stand in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - Overhead cables carry the Multi-Purpose Logistics Module Donatello from the payload canister (lower right) to a work stand in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  20. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility secure the Multi-Purpose Logistics Module Raffaello onto a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility secure the Multi-Purpose Logistics Module Raffaello onto a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  1. KENNEDY SPACE CENTER, FLA. - Workers on the floor of the Space Station Processing Facility watch as overhead cables carry the Multi-Purpose Logistics Module Donatello to a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-13

    KENNEDY SPACE CENTER, FLA. - Workers on the floor of the Space Station Processing Facility watch as overhead cables carry the Multi-Purpose Logistics Module Donatello to a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  2. KSC-02pd1576

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - At the KSC Shuttle Landing Facility, an overhead crane lifts the container with the TDRS-J spacecraft onto a transport vehicle. In the background is the Air Force C-17 air cargo plane that delivered it. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  3. Space shuttle system program definition. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase B Extension of the Space Shuttle System Program Definition study was redirected to apply primary effort to consideration of space shuttle systems utilizing either recoverable pressure fed liquids or expendable solid rocket motor boosters. Two orbiter configurations were to be considered, one with a 15x60 foot payload bay with a 65,000 lb, due East, up-payload capability and the other with a 14x45 payload bay with 45,000 lb, of due East, up-payload. Both were to use three SSME engines with 472,000 lb of vacuum thrust each. Parallel and series burn ascent modes were to be considered for the launch configurations of primary interest. A recoverable pump-fed booster is included in the study in a series burn configuration with the 15x60 orbiter. To explore the potential of the swing engine orbiter configuration in the pad abort case, it is included in the study matrix in two launch configurations, a series burn pressure fed BRB and a parallel burn SRM. The resulting matrix of configuration options is shown. The principle objectives of this study are to evaluate the cost and technical differences between the liquid and solid propellant booster systems and to assess the development and operational cost savings available with a smaller orbiter.

  4. STS-63 Space Shuttle report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-63 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during this sixty-seventh flight of the Space Shuttle Program, the forty-second since the return to flight, and twentieth flight of the Orbiter vehicle Discovery (OV-103). In addition to the OV-103 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-68; three SSME's that were designated 2035, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-070. The RSRM's that were an integral part of the SRB's were designated 360Q042A for the left SRB and 360L042B for the right SRB. The STS-63 mission was planned as an 8-day duration mission with two contingency days available for weather avoidance or Orbiter contingency operations. The primary objectives of the STS-63 mission were to perform the Mir rendezvous operations, accomplish the Spacehab-3 experiments, and deploy and retrieve the Shuttle Pointed Autonomous Research Tool for Astronomy-204 (SPARTAN-204) payload. The secondary objectives were to perform the Cryogenic Systems Experiment (CSE)/Shuttle Glo-2 Experiment (GLO-2) Payload (CGP)/Orbital Debris Radar Calibration Spheres (ODERACS-2) (CGP/ODERACS-2) payload objectives, the Solid Surface Combustion Experiment (SSCE), and the Air Force Maui Optical Site Calibration Tests (AMOS). The objectives of the Mir rendezvous/flyby were to verify flight techniques, communication and navigation-aid sensor interfaces, and engineering analyses associated with Shuttle/Mir proximity operations in preparation for the STS-71 docking mission.

  5. STS-71, Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Frike, Robert W., Jr.

    1995-01-01

    The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

  6. KSC-02pd1698

    NASA Image and Video Library

    2002-11-10

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour stands ready for launch on mission STS-113. . The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  7. Pre-integrated structures for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan N.; Monell, Donald W.; Mutton, Philip; Troutman, Patrick A.

    1991-01-01

    An in-space construction (erectable) approach to assembling Freedom is planned but the increasing complexity of the station design along with a decrease in shuttle capability over the past several years has led to an assembly sequence that requires more resources (EVA, lift, volume) than the shuttle can provide given a fixed number of flights. One way to address these issues is to adopt a pre-integrated approach to assembling Freedom. A pre-integrated approach combines station primary structure and distributed systems into discrete sections that are assembled and checked out on the ground. The section is then launched as a single structural entity on the shuttle and attached to the orbiting station is then launched as a single structural entity on the shuttle and attached to the orbiting station with a minimum of EVA. The feasibility of a pre-integrated approach to assembling Freedon is discussed. The structural configuration, packaging, and shuttle integration of discrete pre-integrated elements for Freedom assembly are discussed. It is shown that the pre-integrated approach to assembly reduces EVA and increases shuttle margin with respect to mass, volume, and center of gravity limits when compared to the baseline Freedom assembly sequence.

  8. STS-67 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1999-11-30

    These five STS-97 crew members posed for a traditional portrait during training. On the front row, left to right, are astronauts Michael J. Bloomfield, pilot; Marc Garneau, mission specialist representing the Canadian Space Agency (CSA); and Brent W. Jett, Jr., commander. In the rear, wearing training versions of the extravehicular mobility unit (EMU) space suits, (left to right) are astronauts Carlos I. Noriega, and Joseph R. Tarner, both mission specialists. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  10. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. The Tug could dock with the Space Shuttle to receive propellants and cargo, as visualized in this 1970 artist's concept. The Space Tug program was cancelled and did not become a reality.

  11. STS-78 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  12. Earth Viewing Applications Laboratory (EVAL). Dedicated payload, standard test rack payload, sensor modifications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The preliminary analysis of strawman earth-viewing shuttle sortie payloads begun with the partial spacelab payload was analyzed. The payloads analyzed represent the two extremes of shuttle sortie application payloads: a full shuttle sortie payload dedicated to earth-viewing applications, and a small structure payload which can fly on a space available basis with another primary shuttle payload such as a free flying satellite. The intent of the dedicated mission analysis was to configure an ambitious, but feasible, payload; which, while rich in scientific return, would also stress the system and reveal any deficiences or problem areas in mission planning, support equipment, and operations. Conversely, the intent of the small structure payload was to demonstrate the ease with which a small, simple, flexible payload can be accommodated on shuttle flights.

  13. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  14. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  15. KSC-02PD0336

    NASA Image and Video Library

    2002-03-19

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, the Integrated Truss Structure S0 is ready for transport to the launch pad on mission STS-110. Scheduled for launch April 4, the 11-day mission will feature Space Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  16. KSC-99pp0658

    NASA Image and Video Library

    1999-05-25

    STS-99 Mission Specialist Janice Voss conducts a system verification test on the Shuttle Radar Topography Mission in the Space Station Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch Sept. 16, 1999. This radar system will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  17. Wind tunnel test IA300 analysis and results, volume 1

    NASA Technical Reports Server (NTRS)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  18. STS-42 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-42 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-fifth flight of the Space Shuttle Program and the fourteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-52 (LWT-45); three Space Shuttle main engines (SSME's), which were serial numbers 2026, 2022, and 2027 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-048. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L020A for the left SRM and 360Q020B for the right SRM. The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). Secondary objectives were to perform all operations necessary to support the requirements of the following: Gelation of Sols: Applied Microgravity Research (GOSAMR); Student Experiment 81-09 (Convection in Zero Gravity); Student Experiment 83-02 (Capillary Rise of Liquid Through Granular Porous Media); the Investigation into Polymer Membrane Processing (IPMP); the Radiation Monitoring Equipment-3 (RME-3); and Get-Away Special (GAS) payloads carried on the GAS Beam Assembly.

  19. STS-42 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1992-02-01

    The STS-42 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-fifth flight of the Space Shuttle Program and the fourteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-52 (LWT-45); three Space Shuttle main engines (SSME's), which were serial numbers 2026, 2022, and 2027 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-048. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L020A for the left SRM and 360Q020B for the right SRM. The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). Secondary objectives were to perform all operations necessary to support the requirements of the following: Gelation of Sols: Applied Microgravity Research (GOSAMR); Student Experiment 81-09 (Convection in Zero Gravity); Student Experiment 83-02 (Capillary Rise of Liquid Through Granular Porous Media); the Investigation into Polymer Membrane Processing (IPMP); the Radiation Monitoring Equipment-3 (RME-3); and Get-Away Special (GAS) payloads carried on the GAS Beam Assembly.

  20. Expedition 6 flight engineer Nikolai Budarin suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 flight engineer Nikolai Budarin gets help with his helmet during suitup for launch on mission STS-113. Budarin, who represents the Russian Space Agency, will be making his second Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  1. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  2. KSC-06pd0636

    NASA Image and Video Library

    2006-04-14

    JOHNSON SPACE CENTER, TX - STS115-S-001 (February 2003) -- This is the STS-115 insignia. This mission continues the assembly of the International Space Station with the installation of the truss segments P3 and P4. Following the installation of the segments utilizing both the shuttle and the station robotic arms, a series of four space walks will complete the final connections and prepare for the deployment of the station's second set of solar arrays. To reflect the primary mission of the flight, the patch depicts a solar panel as the main element. As the Space Shuttle Atlantis launches towards the ISS, its trail depicts the symbol of the Astronaut Office. The starburst, representing the power of the sun, rises over the Earth and shines on the solar panel. The shuttle flight number 115 is shown at the bottom of the patch, along with the ISS assembly designation 12A (the 12th American assembly mission). The blue Earth in the background reminds us of the importance of space exploration and research to all of Earth's inhabitants. The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  3. Vibration and stress analysis of soft-bonded shuttle insulation tiles. Modal analysis with compact widely space stringers

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Austin, F.; Levy, A.

    1974-01-01

    An efficient iterative procedure is described for the vibration and modal stress analysis of reusable surface insulation (RSI) of multi-tiled space shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).

  4. STS-132vesrsion8NASA

    NASA Image and Video Library

    2010-02-03

    STS132-S-001 (February 2010) --- The STS-132 mission will be the 32nd flight of the space shuttle Atlantis. The primary STS-132 mission objective is to deliver the Russian-made MRM-1 (Mini Research Module) to the International Space Station (ISS). Atlantis will also deliver a new communications antenna and a new set of batteries for one of the ISS solar arrays. The STS-132 mission patch features Atlantis flying off into the sunset as the end of the Space Shuttle Program approaches. However the sun is also heralding the promise of a new day as it rises for the first time on a new ISS module, the MRM-1, which is also named ?Rassvet,? the Russian word for dawn. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  5. KSC-2010-1335

    NASA Image and Video Library

    2010-01-20

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, the crew members of space shuttle Endeavour's STS-130 mission take time out from their emergency exit training at Launch Pad 39A to pose for a group portrait in the White Room. Standing, from left, are Pilot Terry Virts and Mission Specialists Kathryn Hire and Robert Behnken. Kneeling, from left, are Mission Specialist Stephen Robinson, Commander George Zamka and Mission Specialist Nicholas Patrick. The crew members of space shuttle Endeavour's upcoming mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. The primary payload on STS-130 is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. Endeavour's launch is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett

  6. KSC-2010-1307

    NASA Image and Video Library

    2010-01-19

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, the crew members of space shuttle Endeavour's STS-130 mission pause from their M113 training for a group portrait. From left are Commander George Zamka; Pilot Terry Virts; and Mission Specialists Robert Behnken, Kathryn Hire, Stephen Robinson and Nicholas Patrick. An M113 is kept at the foot of the launch pad in case an emergency egress from the vicinity of the pad is needed. The crew members of space shuttle Endeavour's STS-130 mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. The primary payload on STS-130 is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. Endeavour's launch is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett

  7. STS-75 liftoff - left side view - closeup

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A smooth countdown culminates in an on-time liftoff as the Space Shuttle Columbia climbs skyward atop a column of flame. The launch from Pad 39B occurred at 3:18:00 P.M. EST, February 22, 1996. Aboard for Mission STS-75 is an international crew headed by Mission Commander Andrew M. Allen; Scott J. 'Doc' Horowitz is pilot; Franklin R. Chang-Diaz is payload commander. Serving as mission specialists are Jeffrey A. Hoffman, Maurizio Cheli and Claude Nicollier. Cheli, from Italy, and Nicollier, from Switzerland, both represent the European Space Agency (ESA). Assigned as payload specialist is Italian Umberto Guidoni, who represents the Italian Space Agency (ASI). During a mission scheduled to last nearly 14 days the flightg crew will be working with two primary parylods: the U.S./Italian Tethered Satellite System (TSS-1R), which is being re-flown, and the U.S. Microgravity Payload (USMP-3), making its third spaceflight. Mission STS-75 marks the second Shuttle flight of 1996 and the 75th Shuttle launch overall.

  8. STS-75 liftoff - left side view from across marsh

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A smooth countdown culminates in an on-time liftoff as the Space Shuttle Columbia climbs skyward atop a column of flame. The launch from Pad 39B occurred at 3:18:00 P.M. EST, February 22, 1996. Aboard for Mission STS-75 is an international crew headed by Mission Commander Andrew M. Allen; Scott J. 'Doc' Horowitz is pilot; Franklin R. Chang-Diaz is payload commander. Serving as mission specialists are Jeffrey A. Hoffman, Maurizio Cheli and Claude Nicollier. Cheli, from Italy, and Nicollier, from Switzerland, both represent the European Space Agency (ESA). Assigned as payload specialist is Italian Umberto Guidoni, who represents the Italian Space Agency (ASI). During a mission scheduled to last nearly 14 days the flightg crew will be working with two primary parylods: the U.S./Italian Tethered Satellite System (TSS-1R), which is being re-flown, and the U.S. Microgravity Payload (USMP-3), making its third spaceflight. Mission STS-75 marks the second Shuttle flight of 1996 and the 75th Shuttle launch overall.

  9. Use of System Safety Risk Assessments for the Space Shuttle Reusable Solid Rocket Motor (RSRM)

    NASA Technical Reports Server (NTRS)

    Greenhalgh, Phillip O.; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper discusses the System Safety approach used to assess risk for the Space Shuttle Reusable Solid Rocket Motor (RSRM). Previous to the first RSRM flight in the fall of 1988, all systems were analyzed extensively to assure that hazards were identified, assessed and that the baseline risk was understood and appropriately communicated. Since the original RSRM baseline was established, Thiokol and NASA have implemented a number of initiatives that have further improved the RSRM. The robust design, completion of rigorous testing and flight success of the RSRM has resulted in a wise reluctance to make changes. One of the primary assessments required to accompany the documentation of each proposed change and aid in the decision making process is a risk assessment. Documentation supporting proposed changes, including the risk assessments from System Safety, are reviewed and assessed by Thiokol and NASA technical management. After thorough consideration, approved changes are implemented adding improvements to and reducing risk of the Space Shuttle RSRM.

  10. STS-58 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by members of the flight crew, the STS-58 insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering Spacelab Life Sciences ll highlight the primary mission of the second Space Shuttle flight dedicated to life sciences research. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the scheduled two-week duration of the longest Space Shuttle mission to date. The hexagonal shape of the patch depicts the carbon ring, a molecule common to all living organisms. Encircling the inner border of the patch is the double helix of DNA, representing the genetic basis of life. Its yellow background represents the sun, energy source for all life on Earth. Both medical and veterinary caducei are shown to represent the STS- 58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research intended to benefit all mankind.

  11. Stowage bags in FGB/Zarya module

    NASA Image and Video Library

    2005-07-31

    S114-E-5945 (31 July 2005) --- This scene in Zarya, the functional cargo block for the International Space Station, serves witness to the primary current emphasis onboard the orbital outpost. Transfers of additional water and supplies to the International Space Station continues on this Sunday as the crew aboard Space Shuttle Discovery begins Flight Day 6. Cosmonaut Sergei Krikalev of Russia's Federal Space Agency can be seen at the far end of the cluttered hallway.

  12. A study of the feasibility of directly applying gas generator systems to space shuttle mechanical functions

    NASA Technical Reports Server (NTRS)

    Lake, E. R.

    1974-01-01

    This study examined the current status and potential application of pyrotechnic gas generators and energy convertors for the space shuttle program. While most pyrotechnic devices utilize some form of linear actuation, only limited use of rotary actuators has been observed. This latter form of energy conversion, using a vane-type actuator as optimum, offers considerable potential in the area of servo, as well as non-servo systems, and capitalizes on a means of providing prolonged operating times. Pyrotechnic devices can often be shown to provide the optimum means of attaining a truly redundant back-up to a primary, non-pyrotechnic system.

  13. KSC-02pd1704

    NASA Image and Video Library

    2002-11-10

    KENNEDY SPACE CENTER, FLA. - STS-113 Commander James Wetherbee is happy to suit up before launch. Wetherbee will be making his sixth Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  14. STS-101: CAR / Flight Day 03 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the third day of the flight. On this day the shuttle rendezvoused and docked with the station. The videotape shows the rendezvous and the docking maneuver, and some of the crew activities in the shuttle.

  15. STS-113 Mission Specialist Michael Lopez-Alegria suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria suits up before launch. This will be his third Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  16. STS-113 Mission Specialist Michael Lopez-Alegria suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria suits up for launch. He will be making his third Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  17. STS-113 Mission Specialist John Herrington suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington suits up before launch. This will be his first Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 p.m. EST.

  18. Investigation of space shuttle orbiter subsonic stability and control characteristics and determination of control surface hinge moments in the Rockwell International low speed wind tunnel (OA37)

    NASA Technical Reports Server (NTRS)

    Hughes, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a string-mounted 0.030 scale representation of the 140A/B space shuttle orbiter in the 7.75- by 11-foot low speed wind tunnel. The primary test objectives were to establish basic longitudinal and lateral directional stability and control characteristics for the basic configuration plus control surface hinge moments. Aerodynamic force and moment data were measured in the body axis system by an internally mounted, six-component strain gage balance. Additional configurations investigated were sealed rudder hingeline gaps, sealed elevon gaps and compartmentized speedbrakes.

  19. Expedition 6 flight engineer Donald Pettit suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 flight engineer Donald Pettit relaxes during suitup for launch. Pettit will be making his first Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  20. Expedition 6 flight engineer Donald Pettit suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 flight engineer Donald Pettit suits up before launch. This will be his first Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  1. Space Shuttle to deploy Magellan planetary science mission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).

  2. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-13

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronauts Hieb, Akers, and Thuot have handholds on the satellite.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-14

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. A view through Endeavour’s busy airlock reveals astronauts Thomas Akers and Kathryn Thornton.

  5. Effects of damping on mode shapes, volume 1

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Methods developed to incorporate structural joints and their damping characteristics into a finite element model of the space shuttle, to determine the point damping parameters required to produce realistic damping in the primary modes, and to calculate the effect of distributed damping on structural resonances through the calculation of admittances.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-14

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3) which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this STS-49 onboard photo, Astronaut Kathryn Thornton joins three struts together during her Extra Vehicular Activity (EVA).

  7. Correlation of Predicted and Flight Derived Stability and Control Derivatives with Particular Application to Tailless Delta Wing Configurations

    NASA Technical Reports Server (NTRS)

    Weil, J.

    1981-01-01

    Flight derived longitudinal and lateral-directional stability and control derivatives were compared to wind-tunnel derived values. As a result of these comparisons, boundaries representing the uncertainties that could be expected from wind-tunnel predictions were established. These boundaries provide a useful guide for control system sensitivity studies prior to flight. The primary application for this data was the space shuttle, and as a result the configurations included in the study were those most applicable to the space shuttle. The configurations included conventional delta wing aircraft as well as the X-15 and lifting body vehicles.

  8. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  9. KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

    NASA Image and Video Library

    2003-05-30

    KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  10. Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

    2006-01-01

    Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

  11. KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

  12. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  13. Industrial Engineering Lifts Off at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  14. STS-76 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  15. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition 6 crew pauses for a photo after emergency egress training at the pad, which included driving the M-113 armored personnel carrier behind them. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  16. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  17. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin takes his turn driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  18. KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  19. LC-39A RSS Rollback before launch of STS-113

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Endeavour stands ready for launch on mission STS-113. Above the golden external tank is the vent hood (known as the 'beanie cap') at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  20. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Commander James Wetherbee gets ready to drive an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  1. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Commander James Wetherbee practices driving an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  2. LC-39A RSS Rollback before launch of STS-113

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour stands ready for launch on mission STS-113. . The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  4. Telemetry packetization for improved mission operations. [instrument packages for Space Shuttle mission operations data management

    NASA Technical Reports Server (NTRS)

    Greene, E. P.

    1976-01-01

    The requirements for mission-operations data management will accelerate sharply when the Space Transportation System (i.e., Space Shuttle) becomes the primary vehicle for research from space. These demands can be satisfied most effectively by providing a higher-level source encoding function within the spaceborne vehicle. An Instrument Telemetry Packet (ITP) concept is described which represents an alternative to the conventional multiplexed telemetry frame approach for acquiring spaceborne instrument data. By providing excellent data-integrity protection at the source and a variable instrument bandwidth capability, this ITP concept represents a significant improvement over present data acquisition procedures. Realignments in the ground telemetry processing functions are described which are intended to take advantage of the ITP concept and to make the data management system more responsive to the scientific investigators.

  5. Unity connecting module placed in new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  6. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  7. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  8. Toward a history of the space shuttle. An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Launius, Roger D. (Compiler); Gillette, Aaron K. (Compiler)

    1992-01-01

    This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

  9. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  10. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  11. KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  13. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  14. KENNEDY SPACE CENTER, FLA. - Workers watch as the Multi-Purpose Logistics Module Raffaello is lowered toward a work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - Workers watch as the Multi-Purpose Logistics Module Raffaello is lowered toward a work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  15. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  16. KENNEDY SPACE CENTER, FLA. - A worker on the floor watches as the Multi-Purpose Logistics Module Raffaello moves toward another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - A worker on the floor watches as the Multi-Purpose Logistics Module Raffaello moves toward another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  17. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello glides above the floor as it moves to another stand on the other side. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello glides above the floor as it moves to another stand on the other side. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  18. KENNEDY SPACE CENTER, FLA. - An overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move it to another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - An overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move it to another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  19. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility prepare to release the overhead crane from the Multi-Purpose Logistics Module Raffaello now secure on a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility prepare to release the overhead crane from the Multi-Purpose Logistics Module Raffaello now secure on a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  1. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  2. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  3. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  4. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  7. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  8. Effect of reaction control system jet-flow field interactions on a 0.015 scale model space shuttle orbiter aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Monta, W. J.; Rausch, J. R.

    1973-01-01

    The effects of the reaction control system (RCS) jet-flow field interactions on the space shuttle orbiter system during entry are discussed. The primary objective of the test program was to obtain data for the shuttle orbiter configuration to determine control amplification factors resulting from jet interaction between the RCS plumes and the external flow over the vehicle. A secondary objective was to provide data for comparison and improvement of analytic jet interaction prediction techniques. The test program was divided into two phases; (1) force and moment measurements were made with and without RCS blowing, investigating environment parameters (R sub e, Alpha, Beta), RCS plume parameters (Jet pressure ratio, momentum ratio and thrust level), and geometry parameters (RCS pod locations) on the orbiter model, (2) oil flow visualization tests were conducted on a dummy balance at the end of the test.

  9. Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

    1993-01-01

    Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

  10. KSC-99pp0968

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Processing Facility (OPF) bay 2. Once there, the SRTM, the primary payload on STS-99, will be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  11. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  12. STS-113 Mission Specialist John Herrington suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington suits up for launch. Herrington will be making his first Shuttle flight. This is also the first launch of the first tribally enrolled Native American astronaut -- John B. Herrington -- on Space Transportation System. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  13. STS-83 Crew Arrival for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Members of the STS-83 flight crew pose alongside a T-33 jet trainer aircraft after arriving at the KSC Shuttle Landing Facility for Terminal Countdown Demonstration (TCDT) exercises for that space flight. They are (left to right) Payload Specialist Roger K. Crouch; Pilot Susan L. Still; Mission Commander James D. Halsell, Jr.; Mission Specialist Michael L. Gernhardt; Payload Specialist She is the second woman to fly in this capacity on the Space Shuttle. The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is the primary payload on this 16-day mission. The MSL-1 will used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station, while the seven-member crew conducts combustion, protein crystal growth and materials processing experiments.

  14. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  15. STS115-S-001

    NASA Image and Video Library

    2003-02-01

    STS115-S-001 (February 2003) --- This is the STS-115 insignia. This mission continues the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4. Following the installation of the segments utilizing both the shuttle and the station robotic arms, a series of three spacewalks will complete the final connections and prepare for the deployment of the station's second set of solar arrays. To reflect the primary mission of the flight, the patch depicts a solar panel as the main element. As the space shuttle Atlantis launches towards the ISS, its trail depicts the symbol of the Astronaut Office. The starburst, representing the power of the sun, rises over the Earth and shines on the solar panel. The shuttle flight number 115 is shown at the bottom of the patch, along with the ISS assembly designation 12A (the 12th American assembly mission). The blue Earth in the background reminds us of the importance of space exploration and research to all of Earth's inhabitants. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  16. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-14

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Kathryn Thornton is working on the Assembly of Station by EVA Methods (ASEM) in the cargo bay.

  18. Pressure and heat flux results from the space shuttle/external fuel tank interaction test at Mach numbers 16 and 19

    NASA Technical Reports Server (NTRS)

    Brewer, E. B.; Haberman, D. R.

    1974-01-01

    Heat transfer rates and pressures were measured on a 0.0175-scale model of the space shuttle external tank (ET), model MCR0200. Tests were conducted with the ET model separately and while mated with a 0.0175-scale model of the orbiter, model 21-OT (Grumman). The tests were conducted in the AEDC-VKF Hypervelocity Wind Tunnel (F) at Mach numbers 16 and 19. The primary data consisted of the interaction heating rates experienced by the ET while mated with the orbiter in the flight configuration. Data were taken for a range of Reynolds numbers from 50,000 to 65,000 under laminar flow conditions.

  19. Properties of electrophoretic fractions of human embryonic kidney cells separated on space shuttle flight STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.; Barlow, G. H.; Todd, P. W.; Kunze, M. E.; Sarnoff, B. E.; Li, Z. K.

    1985-01-01

    Suspensions of cultured primary human embryonic kidney cells were subjected to continuous flow electrophoresis on Space Shuttle flight STS-8. The objectives of the experiments were to obtain electrophoretically separated fractions of the original cell populations and to test these fractions for the amount and kind of urokinase (a kidney plasminogen activator that is used medically for digesting blood clots), the morphologies of cells in the individual fractions, and their cellular electrophoretic mobilities after separation and subsequent proliferation. Individual fractions were successfully cultured after return from orbit, and they were found to differ substantially from one another and from the starting sample with respect to all of these properties.

  20. Aerodynamic results of a support system interference effects test conducted at NASA/LaRC UPWT using an 0.015-scale model of the configuration 140A/B SSV orbiter (0A20B)

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II; Embury, W. R.

    1974-01-01

    An experimental aerodynamic investigation was conducted to determine the interference effects of a wind tunnel support system. The test article was a 0.015 scale model of the space shuttle orbiter. The primary objective of the test was to determine the extent that aerodynamic simulation of the space shuttle orbiter is affected by base mounting the model, without nozzles, on a straight sting. Two support systems were tested. The characteristics of the support systems are described. Data from the tests are presented in the form of graphs and tables.

  1. KSC-99pp0503

    NASA Image and Video Library

    1999-05-07

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered into place to prepare it for launch targeted for September 1999. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  2. KSC-99pp0502

    NASA Image and Video Library

    1999-05-07

    The Shuttle Radar Topography Mission (SRTM) is moved into the Space Station Processing Facility to prepare it for launch targeted for September 1999. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  3. Quality and productivity drive innovation and improvement at United Technologies Aerospace Operations, Inc.

    NASA Technical Reports Server (NTRS)

    Jamar, L. G.

    1986-01-01

    Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first.

  4. Results of heat transfer tests of a 0.0175-scale space shuttle vehicle 5 model (60-OTS) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (test IH48)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Lockman, W. K.

    1976-01-01

    Heat transfer data are presented for a .0175-scale model of the Rockwell International Space Shuttle Vehicle 5. The primary purpose of these tests was to obtain aerodynamic interference heating data on the external tank in the tank alone, second-, and first-stage configurations. Data were also obtained on the Orbiter and solid rocket boosters. Nominal Mach Nos. of 5.2 and 5.3 at nominal freestream unit Reynolds numbers of 1.5 and 5.0 million per foot, respectively, were investigated. Photographs of the tested configurations and test equipment are shown.

  5. KSC-03PD-1776

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Italian-built module, U.S. Node 2, for the International Space Station is offloaded from a Beluga at the Shuttle Landing Facility. The second of three Station connecting modules, Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  6. STS-80 Columbia, OV 102, liftoff from KSC Launch Pad 39B

    NASA Image and Video Library

    1996-11-19

    STS080-S-007 (19 Nov. 1996) --- One of the nearest remote camera stations to Launch Pad B captured this profile image of space shuttle Columbia's liftoff from the Kennedy Space Center's (KSC) Launch Complex 39 at 2:55:47 p.m. (EST), November 19, 1996. Onboard are astronauts Kenneth D. Cockrell, mission commander; Kent V. Rominger, pilot; along with Story Musgrave, Tamara E. Jernigan and Thomas D. Jones, all mission specialists. The two primary payloads for STS-80 stowed in Columbia?s cargo bay for later deployment and testing are the Wake Shield Facility (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) with its associated Shuttle Pallet Satellite (SPAS).

  7. Analysis of large space structures assembly: Man/machine assembly analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1993-10-01

    Designed by the mission crew members, the STS-61 crew insignia depicts the astronaut symbol superimposed against the sky with the Earth underneath. Also seen are two circles representing the optical configuration of the Hubble Space Telescope (HST). Light is focused by reflections from a large primary mirror and a smaller secondary mirror. The light is analyzed by various instruments and, according to the crew members, brings to us on Earth knowledge about planets, stars, galaxies and other celestial objects, allowing us to better understand the complex physical processes at work in the universe. The Space Shuttle Endeavour is also represented as the fundamental tool that allows the crew to perform the first servicing of the Hubble Space Telescope so its scientific deep space mission may be extended for several years to come. The overall design of the emblem, with lines converging to a high point, is also a symbolic representation of the large-scale Earth-based effort which involves space agencies, industry, and the universities to reach goals of knowledge and perfection.

  9. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  10. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  11. Space Station on-orbit solar array loads during assembly

    NASA Astrophysics Data System (ADS)

    Ghofranian, S.; Fujii, E.; Larson, C. R.

    This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.

  12. MISSE-X: An ISS External Platform for Space Environmental Studies in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Cooke, Stuart A.; Ashe, Melissa P.; Saucillo, Rudolph J.; Murphy, Douglas G.; deGroh, Kim K.; Jaworske, Donald A.; Nguyen, Quang-Viet

    2011-01-01

    Materials International Space Station Experiment-X (MISSE-X) is a proposed International Space Station (ISS) external platform for space environmental studies designed to advance the technology readiness of materials and devices critical for future space exploration. The MISSE-X platform will expand ISS utilization by providing experimenters with unprecedented low-cost space access and return on investment (ROI). As a follow-on to the highly successful MISSE series of ISS experiments, MISSE-X will provide advances over the original MISSE configurations including incorporation of plug-and-play experiments that will minimize return mass requirements in the post-Shuttle era, improved active sensing and monitoring of the ISS external environment for better characterization of environmental effects, and expansion of the MISSE-X user community through incorporation of new, customer-desired capabilities. MISSE-X will also foster interest in science, technology, engineering, and math (STEM) in primary and secondary schools through student collaboration and participation.1,2

  13. STS-114: Discovery Day 9 Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Paul Hill, STS-114 Lead Shuttle Flight Director, Mark Ferring, STS-114 Lead ISS Flight Director and Cindy Begley, STS-114 Lead EVA Officer is shown during this 9th day of the Space Shuttle Mission to the International Space Station. Paul Hill talks about the status of the transfers of critical items to the International Space Station and transfers back from the International Space Station into the Multi-Purpose Logistics Module (MPLM). Hill also presents footage of the crew cabin blanket survey procedure. Mark Ferring talks in detail about the primary International Space Station task on the External Stowage Platform (ESP). The status of the external stowage platform installation, removal of grapple fixture, gap filler removal task, and Materials International Space Station Experiment (MISSE) 5 payload installation is discussed by Cindy Begley. She also presents footage of Steve Robinson's spacewalk before the gap filler task and during the removal of the gap filler. The Capture of ESP-2 is also presented. The presentation ends with a question and answer period from the news media

  14. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  15. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  16. KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  17. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  18. Unity connecting module before being moved to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  19. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  20. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington is at the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He is accompanied by (left) Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  1. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart test drives an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He is accompanied by several other crew members, seen at left, Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  2. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria is ready to begin a test drive behind the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  3. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington stands inside an M-113 armored personnel carrier that he is about to drive as part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  4. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart stands inside an M-113 armored personnel carrier he is about to drive, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  5. KSC-02pd1552

    NASA Image and Video Library

    2002-10-16

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria is ready to begin a test drive behind the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  6. Fracture control methods for space vehicles. Volume 1: Fracture control design methods. [for space shuttle configuration planning

    NASA Technical Reports Server (NTRS)

    Liu, A. F.

    1974-01-01

    A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.

  7. Unity connecting module lifted from workstand before move to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility (SSPF) oversee the lifting of the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  8. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF) the Unity connecting module, part of the International Space Station, hangs suspended during its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  9. Unity connecting module prepared for move to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility (SSPF) attach a frame to lift the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-35, launched December 2, 1990, was the ASTRO-1 Observatory. Designed for round the clock observation of the celestial sphere in ultraviolet and X-ray astronomy, ASTRO-1 featured a collection of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo- Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-ray Telescope (BBXRT). Ultraviolet telescopes mounted on Spacelab elements in cargo bay were to be operated in shifts by flight crew. Loss of both data display units (used for pointing telescopes and operating experiments) during mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center to aim ultraviolet telescopes with fine-tuning by flight crew. BBXRT, also mounted in cargo bay, was directed from outset by ground-based operators at Goddard Space Flight Center. This is the logo or emblem that was designed to represent the ASTRO-1 payload.

  11. Study of safety implications for shuttle launched spacecraft using fluorinated oxidizers. Volume 1: Complete text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The safety implications of space shuttle launched spacecraft using liquid flourine as the oxidizer for spacecraft propulsion were investigated. Feasibility of safe operation was investigated and the equipment and procedures necessary to maximize the chance of success determined. Hazards to the shuttle were found to be similar in kind if not degree to those encountered in use of nitrogen tetroxide (also toxic oxidizer). It was concluded that residual risks from spacecraft using fluorine and nitrogen tetroxide during ground and flight handling may be reduced by isolation of the oxidizer to only its tank. Operation of planetary spacecraft propulsion in the vicinity of the shuttle in earth orbit is not required. The primary hazard to personnel was identified as propellant loading operations, which should be accomplished in an area reasonably remote from personnel and facilities concentrations. Clearing the pad during spacecraft mating with the shuttle orbiter is recommended.

  12. KSC-99pp0989

    NASA Image and Video Library

    1999-07-28

    At the Shuttle Landing Facility (from left to right), STS-93 Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and NASA Administrator Daniel Goldin talk with Jacques Ratie, Astronaut Director, CNES, and Serge Plattard, International Relations, CNES. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander

  13. STS-93 Mission Specialist Tognini talks with Goldin, Ratie, and Plattard

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Shuttle Landing Facility (from left to right), STS-93 Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and NASA Administrator Daniel Goldin talk with Jacques Ratie, Astronaut Director, CNES, and Serge Plattard, International Relations, CNES. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  14. The potential impact of the space shuttle on space benefits to mankind

    NASA Technical Reports Server (NTRS)

    Rattinger, I.

    1972-01-01

    The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

  15. KSC-98pc621

    NASA Image and Video Library

    1998-05-19

    Preliminary reports indicate the Space Shuttle's first super lightweight external tank (SLWT) is in excellent condition following the completion of a tanking test yesterday during a simulated launch countdown at Launch Pad 39A. The pad's Rotating Service Structure will be closed around Discovery later today as preparations for the STS-91 launch on June 2 continue. The primary objectives of the test were to evaluate the strut loads between the tank and the solid rocket boosters and to verify the integrity of the new components of the tank. The SLWT is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability, as well. The STS-91 mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program

  16. KSC-98pc620

    NASA Image and Video Library

    1998-05-19

    Preliminary reports indicate the Space Shuttle's first super lightweight external tank (SLWT) is in excellent condition following the completion of a tanking test yesterday during a simulated launch countdown at Launch Pad 39A. The pad's Rotating Service Structure will be closed around Discovery later today as preparations for the STS-91 launch on June 2 continue. The primary objectives of the test were to evaluate the strut loads between the tank and the solid rocket boosters and to verify the integrity of the new components of the tank. The SLWT is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability, as well. The STS-91 mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program

  17. KSC-97pc120

    NASA Image and Video Library

    1997-01-08

    The STS-81 flight crew conducts a press briefing on the runway of KSC's Shuttle Landing Facility after they arrive at the space center for the final countdown preparations for the fifth Shuttle-Mir docking mission. They are (from left): Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists Peter J. K. "Jeff" Wisoff; John M. Grunsfeld, Marsha S. Ivins, and J.M. "Jerry" Linenger. The 10-day mission will feature the transfer of Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996 after arrival there during the STS79 mission. During STS-81, Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module which will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station during five days of docking operations. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission

  18. KSC-97pc119

    NASA Image and Video Library

    1997-01-08

    The STS-81 flight crew poses on the runway of KSC Shuttle Landing Facility after they arrive at the space center for the final countdown preparations for the fifth Shuttle-Mir docking mission. They are (from left): Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists Peter J. K. "Jeff" Wisoff; John M. Grunsfeld, Marsha S. Ivins, and J.M. "Jerry" Linenger. The 10-day mission will feature the transfer of Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996 after arrival there during the STS-79 mission. During STS-81, Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module which will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station during five days of docking operations. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission

  19. STS123-S-001

    NASA Image and Video Library

    2007-09-30

    STS123-S-001 (Oct. 2007) --- STS-123 continues assembly of the International Space Station (ISS). The primary mission objectives include rotating an expedition crew member and installing both the first component of the Japanese Experimental Module (the Experimental Logistics Module - Pressurized Section (ELM-PS)) and the Canadian Special Purpose Dexterous Manipulator (SPDM). In addition, STS-123 will deliver various spare ISS components and leave behind the sensor boom used for inspecting the shuttle's thermal protection system. A follow-on mission to ISS will utilize and then return home with this sensor boom. A total of four spacewalks are planned to accomplish these tasks. The mission will also require the use of both the shuttle and ISS robotic arms. STS-123 will utilize the Station-Shuttle Power Transfer System to extend the docked portion of the mission to eleven days, with a total planned duration of 15 days. The crew patch depicts the space shuttle in orbit with the crew names trailing behind. STS-123's major additions to ISS (the ELM-PS installation with the shuttle robotic arm and the fully constructed SPDM) are both illustrated. The ISS is shown in the configuration that the STS-123 crew will encounter when they arrive. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  20. KSC-08pd0363

    NASA Image and Video Library

    2007-10-01

    JOHNSON SPACE CENTER, HOUSTON -- STS123-S-001-- STS-123 continues assembly of the International Space Station (ISS). The primary mission objectives include rotating an expedition crew member and installing both the first component of the Japanese Experimental Module (the Experimental Logistics Module - Pressurized Section [ELM-PS]) and the Canadian Special Purpose Dexterous Manipulator (SPDM). In addition, STS-123 will deliver various spare ISS components and leave behind the sensor boom used for inspecting the shuttle's thermal protection system. A follow-on mission to ISS will utilize and then return home with this sensor boom. A total of four spacewalks are planned to accomplish these tasks. The mission will also require the use of both the shuttle and ISS robotic arms. STS-123 will utilize the Station-Shuttle Power Transfer System to extend the docked portion of the mission to 11 days, with a total planned duration of 15 days. The crew patch depicts the space shuttle in orbit with the crew names trailing behind. STS-123's major additions to ISS (the ELM-PS installation with the shuttle robotic arm and the fully constructed SPDM) are both illustrated. The ISS is shown in the configuration that the STS-123 crew will encounter when they arrive. The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  1. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  2. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  3. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  4. KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  5. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  6. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  7. STS-66 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

  8. STS-37 Atlantis, Orbiter Vehicle (OV) 104, crew insignia

    NASA Image and Video Library

    1990-05-01

    STS037-S-001 (May 1990) --- The principal theme of the STS-37 patch, designed by the astronaut crew members, is the mission's primary payload ? Gamma Ray Observatory (GRO) ? and its relationship to the space shuttle. The shuttle and the GPO are both depicted on the patch and are connected by a large gamma. The gamma symbolizes both the quest for gamma rays by the GRO as well as the importance of the relationship between the manned and unmanned elements of the United States space program. The Earth background shows the southern portion of the United States under a partial cloud cover while the two fields of three and seven stars, respectively, refer to the STS-37 mission designation. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  9. STS-66 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1995-02-01

    The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

  10. Analysis of the Space Shuttle main engine simulation

    NASA Technical Reports Server (NTRS)

    Deabreu-Garcia, J. Alex; Welch, John T.

    1993-01-01

    This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.

  11. Postflight balance control recovery in an elderly astronaut: a case report

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey

    2004-01-01

    OBJECTIVE: To examine the sensorimotor adaptive response of a 77-year-old man exposed to the gravito-inertial challenges of orbital space flight. STUDY DESIGN: Prospective case study with retrospective comparisons. SETTING: NASA Neurosciences Laboratory (Johnson Space Center) and Baseline Data Collection Facility (Kennedy Space Center). PRIMARY PARTICIPANT: One 77-year-old male shuttle astronaut. INTERVENTION: Insertion into low Earth orbit was used to remove gravitational stimuli and thereby trigger sensorimotor adaptation to the microgravity environment. Graviceptor stimulation was reintroduced at landing, and sensorimotor readaptation to the terrestrial environment was tracked to completion. MAIN OUTCOME MEASURES: Computerized dynamic posturography tests were administered before and after orbital flight to determine the magnitude and time course of recovery. RESULTS: The elderly astronaut exhibited balance control performance decrements on landing day; however, there were no significant differences between his performance and that of younger astronauts tested on the same shuttle mission or on previous shuttle missions of similar duration. CONCLUSIONS: These results demonstrate that the physiological changes attributed to aging do not necessarily impair adaptive sensorimotor control processes.

  12. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  13. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  14. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  15. Planned development of the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

  16. Earth Observatory Satellite system definition study. Report 6: Space shuttle interfaces/utilization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the compatibility of the Earth Observatory Satellite (EOS) with the space shuttle. The mechanical interfaces and provisions required for a launch or retrieval of the EOS by the space shuttle are summarized. The space shuttle flight support equipment required for the operation is defined. Diagrams of the space shuttle in various configurations are provised to show the mission capability with the EOS. The subjects considered are as follows: (1) structural and mechanical interfaces, (2) spacecraft retention and deployment, (3) spacecraft retrieval, (4) electrical interfaces, (5) payload shuttle operations, (6) shuttle mode cost analysis, (7) shuttle orbit trades, and (8) safety considerations.

  17. KSC-2010-1287

    NASA Image and Video Library

    2010-01-18

    CAPE CANAVERAL, Fla. - The crew of space shuttle Endeavour's STS-130 mission poses for a group portrait following their arrival at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. From left are Mission Specialists Robert Behnken, Nicholas Patrick, Stephen Robinson and Kathryn Hire; Pilot Terry Virts; and Commander George Zamka. The crew is at Kennedy to participate in training and a dress rehearsal for their upcoming launch, known as the Terminal Countdown Demonstration Test. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd0636

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  19. Hubble Space Telescope Program on STS-95 Supported by Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    2000-01-01

    John Glenn's historic return to space was a primary focus of the STS 95 space shuttle mission; however, the 83 science payloads aboard were the focus of the flight activities. One of the payloads, the Hubble Space Telescope Orbital System Test (HOST), was flown in the cargo bay by the NASA Goddard Space Flight Center. It served as a space flight test of upgrade components for the telescope before they are installed in the shuttle for the next Hubble Space Telescope servicing mission. One of the upgrade components is a cryogenic cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The cooling is required for low noise in the receiver's sensitive electronic instrumentation. Originally, a passive system using dry ice cooled NICMOS, but the ice leaked away and must be replaced. The active cryogenic cooler can provide the cold temperatures required for the NICMOS, but there was a concern that it would create vibrations that would affect the fine pointing accuracy of the Hubble platform.

  20. Improving Safety and Reliability of Space Auxiliary Power Units

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1998-01-01

    Auxiliary Power Units (APU's) play a critical role in space vehicles. On the space shuttle, APU's provide the hydraulic power for the aerodynamic control surfaces, rocket engine gimballing, landing gear, and brakes. Future space vehicles, such as the Reusable Launch Vehicle, will also need APU's to provide electrical power for flight control actuators and other vehicle subsystems. Vehicle designers and mission managers have identified safety, reliability, and maintenance as the primary concerns for space APU's. In 1997, the NASA Lewis Research Center initiated an advanced technology development program to address these concerns.

  1. KSC-02pd1579

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - The TDRS-J spacecraft, enclosed in a container, arrives at the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for processing. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  2. 14 CFR § 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... government reimbursable payload on the Space Shuttle. § 1214.101 Section § 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  3. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  4. STS-113 Mission Specialist John B. Herrington arrives at KSC for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John B. Herrington smiles for the camera upon his arrival at KSC's Shuttle Landing Facility to prepare for launch. STS-113 is the 16th American assembly flight to the International Space Station. The primary objective of the mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major task of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is targeted for no earlier than Nov. 22 between 7 and 11 p.m. EST.

  5. KSC-01pp1273

    NASA Image and Video Library

    2001-07-11

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis is ready for final launch preparations. The orbiter access arm is extended to the orbiter to allow entry into Atlantis. The White Room at the end is the point of entry, and is an environmentally controlled room where the Shuttle crew have final adjustments made to their launch and entry suits. At the lower end of Atlantis are the tail service masts, in front of either wing. The masts support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Viewed in the background is the Atlantic Ocean. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload

  6. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  8. The Future of Remote Sensing from Space: Civilian Satellite Systems and Applications.

    DTIC Science & Technology

    1993-07-01

    image shows abundant (dark green) vegetation across the Amazon of South America, while lack of vegetation (black areas) is seen across the Sahara Desert...primarily through the space shuttle and space station Freedom programs.25 Hence, if NASA’s overall budget remains flat or includes only modest growth... remain the primary collector of satellite remote sensing data for both meteorolog- ical and climate monitoring efforts through the decade of the 1990s

  9. Technology for Large Space Systems: A Bibliography with Indexes. Supplement 17

    DTIC Science & Technology

    1987-10-01

    reduce the total primary reflector weight by a factor Lewis Research Center, Cleveland, Ohio. of 3 to 4 over competing technologies. On-orbit thermal...aperture. Weight and volume estimates are consistent with a single Proceedings of the Twenty-first ;ntersociety Energy Conversion Shuttle launch, and are...Aeronautics and Space Administration fiscal year Station. B.G. 1987 budget is examined. The impact of the loss of the Challenger and its crew on the space

  10. KSC-2011-6479

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- NASA’s Space Shuttle Program Launch Integration Manager Mike Moses speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to the agency’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods

  11. KSC-2011-6488

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- Three-time space shuttle astronaut Charles D. "Sam" Gemar signs autographs and takes photos with space shuttle workers and their families at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann

  12. STS-113 and Expedition Six crews pose for a group photo at SLF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 and Expedition Six crews pose for a group photo at Launch Pad 39A with Space Shuttle Endeavour in the background during a tour of Kennedy Space Center prior to their launch. From left are Expedition Six crew members Donald Pettit and Nikolai Budarin of the Russian Space Agency, STS-113 Mission Specialists John Herrington and Michael Lopez-Alegria, Expedition Six Commander Ken Bowersox, STS-113 Pilot Paul Lockhart, and STS-113 Commander James Wetherbee. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  13. STS-113 and Expedition Six crews pose for a group photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 and Expedition Six crews pose for a group photo at Launch Pad 39A with Space Shuttle Endeavour in the background during a tour of Kennedy Space Center prior to their launch. From left are Expedition Six crew members Donald Pettit and Nikolai Budarin of the Russian Space Agency, STS-113 Mission Specialists John Herrington and Michael Lopez-Alegria, Expedition Six Commander Ken Bowersox, STS-113 Pilot Paul Lockhart, and STS-113 Commander James Wetherbee. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  14. Building Operations Efficiencies into NASA's Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration guides NASA's challenging missions of technological innovation and scientific investigation. With the Agency's commitment to complete the International Space Station (ISS) and to retire the Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for a safer, simpler, more cost efficient launch system that could deliver timely human-rated space transportation capabilities. NASA's finite resources yield discoveries with infinite possibilities. As the Agency begins the process of replacing the Shuttle with new launch vehicles destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo systems for maximum operational efficiencies. This mandate is imperative to reduce the $4.5 billion NASA spends on space transportation each year. This paper gives top-level details of how the follow-on Crew Launch Vehicle (CLV) is being designed for reduced lifecycle costs as a primary catalyst for the expansion of future frontiers.

  15. Astronaut Medical Selection and Flight Medicine Care During the Shuttle ERA 1981 to 2011

    NASA Technical Reports Server (NTRS)

    Johnston, S.; Jennings, R.; Stepaniak, P.; Schmid, J.; Rouse, B.; Gray, G.; Tarver, B.

    2011-01-01

    The NASA Shuttle Program began with congressional budget approval in January 5, 1972 and the launch of STS-1 on April 12, 1981 and recently concluded with the landing of STS-135 on July 21, 2011. The evolution of the medical standards and care of the Shuttle Era Astronauts began in 1959 with the first Astronaut selection. The first set of NASA minimal medical standards were documented in 1977 and based on Air Force, Navy, Department of Defense, and the Federal Aviation Administration standards. Many milestones were achieved over the 30 years from 1977 to 2007 and the subsequent 13 Astronaut selections and 4 major expert panel reviews performed by the NASA Flight Medicine Clinic, Aerospace Medicine Board, and Medical Policy Board. These milestones of aerospace medicine standards, evaluations, and clinical care encompassed the disciplines of preventive, occupational, and primary care medicine and will be presented. The screening and retention standards, testing, and specialist evaluations evolved through periodic expert reviews, evidence based medicine, and Astronaut medical care experience. The last decade of the Shuttle Program saw the development of the International Space Station (ISS) with further Space medicine collaboration and knowledge gained from our International Partners (IP) from Russia, Canada, Japan, and the European Space Agencies. The Shuttle Program contribution to the development and implementation of NASA and IP standards and waiver guide documents, longitudinal data collection, and occupational surveillance models will be presented along with lessons learned and recommendations for future vehicles and missions.

  16. Economic analysis of the space shuttle system, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of the space shuttle system is presented. The analysis is based on economic benefits, recurring costs, non-recurring costs, and ecomomic tradeoff functions. The most economic space shuttle configuration is determined on the basis of: (1) objectives of reusable space transportation system, (2) various space transportation systems considered and (3) alternative space shuttle systems.

  17. KSC-98pc1217

    NASA Image and Video Library

    1998-10-03

    KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability

  18. Space Shuttle Project

    NASA Image and Video Library

    1981-01-01

    A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1999-08-01

    Designed by the crew members, the STS-103 emblem depicts the Space Shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission was to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that had been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the Telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability was one of the primary objectives of the mission. After the flight, the Telescope resumed its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the Sun, providing a striking contrast with the blackness of space and the night side of Earth.

  20. STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training

    NASA Image and Video Library

    1993-01-07

    S93-26022 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).

  1. Fire safety practices in the Shuttle and the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1993-01-01

    The Shuttle reinforces its policy of fire-preventive measures with onboard smoke detectors and Halon 1301 fire extinguishers. The forthcoming Space Station Freedom will have expanded fire protection with photoelectric smoke detectors, radiation flame detectors, and both fixed and portable carbon dioxide fire extinguishers. Many design and operational issues remain to be resolved for Freedom. In particular, the fire-suppression designs must consider the problems of gas leakage in toxic concentrations, alternative systems for single-failure redundancy, and commonality with the corresponding systems of the Freedom international partners. While physical and engineering requirements remain the primary driving forces for spacecraft fire-safety technology, there are, nevertheless, needs and opportunities for the application of microgravity combustion knowledge to improve and optimize the fire-protective systems.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide and a virus. More than 200 scientists from 16 countries participated in the investigations. This is the logo or emblem that was designed to represent the IML-1 payload.

  3. Producing the high temperature reusable surface insulation for the thermal protection system of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Forgsberg, K.

    1979-01-01

    The primary insulation system used to protect the space shuttle orbiter on reentry is an externally attached, rigidized, fibrous silica which has been machined into tiles. The tiles constitute the temperature reusable surface insulation system and are used on over 70 percent of the vehicle exterior surface where peak temperatures range from 400 to 1260 C. Cargon-carbon leading edges are used in areas where peak temperatures exceed 1650 C and a felt flexible insulation is used in regions below 400 C. Approximately 32,000 tiles are used in the HRST system and because of vehicle configuration, aerodynamic requirements, and weight considerations no two tiles are alike. Fabrication and quality control procedures are described.

  4. KSC-99pp0505

    NASA Image and Video Library

    1999-05-07

    In the Space Station Processing Facility (SSPF), workers (lower right) disconnect the transport vehicle from the Shuttle Radar Topography Mission (SRTM) after moving it into the building for pre-launch preparations. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth

  5. Studies and analyses of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Tischer, Alan E.; Glover, R. C.

    1987-01-01

    The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.

  6. KSC-99pp0881

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- Members of the U.S. Women's World Cup Soccer Team are greeted by NASA Administrator Daniel S. Goldin as they disembark from a plane at the Skid Strip at Cape Canaveral Air Station. They arrived with First Lady Hillary Rodham Clinton to view the launch of Space Shuttle mission STS-93 scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe

  7. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-11

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. Recorded with a 35 mm camera inside Endeavour’s cabin, is astronaut Pierre Thuot after his second unsuccessful attempt to affix a specially designed grapple bar to the 4.5 ton INTELSAT VI.

  8. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  9. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  10. Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network.

    PubMed

    de Groot-Hedlin, Catherine D; Hedlin, Michael A H; Walker, Kristoffer T; Drob, Douglas P; Zumberge, Mark A

    2008-09-01

    Inclement weather in Florida forced the space shuttle "Atlantis" to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allow for the testing of infrasound propagation modeling capabilities through the atmosphere to regional distances. Shadow zones and arrival times are predicted by tracing rays that are launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. The predictions and observations compare favorably over much of the study area for both atmospheric specifications. To the east of the shuttle trajectory, there were no detections beyond the primary acoustic carpet. Infrasound energy was detected hundreds of kilometers to the west and northwest (NW) of the shuttle trajectory, consistent with the predictions of ducting due to the westward summer-time stratospheric jet. Both atmospheric models predict alternating regions of high and low ensonifications to the NW. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds.

  11. STS-54 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  12. KSC-06pd2382

    NASA Image and Video Library

    2006-07-05

    JOHNSON SPACE CENTER, Houston, Texas -- STS116-S-001 (July 2006) - The STS-116 patch design signifies the continuing assembly of the International Space Station (ISS). The primary mission objective is to deliver and install the P5 truss element. The P5 installation will be conducted during the first of three planned spacewalks, and will involve use of both the shuttle and station robotic arms. The remainder of the mission will include a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. In addition, a single expedition crew member will launch on STS-116 to remain onboard the station, replacing an expedition crew member who will fly home with the shuttle crew. The crew patch depicts the space shuttle rising above the Earth and ISS. The United States and Swedish flags trail the orbiter, depicting the international composition of the STS-116 crew. The seven stars of the constellation Ursa Major are used to provide direction to the North Star, which is superimposed over the installation location of the P5 truss on ISS. The NASA insignia design for space shuttle space flights is reserved for use by the astronauts and other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, such will be publicly announced.

  13. KSC-2011-2879

    NASA Image and Video Library

    2011-04-12

    CAPE CANAVERAL, Fla. -- Shuttle Atlantis' three main engines take center stage to the banners commemorating the orbiters that served the Space Shuttle Program. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett

  14. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  15. Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Stephens, Walter

    2005-01-01

    In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

  16. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.

    DTIC Science & Technology

    Space Shuttle. The microcapsules in space (MIS) equipment will replace two space shuttle middeck storage lockers. Design changes have been...Mission STS-53 pending final safety certification by NASA. STS-53 is scheduled for launch on October 15, 1992. RA 2; Microencapsulation ; Controlled-release; Space Shuttle; Antibiotics; Drug development.

  17. KSC-2011-2872

    NASA Image and Video Library

    2011-04-12

    CAPE CANAVERAL, Fla. -- Mike Parrish, space shuttle Endeavour's vehicle manager with United Space Alliance addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett

  18. STS-75 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-75 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fifth flight of the Space Shuttle Program, the fiftieth flight since the return-to-flight, and the nineteenth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-76; three SSME's that were designated as serial numbers 2029, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-078. The RSRM's, designated RSRM-53, were installed in each SRB and the individual RSRMs were designated as 36OW53A for the left SRB, and 36OW053B for the right SRB. The primary objectives of this flight were to perform the operations necessary to fulfill the requirements of the Tethered Satellite System-1 R (TSS-1R), and the United States Microgravity Payload-3 (USMP-3). The secondary objectives were to complete the operations of the Orbital Acceleration Research Experiment (OARE), and to meet the requirements of the Middeck Glovebox (MGBX) facility and the Commercial Protein Crystal Growth (CPCG) experiment. Appendix A provides the definition of acronyms and abbreviations used thorughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

  19. STS-58 Crew Insignia

    NASA Image and Video Library

    1993-05-01

    STS058-S-001 (May 1993) --- Designed by members of the flight crew, the STS-58 insignia depicts the space shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering "Spacelab Life Sciences II" highlight the primary mission of the second space shuttle flight dedicated to life sciences research. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the scheduled two-week duration of the longest space shuttle mission to date. The hexagonal shape of the patch depicts the carbon ring, a molecule common to all living organisms. Encircling the inner border of the patch is the double helix of DNA, representing the genetic basis of life. Its yellow background represents the sun, energy source for all life on Earth. Both medical and veterinary caducei are shown to represent the STS-58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research intended to benefit all mankind. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. Photo credit: NASA

  20. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

Top