Advanced technology and the Space Shuttle /10th Von Karman Lecture/.
NASA Technical Reports Server (NTRS)
Love, E. S.
1973-01-01
Selected topics in technology advancement related to the space shuttle are examined. Contributions from long-range research prior to the advent of the 'shuttle-focused technology program' of the past 3 years are considered together with highlights from the latter. Attention is confined to three of the shuttle's seven principal technology areas: aerothermodynamics/configurations, dynamics/aeroelasticity, and structures/materials. Some observations are presented on the shuttle's origin, the need to sustain advanced research, and future systems that could emerge from a combination of shuttle and non-shuttle technology advancements.
Companies hone in on radar-docking technology
NASA Astrophysics Data System (ADS)
Howell, Elizabeth
2009-11-01
As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.
1981-01-01
A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
The baseline SRM design for the space shuttle employs proven technology based on actual motor firings. Supporting research and technology are therefore required only to address system technology that is specific to the shuttle requirements, and that is needed for optimization of design features. Eight programs are recommended to meet these requirements.
The space shuttle payload planning working groups. Volume 10: Space technology
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Introducing new technologies into Space Station subsystems
NASA Technical Reports Server (NTRS)
Wiskerchen, Michael J.; Mollakarimi, Cindy L.
1989-01-01
A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.
The potential impact of the space shuttle on space benefits to mankind
NASA Technical Reports Server (NTRS)
Rattinger, I.
1972-01-01
The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.
Research and Technology annual report FY-1981
NASA Technical Reports Server (NTRS)
1981-01-01
Space transportation systems are summarized: space shuttle enhancement, a space operations center, the space platform, and geostationary activites are discussed. Aeronautics and space technology are summarized: experiments, energy systems, propulsion technology, synthetic aperture radar, large space systems, and shuttle-launched vehicles are discussed. Space sciences are summarized: lunar, planetary, and life sciences are discussed. Space and terrestrial applications are summarized. The AgRISTARS program, forest and wildland resource, and Texas LANDSAT applications are discussed.
Applications of Tethers in Space: Workshop Proceedings, Volume 2
NASA Technical Reports Server (NTRS)
Baracat, W. A. (Compiler)
1986-01-01
Topics addressed include: tethered orbital transfer vehicle operations, Centaur and Shuttle tether technology; tethered constellations, gravitational effects; Shuttle continuous open wind tunnel; optimal control laws, electrodynamic tether technology; and space station facilities.
1989-04-25
An STS-41D onboard photo shows the Solar Array Experiment (SAE) panel deployment for the Office of Aeronautics and space Technology-1 (OAST-1). OAST-1 is several advanced space technology experiments utilizing a common data system and is mounted on a platform in the Shuttle cargo bay.
Shuttle interaction study extension
NASA Technical Reports Server (NTRS)
1982-01-01
The following areas of Space Shuttle technology were discussed: variable altitude strategy, spacecraft servicing, propellant storage, orbiter plume impingement, space based design, mating (docking and berthing), shuttle fleet utilization, and mission/traffic model.
Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle
NASA Technical Reports Server (NTRS)
Hale, N. Wayne (Editor); Lulla, Kamlesh (Editor); Lane, Helen W. (Editor); Chapline, Gail (Editor)
2010-01-01
This Space Shuttle book project reviews Wings In Orbit-scientific and engineering legacies of the Space Shuttle. The contents include: 1) Magnificent Flying Machine-A Cathedral to Technology; 2) The Historical Legacy; 3) The Shuttle and its Operations; 4) Engineering Innovations; 5) Major Scientific Discoveries; 6) Social, Cultural, and Educational Legacies; 7) Commercial Aerospace Industries and Spin-offs; and 8) The Shuttle continuum, Role of Human Spaceflight.
Science in orbit: The shuttle and spacelab experience, 1981-1986
NASA Technical Reports Server (NTRS)
1988-01-01
Significant achievements across all scientific disciplines and missions for the first six years of Shuttle flights are presented. Topics covered include science on the Space Shuttle and Spacelab, living and working in space, studying materials and processes in microgravity, observing the sun and earth, space plasma physics, atmospheric science, astronony and astrophysics, and testing new technology in space. Future research aboard the Shuttle/Spacelab is also briefly mentioned.
Economics in ground operations of the Space Shuttle
NASA Technical Reports Server (NTRS)
Gray, R. H.
1973-01-01
The physical configuration, task versatility, and typical mission profile of the Space Shuttle are illustrated and described, and a comparison of shuttle and expendable rocket costs is discussed, with special emphasis upon savings to be achieved in ground operations. A review of economies achieved by engineering design improvements covers the automated checkout by onboard shuttle systems, the automated launch processing system, the new maintenance concept, and the analogy of Space Shuttle and airline repetitive operations. The Space Shuttle is shown to represent a new level in space flight technology, particularly, the sophistication of the systems and procedures devised for its support and ground operations.
Marshall Space Flight Center - Launching the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Shivers, Alisa; Shivers, Herbert
2010-01-01
Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field
NASA Technical Reports Server (NTRS)
Helms, William R.; Starr, Stanley O.
1997-01-01
Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.
GPS Lessons Learned from the International Space Station, Space Shuttle and X-38
NASA Technical Reports Server (NTRS)
Goodman, John L.
2005-01-01
This document is a collection of writings concerning the application of Global Positioning System (GPS) technology to the International Space Station (ISS), Space Shuttle, and X-38 vehicles. An overview of how GPS technology was applied is given for each vehicle, including rationale behind the integration architecture, and rationale governing the use (or non-use) of GPS data during flight.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Space propulsion technology overview
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.
1979-01-01
This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.
Space teleoperations technology for Space Station evolution
NASA Technical Reports Server (NTRS)
Reuter, Gerald J.
1990-01-01
Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
NASA Technical Reports Server (NTRS)
Odom, J. B.
1978-01-01
The External Tank must provide a safe storage container for both LH2 and LO2, a means of maintaining propellant quality in order to meet the engine pump net positive suction pressure requirements, and a structural strong-back for the Space Shuttle system, all at the minimum recurring cost and weight, while maintaining quality and reliability. The present paper summarizes External Tank design features and discusses the advantages of using LH2 and LO2 for the Space Shuttle system.
Space shuttle EVA opportunities. [a technology assessment
NASA Technical Reports Server (NTRS)
Bland, D. A., Jr.
1976-01-01
A technology assessment is presented on space extravehicular activities (EVA) that will be possible when the space shuttle orbiter is completed and launched. The use of EVA in payload systems design is discussed. Also discussed is space crew training. The role of EVA in connection with the Large Space Telescope and Skylab are described. The value of EVA in constructing structures in space and orbital assembly is examined. Excellent color illustrations are provided which show the proposed EVA functions that were described.
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
Research and technology. [in development of space shuttle
NASA Technical Reports Server (NTRS)
1973-01-01
Summaries are presented of the research in the development of the space shuttle. Propulsion, materials, spacecraft and thermal control, payloads, instrumentation, data systems, and mission planning are included.
The space shuttle payload planning working groups: Executive summaries
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications program for the 1980 time period. Individual groups were organized to cover the various space sciences, applications, technologies, and life sciences. Summaries of the reports submitted by the working groups are provided.
2013-09-09
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann
Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
External tank project new technology plan. [development of space shuttle external tank system
NASA Technical Reports Server (NTRS)
1973-01-01
A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.
Shuttle Performance: Lessons Learned, Part 2
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Several areas of Space Shuttle technology were addressed including aerothermal environment, thermal protection, measurement and analysis, Shuttle carrier aerodynamics, entry analysis of the STS-3, and an overview of each section.
NASA Technical Reports Server (NTRS)
1991-01-01
Significant research and technology activities at the Johnson Space Center (JSC) during Fiscal Year 1990 are reviewed. Research in human factors engineering, the Space Shuttle, the Space Station Freedom, space exploration and related topics are covered.
1993-01-01
The development of the electric space actuator represents an unusual case of space technology transfer wherein the product was commercialized before it was used for the intended space purpose. MOOG, which supplies the thrust vector control hydraulic actuators for the Space Shuttle and brake actuators for the Space Orbiter, initiated development of electric actuators for aerospace and industrial use in the early 1980s. NASA used the technology to develop an electric replacement for the Space Shuttle main engine TVC actuator. An electric actuator is used to take passengers on a realistic flight to Jupiter at the US Space and Rocket Center, Huntsville, Alabama.
NASA Technical Reports Server (NTRS)
Tamir, David
1992-01-01
As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.
Planetary/DOD entry technology flight experiments. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The feasibility of using the space shuttle to launch planetary and DoD entry flight experiments was examined. The results of the program are presented in two parts: (1) simulating outer planet environments during an earth entry test, the prediction of Jovian and earth radiative heating dominated environments, mission strategy, booster performance and entry vehicle design, and (2) the DoD entry test needs for the 1980's, the use of the space shuttle to meet these DoD test needs, modifications of test procedures as pertaining to the space shuttle, modifications to the space shuttle to accommodate DoD test missions and the unique capabilities of the space shuttle. The major findings of this program are summarized.
Analysis of space shuttle main engine data using Beacon-based exception analysis for multi-missions
NASA Technical Reports Server (NTRS)
Park, H.; Mackey, R.; James, M.; Zak, M.; Kynard, M.; Sebghati, J.; Greene, W.
2002-01-01
This paper describes analysis of the Space Shuttle Main Engine (SSME) sensor data using Beacon-based exception analysis for multimissions (BEAM), a new technology developed for sensor analysis and diagnostics in autonomous space systems by the Jet Propulsion Laboratory (JPL).
Status of shuttle fuel cell technology program.
NASA Technical Reports Server (NTRS)
Rice, W. E.; Bell, D., III
1972-01-01
The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.
Shuttle Engine Designs Revolutionize Solar Power
NASA Technical Reports Server (NTRS)
2014-01-01
The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.
Interactions measurement payload for Shuttle
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Pike, C. P.
1985-01-01
The Interactions Measurement Payload for Shuttle (IMPS) consisted of engineering experiments to determine the effects of the space environment on projected Air Force space systems. Measurements by IMPS on a polar-orbit Shuttle flight will lead to detailed knowledge of the interaction of the low-altitude polar-auroral environment on materials, equipment and technologies to be used in future large, high-power space systems. The results from the IMPS measurements will provide direct input to MIL-STD design guidelines and test standards that properly account for space-environment effects.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 David Brown chats with the Closeout Crew during final preparations of his launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Space Shuttle security policies and programs
NASA Astrophysics Data System (ADS)
Keith, E. L.
The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 David Brown chats with the Closeout Crew during final preparations of his launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Laurel Clark waves to a camera out of view during final preparations of her launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla gets help with her launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Behind him is Pilot William "Willie" McCool. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William "Willie" McCool (center) gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. In the foreground, left, is Mission Specialist David Brown. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Space Shuttle security policies and programs
NASA Technical Reports Server (NTRS)
Keith, E. L.
1985-01-01
The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.
NASA Technical Reports Server (NTRS)
Rhodes, E. L.
1978-01-01
Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.
The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle
NASA Technical Reports Server (NTRS)
Heppenheimer, T. A.
1999-01-01
This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.
Inventory behavior at remote sites
NASA Technical Reports Server (NTRS)
Lewis, William C., Jr.
1987-01-01
An operations research study was conducted concerning inventory behavior on the space station. Historical data from the Space Shuttle was used. The results demonstrated a high logistics burden if Space Shuttle reliability technology were to be applied without modification to space station design (which it was not). Effects of rapid resupply and on board repair capabilities on inventory behavior were investigated.
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.
1993-01-01
Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2015-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2014-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
The space shuttle program: a policy failure?
Logsdon, J M
1986-05-30
The 5 January 1972 announcement by President Richard Nixon that the United States would develop during the 1970's a new space transportation system-the space shuttle-has had fundamental impacts on the character of U.S. space activities. In retrospect, it can be argued that the shuttle design chosen was destined to fail to meet many of the policy objectives established for the system; the shuttle's problems in serving as the primary launch vehicle for the United States and in providing routine and cost-effective space transportation are in large part a result of the ways in which compromises were made in the 1971-72 period in order to gain White House and congressional approval to proceed with the program. The decision to develop a space shuttle is an example of a poor quality national commitment to a major technological undertaking.
Technical Information/Website Preservation
NASA Technical Reports Server (NTRS)
PintoRey, Christian R.
2010-01-01
This document reviews the work of the author in NASA's Motivating Undergraduates in Science and Technology (MUST) internship. The intern worked on the Space Shuttles hydraulic systems (i.e., Auxiliary Power Units (APU's) and Hydraulic Pump Units (HPU's)), and website preservation of the hydraulic technology captured in websites relating to the coming.the Space Shuttle Retirement. Several figures and pictures show an overview of the orbiter's hydraulic systems
Robotics in space-age manufacturing
NASA Technical Reports Server (NTRS)
Jones, Chip
1991-01-01
Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
NASA Astrophysics Data System (ADS)
Lovelace, Uriel; Sumrall, Phil; Pritchard, Brian
1989-04-01
An evaluation is made of performance requirements and technology development prospects for the logistical capacity entailed by manned space exploration. While the Space Shuttle will suffice for the launch of crews to a LEO Space Station, in support of such exploration missions, cargo transport will require 500-1000 tonne annual payload capacity launchers. As a first step toward satisfaction of such requirements, NASA has undertaken the development of the Shuttle-C unmanned Space Shuttle derivative. This will be followed by the Shuttle-Z derivative-family, aimed at meeting the needs of Mars missions. Joint USAF/NASA Advanced Launch System development will allow a given launch to place 91 tonnes in LEO.
NASA Technical Reports Server (NTRS)
Ragusa, James M.; Orwig, Gary; Gilliam, Michael; Blacklock, David; Shaykhian, Ali
1994-01-01
Status is given of an applications investigation on the potential for using an expert system shell for classification and retrieval of high resolution, digital, color space shuttle closeout photography. This NASA funded activity has focused on the use of integrated information technologies to intelligently classify and retrieve still imagery from a large, electronically stored collection. A space shuttle processing problem is identified, a working prototype system is described, and commercial applications are identified. A conclusion reached is that the developed system has distinct advantages over the present manual system and cost efficiencies will result as the system is implemented. Further, commercial potential exists for this integrated technology.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Space propulsion technology overview
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.
1979-01-01
Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.
NASA Technical Reports Server (NTRS)
Wennhold, W. F.
1974-01-01
The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.
NASA Technical Reports Server (NTRS)
Ehret, R. M.
1974-01-01
The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.
NASA Astrophysics Data System (ADS)
1992-09-01
In this educational 'Liftoff to Learning' video series, astronauts from STS-49 Space Shuttle Mission (Thomas Akers, Bruce Melnick, Pierre Thuot, Kathy Thorton, Kevin Chilton, and Richard Hieb) compare their mission aboard the Space Shuttle Endeavor and their shuttle with its namesake, the ship 'Endeavor', commanded by Captain James Cook of England in the late 1700's. Using historical paintings, drawings, and computer graphics, Cook's Endeavor is brought to life. Its voyage path, problems, biological experiments, and discoveries are shown and compared to the modern-day Endeavor, its mission and experiments. The Space Shuttle Endeavor was named in 1988, through a nation-wide school contest. It is the fifth Space Shuttle to be built and employs new technology in its design, for example, its drag shoot for shuttle landings. One part of the STS-49 Mission was the retrieval of the Intel satellite.
NASA Technical Reports Server (NTRS)
1992-01-01
In this educational 'Liftoff to Learning' video series, astronauts from STS-49 Space Shuttle Mission (Thomas Akers, Bruce Melnick, Pierre Thuot, Kathy Thornton, Kevin Chilton, and Richard Hieb) compare their mission aboard the Space Shuttle Endeavor and their shuttle with its namesake, the ship 'Endeavor', commanded by Captain James Cook of England in the late 1700's. Using historical paintings, drawings, and computer graphics, Cook's Endeavor is brought to life. Its voyage path, problems, biological experiments, and discoveries are shown and compared to the modern-day Endeavor, its mission and experiments. The Space Shuttle Endeavor was named in 1988, through a nation-wide school contest. It is the fifth Space Shuttle to be built and employs new technology in its design, for example, its drag shoot for shuttle landings. One part of the STS-49 Mission was the retrieval of the Intel satellite.
Space Shuttle Main Engine (SSME) Evolution
NASA Technical Reports Server (NTRS)
Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)
2001-01-01
The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.
Automation of Shuttle Tile Inspection - Engineering methodology for Space Station
NASA Technical Reports Server (NTRS)
Wiskerchen, M. J.; Mollakarimi, C.
1987-01-01
The Space Systems Integration and Operations Research Applications (SIORA) Program was initiated in late 1986 as a cooperative applications research effort between Stanford University, NASA Kennedy Space Center, and Lockheed Space Operations Company. One of the major initial SIORA tasks was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. This effort has adopted a systems engineering approach consisting of an integrated set of rapid prototyping testbeds in which a government/university/industry team of users, technologists, and engineers test and evaluate new concepts and technologies within the operational world of Shuttle. These integrated testbeds include speech recognition and synthesis, laser imaging inspection systems, distributed Ada programming environments, distributed relational database architectures, distributed computer network architectures, multimedia workbenches, and human factors considerations.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Astrophysics Data System (ADS)
Lewerenz, T.; Kosha, M.; Magazu, H.
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Technical Reports Server (NTRS)
Lewerenz, T.; Kosha, M.; Magazu, H.
1991-01-01
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
An Overview of Quantitative Risk Assessment of Space Shuttle Propulsion Elements
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
1998-01-01
Since the Space Shuttle Challenger accident in 1986, NASA has been working to incorporate quantitative risk assessment (QRA) in decisions concerning the Space Shuttle and other NASA projects. One current major NASA QRA study is the creation of a risk model for the overall Space Shuttle system. The model is intended to provide a tool to estimate Space Shuttle risk and to perform sensitivity analyses/trade studies, including the evaluation of upgrades. Marshall Space Flight Center (MSFC) is a part of the NASA team conducting the QRA study; MSFC responsibility involves modeling the propulsion elements of the Space Shuttle, namely: the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). This paper discusses the approach that MSFC has used to model its Space Shuttle elements, including insights obtained from this experience in modeling large scale, highly complex systems with a varying availability of success/failure data. Insights, which are applicable to any QRA study, pertain to organizing the modeling effort, obtaining customer buy-in, preparing documentation, and using varied modeling methods and data sources. Also provided is an overall evaluation of the study results, including the strengths and the limitations of the MSFC QRA approach and of qRA technology in general.
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.
An overview of European space transportation systems
NASA Technical Reports Server (NTRS)
Lo, R. E.
1985-01-01
With the completion of the launch rocket series Ariane 1 to 4, Europe will have reached the same capacity to transport commercial payloads as the USA has with the Space Shuttle and the kick stages which are presently operative. The near term development of these capacities would require Europe to develop a larger launch rocket, Araine 5. Further motivations for this rocket are access to manned spaceflight, the development of an European space station, and the demand for shuttle technology. Shuttle technology is the subject of research being done in France on the winged re-entry vehicle Hermes. Operation of the European space station Columbus will require development of an interorbital transport system to facilitate traffic between the various segments of the space station. All European space transportation systems will have to match their quality to that of the other countries involve in space flight. All areas of development are marked not only by possible cooperation but also by increased competition because of increasing commercialization of space flight.
Shuttle filter study. Volume 1: Characterization and optimization of filtration devices
NASA Technical Reports Server (NTRS)
1974-01-01
A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.
NASA Technical Reports Server (NTRS)
Gregory, J. W.
1975-01-01
Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.
Report on research and technology-FY 1981
NASA Technical Reports Server (NTRS)
1981-01-01
More than 65 technical reports, papers, and articles published by personnel and contractors at the Dryden Flight Research Center are listed. Activities performed for the Offices of Aeronautics and Space Technology, Space and Terrestrial Applications, Space Transportation Systems, and Space Tracking and Data Systems are summarized. Preliminary stability and control derivatives were determined for the shuttle orbiter at hypersonic speeds from the data obtained at reentry. The shuttle tile tests, spin research vehicle nose shapes flight investigations, envelope expansion flights for the Ames tilt rotor research aircraft, and the AD-1 oblique wing programs were completed as well as the KC-135 winglet program.
Space power systems technology enablement study. [for the space transportation system
NASA Technical Reports Server (NTRS)
Smith, L. D.; Stearns, J. W.
1978-01-01
The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed.
Mission definition study for a VLBI station utilizing the Space Shuttle
NASA Technical Reports Server (NTRS)
Burke, B. F.
1982-01-01
The uses of the Space Shuttle transportation system for orbiting VeryLong-Baseline Interferometry (OVLBI) were examined, both with respect to technical feasibility and its scientific possibilities. The study consisted of a critical look at the adaptability of current technology to an orbiting environment, the suitability of current data reduction facilities for the new technique, and a review of the new science that is made possible by using the Space Shuttle as a moving platform for a VLBI terminal in space. The conclusions are positive in all respects: no technological deficiencies exist that would need remedy, the data processing problem can be handled easily by straightforward adaptations of existing systems, and there is a significant new research frontier to be explored, with the Space Shuttle providing the first step. The VLBI technique utilizes the great frequency stability of modern atomic time standards, the power of integrated circuitry to perform real-time signal conditioning, and the ability of magnetic tape recorders to provide essentially error-free data recording, all of which combine to permit the realization of radio interferometry at arbitrarily large baselines.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.
2004-01-01
A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
NASA Technical Reports Server (NTRS)
Hanaway, John F.; Moorehead, Robert W.
1989-01-01
The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.
The Space Shuttle Disaster: Ethical Issues in Organizational Decision-Making.
ERIC Educational Resources Information Center
Kramer, Ronald C.; Jaksa, James A.
Arguing that the issue of organizational decision making and bureaucratic responsibility in the use of technologies with potential for creating social harm should concern everyone, this paper explores the ethical issues raised by organizational decisions concerning the launch of the space shuttle "Challenger." The paper first describes a…
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Johnson, R. L.
1984-01-01
Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.
Research pressure instrumentation for NASA Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The development of prototype pressure transducers which are targeted to meet the Space Shuttle Main Engine SSME performance design goals is discussed. The fabrication, testing and delivery of 10 prototype units is examined. Silicon piezoresistive strain sensing technology is used to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. Integration of multiple functions on a single chip is the key attribute of this technology.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Competing with the brilliant blue sky, flames behind Space Shuttle Columbia trail a column of smoke as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A twisting column of smoke points the way to Space Shuttle Columbia at its tip as the Shuttle hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2007-12-05
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is revealed on Launch Pad 39A at NASA's Kennedy Space Center after the rotating service structure, or RSS, at left of the pad is rolled back. Rollback was complete at 8:44 p.m. EST. The RSS provides protected access to the orbiter for crew entry and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-122, scheduled for 4:31 p.m. EST on Dec. 6. Beneath the shuttle is the mobile launcher platform which supports the shuttle until liftoff. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to Node 2 of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-05
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is revealed on Launch Pad 39A at NASA's Kennedy Space Center after the rotating service structure, or RSS, at left of the pad is rolled back. Rollback was complete at 8:44 p.m. EST. The RSS provides protected access to the orbiter for crew entry and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-122, scheduled for 4:31 p.m. EST on Dec. 6. Beneath the shuttle is the mobile launcher platform which supports the shuttle until liftoff. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to Node 2 of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett
Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Green, R. S.
1986-01-01
Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Administrator Charles Bolden, left, speaks with Professor Sam Ting, Alpha Magnetic Spectrometer-2 principal investigator at the Massachusetts Institute of Technology, Kennedy Center Director Bob Cabana and STS-1 Pilot and former Kennedy Space Center Director Bob Crippen. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Later, employees, their families and friends, will celebrate the 30th anniversary of the first shuttle launch at the visitor complex. Photo credit: NASA/Kim Shiflett
Economics of the solid rocket booster for space shuttle
NASA Technical Reports Server (NTRS)
Rice, W. C.
1979-01-01
The paper examines economics of the solid rocket booster for the Space Shuttle. Costs have been held down by adapting existing technology to the 146 in. SRB selected, with NASA reducing the cost of expendables and reusing the expensive nonexpendable hardware. Drop tests of Titan III motor cases and nozzles proved that boosters can survive water impact at vertical velocities of 100 ft/sec so that SRB components can be reused. The cost of expendables was minimized by selecting proven propellants, insulation, and nozzle ablatives of known costs; the propellant has the lowest available cost formulation, and low cost ablatives, such as pitch carbon fibers, will be used when available. Thus, the use of proven technology and low cost expendables will make the SRB an economical booster for the Space Shuttle.
Tryggvason and Robinson examine Discovery after landing
NASA Technical Reports Server (NTRS)
1997-01-01
STS-85 Payload Specialist and Canadian Space Agency astronaut Bjarni V. Tryggvason (left) and Mission Specialist Stephen K. Robinson examine the Space Shuttle orbiter Discovery after the space plane landed on Runway 33 at KSCs Shuttle Landing Facility Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. Also on board were Commander Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Commander N. Jan Davis and Mission Specialist Robert L. Curbeam, Jr. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earths middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS- 1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center.
A waning of technocratic faith - NASA and the politics of the Space Shuttle decision, 1967-1972
NASA Technical Reports Server (NTRS)
Launius, R. D.
1992-01-01
This paper analyzes the decision to build the Space Shuttle as part of a broader public policy trend away from a deference to technical experts and toward greater politicization of traditionally apolitical issues. At the beginning of the 1960s U.S. leaders had a strong faith in the ability of technology to solve most problems. By 1970 this commitment to technological answers had waned and a resurgence of the right of elected officials to control technical matters was gaining currency. The lengthy and bitter Shuttle decision-making process was part of a much broader shift in the formation of public policy, played out in other arenas as well, aimed at the reemergence of direct political management of technological and scientific affairs by politicians.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1985-01-01
The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems.
NASA Technical Reports Server (NTRS)
2000-01-01
Kennedy Space Center's need to conduct real-time monitoring of Space Shuttle operations led to the development of Netlander Inc.'s JTouch system. The technology behind JTouch allows engineers to view Space Shuttle and ground support data from any desktop computer using a web browser. Companies can make use of JTouch to better monitor locations scattered around the world, increasing decision-making speed and reducing travel costs for site visits.
High frequency data acquisition system for space shuttle main engine testing
NASA Technical Reports Server (NTRS)
Lewallen, Pat
1987-01-01
The high frequency data acquisition system developed for the Space Shuttle Main Engine (SSME) single engine test facility at the National Space Technology Laboratories is discussed. The real time system will provide engineering data for a complete set of SSME instrumentation (approx. 100 measurements) within 4 hours following engine cutoff, a decrease of over 48 hours from the previous analog tape based system.
SPACEHAB - Space Shuttle Columbia mission STS-107
2003-01-14
Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
1996-02-01
The crew assigned to the STS-77 mission included (seated left to right) Curtis L. Brown, pilot; and John H. Casper, commander. Standing, left to right, are mission specialists Daniel W. Bursch, Mario Runco, Marc Garneau (CSA), and Andrew S. W. Thomas. Launched aboard the Space Shuttle Endeavour on May 19, 1996 at 6:30:00 am (EDT), the STS-77 mission carried three primary payloads; the SPACEHAB-4 pressurized research module, the Inflatable Antenna Experiment (IAE) mounted on a Spartan 207 free-flyer, and a suite of four technology demonstration experiments known as Technology Experiments for Advancing Missions in Space (TEAMS).
NASA Technical Reports Server (NTRS)
1975-01-01
Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
1994-09-09
KENNEDY SPACE CENTER, FLA. - The turbulent weather common to a Florida afternoon in the summer subsides into a serene canopy of cornflower blue, and a manmade "bird" takes flight. The Space Shuttle Discovery soars skyward from Launch Pad 39B on Mission STS-64 at 6:22:35 p.m. EDT, Sept. 9. On board are a crew of six: Commander Richard N. Richards; Pilot L. Blaine Hammond Jr.; and Mission Specialists Mark C. Lee, Carl J. Meade, Susan J. Helms and Dr. J.M. Linenger. Payloads for the flight include the Lidar In-Space Technology Experiment (LITE), the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) and the Robot Operated Material Processing System (ROMPS). Mission Specialists Lee and Meade also are scheduled to perform an extravehicular activity during the 64th Shuttle mission.
Space shuttle and life sciences
NASA Technical Reports Server (NTRS)
Mason, J. A.
1977-01-01
During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.
1995-05-27
The crew patch of STS-72 depicts the Space Shuttle Endeavour and some of the payloads on the flight. The Japanese satellite, Space Flyer Unit (SFU) is shown in a free-flying configuration with the solar array panels deployed. The inner gold border of the patch represents the SFU's distinct octagonal shape. Endeavour’s rendezvous with and retrieval of SFU at an altitude of approximately 250 nautical miles. The Office of Aeronautics and Space Technology's (OAST) flyer satellite is shown just after release from the Remote Manipulator System (RMS). The OAST satellite was deployed at an altitude of 165 nautical miles. The payload bay contains equipment for the secondary payloads - the Shuttle Laser Altimeter (SLA) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV). There were two space walks planned to test hardware for assembly of the International Space Station. The stars represent the hometowns of the crew members in the United States and Japan.
Definition of technology development missions for early space stations: Large space structures
NASA Technical Reports Server (NTRS)
1983-01-01
The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.
NASA study backs SSTO, urges shuttle phaseout
NASA Astrophysics Data System (ADS)
Asker, James R.
1994-03-01
A brief discusion of a Congressionally ordered NASA study on how to meet future US Government space launch needs is presented. Three options were examined: (1) improvement ofthe Space Shuttle; (2) development of expendable launch vehicles (ELVs); and (3) development of a single-stage-to-orbit (SSTO), manned vehicle that is reusable with advanced technology. After examining the three options, it was determined that the most economical approach to space access through the year 2030 would be to develop the SSTO vehicle and phase out Space Shuttle operations within 15 years and ELVs within 20 years. Other aspects of the study's findings are briefly covered.
2000-09-06
The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing
2000-09-06
The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing
The Space Shuttle focused-technology program - Lessons learned
NASA Technical Reports Server (NTRS)
Fitzgerald, P. E., Jr.; Gabris, E. A.
1983-01-01
The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.
NASA Technical Reports Server (NTRS)
Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.
1990-01-01
A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.
NASA Technical Reports Server (NTRS)
1990-01-01
Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.
Non-Toxic Reaction Control System for the Reusable First Stage Vehicle
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1999-01-01
This paper presents the Boeing Reusable Space Systems vision of a Reaction Control System (RCS) for the Reusable First Stage (RFS) being considered as a replacement for the Solid Rocket Booster for the Space Shuttle. The requirement is to achieve reliable vehicle control during the upper atmospheric portion of the RFS trajectory while enabling more efficient ground operations, unhindered by constraints caused by operating with highly toxic RCS propellants. Boeing's objective for this effort is to develop a safer, more efficient and environmentally friendly RCS design approach that is suitable for the RFS concept of operations, including a low cost, efficient turnaround cycle. The Boeing RCS concept utilizes ethanol and liquid oxygen in place of the highly toxic, suspected carcinogen, ozone-depleting mono-methyl-hydrazine and highly toxic nitrogen tetroxide. The Space Shuttle Upgrade program, under the leadership of the NASA Johnson Space Flight Center, is currently developing liquid oxygen and ethanol (ethyl alcohol) technology for use as non-toxic orbital maneuvering system (OMS) and RCS. The development of this liquid oxygen and ethanol technology for the Space Shuttle offers a significant leverage to select much of the same technology for the RFS program. There are significant design and development issues involved with bringing this liquid oxygen and ethanol technology to a state of maturity suitable for an operational RCS. The risks associated with a new LOX and Ethanol RCS are mitigated by maintaining kerosene and hydrogen peroxide RCS technology as an alternative. These issues, presented within this paper, include managing the oxygen supply and achieving reliable ignition in the short pulse mode of engine operation. Performance, reliability and operations requirements are presented along with a specific RCS design concept to satisfying these requirements. The work reported in this paper was performed under NASA Marshall Space Flight Center Contract Number NAS8-97272 to define Reusable First Stage design concepts for the Space Shuttle.
International Space Station (ISS)
1994-12-16
Artist's concept of the International Space Station (ISS) Alpha deployed and operational. This figure also includes the docking procedures for the Space Shuttle (shown with cargo bay open). The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
A compilation of technology spinoffs from the US Space Shuttle Program
NASA Technical Reports Server (NTRS)
Jackson, David Jeff
1993-01-01
As the successful transfer of NASA-developed technology is a stated mission of NASA, the documentation of such transfer is vital in support of the program. The purpose of this report is to document technology transfer, i.e. 'spinoffs', from the U.S. Space Shuttle Program to the commercial sector. These spinoffs have their origin in the many scientific and engineering fields associated with the shuttle program and, as such, span many diverse commercial applications. These applications include, but are not limited to, consumer products, medicine, industrial productivity, manufacturing technology, public safety, resources management, materials processing, transportation, energy, computer technology, construction, and environmental applications. To aide to the generation of this technology spinoff list, significant effort was made to establish numerous and complementary sources of information. The primary sources of information used in compiling this list include: the NASA 'Spinoff' publication, NASA Tech Briefs, the Marshall Space Flight Center (MSFC) Technology Utilization (TU) Office, the NASA Center for Aerospace Information (CASI), the NASA COSMIC Software Center, and MSFC laboratory and contractor personnel. A complete listing of resources may be found in the bibliography of this report. Additionally, effort was made to insure that the obtained information was placed in electronic database form to insure that the subsequent updating would be feasible with minimal effort.
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
Experimental and simulation study results for video landmark acquisition and tracking technology
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.
1979-01-01
A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.
Space shuttle visual simulation system design study
NASA Technical Reports Server (NTRS)
1973-01-01
The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.
Space Shuttle Lightning Protection
NASA Technical Reports Server (NTRS)
Suiter, D. L.; Gadbois, R. D.; Blount, R. L.
1979-01-01
The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.
2002-12-09
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia sits on Launch Pad 39A, atop the Mobile Launcher Platform. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Schlegel, who represents the European Space Agency, will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Schlegel, who represents the European Space Agency, will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Couch, Richard H.; Rowland, Carroll W.; Ellis, K. Scott; Blythe, Michael P.; Regan, Curtis P.; Koch, Michael R.; Antill, Charles W.; Kitchen, Wayne L.; Cox, John W.; Delorme, Joseph F.
1991-01-01
Engineering aspects are presented of the design, fabrication, integration, and operation of the Lidar In-Space Technology Experiment (LITE) for flight aboard the Space Shuttle in mid-1993. The LITE system is being developed by NASA/Langley Research Center and will be used to detect stratospheric and tropospheric aerosols, probe the planetary boundary layer, measure cloud top heights, and measure atmospheric temperature and density in the 10- to 40-km range. The system consists of a nominal telescope receiver 1 meter in diameter, a three-color Nd:YAG laser transmitter, and the system electronics. The system makes extensive use of Space Shuttle resources for electrical power, thermal control, and command and data handling.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love checks the fit of his helmet for his launch and entry suit before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Love will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Love will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Walheim will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Walheim will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Melvin will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin tests his gloves for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Melvin will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
Autonomous Mechanical Assembly on the Space Shuttle: An Overview
NASA Technical Reports Server (NTRS)
Raibert, M. H.
1979-01-01
The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed.
NASA and the practice of space law
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1985-01-01
The paper discusses the need for increased awareness in space law due to advances in space technology and a trend toward commercialization of space. A list of national and international treaties, conventions, agreements, laws, and regulations relevant to space activities is presented. NASA lawyers specialize in international and municipal laws that affect the NASA space mission; an example of the lawyers working with insurance companies in negotiating the first Space Shuttle liability policy is provided. The increased participation of the public sector in space activities, for example, the commercialization of the Space Shuttle transportation system, is examined.
Space shuttle electrical power generation and reactant supply system
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.
Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective
NASA Technical Reports Server (NTRS)
Martin, Fred W.
2011-01-01
The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.
Aerial views of construction on the RLV hangar at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
NASA Technical Reports Server (NTRS)
Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland
1994-01-01
A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.
Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program
NASA Technical Reports Server (NTRS)
Winter, D. L.
1975-01-01
Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.
STS-107 Pilot William McCool in the cockpit of Columbia during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William 'Willie' McCool checks instructions in the cockpit of Space Shuttle Columbia during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .
1977-09-09
The first Space Shuttle External Tank, the Main Propulsion Test Article (MPTA), rolls off the assembly line September 9, 1977 at the Michoud Assembly Facility in New Orleans. The MPTA was then transported to the National Space Technology Laboratories in southern Mississippi where it was used in the first static firing of the three main engines. Marshall Space Flight Center had management responsibility for Space Shuttle propulsion elements, including the External Tank. Martin Marietta was the prime contractor who designed and assembled the tanks at Michoud.
2003-01-16
KENNEDY SPACE CENTER, FLA. - A crowd by the countdown clock watches as Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Trailing a twisting column of smoke, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Bullock, T.; Holland, W. B.; Kross, D. A.; Kiefling, L. A.
1981-01-01
The achievement of an optimized design from the system standpoint under the low cost, high risk constraints of the present day environment was analyzed. Space Shuttle illustrates the requirement for an analysis approach that considers all major disciplines (coupling between structures control, propulsion, thermal, aeroelastic, and performance), simultaneously. The Space Shuttle and certain payloads, Space Telescope and Spacelab, are examined. The requirements for system analysis approaches and criteria, including dynamic modeling requirements, test requirements, control requirements, and the resulting design verification approaches are illustrated. A survey of the problem, potential approaches available as solutions, implications for future systems, and projected technology development areas are addressed.
Economic benefits of commercial space activities
NASA Technical Reports Server (NTRS)
Stone, Barbara A.
1988-01-01
This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.
2002-12-18
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, participates in Terminal Countdown Demonstration Test activities, a standard part of Shuttle launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
NASA Technical Reports Server (NTRS)
1975-01-01
Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.
Space telerobotic systems: Applications and concepts
NASA Technical Reports Server (NTRS)
Jenkins, L.
1987-01-01
The definition of a variety of assembly, servicing, and maintenance missions has led to the generation of a number of space telerobot concepts. The remote operation of a space telerobot is seen as a means to increase astronaut productivity. Dexterous manipulator arms are controlled from the Space Shuttle Orbiter cabin or a Space Station module. Concepts for the telerobotic work system have been developed by the Lyndon B. Johnson Space Center through contracts with the Grumman Aerospace Corporation and Marin Marietta Corporation. These studies defined a concept for a telerobot with extravehicular activity (EVA) astronaut equivalent capability that would be controlled from the Space Shuttle. An evolutionary development of the system is proposed as a means of incorporating technology advances. Early flight testing is seen as needed to address the uncertainties of robotic manipulation in space. Space robotics can be expected to spin off technology to terrestrial robots, particularly in hazardous and unstructured applications.
Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration
NASA Technical Reports Server (NTRS)
Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.
2009-01-01
Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.
STS-37 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-05-01
The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.
STS-37 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Starr, Stanley O.; Stevenson, G.; Rivera, Jorge E.; Sullivan, Steven J.
2011-01-01
For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Against a backdrop of blue sky and the blue Atlantic Ocean, launch of Space Shuttle Columbia is reflected in the nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day STS-107 research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
Shuttle Student Involvement Project for Secondary Schools
NASA Technical Reports Server (NTRS)
Wilson, G. P.; Ladwig, A.
1981-01-01
The National Aeronautics and Space Administration (NASA) has initiated the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), an annual nationwide competition to select student proposals for experiments suitable for flight aboard the Space Shuttle. The objective of the project is to stimulate the study of science and technology in grades 9 through 12 by directly relating students to a space research program. This paper will analyze the first year of the project from a standpoint of how the competition was administered; the number and types of proposals that were submitted; and will discuss the process involved in preparing the winning experiments for eventual flight.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.
STS-107 Payload Specialist Ilan Ramon during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, participates in Terminal Countdown Demonstration Test activities, a standard part of Shuttle launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
NASA Technical Reports Server (NTRS)
Garshnek, V.; Davies, P.; Ballard, R.
1992-01-01
Current international capabilities in the space life sciences/technology areas are reviewed focusing on the cooperative potential of the international community as applied to advanced Shuttle/Spacelab flights. The review of the international experience base and mutual cooperative benefits of the United States and international partners presented in the paper provides a guide to the young professional in planning for a space life sciences career.
Fuel cell technology program contract summary report
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program which was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using the P and WA PC8B technology as the base is reported. The major tasks of this program consisted of (1) fuel cell system studies of a space shuttle powerplant conceptual design (designated engineering model -1, EM-1) supported by liaison with the space shuttle prime contractors; (2) component and subsystem technology advancement and; (3) a demonstrator powerplant test. Fuel cell system studies, with the EM-1 as the focal point of design activities, included determination of voltage regulation, specific reactant consumption, weight, voltage level and performance characteristics. These studies provided the basis for coordination activities with the space shuttle vehicle prime contractor. Interface information, on-board checkout and in-flight monitoring requirements, and development cost data were also provided as part of this activity. Even though the two vehicles primes had different voltage requirements (115 volts in one case and 28 volts in the other), it was concluded that either option could be provided in the fuel cell power system by the electrical hook-up of the cells in the stack.
1999-08-23
A worker takes a measurement for construction of the Reusable Launch Vehicle (RLV) complex at KSC. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- A mirror image in nearby water reflects the perfect launch of Space Shuttle Columbia on a perfect Florida day. Following a flawless and uneventful countdown, liftoff of the Shuttle on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education
NASA Astrophysics Data System (ADS)
Lulla, Kamlesh
2012-07-01
This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.
Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.
2002-12-09
KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia is poised to begin rollout from the Vehicle Assembly Building to Launch Pad 39A. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
2004-01-01
The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Silhouetted against the blue Atlantic Ocean, Space Shuttle Columbia breaks free of the launch pad as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Pulling free of Earth's gravity, and leaving a trail of smoke behind, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. - All eyes in the VIP stand at KSC focus on Space Shuttle Columbia as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia seems to leap from amid the trees as it roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia leaps off Launch Pad 39A and the clouds of smoke and steam as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Through a cloud-washed blue sky above Launch Pad 39A, Space Shuttle Columbia hurtles toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. --Framed by branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Viewed from among branches across from Launch Pad 39A, Space Shuttle Columbia leaps toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
Pen-based computers: Computers without keys
NASA Technical Reports Server (NTRS)
Conklin, Cheryl L.
1994-01-01
The National Space Transportation System (NSTS) is comprised of many diverse and highly complex systems incorporating the latest technologies. Data collection associated with ground processing of the various Space Shuttle system elements is extremely challenging due to the many separate processing locations where data is generated. This presents a significant problem when the timely collection, transfer, collation, and storage of data is required. This paper describes how new technology, referred to as Pen-Based computers, is being used to transform the data collection process at Kennedy Space Center (KSC). Pen-Based computers have streamlined procedures, increased data accuracy, and now provide more complete information than previous methods. The end results is the elimination of Shuttle processing delays associated with data deficiencies.
Space power distribution system technology. Volume 1: Reference EPS design
NASA Technical Reports Server (NTRS)
Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.
1983-01-01
The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.
Space station: The next logical step
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1986-01-01
The following topics with respect to the space station program are discussed: (1) unmanned free-flyers; (2) recent progress; (3) the space shuttle; (4) international participation; (5) science, commerce, and technology; and (6) private sector participation.
Non-intrusive speed sensor. [space shuttle main engine turbopumps
NASA Technical Reports Server (NTRS)
Maram, J.; Wyett, L.
1984-01-01
A computerized literature search was performed to identify candidate technologies for remote, non-intrusive speed sensing applications in Space Shuttle Main Engine (SSME) turbopumps. The three most promising technologies were subjected to experimental evaluation to quantify their performance characteristics under the harsh environmental requirements within the turbopumps. Although the infrared and microwave approaches demonstrated excellent cavitation immunity in laboratory tests, the variable-source magnetic speed sensor emerged as the most viable approach. Preliminary design of this speed sensor encountered no technical obstacles and resulted in viable and feasible speed nut, sensor housing, and sensor coil designs.
Artificial intelligence and expert systems in-flight software testing
NASA Technical Reports Server (NTRS)
Demasie, M. P.; Muratore, J. F.
1991-01-01
The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.
A new era of space transportation. [Space Shuttle system utilization
NASA Technical Reports Server (NTRS)
Fletcher, J. C.
1976-01-01
It is pointed out that founded on the experiences of Apollo, Skylab, and the Apollo/Soyuz mission an era is entered which will be characterized by a displacement of the interface between the experimenter and his experiment from the control center on the ground to the laboratory in orbit. A new world has been opened by going into space. Economic applications are related to the achievement of an enormous efficiency in world communications at a much lower cost. However, programs of space exploration and usage are under severe economic constraints. A primary tool to lower the cost of programs is to be the Space Transportation System using the Space Shuttle. It is emphasized that the Shuttle system is an international enterprise. Attention is also given to the results of the Viking missions, the Landsat satellites, and applications of space technology for science and commerce.
2011-04-27
CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, The LEGO Group's Daire McCabe and NASA's Associate Administrator for Education Leland Melvin talk about the LEGO sets going up to the International Space Station aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-04-27
CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, The LEGO Group's Daire McCabe and NASA's Associate Administrator for Education Leland Melvin talk about the LEGO sets going up to the International Space Station aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-04-27
CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, NASA Education Specialist Teresa Sindelar and The LEGO Group's Daire McCabe talk about the LEGO sets going up to the International Space Station aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2011-04-27
CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, NASA's Associate Administrator for Education Leland Melvin talks about the LEGO sets going up to the International Space Station (ISS) aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
1984-04-07
This is an onboard photo of the deployment of the Long Duration Exposure Facility (LDEF) from the cargo bay of the Space Shuttle Orbiter Challenger STS-41C mission, April 7, 1984. After a five year stay in space, the LDEF was retrieved during the STS-32 mission by the Space Shuttle Orbiter Columbia in January 1990 and was returned to Earth for close examination and analysis. The LDEF was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids, space debris, radiation particles, atomic oxygen, and solar radiation for an extended period of time. Proving invaluable to the development of both future spacecraft and the International Space Station (ISS), the LDEF carried 57 science and technology experiments, the work of more than 200 investigators, 33 private companies, 21 universities, 7 NASA centers, 9 Department of Defense laboratories, and 8 forein countries.
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.
ACTS/TOS after release from Shuttle Discovery
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Communications Technology Satellite (ACTS) with its Transfer Orbit Stage (TOS) is backdropped over the blue ocean following its release from the Earth-orbiting Space Shuttle Discovery. ACTS/TOS deploy was the first major task performed on the almost ten-day mission.
A concept for Space Shuttle payload ground operations
NASA Technical Reports Server (NTRS)
Mccoy, G.
1973-01-01
A Space Transportation System that involves the reusable Space Shuttle offers mankind's next great frontier. The country and the NASA must approach this potential opportunity with an open mind for new ideas and concepts in operations management, business principles, and sensitivity to cost. Our long term future in this new frontier will depend as much on our success in these areas as on our technological successes. This paper attempts to provide, for people with a working understanding of current ground operations, some examples of these evolving concepts.
NASA Technical Reports Server (NTRS)
1979-01-01
The development of large space structure (LSS) technology is discussed, with emphasis on space fabricated structures which are automatically manufactured in space from sheet-strip materials and assembled on-orbit. It is concluded that an LSS flight demonstration using an Automated Beam Builder and the orbiter as a construction base, could be performed in the 1983-1984 time period. The estimated cost is $24 million exclusive of shuttle launch costs. During the mission, a simple space platform could be constructed in-orbit to accommodate user requirements associated with earth viewing and materials exposure experiments needs.
Supporting flight data analysis for Space Shuttle Orbiter Experiments at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.
1983-01-01
The Space Shuttle Orbiter Experiments program in responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The Infrared Imagery of Shuttle (IRIS), Catalytic Surface Effects, and Tile Gap Heating experiments sponsored by Ames Research Center are part of this program. The paper describes the software required to process the flight data which support these experiments. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques have provided information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third Shuttle mission.
Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.
1983-01-01
The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.
Space Industrialization: Manufacturing and Construction Activities. Part 2.
ERIC Educational Resources Information Center
Story, Charles H.
1983-01-01
Discusses how space industrialization will provide direct benefits for our nation and will transfer technology to the many diverse areas of human activity. Examples are the development of the Space Shuttle, the Space Studies Institute, and the LS Society (advocates for colonizing space). (NRJ)
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
2001-01-01
This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.
NASA Technical Reports Server (NTRS)
Archer, J. L.; Beauchamp, N. A.; Day, C. F.
1975-01-01
The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.
Turnaround Operations Analysis for OTV. Volume 3: Technology Development Plan
NASA Technical Reports Server (NTRS)
1988-01-01
An integrated technology development plan for the technologies required to process both GBOTVs and SBOTVs are described. The plan includes definition of the tests and experiments to be accomplished on the ground, in a Space Shuttle Sortie Mission, on an Expendable Launch Vehicle, or at the Space Station as a Technology Development Mission (TDM). The plan reflects and accommodates current and projected research and technology programs where appropriate.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Seconds after launch, Space Shuttle Columbia appears as a flaming tip of the smoke column it trails. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia hurtles through a perfect blue Florida sky following a flawless and uneventful countdown. Liftoff of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program
NASA Technical Reports Server (NTRS)
Baumann, T. L.; Pattern, T. C.; Mckee, H. B.
1972-01-01
Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.
1999-10-14
Construction continues on an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (upper right). Near the top of the photo is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1998-12-18
An artist's rendering shows the $8-million Reusable Launch Vehicle (RLV) Support Complex planned for the Shuttle Landing Facility (SLF) at Kennedy Space Center. The ground breaking took place today. To be located at the tow-way adjacent to the SLF, the complex will include a multi-purpose RLV hangar and adjacent facilities for related ground support equipment and administrative/technical support. It will be available to accommodate the Space Shuttle, the X-34 RLV technology demonstrator, the L-1011 carrier aircraft for Pegasus and X-34, and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-14
An aerial closeup view reveals the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and at left a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. Near the top of the photo can be seen the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
2007-12-03
KENNEDY SPACE CENTER, FLA. -- After the mission STS-122 crew's arrival at NASA's Kennedy Space Center, Mission Specialist Hans Schlegel is introduced during a media opportunity on the Shuttle Landing Facility. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis on mission STS-122. The launch countdown begins at 7 p.m. Dec. 3. Launch is scheduled for 4:31 p.m. EST on Dec. 6. Atlantis will carry the Columbus Lab, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-09-28
KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
2007-09-28
KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
2007-09-28
KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
Space Missions for Automation and Robotics Technologies (SMART) Program
NASA Technical Reports Server (NTRS)
Cliffone, D. L.; Lum, H., Jr.
1985-01-01
NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.
NASA Technical Reports Server (NTRS)
1980-01-01
Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.
2002-12-09
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, atop the Mobile Launcher Platform, approaches the top of Launch Pad 39A where it will undergo preparations for launch. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program was established to advance the state-of-the art of hydrogen oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Cell and component testing confirmed that low temperature, potassium hydroxide electrolyte technology is compatible with the requirements of the space shuttle Phase B contractors. Testing of the DM-1 powerplant demonstrated all of the important requirements of the shuttle except operating life. Testing also identified DM-1 powerplant life limiting mechanisms; hydrogen pump gear wear and pressurization of the cell stack over its design limits.
Estimating the Cost of NASA's Space Launch Initiative: How SLI Cost Stack Up Against the Shuttle
NASA Technical Reports Server (NTRS)
Hamaker, Joseph H.; Roth, Axel (Technical Monitor)
2002-01-01
NASA is planning to replace the Space Shuttle with a new completely reusable Second Generation Launch System by approximately 2012. Numerous contracted and NASA in-house Space Transportation Architecture Studies and various technology maturation activities are proceeding and have resulted in scores of competing architecture configurations being proposed. Life cycle cost is a key discriminator between all these various concepts. However, the one obvious analogy for costing purposes remains the current Shuttle system. Are there credible reasons to believe that a second generation reusable launch system can be accomplished at less cost than the Shuttle? The need for a credible answer to this question is critical. This paper reviews the cost estimating approaches being used by the contractors and the government estimators to address this issue and explores the rationale behind the numbers.
The partnership: Space shuttle, space science, and space station
NASA Technical Reports Server (NTRS)
Culbertson, Philip E.; Freitag, Robert F.
1989-01-01
An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
2007-01-26
Pratt & Whitney Rocketdyne's Jeff Hansell, right, explains functions of a space shuttle main engine to Pearl River Community College Aviation Maintenance Technology Program students. Christopher Bryon, left, of Bay St. Louis, Ret Tolar of Kiln, Dan Holston of Baxterville and Billy Zugg of Long Beach took a recent tour of the SSME Processing Facility and the E-1 Test Complex at Stennis Space Center in South Mississippi. The students attend class adjacent to the Stennis International Airport tarmac in Kiln, where they get hands-on experience. PRCC's program prepares students to be responsible for the inspection, repair and maintenance of technologically advanced aircraft. A contractor to NASA, Pratt & Whitney Rocketdyne in Canoga Park, Calif., manufactures the space shuttle main engine and its high-pressure turbo pumps. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle, and is America's largest rocket engine test complex. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars.
NASA Technical Reports Server (NTRS)
2007-01-01
Pratt & Whitney Rocketdyne's Jeff Hansell, right, explains functions of a space shuttle main engine to Pearl River Community College Aviation Maintenance Technology Program students. Christopher Bryon, left, of Bay St. Louis, Ret Tolar of Kiln, Dan Holston of Baxterville and Billy Zugg of Long Beach took a recent tour of the SSME Processing Facility and the E-1 Test Complex at Stennis Space Center in South Mississippi. The students attend class adjacent to the Stennis International Airport tarmac in Kiln, where they get hands-on experience. PRCC's program prepares students to be responsible for the inspection, repair and maintenance of technologically advanced aircraft. A contractor to NASA, Pratt & Whitney Rocketdyne in Canoga Park, Calif., manufactures the space shuttle main engine and its high-pressure turbo pumps. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle, and is America's largest rocket engine test complex. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars.
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
1999-01-01
Motors, Honda , Toyota , and Nissan ). By learning from and applying the technologies developed elsewhere, NASA could greatly leverage its funding for...assessing risks to the shuttle. The committee believes that this tool has the potential to be very helpful in assessing and comparing the impact of...environmental regulations). Figure 2-2 shows how the S&PU budget compared to the total shuttle budget during four different years since 1985
Performance evaluation of candidate space suit elements for the next generation orbital EMU
NASA Technical Reports Server (NTRS)
West, Philip R.; Trausch, Stephanie V.
1992-01-01
The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
NASA Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III
2011-01-01
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.
2003-01-16
KENNEDY SPACE CENTER, FLA. - Seeming to be perched on twin columns of fire, Space Shuttle Columbia leaps off Launch Pad 39A and races toward space on missions STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Spewing flames and billowing clouds of smoke across Launch Pad 39A, Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
2003-01-16
KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia outraces the multi-colored clouds of smoke and steam rising below it from Launch Pad 39A as it races toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
International Workshop on Vibration Isolation Technology for Microgravity Science Applications
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F. (Editor)
1992-01-01
The International Workshop on Vibration Isolation Technology for Microgravity Science Applications was held on April 23-25, 1991 at the Holiday Inn in Middleburg Heights, Ohio. The main objective of the conference was to explore vibration isolation requirements of space experiments and what level of vibration isolation could be provided both by present and planned systems on the Space Shuttle and Space Station Freedom and by state of the art vibration isolation technology.
Expert systems applications for space shuttle payload integration automation
NASA Technical Reports Server (NTRS)
Morris, Keith
1988-01-01
Expert systems technologies have been and are continuing to be applied to NASA's Space Shuttle orbiter payload integration problems to provide a level of automation previously unrealizable. NASA's Space Shuttle orbiter was designed to be extremely flexible in its ability to accommodate many different types and combinations of satellites and experiments (payloads) within its payload bay. This flexibility results in differnet and unique engineering resource requirements for each of its payloads, creating recurring payload and cargo integration problems. Expert systems provide a successful solution for these recurring problems. The Orbiter Payload Bay Cabling Expert (EXCABL) was the first expert system, developed to solve the electrical services provisioning problem. A second expert system, EXMATCH, was developed to generate a list of the reusable installation drawings available for each EXCABL solution. These successes have proved the applicability of expert systems technologies to payload integration problems and consequently a third expert system is currently in work. These three expert systems, the manner in which they resolve payload problems and how they will be integrated are described.
Shuttle Propulsion Overview - The Design Challenges
NASA Technical Reports Server (NTRS)
Owen, James W.
2011-01-01
The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.
Langley applications experiments data management system study. [for space shuttles
NASA Technical Reports Server (NTRS)
Lanham, C. C., Jr.
1975-01-01
A data management system study is presented that defines, in functional terms, the most cost effective ground data management system to support Advanced Technology Laboratory (ATL) flights of the space shuttle. Results from each subtask performed and the recommended system configuration for reformatting the experiment instrumentation tapes to computer compatible tape are examined. Included are cost factors for development of a mini control center for real-time support of the ATL flights.
2002-12-09
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
NASA Technical Reports Server (NTRS)
1985-01-01
The most promising new technology for scientific research is America's Space Transportation System; the space shuttle and its companion facility, Spacelab. Spacelab is a versatile laboratory designed specifically to accommodate scientists and their instruments in low-Earth orbit. In a space laboratory, scientists can perform experiments that are impossible on Earth. They can also use very large instruments aboard the Shuttle, with the added benefit of bringing all their equipment, experiment samples, and data home for analysis. Spacelab 2 is one in a series of missions that gives the world's scientists a chance to do research in a well-equipped laboratory in space.
Study of structural active cooling and heat sink systems for space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.
Access to Space : The Future of U.S. Space Transportation Systems
DOT National Transportation Integrated Search
1990-04-01
The United States now has an operating, mixed fleet comprised of reusable Space Shuttle orbiters and expendable launch vehicles (ELVs). The government and the private sector have invested in new launch technologies and established a fledgling private...
The 15th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1981-01-01
Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.
2010-11-02
CAPE CANAVERAL, Fla. -- Space shuttle and rover models built of LEGO bricks are on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- A space shuttle model built of LEGO bricks is on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- Space shuttle and rover models built of LEGO bricks are on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- A space shuttle model built of LEGO bricks is on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
STS-62 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).
State of the art in video system performance
NASA Technical Reports Server (NTRS)
Lewis, Michael J.
1990-01-01
The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.
Research pressure instrumentation for NASA space shuttle main engine
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1985-01-01
The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.
Langley's Space Shuttle Technology: A bibliography
NASA Technical Reports Server (NTRS)
Champine, G. R.
1981-01-01
This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.
Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.;
1996-01-01
At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.
1975-10-10
This diagram illustrates the Space Shuttle mission sequence. The Space Shuttle was approved as a national program in 1972 and developed through the 1970s. Part spacecraft and part aircraft, the Space Shuttle orbiter, the brain and the heart of the Space Transportation System (STS), required several technological advances, including thousands of insulating tiles able to stand the heat of reentry over the course of many missions, as well as sophisticated engines that could be used again and again without being thrown away. The airplane-like orbiter has three main engines, that burn liquid hydrogen and oxygen stored in the large external tank, the single largest structure in the Shuttle. Attached to the tank are two solid rocket boosters that provide the vehecile with most of the thrust needed for liftoff. Two minutes into the flight, the spent solids drop into the ocean to be recovered and refurbished for reuse, while the orbiter engines continue burning until approximately 8 minutes into the flight. After the mission is completed, the orbiter lands on a runway like an airplane.
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
1991-04-05
Aboard the Space Shuttle Atlantis, the STS-37 mission launched April 5, 1991 from launch pad 39B at the Kennedy Space Center in Florida, and landed back on Earth April 11, 1991. The 39th shuttle mission included crew members: Steven R. Nagel, commander; Kenneth D. Cameron, pilot; Jerry L,. Ross, mission specialist 1; Jay Apt, mission specialist 2; and Linda M. Godwin, mission specialist 3. The primary payload for the mission was the Gamma Ray Observatory (GRO). The GRO included the Burst and Transient Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Experiment (OSSEE). Secondary payloads included Crew and Equipment Translation Aids (CETA); the Ascent Particle Monitor (APM); the Shuttle Amateur Radio Experiment II (SAREXII), the Protein Crystal Growth (PCG); the Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA); Radiation Monitoring Equipment III (RMEIII); and Air Force Maui Optical Site (AMOS).
2010-08-26
CAPE CANAVERAL, Fla. -- Prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, AMS Principal Investigator from the Massachusetts Institute of Technology speaks with the media. AMS is a state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- Prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, AMS Principal Investigator from the Massachusetts Institute of Technology speaks to the media. AMS,a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2003-01-16
KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- After a perfect launch, spectators try to catch a last glimpse of Space Shuttle Columbia, barely visible at the top end of the twisted column of smoke. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. Headed for a 16-day research mission, Columbia's crew will be taking part in more than 80 experiment, including FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. - A closeup camera view shows Space Shuttle Columbia as it lifts off from Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Photographers and spectators watch from across the turn basin as Space Shuttle Columbia begins a perfect launch from Pad 39A following a flawless and uneventful countdown. Liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
Seminar presentation on the economic evaluation of the space shuttle system
NASA Technical Reports Server (NTRS)
1973-01-01
The proceedings of a seminar on the economic aspects of the space shuttle system are presented. Emphasis was placed on the problems of economic analysis of large scale public investments, the state of the art of cost estimation, the statistical data base for estimating costs of new technological systems, and the role of the main economic parameters affecting the results of the analyses. An explanation of the system components of a space program and the present choice of launch vehicles, spacecraft, and instruments was conducted.
Intelligent hypertext manual development for the Space Shuttle hazardous gas detection system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Hoyt, W. Andes
1989-01-01
This research is designed to utilize artificial intelligence (AI) technology to increase the efficiency of personnel involved with monitoring the space shuttle hazardous gas detection systems at the Marshall Space Flight Center. The objective is to create a computerized service manual in the form of a hypertext and expert system which stores experts' knowledge and experience. The resulting Intelligent Manual will assist the user in interpreting data timely, in identifying possible faults, in locating the applicable documentation efficiently, in training inexperienced personnel effectively, and updating the manual frequently as required.
Manned observations technology development, FY 1992 report
NASA Technical Reports Server (NTRS)
Israel, Steven
1992-01-01
This project evaluated the suitability of the NASA/JSC developed electronic still camera (ESC) digital image data for Earth observations from the Space Shuttle, as a first step to aid planning for Space Station Freedom. Specifically, image resolution achieved from the Space Shuttle using the current ESC system, which is configured with a Loral 15 mm x 15 mm (1024 x 1024 pixel array) CCD chip on the focal plane of a Nikon F4 camera, was compared to that of current handheld 70 mm Hasselblad 500 EL/M film cameras.
1999-10-29
The support building at the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center takes form. It will house related ground support equipment and administrative/technical support. The RLV complex includes a multi-purpose hangar that will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Research and technology Fiscal Year 1985 report
NASA Technical Reports Server (NTRS)
Speer, F.
1985-01-01
A quarter of a century is but a moment on the cosmic calendar. Now that Marshall Space Flight Center has reached its 25th Anniversity, it seems just moments ago that President Dwight D. Eisenhower stood on these grounds and formally dedicated the George C. Marshall Space Flight Center in Huntsville, Alabama. The Fiscal Year 1985 Research and Technology Report reflects the wide spectrum of activities closely linked with the Center's mainstream spaceflight developments. Past accomplishments testify to the success of getting deeply involved in the science and technology of its projects - 32 Saturn launches, Pegasus, the Skylab missions, three High Energy Astronomy Observatory missions, the Apollo - Soyuz mission, and an accelerating schedule of successful Shuttle, Spacelab, and Shuttle payload missions. The Center continues to be involved in engineering development, scientific research, and technology. At the beginning of the second quarter century, the experience and dedication of the engineers and scientists, and the success of the collaboration with industry and academia will now be aimed at the next great endeavor, the Space Station.
2008-02-04
KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, STS-122 mission specialists disembark from a shuttle training aircraft. From left are Hans Schlegel, Rex Walheim and Leland Melvin. Schlegel represents the European Space Agency. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis' STS-122 mission, at 2:45 p.m. Feb. 7. This will be the third launch attempt for the mission. Some of the tank's ECO sensors gave failed readings during propellant tanking for launch attempts on Dec. 6 and Dec. 9, subsequently scrubbing further attempts until the cause could be found and repairs made. Atlantis will carry the Columbus module, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
Materials processing in space: Future technology trends
NASA Technical Reports Server (NTRS)
Barter, N. J.
1980-01-01
NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.
STS-64 and 747-SCA Ferry Flight Takeoff
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Discovery, mated to NASA's 747 Shuttle Carrier Aircraft (SCA), takes to the air for its ferry flight back to the Kennedy Space Center in Florida. The spacecraft, with a crew of six, was launched into a 57-degree high inclination orbit from the Kennedy Space Center, Florida, at 3:23 p.m., 9 September 1994. The mission featured the study of clouds and the atmosphere with a laser beaming system called Lidar In-Space Technology Experiment (LITE), and the first untethered space walk in ten years. A Spartan satellite was also deployed and later retrieved in the study of the sun's corona and solar wind. The mission was scheduled to end Sunday, 18 September, but was extended one day to continue science work. Bad weather at the Kennedy Space Center on 19 September, forced a one-day delay to September 20, with a weather divert that day to Edwards. Mission commander was Richard Richards, the pilot Blaine Hammond, while mission specialists were Jerry Linenger, Susan Helms, Carl Meade, and Mark Lee. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Study of selected tether applications in space, phase 3, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
The results of a Phase 3 study of two Selected Tether Applications in Space (STAIS); deorbit of a Shuttle and launch of an Orbital Transfer Vehicle (OTV), both from the space station using a tether were examined. The study objectives were to: perform a preliminary engineering design, define operational scenarios, develop a common cost model, perform cost benefits analyses, and develop a Work Breakdown Structure (WBS). Key features of the performance analysis were to identify the net increases in effective Shuttle cargo capability if tethers are used to assist in the deorbit of Shuttles and the launching of the OTVs from the space station and to define deployer system designs required to accomplish these tasks. Deployer concepts were designed and discussed. Operational scenarios, including timelines, for both tethered and nontethered Shuttle and OTV operations at the space station were evaluated. A summary discussion of the Selected Tether Applications Cost Model (STACOM) and the results of the cost benefits analysis are presented. Several critical technologies needed to implement tether assisted deployment of payloads are also discussed. Conclusions and recommendations are presented.
Social Sciences and Space Exploration
NASA Technical Reports Server (NTRS)
1988-01-01
The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.
STS-72 Liftoff viewed from left side of Pad 39B
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Endeavour lights up the night sky as it thunders aloft from Launch Pad 39B. Liftoff of Mission STS- 72 occurred at 4:41:00.072 am EST, January 11, kicking off the 1996 Shuttle launch schedule. On board Endeavour are a crew of six: Commander Brian Duffy; Pilot Brent W. Jett; and Mission Specialists Dr. Daniel T. Barry, Leroy Chiao, Winston E. Scott, and Koichi Wakata, who represents the National Space Development Agency (NASDA) of Japan. During their planned nine-day mission, the crew will retrieve the Japanese Space Flyer Unit (SFU), deploy and later retrieve the Office of Aeronautics and Space Technology-Flyer (OAST- Flyer), and conduct two extravehicular activities (EVAs). STS-72 is the 74th Shuttle mission and the 10th flight of the orbiter Endeavour.
1997-05-08
Five NASA astronauts and a Canadian payload specialist pause from their training schedule to pose for the traditional crew portrait for their mission, STS-85. In front are astronauts Curtis L. Brown, Jr. (right), mission commander, and Kent V. Rominger, pilot. On the back row, from the left, are astronauts Robert L. Curbeam, Jr., Stephen K. Robinson, and N. Jan Davis, all mission specialists, along with the Canadian Space Agency’s (CSA) payload specialist, Bjarni Tryggvason. The five launched into space aboard the Space Shuttle Discovery on August 7, 1997 at 10:41:00 a.m. (EDT). Major payloads included the satellite known as Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 CRISTA-SPAS-02. CRISTA; a Japanese Manipulator Flight Development (MFD); the Technology Applications and Science (TAS-01); and the International Extreme Ultraviolet Hitchhiker (IEH-02).
Shuttle launched flight tests - Supporting technology for planetary entry missions
NASA Technical Reports Server (NTRS)
Vetter, H. C.; Mcneilly, W. R.; Siemers, P. M., III; Nachtsheim, P. R.
1975-01-01
The feasibility of conducting Space Shuttle-launched earth entry flight tests to enhance the technology base for second generation planetary entry missions is examined. Outer planet entry environments are reviewed, translated into earth entry requirements and used to establish entry test system design and cost characteristics. Entry speeds up to those needed to simulate radiative heating levels of more than 30 kW/sq cm are shown to be possible. A standardized recoverable test bed concept is described that is capable of accommodating a wide range of entry technology experiments. The economic advantage of shared Shuttle launches are shown to be achievable through a test system configured to the volume constraints of a single Spacelab pallet using existing propulsion components.
NASA Technical Reports Server (NTRS)
1999-01-01
Duncan Technologies, Inc., (DTI) developed an infrared imaging system for detection of hydrogen flames in the Space Shuttle Main Engines. The product is the result of a NASA Small Business Innovation Research (SBIR) award from the Stennis Space Center.
STS-64 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.
NASA Technical Reports Server (NTRS)
Rosello, Anthony David
1995-01-01
A general two tier framework for vehicle health monitoring of Guidance Navigation and Control (GN&C) system actuators, effectors, and propulsion devices is presented. In this context, a top level monitor that estimates jet thrust is designed for the Space Shuttle Reaction Control System (RCS) during the reentry phase of flight. Issues of importance for the use of estimation technologies in vehicle health monitoring are investigated and quantified for the Shuttle RCS demonstration application. These issues include rate of convergence, robustness to unmodeled dynamics, sensor quality, sensor data rates, and information recording objectives. Closed loop simulations indicate that a Kalman filter design is sensitive to modeling error and robust estimators may reduce this sensitivity. Jet plume interaction with the aerodynamic flowfield is shown to be a significant effect adversely impacting the ability to accurately estimate thrust.
Attached shuttle payload carriers: Versatile and affordable access to space
NASA Technical Reports Server (NTRS)
1990-01-01
The shuttle has been primarily designed to be a versatile vehicle for placing a variety of scientific and technological equipment in space including very large payloads; however, since many large payloads do not fill the shuttle bay, the space and weight margins remaining after the major payloads are accommodated often can be made available to small payloads. The Goddard Space Flight Center (GSFC) has designed standardized mounting structures and other support systems, collectively called attached shuttle payload (ASP) carriers, to make this additional space available to researchers at a relatively modest cost. Other carrier systems for ASP's are operated by other NASA centers. A major feature of the ASP carriers is their ease of use in the world of the Space Shuttle. ASP carriers attempt to minimized the payload interaction with Space Transportation System (STS) operations whenever possible. Where this is not possible, the STS services used are not extensive. As a result, the interfaces between the carriers and the STS are simplified. With this near autonomy, the requirements for supporting documentation are considerably lessened and payload costs correspondingly reduced. The ASP carrier systems and their capabilities are discussed in detail. The range of available capabilities assures that an experimenter can select the simplest, most cost-effective carrier that is compatible with his or her experimental objectives. Examples of payloads which use ASP basic hardware in nonstandard ways are also described.
Design and fabrication of metallic thermal protection systems for aerospace vehicles
NASA Technical Reports Server (NTRS)
Varisco, A.; Bell, P.; Wolter, W.
1978-01-01
A program was conducted to develop a lightweight, efficient metallic thermal protection system (TPS) for application to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements were generally derived from the space shuttle. A corrugation-stiffened beaded-skin TPS design was used as a baseline. The system was updated and modified to incorporate the latest technology developments and design criteria. The primary objective was to minimize mass for the total system.
TDRSS S-shuttle unique receiver equipment
NASA Astrophysics Data System (ADS)
Weinberg, A.; Schwartz, J. J.; Spearing, R.
1985-01-01
Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.
The NORSTAR Program: Space shuttle to space station
NASA Technical Reports Server (NTRS)
Fortunato, Ronald C.
1988-01-01
The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.
Non-Toxic Reaction Control System for the Reusable First Stage Vehicle
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1999-01-01
This paper presents the Boeing Reusable Space Systems vision of a Reaction Control System (RCS) for the Reusable First Stage (RFS) being considered as a replacement for the Solid Rocket Booster for the Space Shuttle. The requirement is to,achieve reliable vehicle control during the upper atmospheric portion of the RFS trajectory while enabling more efficient ground operations, unhindered by constraints caused by operating with highly toxic RCS propellants. Boeing's objective for this effort is to develop a safer, more efficient and environmentally friendly RCS design approach that is suitable for the RFS concept of operations, including a low cost, efficient turnaround cycle. The Boeing RCS concept utilizes ethanol and liquid oxygen in place of the highly toxic, suspected carcinogen, ozone- depleting mono-methyl-hydrazine and highly toxic nitrogen tetroxide. The Space Shuttle Upgrade program, under the leadership of the NASA Johnson Space Flight Center, is currently developing liquid oxygen and ethanol (ethyl alcohol) technology for use as non-toxic orbital maneuvering system (OMS) and RCS. The development of this liquid oxygen and ethanol technology for the Space Shuffle offers a significant leverage to select much of the same technology for the RFS program. There are significant design and development issues involved with bringing this liquid oxygen and ethanol technology to a state of maturity suitable for an operational RCS, The risks associated with a new LOX and Ethanol RCS are mitigated by maintaining kerosene and hydrogen peroxide RCS technology as an alternative. These issues, presented within this paper, include managing the oxygen supply and achieving reliable ignition in the short pulse mode of engine operation. Performance, reliability and operations requirements are presented along with a specific RCS design concept to satisfying these requirements. The work reported in this paper was performed under NASA Marshall Space Flight Center Contract to define Reusable First Stage design concepts for the Space Shuttle.
A Spacelab Expert System for Remote Engineering and Science
NASA Technical Reports Server (NTRS)
Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)
1994-01-01
NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.
Space Research Results Purify Semiconductor Materials
NASA Technical Reports Server (NTRS)
2010-01-01
While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.
The BIMDA shuttle flight mission: a low cost microgravity payload.
Holemans, J; Cassanto, J M; Moller, T W; Cassanto, V A; Rose, A; Luttges, M; Morrison, D; Todd, P; Stewart, R; Korszun, R Z; Deardorff, G
1991-01-01
This paper presents the design, operation and experiment protocol of the Bioserve sponsored flights of the ITA Materials Dispersion Apparatus Payload (BIMDA) flown on the Space Shuttle on STS-37. The BIMDA payload represents a joint effort between ITA (Instrumentation Technology Associates, Inc.) and Bioserve Space Technologies, a NASA Center for the Commercial Development of Space, to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment of space. The BIMDA payload, flown in a Refrigerator/Incubator Module (R/IM) in the Orbiter middeck, consists of three different devices designed to mix fluids in space; four Materials Dispersion Apparatus (MDA) Minilabs developed by ITA, six Cell Syringes, and six Bioprocessing Modules both developed by NASA JSC and Bioserve. The BIMDA design and operation reflect user needs for late access prior to launch (<24 h) and early access after landing (<2 h). The environment for the payload is temperature controlled by the R/IM. The astronaut crew operates the payload and documents its operation. The temperature of the payload is recorded automatically during flight. The flight of the BIMDA payload is the first of two development flights of the MDA on the Space Shuttle. Future commercial flights of ITA's Materials Dispersion Apparatus on the Shuttle will be sponsored by NASA's Office of Commercial Programs and will take place over the next three years. Experiments for the BIMDA payload include research into the following areas: protein crystal growth, thin film membrane casting, collagen formation, fibrin clot formation, seed germination, enzymatic catalysis, zeolite crystallization, studies of mixing effects of lymphocyte functions, and solute diffusion and transport.
NASA Technical Reports Server (NTRS)
Ralph, John
1992-01-01
Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.
MISSE-X: An ISS External Platform for Space Environmental Studies in the Post-Shuttle Era
NASA Technical Reports Server (NTRS)
Thibeault, Sheila A.; Cooke, Stuart A.; Ashe, Melissa P.; Saucillo, Rudolph J.; Murphy, Douglas G.; deGroh, Kim K.; Jaworske, Donald A.; Nguyen, Quang-Viet
2011-01-01
Materials International Space Station Experiment-X (MISSE-X) is a proposed International Space Station (ISS) external platform for space environmental studies designed to advance the technology readiness of materials and devices critical for future space exploration. The MISSE-X platform will expand ISS utilization by providing experimenters with unprecedented low-cost space access and return on investment (ROI). As a follow-on to the highly successful MISSE series of ISS experiments, MISSE-X will provide advances over the original MISSE configurations including incorporation of plug-and-play experiments that will minimize return mass requirements in the post-Shuttle era, improved active sensing and monitoring of the ISS external environment for better characterization of environmental effects, and expansion of the MISSE-X user community through incorporation of new, customer-desired capabilities. MISSE-X will also foster interest in science, technology, engineering, and math (STEM) in primary and secondary schools through student collaboration and participation.1,2
NASTRAN analysis of the 1/8-scale space shuttle dynamic model
NASA Technical Reports Server (NTRS)
Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.
1973-01-01
The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.
Selected tether applications in space: Phase 2. Executive summary
NASA Technical Reports Server (NTRS)
Thorson, M. H.; Lippy, L. J.
1985-01-01
The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.
Food Service and Nutrition for the Space Station
NASA Technical Reports Server (NTRS)
Sauer, R. L. (Editor)
1985-01-01
The proceedings of the Workshop on Food Service and Nutrition for the Space Station, held in Houston, Texas, on April 10 and 11, 1984 was given. The workshop was attended by experts in food technology from industry, government, and academia. Following a general definition of unique space flight requirements, oral presentations were made on state of the art food technology with the objective of using this technology to support the space flight requirements. Numerous areas are identified which in the opinion of the conferees, would have space flight application. But additional effort, evaluation, or testing to include Shuttle inflight testing will be required for the technology to be applied to the Space Station.
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
Thrust vector control using electric actuation
NASA Astrophysics Data System (ADS)
Bechtel, Robert T.; Hall, David K.
1995-01-01
Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.
NASA Technical Reports Server (NTRS)
1996-01-01
In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.
Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
STS-107 crew photo during TCDT before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at the launch pad, the STS-107 crew pauses for a group photo. From left are Payload Commander Michael Anderson, Commander Rick Husband, Mission Specialist Laurel Clark, Pilot William 'Willie' McCool, and Mission Specialists Ilan Ramon, Kalpana Chawla and David Brown. Behind them is Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry (center), D-Mass., discusses Space Shuttle processing with NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry (center), D-Mass., discusses Space Shuttle processing with NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Rudland, R. S.
1985-01-01
The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- Billows of white clouds of steam and smoke frame Space Shuttle Columbia as it rises above the launch tower on Launch Pad 39A on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- As billows of smoke and steam roll across the landscape, the fiery launch of Space Shuttle Columbia on mission STS-107 is reflected in nearby water. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
NASA Technical Reports Server (NTRS)
1997-01-01
Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.
Case Study of the Space Shuttle Cockpit Avionics Upgrade Software
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Thompson, Hiram C.
2005-01-01
The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.
Acoustic Emission Detection of Impact Damage on Space Shuttle Structures
NASA Technical Reports Server (NTRS)
Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.
2004-01-01
The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida Professor Sam Ting, Alpha Magnetic Spectrometer-2 (AMS) principal investigator at the Massachusetts Institute of Technology, talks to media about the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, AMS Principal Investigator from the Massachusetts Institute of Technology listens intently as Professor Manuel Aguilar, AMS Spanish Coordinator, speaks to the media before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, Alpha Magnetic Spectrometer-2 (AMS) principal investigator at the Massachusetts Institute of Technology, checks out the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
NASA and Russian Space Agency sign agreement for additional Space Shuttle/Mir missions
Huff, W
1994-01-01
On December 16, 1993 NASA Administrator Daniel S. Goldin [correction of Golden] and the Russian Space Agency (RSA) director Yuri Koptev signed a protocol agreeing to up to 10 Shuttle flights to Mir with a total of 24 months time aboard Mir for U.S. astronants, a program of scientific and technological research, and the upgrade and extension of the Mir lifetime during the period 1995-1997. This is the first of a three-phase program in human spaceflight cooperation which may culminate in the construction of an international Space Station. This agreement starts joint development of spacecraft environmental control and life support systems and potential common space suit.
Selected tether applications in space: An analysis of five selected concepts
NASA Technical Reports Server (NTRS)
1984-01-01
Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.
NASA Technical Reports Server (NTRS)
Jamar, L. G.
1986-01-01
Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first.
2004-04-15
Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.
NASA Technical Reports Server (NTRS)
2004-01-01
Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.
STS-107 Columbia rollout to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, framed by trees near the Banana River, rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
Space shuttle phase B extension, volume 2
NASA Technical Reports Server (NTRS)
1971-01-01
Space shuttle systems are defined using a low technology orbiter combined with either an F-1 flyback booster or a pressure-fed booster. The mission and system requirements are given, and orbiter and booster configuration concepts are evaluated. Systems analyses and trades are discussed for LO2-RP propellent, F-1 engine main propulsion system, winged flyback recovery booster and for the pressure-fed, ocean recoverable, refurbishable booster system. Trade studies are also made for aluminum versus titanium orbiter and for crew location and compartment size.
2002-11-20
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia is being moved to the Vehicle Assembly Building where processing will continue for the flight of mission STS-107. Launch is now targeted for no earlier than Jan. 16, 2003. The STS-107 mission will be dedicated to microgravity research. The payloads include the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) incorporating eight high priority secondary attached Shuttle experiments, and the SHI Research Double Module (SHI/RDM), also known as SPACEHAB.
Aerospace Management, Volume 5 Number 1.
ERIC Educational Resources Information Center
Kaprielyan, S. Peter
Presented are articles and reports dealing with aspects of the aerospace programs of the National Aeronautics and Space Administration (NASA). Of major concern are the technological and managerial challenges within the space station and space shuttle programs. Other reports are given on: (1) medical experiments, (2) satellites, (3) international…
Mechanical design of a lidar system for space applications - LITE
NASA Technical Reports Server (NTRS)
Crockett, Sharon K.
1990-01-01
The Lidar In-Space Technology Experiment (LITE) is a Shuttle experiment that will demonstrate the first use of a lidar system in space. Its design process must take into account not only the system design but also the unique design requirements for spaceborne experiment.
Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center
NASA Technical Reports Server (NTRS)
Defrees, D. (Editor); Brownlee, D. (Editor); Tarter, J. (Editor); Usher, D. (Editor); Irvine, W. (Editor); Klein, H. (Editor)
1989-01-01
The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented.
1999-10-29
The first roof panels are placed on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-29
Work continues on construction of the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. In the background can be seen the new construction for the building that will house related ground support equipment and administrative/technical support. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-29
Workers place the first roof panels on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Future of Human Space Exploration
2014-07-01
Now that the Space Shuttle era is over, NASA is writing the next chapters in human Spaceflight with its commercial and international partners. It is advancing research and technology on the International Space Station, opening low-Earth orbit to US industry, and pushing the frontiers of deep space even farther ... all the way to Mars.
NASA Technical Reports Server (NTRS)
1988-01-01
This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.
The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle
NASA Technical Reports Server (NTRS)
Cipriano, Leonard F.; Ballard, Rodney W.
1988-01-01
The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.
Summary of Results from Space Shuttle Main Engine Off-Nominal Testing
NASA Technical Reports Server (NTRS)
Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.
2011-01-01
This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.
From Earth to Orbit: An assessment of transportation options
NASA Technical Reports Server (NTRS)
Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur
1992-01-01
The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.
The Role of Robots and Automation in Space
NASA Technical Reports Server (NTRS)
Heer, E.
1978-01-01
Advanced space transportation systems based on the shuttle and interim upper stage will open the way to the use of large-scale industrial and commercial systems in space. The role of robot and automation technology in the cost-effective implementation and operation of such systems in the next two decades is discussed. Planning studies initiated by NASA are described as applied to space exploration, global services, and space industrialization, and a forecast of potential missions in each category is presented. The appendix lists highlights of space robot technology from 1967 to the present.
An Analysis of Shuttle Crew Scheduling Violations
NASA Technical Reports Server (NTRS)
Bristol, Douglas
2012-01-01
From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.
Exodus - Distributed artificial intelligence for Shuttle firing rooms
NASA Technical Reports Server (NTRS)
Heard, Astrid E.
1990-01-01
This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.
Space Shuttle Projects Overview to Columbia Air Forces War College
NASA Technical Reports Server (NTRS)
Singer, Jody; McCool, Alex (Technical Monitor)
2000-01-01
This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.
Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Turner, James
1999-01-01
NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Formalizing New Navigation Requirements for NASA's Space Shuttle
NASA Technical Reports Server (NTRS)
DiVito, Ben L.
1996-01-01
We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CRs) were selected as promising targets to demonstrate the utility of formal methods in this demanding application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this industrial usage report. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During a limited analysis conducted on the formal specifications, numerous requirements issues were discovered. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2011-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
NASA Technical Reports Server (NTRS)
Anderson, Brian L.
1993-01-01
The development of the Control Center Complex (CCC), a synergistic control center supporting both the Space Station Freedom and the Space Shuttle Program, is described. To provide maximum growth and flexibility, the CCC uses commercial off-the-shelf technology and industry standards. The discussion covers the development philosophy, CCC architecture, data distribution, the software platform concept, workstation platform, commercial tools for the CCC, and benefits of synergy.
Space Shuttle power extension package
NASA Technical Reports Server (NTRS)
Loftus, J. P., Jr.; Craig, J. W.
1980-01-01
A modification kit for the Space Transportation System (STS) Orbiter is proposed to provide more power and mission duration for payloads. The power extension package (PEP), a flexible-substrate solar array deployed on the Space Shuttle Orbiter remote manipulator system, can provide as much as 29 kW total power for durations of 10 to 48 days. The kit is installed only for those flights which require enhanced power or duration. The PEP is made possible by development of the flexible-substrate array technology and, in itself, contributes to the technology base for the use of large area solar cells. Modifications to the Orbiter thermal control and life support systems to improve heat balance and to reduce consumables are proposed. The changes consist of repositioning the Orbiter forward radiators and replacing the lithium hydroxide scrubber with a regenerable solid amine.
NASA Technical Reports Server (NTRS)
1979-01-01
the development of large space structure technology is discussed. A detailed thermal analysis of a model space fabricated 1 meter beam is presented. Alternative thermal coatings are evaluated, and deflections, stresses, and stiffness variations resulting from flight orientations and solar conditions are predicted.
The 1981 NASA ASEE Summer Faculty Fellowship Program, volume 1
NASA Technical Reports Server (NTRS)
Robertson, N. G.; Huang, C. J.
1981-01-01
A review of NASA research programs related to developing and improving space flight technology is presented. Technical report topics summarized include: space flight feeding; aerospace medicine; reusable spacecraft; satellite soil, vegetation, and climate studies; microwave landing systems; anthropometric studies; satellite antennas; and space shuttle fuel cells.
Proceedings of the 14th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1980-01-01
Technological areas covered include aviation propulsion, aerodynamic devices, and crew safety; space vehicle propulsion, guidance and control; spacecraft deployment, positioning, and pointing; spacecraft bearings, gimbals, and lubricants; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activity on the space shuttle orbiter are also described.
ERIC Educational Resources Information Center
Galica, Carol
1997-01-01
Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…
NASA Technical Reports Server (NTRS)
1975-01-01
Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
NASA Technical Reports Server (NTRS)
Dittermore, Gary; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.
Advanced High Pressure O2/H2 Technology
NASA Technical Reports Server (NTRS)
Morea, S. F. (Editor); Wu, S. T. (Editor)
1985-01-01
Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.
2006-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced nondestructive evaluation (NDE) techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.
2007-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Rweinhardt, Walter W.
2006-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
NASA Technical Reports Server (NTRS)
Sheredy, William A.
2003-01-01
The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is prepared for installation while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
Human factors technology for America's space program
NASA Technical Reports Server (NTRS)
Montemerlo, M. D.
1982-01-01
NASA is initiating a space human factors research and technology development program in October 1982. The impetus for this program stems from: the frequent and economical access to space provided by the Shuttle, the advances in control and display hardware/software made possible through the recent explosion in microelectronics technology, heightened interest in a space station, heightened interest by the military in space operations, and the fact that the technology for long duration stay times for man in space has received relatively little attention since the Apollo and Skylab missions. The rationale for and issues in the five thrusts of the new program are described. The main thrusts are: basic methodology, crew station design, ground control/operations, teleoperations and extra vehicular activity.
Space Shuttle avionics upgrade - Issues and opportunities
NASA Astrophysics Data System (ADS)
Swaim, Richard A.; Wingert, William B.
An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.
NASA Technical Reports Server (NTRS)
Davidoff, Larry D.; Reichert, Jack M.
1999-01-01
NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
Aerosol and cloud observations from the Lidar In-space Technology Experiment
NASA Technical Reports Server (NTRS)
Winker, D. M.
1995-01-01
The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.
2003-01-16
KENNEDY SPACE CENTER, FLA. - In this view, Space Shuttle Columbia is almost dwarfed by the rolling clouds of smoke and steam across Launch Pad 39A. Following a flawless and uneventful countdown, launch of Columbia on mission STS-107 occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences.. Landing of Columbia is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program. [Photo courtesy of Scott Andrews
Increasing the usefulness of Shuttle with SPACEHAB
NASA Astrophysics Data System (ADS)
Stone, Barbara A.; Rossi, David A.
1992-08-01
SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.
STS-72 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-72 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-fourth flight of the Space Shuttle Program, the forty-ninth flight since the return-to-flight, and the tenth flight of the Orbiter Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-75; three Block I SSME's that were designated as serial numbers 2028, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-077. The RSRM's, designated RSRM-52, were installed in each SRB and the individual RSRM's were designated as 36OW052A for the left SRB, and 36OW052B for the right SRB. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. The primary objectives of this flight were to retrieve the Japanese Space Flyer Unit (JSFU) and deploy and retrieve the Office of Aeronautics and Space Technology-Flyer (OAST-Flyer). Secondary objectives were to perform the operations of the Shuttle Solar Backscatter Ultraviolet (SSBUV/A) experiment, Shuttle Laser Altimeter (SLA)/get-Away Special (GAS) payload, Physiological and Anatomical Rodent Experiment/National Institutes of Health-Cells (STL/NIH-C) experiment, Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES) experiment, Commercial Protein Crystal Growth (CPCG) payload and perform two extravehicular activities (EVA's) to demonstrate International Space Station Alpha (ISSA) assembly techniques). Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).
NASA Technical Reports Server (NTRS)
1979-01-01
The development of large space structure technology is discussed, with emphasis on space fabricated structures which are automatically manufactured in space from sheet-strip materials and assembled on-orbit. Definition of a flight demonstration involving an Automated Beam Builder and the building and assembling of large structures is presented.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA Space Act Agreement with Marshall Space Flight Center, Symbology Research Center commercialized a new method of identifying products with invisible and virtually indestructible markings. This digital data matrix technology was developed at Marshall Space Flight Center to identify the millions of parts that comprise space shuttles. The laser-etched markings are seen as the next generation of product "bar codes."
The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned
NASA Technical Reports Server (NTRS)
Long, Victoria S.; Wright, M. Clara; McDanels, Steve
2015-01-01
The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.
Main Propulsion Test Article (MPTA)
NASA Technical Reports Server (NTRS)
Snoddy, Cynthia
2010-01-01
Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.
Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig
2008-01-01
Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. At the controls are Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the AtmosphereShuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet Hale-Bopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. At the controls are Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the AtmosphereShuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet Hale-Bopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. At the controls are Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the AtmosphereShuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet Hale-Bopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls and the Vehicle Assembly Building (VAB) in the background, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1995-11-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
Low-G fluid transfer technology study
NASA Technical Reports Server (NTRS)
Stark, J. A.
1976-01-01
Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.
Reaping the space investment. [Shuttle era geosynchronous satellite based technological trends
NASA Technical Reports Server (NTRS)
Calio, A. J.
1979-01-01
By 1999 operational space systems will be implemented routinely on a worldwide scale in many areas vital to human survival and life quality. Geosynchronous-based monitoring and observation will be extensively used. The Shuttle era will bring in the capability to allow monitoring and identifying pollution sources which fail to stay within required limits. Remotely sensed data over land masses will provide needed facts on renewable and nonrenewable earth resources. New instruments and techniques will have been developed to provide geologists with clues to the declining number of deposits of fuels and minerals. Also, practical methods for predicting earthquakes will have been elaborated by 1999. Communications will see implementation of many of the technological goals of 1978.
Inertial upper stage - Upgrading a stopgap proves difficult
NASA Astrophysics Data System (ADS)
Geddes, J. P.
The technological and project management difficulties associated with the Inertial Upper Stage's (IUS) development and performance to date are assessed, with a view to future prospects for this system. The IUS was designed for use both on the interim Titan 34D booster and the Space Shuttle Orbiter. The IUS malfunctions and cost overruns reported are substantially due to the system's reliance on novel propulsion and avionics technology. Its two solid rocket motors, which were selected on the basis of their inherent safety for use on the Space Shuttle, have the longest burn time extant. A three-dimensional carbon/carbon nozzle throat had to be developed to sustain this long burn, as were lightweight composite wound cases and shirts, insulation, igniters, and electromechanical thrust vector control.
The Challenges of Developing a Food System for a Mars Mission
NASA Technical Reports Server (NTRS)
Perchonok, Michele
2007-01-01
A viewgraph describing the food system that NASA is developing for Manned Mars Missions is shown. The topics include: 1) The President's Vision for U.S. Space Exploration -January 14, 2004; 2) Introducing Orion (and Ares); 3) Mercury (1961-1963); 4) Gemini (1965-1966); 5) Apollo (1968-1972); 6) Skylab (1973-1974); 7) Shuttle/Mir (1995-1998); 8) Shuttle (1981-present) International Space Station (2000-present); 9) NASA Stored Food System; 10) Advanced Food Technology; 11) Orion Missions; 12) Orion Challenges; 13) Food Packaging; 14) Mars Mission Assumptions; 15) Planetary Food System Selected Crops; 16) Food Processing Equipment Constraints; 17) Crew Involvement Constraints; 18) Advanced Food Technology Integration; 19) Research Highlights Internal; and 20) Research Highlights External.
OAST Technology for the Future. Executive Summary
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
Unique Results and Lessons Learned From the TSS Missions
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2016-01-01
The Tethered Satellite System (TSS) Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development in the U.S. Altogether, the investment made by NASA and the Italian Space Agency (ASI) over the thirteen-year period of the TSS Program totaled approximately $400M-exclusive of the two Space Shuttle flights provided by NASA. Since those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated in earth orbit and shown to perform better than the preflight dynamic or electrodynamic theoretical predictions. While it is true that the TSS-1 and TSS-1R missions experienced technical difficulties, the causes of these early developmental problems are now known to have been engineering design flaws, material selection, and procedural issues that (1) are unrelated to the basic viability of space tether technology, and (2) can be readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology.
Technology for Large Space Systems: A Bibliography with Indexes. Supplement 17
1987-10-01
reduce the total primary reflector weight by a factor Lewis Research Center, Cleveland, Ohio. of 3 to 4 over competing technologies. On-orbit thermal...aperture. Weight and volume estimates are consistent with a single Proceedings of the Twenty-first ;ntersociety Energy Conversion Shuttle launch, and are...Aeronautics and Space Administration fiscal year Station. B.G. 1987 budget is examined. The impact of the loss of the Challenger and its crew on the space
A near term space demonstration program for large structures
NASA Technical Reports Server (NTRS)
Nathan, C. A.
1978-01-01
For applications involving an employment of ultralarge structures in space, it would be necessary to have some form of space fabrication and assembly in connection with launch vehicle payload and volume limitations. The findings of a recently completed NASA sponsored study related to an orbital construction demonstration are reported. It is shown how a relatively small construction facility which is assembled in three shuttle flights can substantially advance space construction know-how and provide the nation with a permanent shuttle tended facility that can further advance large structures technologies and provide a construction capability for deployment of large structural systems envisioned for the late 1980s. The large structures applications identified are related to communications, navigation, earth observation, energy systems, radio astronomy, illumination, space colonization, and space construction.
STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
NASA Technical Reports Server (NTRS)
2002-01-01
Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.
Report of the Space Shuttle Management Independent Review Team
NASA Technical Reports Server (NTRS)
1995-01-01
At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.
Report of the Space Shuttle Management Independent Review Team
NASA Astrophysics Data System (ADS)
1995-02-01
At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.
Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle
NASA Technical Reports Server (NTRS)
Myers, K. Jeffrey; Tipton, David A.; Woodard, Daniel; Long, Irene D.
1992-01-01
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.
Emergency medical operations at Kennedy Space Center in support of space shuttle
NASA Technical Reports Server (NTRS)
Myers, K. J.; Tipton, D. A.; Woodard, D.; Long, I. D.
1992-01-01
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.
A preview of a microgravity laser light scattering instrument
NASA Astrophysics Data System (ADS)
Meyer, W. V.; Ansari, R. R.
1991-01-01
The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
1999-10-29
A steam roller packs down the ground next to construction of a support building, part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes a multi-purpose hangar and the building to be used for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-29
Construction workers are silhouetted against the sky as they work on the girders of a support building, part of the new $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The building is to be used for related ground support equipment and administrative/technical support. The RLV complex also includes a multi-purpose hangar. The complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The facility, jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC, will be operational in early 2000
NASA Technical Reports Server (NTRS)
Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel
2006-01-01
The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.
NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel
2005-01-01
Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.
NASA management of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Peters, F.
1975-01-01
The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.
STS-85 crew Tryggvason and Robinson during TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
STS-85 Payload Specialist Bjarni V. Tryggvason and Mission Specialist Stephen K. Robinson go through countdown procedures aboard the Space Shuttle orbiter Discovery during Terminal Countdown Demonstration Test (TCDT) activities for that mission. The TCDT includes a simulation of the final launch countdown. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS- 2). Other STS-85 payloads include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.
NASA Technical Reports Server (NTRS)
1974-01-01
A space shuttle sortie mission which can be performed inexpensively in the early shuttle era and which, if the necessary intermediate steps are accomplished provides a major technological advance for the user organization-the U.S. Bureau of Census is described. The orbital configuration created for the Urban Land Use/1980 Census mission is illustrated including sensors and ground support equipment along with the information flow for the mission. Factors discussed include: specific Census Bureau functions to be supported by the mission; hardware and flight operations necessary for implementation of the mission; and integration of the TERSSE pallet into a shuttle mission.
An advanced telerobotic system for shuttle payload changeout room processing applications
NASA Technical Reports Server (NTRS)
Sklar, M.; Wegerif, D.
1989-01-01
To potentially alleviate the inherent difficulties in the ground processing of the Space Shuttle and its associated payloads, a teleoperated, semi-autonomous robotic processing system for the Payload Changeout Room (PCR) is now in the conceptual stages. The complete PCR robotic system as currently conceived is described and critical design issues and the required technologies are discussed.
Using Formal Methods to Assist in the Requirements Analysis of the Space Shuttle GPS Change Request
NASA Technical Reports Server (NTRS)
DiVito, Ben L.; Roberts, Larry W.
1996-01-01
We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CR's) were selected as promising targets to demonstrate the utility of formal methods in this application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this report. Carried out in parallel with the Shuttle program's conventional requirements analysis process was a limited form of analysis based on formalized requirements. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During the formal methods-based analysis, numerous requirements issues were discovered and submitted as official issues through the normal requirements inspection process. Shuttle analysts felt that many of these issues were uncovered earlier than would have occurred with conventional methods. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.
2004-04-15
Alabama Department of Transportation workers utilize Convergent Spray Technology to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
2004-04-15
A workman inspects the results of Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
2004-04-15
Alabama Department of Transportation workers utilize Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
Space shuttle requirements/configuration evolution
NASA Technical Reports Server (NTRS)
Andrews, E. P.
1991-01-01
Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.
Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steven J.
2004-01-01
A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.
1993-01-01
STS051-S-001 (January 1993) --- Designed by the crew members, the crew patch honors all who have contributed to mission success. It symbolizes NASA's continuing quest to increase mankind's knowledge and use of space through this multi-faceted mission. The gold star represents the United States Advanced Communications Technology Satellite (ACTS) boosted by the Transfer Orbit Stage (TOS). The rays below the ACT\\TOS represent the innovative communication technologies to be tested by this experiment. The stylized Shuttle Pallet Satellite (SPAS) represents the German-sponsored ASTRO\\SPAS mission. The constellation Orion below SPAS is representative of the types of stellar objects to be studied by its experimenters. The stars in Orion also commemorate the astronauts who have sacrificed their lives for the space program. The ascending spiral, symbolizing America's continuing commitment to leadership in space exploration and development, originates with the thousands of persons who ensure the success of each space shuttle flight. The five large white stars, representing the five crew members, along with the single gold star, form the mission's numerical designation. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Shpargel, Tarah P.
2005-01-01
Advanced in-space repair technologies for reinforced carbon/carbon composite (RCC) thermal protection system (TPS) structures are critically needed for the space shuttle Return To Flight (RTF) efforts. These technologies are also critical for the repair and refurbishment of thermal protection system structures of future Crew Exploration Vehicles of space exploration programs. The Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) material developed at the NASA Glenn Research Center has demonstrated capabilities for repair of small cracks and damage in RCC leading-edge material. The concept consists of preparing an adhesive paste of desired ceramic in a polymer/phenolic resin matrix with appropriate additives, such as surfactants, and then applying the paste into the damaged or cracked area of the RCC composite components with caulking guns. The adhesive paste cures at 100 to 120 C and transforms into a high-temperature ceramic during simulated vehicle reentry testing conditions.
Development of assembly and joint concepts for erectable space structures
NASA Technical Reports Server (NTRS)
Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.
1980-01-01
The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew heads for the Astrovan and a ride to Launch Pad 39A for liftoff. From left to right are Payload Commander Michael Anderson, Mission Specialist David Brown, Payload Specialist Ilan Ramon, Mission Specialists Laurel Clark and Kalpana Chawla, Mission Commandaer Rick Husband and Pilot William "Willie" McCool. Ramon is the first astronaut from Israel to fly on a Shuttle. The 16-day mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST. [Photo courtesy of Scott Andrews
NASA Technical Reports Server (NTRS)
Stone, Noble H.
2007-01-01
The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development. Since NASA's investment of some $200M and two Shuttle missions in those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated and shown to perform as, or better than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions experienced technical difficulties, the causes of these early developmental problems are now known to be design or materials flaws that are (1) unrelated to the basic viability of space tether technology, and (2) they are readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology. Finally, it is shown that (1) all problems experienced during early development of the technology now have solutions; and (2) the technology has been matured by advances made in strength and robustness of tether materials, high voltage engineering in the space environment, tether health and status monitoring, and the elimination of the broken tether hazard. In view of this, it is inexplicable why this flight-validated technology has not been utilized in the past decade, considering the powerful and unique capabilities that space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions, but can also greatly reduce the cost of certain on-going space operations.
Next Generation Spacecraft, Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
2004-01-01
This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.
SSME testing technology at the John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Kynard, Mike; Dill, Glenn
1991-01-01
An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.
Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles
NASA Technical Reports Server (NTRS)
Dunn, V. B.
1975-01-01
A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.
STS-107 Flight Day 5 Highlights
NASA Technical Reports Server (NTRS)
2003-01-01
The fifth day of the STS-107 space mission begins with a presentation of The Six Space Technology and Research Students (STARS) program experiments aboard the Space Shuttle Columbia. Students from Australia, China, Israel, Japan, Lichtenstein and The United States send scientific experiments into space. The video includes the progress of experiments with various insects including silkworms, carpenter bees, ants, fish, and spiders.
Science in a Box: An Educator Guide with NASA Glovebox Activities in Science, Math, and Technology.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Education Dept.
The Space Shuttle and International Space Station provide a unique microgravity environment for research that is a critical part of the National Aeronautics and Space Administration's (NASA) mission to improve the quality of life on Earth and enable the health and safety of space explorers for long duration missions beyond our solar system. This…
Advanced space program studies. Overall executive summary
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1977-01-01
NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.
Business Context of Space Tourism
NASA Astrophysics Data System (ADS)
Schmitt, Harrison H.
2003-01-01
Broadly speaking, two types of potential commercial activity in space can be defined. First, there are those activities that represent an expansion and improvement on services with broad existing commercial foundations such as telecommunications. The second type of potential commercial activity in space is one that may offer a type of service with few or any existing commercial foundations such as space-based remote sensing. Space tourism clearly belongs in the first category of potential commercial activity in space. Roles in cooperation with the private sector that might be considered for NASA include 1) acceleration of the ``Professional-in Space'' initiative, 2) research and technology developments related to a) a ``Tourist Destination Module'' for the Space Station, b) an ``Extra Passengers Module'' for the payload bay of the Space Shuttle, and c) a ``Passenger-rated Expendable Launch Vehicle,'' 3) definition of criteria for qualifying candidate space tourists, and 4) initiatives to protect space tourism from unreasonable tort litigation. As baseline information for establishing fees, the cost of a possible tourist flight should be fully and objectively delineated. If it is correct that the marginal cost of each Space Shuttle flight to Earth-orbit is about $100 million and the effective Shuttle payload is about 50,000 pounds, then the marginal cost would be roughly $2,000 per pound.
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert; Rakov, Vladimir; Kithil, Richard, Jr.; Sargent, Noel B.
2009-01-01
The existing lightning protection system at Pad 39B for the Space Shuttle is an outgrowth of a system that was put in place for the Apollo Program. Dr. Frank Fisher of Lightning Technologies was a key participant in the design and implementation of that system. He conveyed to the NESC team that the catenary wire provision was put in place quickly (as assurance against possible vehicle damage causing critical launch delays) rather than being implemented as a comprehensive system designed to provide a high degree of guaranteed protection. Also, the technology of lightning protection has evolved over time with considerable work being conducted by groups such as the electric utilities companies, aircraft manufacturers, universities, and others. Several accepted present-day methods for analysis of lightning protection were used by Drs. Medelius and Mata to study the expected lightning environment for the Pad 39B facility and to analyze the degree of protection against direct lightning attachment to the Space Shuttle. The specific physical configuration directly affects the vulnerability, so cases that were considered included the RSS next to and rolled back from the Space Shuttle, and the GOx Vent Arm both extended and withdrawn from the ET. Elements of the lightning protection system at Pad 39B are shown in Figure 6.0-1 and consist of an 80 foot insulating mast on top of the Fixed Support Structure (FSS), a catenary wire system that runs from the mast in a North/South direction to grounds 1000 feet away on each side of the mast, the RSS which can either be next to or away from the Space Shuttle, and a GOx vent that can either be extended or retracted from the top of the ET.
Voice loops as coordination aids in space shuttle mission control.
Patterson, E S; Watts-Perotti, J; Woods, D D
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Voice loops as coordination aids in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Nonintrusive Flow Rate Determination Through Space Shuttle Water Coolant Loop Floodlight Coldplate
NASA Technical Reports Server (NTRS)
Werlink, Rudolph; Johnson, Harry; Margasahayam, Ravi
1997-01-01
Using a Nonintrusive Flow Measurement System (NFMS), the flow rates through the Space Shuttle water coolant coldplate were determined. The objective of this in situ flow measurement was to prove or disprove a potential block inside the affected coldplate had contributed to a reduced flow rate and the subsequent ice formation on the Space Shuttle Discovery. Flow through the coldplate was originally calculated to be 35 to 38 pounds per hour. This application of ultrasonic technology advanced the envelope of flow measurements through use of 1/4-inch-diameter tubing, which resulted in extremely low flow velocities (5 to 30 pounds per hour). In situ measurements on the orbiters Discovery and Atlantis indicated both vehicles, on the average, experienced similar flow rates through the coldplate (around 25 pounds per hour), but lower rates than the designed flow. Based on the noninvasive checks, further invasive troubleshooting was eliminated. Permanent monitoring using the NFMS was recommended.
Space Shuttle main engine product improvement
NASA Technical Reports Server (NTRS)
Lucci, A. D.; Klatt, F. P.
1985-01-01
The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.
2004-04-15
A NASA official inspects the results of Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Rosen, Robert
1987-01-01
Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.
2000-07-01
Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).
Mechanics of Granular Materials labeled hardware
NASA Technical Reports Server (NTRS)
2000-01-01
Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).
NASA Technical Reports Server (NTRS)
1975-01-01
Payload experiments which could be carried out in near earth space using the shuttle orbiter, its payload bay, the Spacelab, and/or some free-flying device that might be used for long duration testing were identified. Specific areas examined in terms of user requirements include: chemical propulsion, nuclear propulsion (fission, fussion, radioisotopes), and collected energy (coherent energy and solar electromagnetic energy). Cost reduction objectives for advanced propulsion technology development were also developed.
Dryden Flight Research Center: The World's Premiere Installation for Atmospheric Flight Research
NASA Technical Reports Server (NTRS)
Ratnayake, Nalin Asela
2007-01-01
This viewgraph presentation reviews NASA Dryden's capabilities, the work that Dryden has done for NASA, and its current research. Dryden's Mission is stated to advance technology and science through flight. The mission elements are: (1) Perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, (2) Validate space exploration concepts, (3) Conduct airborne remote sensing and science observations, (4) Support operations of the Space Shuttle and the ISS for NASA and the Nation.
Use of outer planet satellites and asteroids as sources of raw materials for life support systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molton, P.M.; Divine, T.E.
1977-01-01
Industrialization of space and other space activities depend entirely on supply of materials from the Earth. This is a high cost route for materials supply. Space industrialization will require life support systems for maintenance and operation staff and these will of necessity be of a sophisticated nature. Use of raw materials obtained by an unmanned space shuttle, initially, and by manned shuttles later could significantly reduce the cost of life support in space. These raw materials could be obtained from small asteroids and satellites, and would consist of primary nutrients. Future development of such sources is discussed, including food productionmore » in automated asteroid-based facilities. The level of technology required is available now, and should become economical within a century.« less
Impact of low gravity on water electrolysis operation
NASA Technical Reports Server (NTRS)
Powell, F. T.; Schubert, F. H.; Lee, M. G.
1989-01-01
Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.
NASA Technical Reports Server (NTRS)
Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl
1989-01-01
NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry, D-Mass., visits the flight deck of Space Shuttle Discovery during a tour of the Orbiter Processing Facility (OPF). The bunny suit he is wearing is clean room attire required for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
2004-07-26
KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry, D-Mass., visits the flight deck of Space Shuttle Discovery during a tour of the Orbiter Processing Facility (OPF). The “bunny suit” he is wearing is clean room attire required for anyone coming in close proximity to Discovery, currently being prepared for flight on the next Space Shuttle mission. The tour of the OPF follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP3, the discussion focuses on the following topics: Monitoring Physiological Variables With Membrane Probes; Real Time Confocal Laser Scanning Microscopy, Potential Applications in Space Medicine and Cell Biology; Optimum Versus Universal Planetary and Interplanetary Habitats; Application of Remote Sensing and Geographic Information System Technologies to the Prevention of Diarrheal Diseases in Nigeria; A Small G Loading Human Centrifuge for Space Station ERA; Use of the Bicycle Ergometer on the International Space Station and Its Influence On The Microgravity Environment; Munich Space Chair (MSC) - A Next Generation Body Restraint System for Astronauts; and Thermoelectric Human-Body Cooling Units Used By NASA Space Shuttle Astronauts.
1994-07-20
On the 25th Anniversary of the Apollo-11 space launch, Marshall celebrated with a test firing of the Space Shuttle Main Engine at the Technology Test Bed (SSME-TTB). This drew a large crowd who stood in the fields around the test site and watched as plumes of white smoke verified ignition.
Thirteenth Space Simulation Conference. The Payload: Testing for Success
NASA Technical Reports Server (NTRS)
Stecher, J. (Editor)
1984-01-01
Information on the state of the art in space simulation, test technology, thermal simulation and protection, contamination, and test measurements and techniques are presented. Simulation of upper atmosphere oxygen was discussed. Problems and successes of retrieving and repairing orbiting spacecrafts by utilizing the shuttle are outlined.
Science and Technology Research Directions for the International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.
1997-05-24
The Space Shuttle orbiter Atlantis rolls out on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. The Shuttle Training Aircraft piloted by astronaut Kenneth D. Cockrell, acting deputy chief of the Astronaut Office, is flying above Atlantis. The Vehicle Assembly Building is at left. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-05-24
The Space Shuttle orbiter Atlantis, with its drag chute deployed, rolls out on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. The Shuttle Training Aircraft piloted by astronaut Kenneth D. Cockrell, acting deputy chief of the Astronaut Office, is flying above Atlantis. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
Meter Designs Reduce Operation Costs for Industry
NASA Technical Reports Server (NTRS)
2013-01-01
Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.
NASA Technical Reports Server (NTRS)
1975-01-01
The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.
OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
New instrumentation technologies for testing the bonding of sensors to solid materials
NASA Technical Reports Server (NTRS)
Hashemian, H. M.; Shell, C. S.; Jones, C. N.
1996-01-01
This report presents the results of a comprehensive research and development project that was conducted over a three-year period to develop new technologies for testing the attachment of sensors to solid materials for the following NASA applications: (1) testing the performance of composites that are used for the lining of solid rocket motor nozzles, (2) testing the bonding of surface-mounted platinum resistance thermometers that are used on fuel and oxidizer lines of the space shuttle to detect valve leaks by monitoring temperature, (3) testing the attachment of strain gages that are used in testing the performance of space shuttle main engines, and (4) testing the thermocouples that are used for determining the performance of blast tube liner material in solid rocket boosters.
Enabling technologies for transition to utilization of space-based resources and operations
NASA Technical Reports Server (NTRS)
Sadin, S. R.; Litty, J. D.
1985-01-01
This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.
NASA Technical Reports Server (NTRS)
Wilson, Brad; Galatzer, Yishai
2008-01-01
The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.
The aerobraking space transfer vehicle
NASA Technical Reports Server (NTRS)
Andrews, Glen; Carpenter, Brian; Corns, Steve; Harris, Robert; Jun, Brian; Munro, Bruce; Pulling, Eric; Sekhon, Amrit; Welton, Walt; Jakubowski, A.
1990-01-01
With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed.
NASA Technical Reports Server (NTRS)
Carmean, W. D.; Hitz, F. R.
1976-01-01
Guidelines are developed for use in control and display panel design for payload operations performed on the aft flight deck of the orbiter. Preliminary payload procedures are defined. Crew operational concepts are developed. Payloads selected for operational simulations were the shuttle UV optical telescope (SUOT), the deep sky UV survey telescope (DUST), and the shuttle UV stellar spectrograph (SUSS). The advanced technology laboratory payload consisting of 11 experiments was selected for a detailed evaluation because of the availability of operational data and its operational complexity.
Internship at NASA Kennedy Space Center's Cryogenic Test laboratory
NASA Technical Reports Server (NTRS)
Holland, Katherine
2013-01-01
NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a refrigerator capable of removing 850 Watts at 20 Kelvin (shown in green). The refrigerator and most of its supporting equipment will be kept in a standard shipping container (shown in pink). Currently, GODU is in the fabrication process and some of the large components have already been purchased.
The servicing aid tool: A teleoperated robotics system for space applications
NASA Technical Reports Server (NTRS)
Dorman, Keith W.; Pullen, John L.; Keksz, William O.; Eismann, Paul H.; Kowalski, Keith A.; Karlen, James P.
1994-01-01
The Servicing Aid Tool (SAT) is a teleoperated, force-reflecting manipulation system designed for use on the Space Shuttle. The system will assist Extravehicular Activity (EVA) servicing of spacecraft such as the Hubble Space Telescope. The SAT stands out from other robotics development programs in that special attention was given to provide a low-cost, space-qualified design which can easily and inexpensively be reconfigured and/or enhanced through the addition of existing NASA funded technology as that technology matures. SAT components are spaceflight adaptations of existing ground-based designs from Robotics Research Corporation (RRC), the leading supplier of robotics systems to the NASA and university research community in the United States. Fairchild Space is the prime contractor and provides the control electronics, safety system, system integration, and qualification testing. The manipulator consists of a 6-DOF Slave Arm mounted on a 1-DOF Positioning Link in the shuttle payload bay. The Slave Arm is controlled via a highly similar, 6-DOF, force-reflecting Master Arm from Schilling Development, Inc. This work is being performed under contract to the Goddard Space Flight Center Code, Code 442, Hubble Space Telescope Flight Systems and Servicing Project.
2001-08-08
Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.
Design of H2-O2 space shuttle APU. Volume 1: APU design
NASA Technical Reports Server (NTRS)
Harris, E.
1974-01-01
The H2-O2 space shuttle auxiliary power unit (APU) program is a NASA-Lewis effort aimed at hardware demonstration of the technology required for potential use on the space shuttle. It has been shown that a hydrogen-oxygen power unit (APU) system is an attractive alternate to the space shuttle baseline hydrazine APU system for minimum weight. It has the capability for meeting many of the heat sink requirements for the space shuttle vehicle, thereby reducing the amount of expendable evaporants required for cooling in the baseline APU. Volume 1 of this report covers preliminary design and analysis of the current reference system and detail design of the test version of this reference system. Combustor test results are also included. Volume 2 contains the results of the analysis of an initial version of the reference system and the computer printouts of system performance. The APU consists of subsystems for propellant feed and conditioning, turbopower, and control. Propellant feed and conditioning contains all heat exchangers, valves, and the combustor. The turbopower subsystem contains a two-stage partial-admission pressure-modulated, 400-hp, 63,000-rpm turbine, a 0-to 4-g lubrication system, and a gearbox with output pads for two hydraulic pumps and an alternator (alternator not included on test unit). The electronic control functions include regulation of speed and system temperatures; and start-and-stop sequences, overspeed (rpm) and temperature limits, failsafe provisions, and automatic shutdown provisions.
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls and the Mate/Demate Device (MDD) and the Vehicle Assembly Building (VAB) in the background, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-05-24
The Space Shuttle orbiter Atlantis glides in for a landing on Runway 33 at KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. It will be the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences
1997-01-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
STS-52 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1992-01-01
The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.
STS-52 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W., Jr.
1992-12-01
The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.
ISAAC: Inflatable Satellite of an Antenna Array for Communications, volume 6
NASA Technical Reports Server (NTRS)
Lodgard, Deborah; Ashton, Patrick; Cho, Margaret; Codiana, Tom; Geith, Richard; Mayeda, Sharon; Nagel, Kirsten; Sze, Steven
1988-01-01
The results of a study to design an antenna array satellite using rigid inflatable structure (RIS) technology are presented. An inflatable satellite allows for a very large structure to be compacted for transportation in the Space Shuttle to the Space Station where it is assembled. The proposed structure resulting from this study is a communications satellite for two-way communications with many low-power stations on the ground. Total weight is 15,438 kilograms which is within the capabilities of the Space Shuttle. The satellite will have an equivalent aperture greater than 100 meters in diameter and will be operable in K and C band frequencies, with a total power requirement of 10,720 watts.
Construction continues on RLV Support Complex at SLF
NASA Technical Reports Server (NTRS)
1999-01-01
An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
1999-10-14
An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
Case Studies in NASA High-Technology Risk Assessment and Management
NASA Technical Reports Server (NTRS)
Lambright, W. Henry
1998-01-01
This study discusses the approach of NASA managers in the assessment of risk in three critical decisions: the Apollo 8 decision to orbit the Moon in 1968, the servicing of the Hubble Space Telescope in 1993, and the privitization of the Space Shuttle in the latter 1990s.
1995-03-02
Astronaut Wendy B. Lawrence, flight engineer and mission specialist for STS-67, scribbles notes on the margin of a checklist while monitoring an experiment on the Space Shuttle Endeavour's mid-deck. The experiment is the Protein Crystal Growth (PCG), which takes up locker space near the Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiment (CMIX).
SFU retrieval and berth in shuttle orbiter Endeavour's payload bay
1996-01-13
STS072-734-011 (11 Jan. 1996) --- The crewmembers captured this 35mm view of the Japanese Space Flyer Unit (SFU) during its berthing with the Remote Manipulator System (RMS). Yet to be deployed is the Office of Aeronautics and Space Technology (OAST) Flyer satellite, seen at bottom center.
2010-11-03
CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, school children build LEGO space vehicles inside a 40- by 70-foot activity tent. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-03
CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children, adults and a space person. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-03
CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, Leland Melvin, NASA's associate administrator for Education, center, and Stephan Turnipseed, president of LEGO Education North America, right, help a student build LEGO space vehicles inside a 40- by 70-foot activity tent. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-03
CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, school children build LEGO space vehicles inside a 40- by 70-foot activity tent. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-03
CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children, adults and a space person. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2003-01-16
KENNEDY SPACE CENTER, FLA. - The VIP stand at KSC is filled with not only friends and families of the astronauts, but also representatives of Israel who came to support the first Israeli to fly on a Shuttle, Ilan Ramon. As a payload specialist, Ramon will take part in some of the research on the mission. He is also a colonel in the Israel Air Force. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.