Sample records for space station elements

  1. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  2. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  3. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  4. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  6. User assembly and servicing system for Space Station, an evolving architecture approach

    NASA Technical Reports Server (NTRS)

    Lavigna, Thomas A.; Cline, Helmut P.

    1988-01-01

    On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.

  7. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    In the Space Station Processing Facility (SSPF), Charles J. Precourt, deputy manager of NASA's International Space Station Program, is interviewed by a reporter from a local television station. Representatives from the media were invited to commemorate the fifth anniversary of the launch of the first element of the Station with a tour of the facility and had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. NASA and Boeing mission managers were on hand to talk about the various hardware elements currently being processed for flight.

  8. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  9. The US space station: Potential base for a spaceborne microwave facility

    NASA Technical Reports Server (NTRS)

    Mcconnell, D.

    1983-01-01

    Concepts for a U.S. space station were studied to achieve the full potential of the Space Shuttle and to provide a more permanent presence in space. The space station study is summarized in the following questions: Given a space station in orbit in the 1990's, how should it best be used to achieve science and applications objectives important at that time? To achieve those objectives, of what elements should the station be comprised and how should the elements be configured and equipped. These questions are addressed.

  10. Space station needs, attributes and architectural options: Study summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station needs, attributes, and architectural options that affect the future implementation and design of a space station system are examined. Requirements for candidate missions are used to define functional attributes of a space station. Station elements that perform these functions form the basic station architecture. Alternative ways to accomplish these functions are defined and configuration concepts are developed and evaluated. Configuration analyses are carried to the point that budgetary cost estimates of alternate approaches could be made. Emphasis is placed on differential costs for station support elements and benefits that accrue through use of the station.

  11. Geostationary platform study: Advanced ESGP/evolutionary SSF accommodation study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The implications on the evolutionary space station of accommodating geosynchronous Earth Orbit (GEO) facilities including unmanned satellites and platforms, manned elements, and transportation and servicing vehicles/elements. The latest existing definitions of typical unmanned GEO facilities and transportation and servicing vehicles/elements are utilized. The physical design, functional design, and operations implications at the space station are determined. Various concepts of the space station from past studies are utilized ranging from the IOC Multifunction Space Station to a branched transportation node space station, and the implications of the accommodation the GEO infrastructure of each type are assessed. Where possible, parametric data are provided to show the implications of variations in sizes and quantities of elements, launch rates, crew sizes, etc. The use of advanced automation, robotics equipment, and an efficient mix of manned/automated support for accomplishing necessary activities at the space station are identified and assessed. The products of this study are configuration sketches, resource requirements, trade studies, and parametric data.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  13. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  14. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  15. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  16. Modular space station, phase B extension. Program operations plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  17. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  18. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  19. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (facing camera) aids in Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  20. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra talks to a technician (off-camera) during Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  1. International Space Station (ISS)

    NASA Image and Video Library

    1997-07-20

    Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.

  2. Chronology: MSFC Space Station program, 1982 - present. Major events

    NASA Technical Reports Server (NTRS)

    Whalen, Jessie E. (Compiler); Mckinley, Sarah L. (Compiler); Gates, Thomas G. (Compiler)

    1988-01-01

    The Marshall Space Flight Center (MSFC) maintains an active program to capture historical information and documentation on the MSFC's roles regarding Space Shuttle and Space Station. Marshall History Report 12, called Chronology: MSFC Space Station Program, 1982-Present, is presented. It contains synopses of major events listed according to the dates of their occurrence. Indices follow the synopses and provide additional data concerning the events listed. The Event Index provides a brief listing of all the events without synopses. The Element Index lists the specific elements of the Space Station Program under consideration in the events. The Location Index lists the locations where the events took place. The indices and synopses may be cross-referenced by using dates.

  3. A study of space station needs, attributes and architectural options. Volume 2: Technical. Book 1: Mission requirements. Appendixes 1 and 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The space station mission requirements data base consists of 149 attached and free-flying missions each of which is documented by a set of three interrelated documents: (1) NASA LaRC Data Sheets - with three sheets comprising a set for each payload element described. These sheets contain user payload element data necessary to drive Space Station architectural options. (2) GDC-derived operations descriptions that supplement the LaRC payload element data in the operations areas such as further descriptions of crew involvement, EVA, etc. (3) Payload elements synthesis sheets used by GDC to provide requirements traceability to data sources and to provide a narrative describing the basis for formulating the payload element requirements.

  4. Habitability design elements for a space station

    NASA Technical Reports Server (NTRS)

    Dalton, M. C.

    1983-01-01

    Habitability in space refers to the components, characteristics, conditions, and design parameters that go beyond but include the basic life sustaining requirements. Elements of habitability covered include internal environment, architecture, mobility and restraint, food, clothing, personal hygiene, housekeeping, communications, and crew activities. All elements are interrelated and need to be treated as an overall discipline. Designing for a space station is similar to designing on earth but with 'space rules' instead of ground rules. It is concluded that some habitability problems require behavioral science solutions.

  5. Space station needs, attributes and architectural options. Volume 4, task 2 and 3: Mission implementation and cost

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.

  6. KSC-04PD-0148

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  7. Space station needs, attributes and architectural options study. Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A typical system specification format is presented and requirements are compiled. A Program Specification Tree is shown showing a high inclination space station and a low inclination space station with their typical element breakdown, also represented along the top blocks are the interfaces with other systems. The specification format is directed at the Low Inclination space station.

  8. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  10. Experiment module concepts study. Volume 2: Experiments and mission operations

    NASA Technical Reports Server (NTRS)

    Macdonald, J. M.

    1970-01-01

    The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.

  11. Space station related investigations in Europe

    NASA Astrophysics Data System (ADS)

    Wienss, W.; Vallerain, E.

    1984-10-01

    Studies pertaining to the definition of Europe's role in the Space Station program are described, with consideration given to such elements as pressurized modules as laboratories for materials processing and life sciences, unpressurized elements, and service vehicles for on-orbit maintenance and repair activities. Candidate elements were selected against such criteria as clean interfaces, the satisfaction of European user needs, new technology items, and European financial capabilities; and their technical and programmatic implications were examined. Different scenarios were considered, ranging from a fully Space-Station-dependent case to a completely autonomous, free-flying man-tendable configuration. Recommendations on a collaboration between Europe and the United States are presented.

  12. International Space Station Node 1 is moved for leak test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first element for the International Space Station, and attached Pressurized Mating Adapter-1 continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node is being removed from the element rotation stand, or test stand, where it underwent an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Now the node is being moved to the Shuttle payload transportation canister, where the doors will be closed for a two-week leak check. Node 1 is scheduled to fly on STS-88.

  13. Space station accommodations for lunar base elements: A study

    NASA Technical Reports Server (NTRS)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  14. Space Station evolution study

    NASA Technical Reports Server (NTRS)

    Evans, David B.

    1993-01-01

    This is the Space Station Freedom (SSF) Evolution Study 1993 Final Report, performed under NASA Contract NAS8-38783, Task Order 5.1. This task examined: (1) the feasibility of launching current National Space Transportation System (NSTS) compatible logistics elements on expendable launch vehicles (ELV's) and the associated modifications, and (2) new, non-NSTS logistics elements for launch on ELV's to augment current SSF logistics capability.

  15. KSC ground operations planning for Space Station

    NASA Technical Reports Server (NTRS)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  16. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  17. A shared-world conceptual model for integrating space station life sciences telescience operations

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  18. Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.

  19. Space station needs, attributes and architectural options: Architectural options and selection

    NASA Technical Reports Server (NTRS)

    Nelson, W. G.

    1983-01-01

    The approach, study results, and recommendations for defining and selecting space station architectural options are described. Space station system architecture is defined as the arrangement of elements (manned and unmanned on-orbit facilities, shuttle vehicles, orbital transfer vehicles, etc.), the number of these elements, their location (orbital inclination and altitude, and their functional performance capability, power, volume, crew, etc.). Architectural options are evaluated based on the degree of mission capture versus cost and required funding rate. Mission capture refers to the number of missions accommodated by the particular architecture.

  20. International Space Station Node 1 is moved for leak test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first element for the International Space Station, and attached Pressurized Mating Adapter-1 continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node is seen here being moved into the Shuttle payload transportation canister, where the doors will be closed for a two-week leak check. The node was moved to the canister from the element rotation stand, or test stand, where it underwent an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88.

  1. International Space Station Node 1 is moved for leak test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first U.S. element for the International Space Station, and attached Pressurized Mating Adapter-1 continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being removed from the element rotation stand, or test stand, where they underwent an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Now the node is being moved to the Shuttle payload transportation canister, where the doors will be closed for a two-week leak check. Node 1 is scheduled to fly on STS-88.

  2. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    NASA Technical Reports Server (NTRS)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  3. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  4. Space station architectural elements and issues definition study

    NASA Technical Reports Server (NTRS)

    Taylor, T. C.; Spencer, J. S.; Rocha, C. J.

    1986-01-01

    A study was conducted to define the architectural elements and issues of the Space Station. The objective of the study was to identify those questions which require further research and suggest ways in which the research can be undertaken. The study examined five primary topics, asked salient questions and described the merits of alternative solutions.

  5. Space Station needs, attributes and architectural options. Volume 2, book 2, part 3: Communication system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.

  6. KSC-04PD-2099

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At the Space Station Processing Facility, a trailer delivers the Cupola, an element scheduled to be installed on the International Space Station in early 2009. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  7. KSC-04PD-2100

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, the Cupola is uncrated. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. The Cupola is an element scheduled to be installed on the International Space Station in early 2009. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1995-04-17

    International Cooperation Phase III: A Space Shuttle docked to the International Space Station (ISS) in this computer generated representation of the ISS in its completed and fully operational state with elements from the U.S., Europe, Canada, Japan, and Russia.

  9. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  10. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  12. Space Station

    NASA Image and Video Library

    1972-01-01

    This is an artist's concept of a modular space station. In 1970 the Marshall Space Flight Center arnounced the completion of a study concerning a modular space station that could be launched by the planned-for reusable Space Shuttle. The study envisioned a space station composed of cylindrical sections 14 feet in diameter and of varying lengths joined to form any one of a number of possible shapes. The sections were restricted to 14 feet in diameter and 58 feet in length to be consistent with a shuttle cargo bay size of 15 by 60 feet. Center officials said that the first elements of the space station could be in orbit by about 1978 and could be manned by three or six men. This would be an interim space station with sections that could be added later to form a full 12-man station by the early 1980s.

  13. KSC-03PD-1954

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  14. Node 1 and PMA-1 are moved for weight and center of gravity determination

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being moved to an element rotation stand, or test stand, where they will undergo an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88.

  15. Space Station environmental control and life support system distribution and loop closure studies

    NASA Technical Reports Server (NTRS)

    Humphries, William R.; Reuter, James L.; Schunk, Richard G.

    1986-01-01

    The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.

  16. Space Station Freedom power management and distribution design status

    NASA Technical Reports Server (NTRS)

    Javidi, S.; Gholdston, E.; Stroh, P.

    1989-01-01

    The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.

  17. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  18. Space Operations Center system analysis. Volume 3, book 1: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program and its elements are described. A work breakdown structure is presented and elements for the habitat and service modules, docking tunnel and airlock modules defined. The basis for the element's design is given. Mass estimates for the elements are presented in the work breakdown structure.

  19. Reference earth orbital research and applications investigations (blue book). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The criteria, guidelines, and an organized approach for use in the space station and space shuttle program definition phase are presented. Subjects discussed are: (1) background information and evolution of the studies, (2) definition of terms used, (3) concepts of the space shuttle, space station, experiment modules, shuttle-sortie operations and modular space station, and (4) summary of functional program element (FPE) requirements. Diagrams of the various configurations and the experimental equipment to be installed in the structures are included.

  20. A continuum model for dynamic analysis of the Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Segun

    1989-01-01

    Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.

  1. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  2. KSC-98pc592

    NASA Image and Video Library

    1998-05-05

    Pressurized Mating Adapter (PMA)-2 is in the process of being mated to Node 1 of the International Space Station (ISS) under the supervision of Boeing technicians in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements

  3. Boeing technicians discuss mating PMA-2 to Node 1 in the SSPF as STS-88 launch preparations continue

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Boeing technicians discuss mating Pressurized Mating Adapter (PMA)-2 to Node 1 of the International Space Station (ISS) in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.

  4. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  5. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  6. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  7. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  8. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  9. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  10. KSC-04PD-2309

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers watch the progress of the Multi-Purpose Logistics Module Leonardo as it moves across the building to the Cargo Element Work Stand that Raffaello recently vacated. The payload canister was a temporary location during the switch. At right is the MPLM Raffaello, temporarily occupying the Element Rotation Stand formerly holding Leonardo. Three MPLMs were built by the Italian Space Agency Donatello, Leonardo and Raffaello to serve as a reusable logistics carrier and primary delivery system to resupply and return cargo requiring a pressurized environment to the International Space Station.

  11. Japanese experiment module (JEM)

    NASA Technical Reports Server (NTRS)

    Kato, T.

    1986-01-01

    Japanese hardware elements studied during the definition phase of phase B are described. The hardware is called JEM (Japanese Experiment Module) and will be attached to the Space Station core. JEM consists of a pressurized module, an exposed facility, a scientific/equipment airlock, a local remote manipulator, and experimental logistic module. With all those hardware elements JEM will accommodate general scientific and technology development research (some of the elements are to utilize the advantage of the microgravity environment), and also accommodate control panels for the Space Station Mobile Remote Manipulator System and attached payloads.

  12. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, B. S.; Lippert, B. O.; Mckee, S. D.; Lewis, J. L., Jr.; Mount, F. E.

    1989-01-01

    An important aspect of planning for Space Station Freedom at the United States National Aeronautics and Space Administration (NASA) is the placement of the viewing windows and cameras for optimum crewmember use. Researchers and analysts are evaluating the placement options using a three-dimensional graphics program called PLAID. This program, developed at the NASA Johnson Space Center (JSC), is being used to determine the extent to which the viewing requirements for assembly and operations are being met. A variety of window placement options in specific modules are assessed for accessibility. In addition, window and camera placements are analyzed to insure that viewing areas are not obstructed by the truss assemblies, externally-mounted payloads, or any other station element. Other factors being examined include anthropometric design considerations, workstation interfaces, structural issues, and mechanical elements.

  13. Efficient placement of structural dynamics sensors on the space station

    NASA Technical Reports Server (NTRS)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  14. Space Station needs, attributes and architectural options. Volume 2, book 1, part 4: Payload element mission data sheets

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Data sheets are presented for 11 internal payloads, 30 externally mounted payloads, and 46 free flyers. The importance of the space station to each payload element is rated on a scale of 1 to 10. The type of experiment noncommercial science and applications, commercial, technological, and operational is indicated and the payload and its objectives are described. Space is provided for noting requirements for power; data/communication; thermal environment; equipment physical characteristics; crew size; and service and maintenance.

  15. KSC-97PC1139

    NASA Image and Video Library

    1997-07-26

    The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  16. KSC-97PC1140

    NASA Image and Video Library

    1997-07-26

    The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  17. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  18. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-10-03

    In this photograph, Russians are working on the aft portion of the United States-funded, Russian-built Functional Cargo Bay (FGB) also known as Zarya (Russian for sunrise). Built at Khrunichev, the FGB began pre-launch testing shortly after this photo was taken. Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, Zarya was the first element of the International Space Station (ISS) followed by the U.S. Unity Node. The aft docking mechanism, Pirs, on the far right with ventilation ducting rurning through it, will be docked with the third Station element, the Russian Service Module, or Zvezda.

  20. KSC-2010-5494

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-5493

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-5492

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where more processing will take place. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  3. KSC-08pd2048

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to install the final solar array wing for the International Space Station onto the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  4. Space Station: Actions Under Way to Manage Cost, but Significant Challenges Remain

    DTIC Science & Technology

    2002-07-01

    GAO United States General Accounting OfficeReport to Congressional CommitteesJuly 2002 SPACE STATION Actions Under Way to Manage Cost , but...because NASA does not have good cost - accounting systems or practices. 1 The estimated cost growth is having a profound effect on the utility of the...SPACE STATION: Actions Under Way to Manage Cost , but Significant Challenges Remain Contract Number Grant Number Program Element Number Author(s

  5. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  6. KSC-08pd3760

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Workers in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida oversee placement of the Cupola module onto a workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  7. KSC-08pd3757

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module is being moved to a workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  8. KSC-08pd3759

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module is lowered toward the workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  9. KSC-08pd3758

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module moves closer to the workstand at right. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  10. PMA-2 is in the process of being mated to Node 1 in the SSPF as STS-88 launch preparations continue

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pressurized Mating Adapter (PMA)-2 is in the process of being mated to Node 1 of the International Space Station (ISS) under the supervision of Boeing technicians in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS- 88 later this year, along with PMAs 1 and 2. This PMA is a cone- shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.

  11. KSC00pp1056

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  12. KSC-00pp1056

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  13. Dynamic loading and stress life analysis of permanent space station modules

    NASA Astrophysics Data System (ADS)

    Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.

    2016-11-01

    Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.

  14. Views of the Mir Space Station during rendezvous

    NASA Image and Video Library

    1997-05-16

    STS084-350-023 (15-24 May 1997) --- A Space Shuttle point-of-view frame showing the docking port and target during rendezvous with Russia's Mir Space Station. The picture should be held horizontally with the retracted Kristall solar array at top. Other elements partially visible are Kvant-2 (left), Spektr (right) and Core Module (bottom).

  15. A Review of International Space Station Habitable Element Equipment Offgassing Characteristics

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2010-01-01

    Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discussed

  16. Space Station needs, attributes and architectural options. Volume 2, book 2, part 2, Task 2: Information management system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.

  17. Space Station needs, attributes and architectural options. Volume 2, book 2, part 2, Task 2: Information management system

    NASA Astrophysics Data System (ADS)

    1983-04-01

    Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.

  18. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41539 (9 Aug. 2007) --- Astronaut Pamela A. Melroy, STS-120 commander, uses the virtual reality lab at Johnson Space Center to train for her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  19. STS-EVA Mass Ops training of the STS-117 EVA crewmembers

    NASA Image and Video Library

    2006-11-01

    JSC2006-E-47612 (1 Nov. 2006) --- Astronaut Steven R. Swanson, STS-117 mission specialist, uses the virtual reality lab at Johnson Space Center to train for his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  20. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41532 (9 Aug. 2007) --- Astronaut Stephanie D. Wilson, STS-120 mission specialist, uses the virtual reality lab at Johnson Space Center to train for her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  1. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41531 (9 Aug. 2007) --- Astronaut Pamela A. Melroy, STS-120 commander, uses the virtual reality lab at Johnson Space Center to train for her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. KSC-00pp1054

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station, is shown on the floor of the Space Station Processing Facility. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  3. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  4. Modeling Array Stations in SIG-VISA

    NASA Astrophysics Data System (ADS)

    Ding, N.; Moore, D.; Russell, S.

    2013-12-01

    We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.

  5. Space Station evolution

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    The Space Station that will be launched and made operational in the early 1990s should be viewed as a beginning, a facility that will evolve with the passing of time to better meet the needs and requirements of a diverse set of users. Evolution takes several forms, ranging from simple growth through addition of infrastructure elements to upgrading of system capability through inclusion of advanced technologies. Much of the early considerations of Space Station evolution focused on physical growth. However, a series of recent workshops have revealed that the more likely mode of Space Station evolution will not be through growth but rather through a process known as 'branching'.

  6. KSC-97PC1138

    NASA Image and Video Library

    1997-07-26

    International Space Station (ISS) contractors erect access scaffolding around the Pressurized Mating Adapter-1 (PMA-1) for the ISS in KSC’s Space Station Processing Facility. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The white flight cables around PMA-1 will assist in connecting the node to the U.S.-financed, Russian-built Functional Cargo Block, a component that supplies early power and propulsion systems for the station. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  7. KSC-97PC1137

    NASA Image and Video Library

    1997-07-26

    International Space Station (ISS) contractors erect access scaffolding around the Pressurized Mating Adapter-1 (PMA-1) for the ISS in KSC’s Space Station Processing Facility. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The white flight cables around PMA-1 will assist in connecting the node to the U.S.-financed, Russian-built Functional Cargo Block, a component that supplies early power and propulsion systems for the station. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  8. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  9. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  10. Space station architectural elements model study. Space station human factors research review

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas C.; Khan, Eyoub; Spencer, John; Rocha, Carlos; Cliffton, Ethan Wilson

    1987-01-01

    Presentation visuals and an extended abstract represent a study to explore and analyze the interaction of major utilities distribution, generic workstation, and spatial composition of the SPACEHAB space station module. Issues addressed include packing densities vs. circulation, efficiency of packing vs. standardization, flexibility vs. diversity, and composition of interior volume as space for living vs. residual negative volume. The result of the study is expected to be a series of observations and preliminary evaluation criteria which focus on the productive living environment for a module in orbit.

  11. Man-systems distributed system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  12. KSC-08pd2049

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to move the final solar array wing for the International Space Station for installation on the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  13. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043667 (25 March 2010) --- NASA astronaut Mark Kelly, STS-134 commander, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  14. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41540 (9 Aug. 2007) --- Astronauts Pamela A. Melroy, STS-120 commander, and European Space Agency's (ESA) Paolo Nespoli, mission specialist, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  15. STS-126 crew during preflight VR LAB MSS EVA2 training

    NASA Image and Video Library

    2008-04-14

    JSC2008-E-033771 (14 April 2008) --- Astronaut Eric A. Boe, STS-126 pilot, uses the virtual reality lab in the Space Vehicle Mockup Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  16. KSC-99pp0659

    NASA Image and Video Library

    1999-05-25

    In The Space Station Processing Facility, a Multi-Element Integration Test (MEIT) is underway to ensure components of the International Space Station work together before they are launched into orbit. Within the framework at right is the U.S. Lab, called Destiny; at left is the Z-1 truss. The current MEIT combines the P-6 photovoltaic module, the Z-1 truss and the Pressurized Mating Adapter 3. Electrical and fluid connections are being hooked up to verify how the ISS elements operate together

  17. Preliminary design of the Space Station environmental control and life support system

    NASA Technical Reports Server (NTRS)

    Reuter, J. L.; Turner, L. D.; Humphries, W. R.

    1988-01-01

    This paper outlines the current status of the Space Station Enrivonmental Control and Life Support System (ECLSS). The seven subsystem groups which comprise the ECLSS are identified and their functional descriptions are provided. The impact that the nominal and safe haven operating requirements have on the physical distribution, sizing, and number of ECLSS subsystems is described. The role that the major ECLSS interfaces with other Space Station systems and elements play in the ECLSS design is described.

  18. Ukrainian network of Optical Stations for man-made space objects observation

    NASA Astrophysics Data System (ADS)

    Sybiryakova, Yevgeniya

    2016-07-01

    The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.

  19. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  20. Lunar base mission technology issues and orbital demonstration requirements on space station

    NASA Technical Reports Server (NTRS)

    Llewellyn, Charles P.; Weidman, Deene J.

    1992-01-01

    The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.

  1. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  2. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  3. KSC-04PD-2098

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The Cupola, an element scheduled to be installed on the International Space Station in early 2009, arrives at KSC on the flatbed of a trailer. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  4. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  5. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121049 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (foreground), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  6. STS-133 crew training in VR Lab with replacement crew member Steve Bowen

    NASA Image and Video Library

    2011-01-24

    JSC2011-E-006293 (24 Jan. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  7. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  8. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121056 (27 Aug. 2010) --- NASA astronaut Gregory H. Johnson, STS-134 pilot, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  9. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  10. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  11. KSC-20171002-MH-CSH01_0001-MISSE_Arrival_Integration_H265-3170951

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE is unpacked and moved for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  12. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014952 (28 Jan. 2010) --- NASA astronauts Michael Good (seated) and Garrett Reisman, both STS-132 mission specialists, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  13. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043666 (25 March 2010) --- NASA astronauts Mark Kelly (background), STS-134 commander; and Andrew Feustel, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  14. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043668 (25 March 2010) --- NASA astronauts Mark Kelly (background), STS-134 commander; and Andrew Feustel, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  15. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  16. KSC-00pp1057

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  17. KSC00pp1057

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  18. Advancing automation and robotics technology for the space station and the US economy

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  19. NASA Expands BEAM’s Mission

    NASA Image and Video Library

    2017-12-05

    The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  20. Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.

  1. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41541 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist, and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. Element material experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ichikawa, Masaaki; Takei, Mitsuru; Torii, Yoshihiro; Ota, Kazuo

    1995-01-01

    National Space Development Agency of JAPAN (NASDA) is planning to perform Element Material Exposure Experiment using Exposed Facility Flyer Unit (EFFU). Several materials which will be used on JEM (Japanese Experiment Module for the space station) will be exposed. Space environment monitoring is also planned in this experiment. Several ground based tests are now being performed and getting useful data.

  3. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  4. KSC-04pd1676

    NASA Image and Video Library

    2004-08-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a worker observes data from the Traveled Work Systems Test (TWST) conducted on the Node 2. The TWST executes open work that traveled with the Node 2 from Italy and simulates the on-orbit activation sequence. Node 2 was powered up Aug. 19 for the testing. The second of three Space Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Node 2 is scheduled to launch on mission STS-120, assembly flight 10A to the International Space Station.

  5. KSC-00pp1387

    NASA Image and Video Library

    2000-09-07

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program

  6. KSC-00pp1389

    NASA Image and Video Library

    2000-09-07

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program

  7. KSC Space Station Operations Language (SSOL)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station Operations Language (SSOL) will serve a large community of diverse users dealing with the integration and checkout of Space Station modules. Kennedy Space Center's plan to achieve Level A specification of the SSOL system, encompassing both its language and its automated support environment, is presented in the format of a briefing. The SSOL concept is a collection of fundamental elements that span languages, operating systems, software development, software tools and several user classes. The approach outlines a thorough process that combines the benefits of rapid prototyping with a coordinated requirements gathering effort, yielding a Level A specification of the SSOL requirements.

  8. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  9. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  10. Space Station Systems Analysis Study. Volume 1: Executive summary, part 1 and 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The elements of space station programs required to support an operational base theme, a space laboratory theme, and advanced missions relatable to public needs/national interests are defined. Missions satisfying the foregoing requirements are identified, program scenarios/options are established. System options are evaluated for a selected number of program options. Subsystem analysis and programmatic comparisons are performed for selected primary concepts.

  11. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- In its overhead passage down the Space Station Processing Facility, the U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo. Both are elements in the construction of the International Space Station. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  12. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  13. International utilization and operations

    NASA Technical Reports Server (NTRS)

    Goldberg, Stanley R.

    1989-01-01

    The international framework of the Space Station Freedom Program is described. The discussion covers the U.S. space policy, international agreements, international Station elements, overall program management structure, and utilization and operations management. Consideration is also given to Freedom's user community, Freedom's crew, pressurized payload and attached payload accommodations, utilization and operations planning, user integration, and user operations.

  14. International Space Station (ISS)

    NASA Image and Video Library

    1995-07-11

    Artist's concept for Phase III of the International Space Station (ISS) as shown here in its completed and fully operational state with elements from the United States, Europe, Canada, Japan, and Russia. Sixteen countries are cooperating to provide a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  15. Concept for a commercial space station laboratory

    NASA Technical Reports Server (NTRS)

    Wood, P. W.; Stark, P. M.

    1984-01-01

    The concept of a privately owned and operated fee-for-service laboratory as an element of a civil manned space station, envisioned as the venture of a group of private investors and an experienced laboratory operator to be undertaken with the cooperation of NASA is discussed. This group would acquire, outfit, activate, and operate the labortory on a fee-for-service basis, providing laboratory services to commercial firms, universities, and government agencies, including NASA. This concept was developed to identify, stimulate, and assist potential commercial users of a manned space station. A number of the issues which would be related to the concept, including the terms under which NASA might consider permitting private ownership and operation of a major space station component, the policies with respect to international participation in the construction and use of the space station, the basis for charging users for services received from the space station, and the types of support that NASA might be willing to provide to assist private industry in carrying out such a venture are discussed.

  16. STS-88 Crew Interview: Nancy Currie

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Nancy Currie discusses the seven-day mission that will be highlighted by the mating of the U.S.-built Node 1 station element to the Functional Energy Block (FGB) which will already be in orbit, and two spacewalks to connect power and data transmission cables between the Node and the FGB. Node 1 will be the first Space Station hardware delivered by the Space Shuttle. He also disscusses the assembly sequence. The crew will conduct a series of rendezvous maneuvers similar to those conducted on other Shuttle missions to reach the orbiting FGB. Once the two elements are docked, Ross and Newman will conduct two scheduled spacewalks to connect power and data cables between the Node, PMAs and the FGB. The day following the spacewalks, Endeavour will undock from the two components, completing the first Space Station assembly mission.

  17. Secondary impact hazard assessment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of light gas gun shots (4 to 7 km/sec) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure. The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoroid and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality. The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problem from these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris. The hazard to a Space Station element from secondary particles above and beyond the micrometeoroid and orbital debris hazard is categorized in terms of two factors: (1) the 'view factor' of the element to other Space Station structure or the geometry of placement of the element, and (2) the sensitivity to damage, stated in terms of energy. Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated critical energy. A key assumption in these calculations is that above a certain critical energy, significant damage will be done. This is not true for all structures. Double-walled, bumpered structures are an example for which damage may be reduced as energy goes up. The critical energy assumption is probably conservative, however, in terms of secondary damage. To understand why the secondary impacts seem to, in general, contribute less than 10 percent of the flux above a given critical energy, consider the case of a meteoroid impact of a given energy on a fixed, large surface. This impact results in a variety of secondary particles, all of which have much less energy than the original impact. Conservation of energy prohibits any other situation. Thus if damage is linked to a critical energy of a particle, the primary flux will always deliver particles of much greater energy. Even if all the secondary particles impacted other Space Station structures, none would have a kinetic energy more than a fraction of the primary impact energy.

  18. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  19. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  20. The manned space station

    NASA Astrophysics Data System (ADS)

    Kovit, B.

    The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.

  1. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043673 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  2. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043661 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  3. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014953 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  4. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014949 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  5. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014956 (28 Jan. 2010) --- NASA astronauts Ken Ham (left foreground), STS-132 commander; Michael Good, mission specialist; and Tony Antonelli (right), pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  6. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214346 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  7. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214328 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  8. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014951 (28 Jan. 2010) --- NASA astronauts Michael Good (seated), Garrett Reisman (right foreground), both STS-132 mission specialists; and Tony Antonelli, pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  9. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043662 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  10. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214321 (25 Sept. 2009) --- NASA astronauts James P. Dutton Jr., STS-131 pilot; and Stephanie Wilson, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  11. Space station integrated propulsion and fluid system study: Fluid systems configuration databook

    NASA Technical Reports Server (NTRS)

    Rose, L.; Bicknell, B.; Bergman, D.; Wilson, S.

    1987-01-01

    This databook contains fluid system requirements and system descriptions for Space Station program elements including the United States and International modules, integrated fluid systems, attached payloads, fluid servicers and vehicle accommodation facilities. Separate sections are devoted to each of the program elements and include a discussion of the overall system requirements, specific fluid systems requirements and systems descriptions. The systems descriptions contain configurations, fluid inventory data and component lists. In addition, a list of information sources is referenced at the end of each section.

  12. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  13. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build- ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  14. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  15. Charter for Systems Engineer Working Group

    NASA Technical Reports Server (NTRS)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  16. KSC-00pp1060

    NASA Image and Video Library

    2000-07-31

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  17. KSC-00pp1059

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy discusses the significance of the Z-1 Truss during a press conference after the presentation. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  18. KSC-00pp1058

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  19. International interface design for Space Station Freedom - Challenges and solutions

    NASA Technical Reports Server (NTRS)

    Mayo, Richard E.; Bolton, Gordon R.; Laurini, Daniele

    1988-01-01

    The definition of interfaces for the International Space Station is discussed, with a focus on negotiations between NASA and ESA. The program organization and division of responsibilities for the Space Station are outlined; the basic features of physical and functional interfaces are described; and particular attention is given to the interface management and documentation procedures, architectural control elements, interface implementation and verification, and examples of Columbus interface solutions (including mechanical, ECLSS, thermal-control, electrical, data-management, standardized user, and software interfaces). Diagrams, drawings, graphs, and tables listing interface types are provided.

  20. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.

    1993-01-01

    Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.

  1. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41533 (9 Aug. 2007) --- Astronauts Stephanie Wilson (left), STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  3. KSC-07pd0306

    NASA Image and Video Library

    2007-02-06

    KENNEDY SPACE CENTER, FLA. -- On the floor of the Space Station Processing Facility, astronauts Dan Tani (left) and Peggy Whitson practice working with a cover, something they may handle during an upcoming shuttle flight. With construction of the Space Station the primary focus of future shuttle missions, astronaut crews will be working with one or more of the elements and hardware already being processed in the SSPF. Photo credit: NASA/Kim Shiflett

  4. Space Station Freedom media handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This handbook explains in lay terms, the work that is going on at the NASA Centers and contractors' plants in designing and developing the Space Station Freedom. It discusses the roles, responsibilities, and tasks required to build the Space Station Freedom's elements, systems, and components. New, required ground facilities are described, organized by NASA Center in order to provide a local angle for the media. Included are information on the historical perspective, international aspects, the utilization of the Space Station Freedom, a look at future possibilities, a description of the program, its management, program phases and milestones, and considerable information on the role of various NASA Centers, contractors and international partners. A list of abbreviations, a four-page glossary, and a list of NASA contacts are contained in the appendices.

  5. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121045 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (right), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. David Homan assisted Feustel. Photo credit: NASA or National Aeronautics and Space Administration

  6. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    NASA Technical Reports Server (NTRS)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  7. Noguchi during STORMM Reflector Relocation

    NASA Image and Video Library

    2010-04-16

    S131-E-010335 (16 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, works to relocate a reflective element on the PMA-2 docking target in support of the Sensor Test for Orion Relative Navigation Risk Mitigation (STORRM) on the International Space Station while space shuttle Discovery (STS-131) remains docked with the station.

  8. KSC-07pd2868

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is lowered toward the base for installation. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  9. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    NASA Technical Reports Server (NTRS)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  10. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  11. Boeing technicians join Node 1 for ISS to PMA-1 in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boeing technicians join Node 1 for the International Space Station (ISS) with the Pressurized Mating Adapter (PMA)-1 in KSC's Space Station Processing Facility. This PMA, identifiable by its bright red ring, is a cone-shaped connector for the space station's structural building block, known as Node 1. Seen here surrounded by scaffolding, Node 1 will have two PMAs attached, the second of which is scheduled for mating to the node in January 1998. The node and PMAs, which will be the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.

  12. Surface navigation on Mars with a Navigation Satellite

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    1992-01-01

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  13. Surface navigation on Mars with a Navigation Satellite

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  14. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  15. KSC-08pd0606

    NASA Image and Video Library

    2008-02-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Special Purpose Dexterous Manipulator, known as Dextre, to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company

  16. KSC-08pd0608

    NASA Image and Video Library

    2008-02-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves nearer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company

  17. KSC-08pd0604

    NASA Image and Video Library

    2008-02-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company

  18. KSC-08pd0607

    NASA Image and Video Library

    2008-02-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves closer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company

  19. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41538 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. A computer display is visible in the foreground.

  20. Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.

  1. KENNEDY SPACE CENTER, FLA. - NASA Manager Steve Cain explains aspects of Space Shuttle processing to Consul General of Japan Ko Kodaira and his family in the Orbiter Processing Facility during their visit to Kennedy Space Center (KSC). From left are Kodaira's wife Marie, his daughter Reiko, Kodaira, and Cain, Senior Future International Space Station Element Manager. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.

    NASA Image and Video Library

    2003-08-26

    KENNEDY SPACE CENTER, FLA. - NASA Manager Steve Cain explains aspects of Space Shuttle processing to Consul General of Japan Ko Kodaira and his family in the Orbiter Processing Facility during their visit to Kennedy Space Center (KSC). From left are Kodaira's wife Marie, his daughter Reiko, Kodaira, and Cain, Senior Future International Space Station Element Manager. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.

  2. Space Station Freedom - Optimized to support microgravity research and earth observations

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.; Herman, Daniel J.

    1990-01-01

    The Space Station Freedom Program is reviewed, with particular attention given to the Space Station configuration, program elements description, and utilization accommodation. Since plans call for the assembly of the initial SSF configuration over a 3-year time span, it is NASA's intention to perform useful research on it during the assembly process. The research will include microgravity experiments and observational sciences. The specific attributes supporting these attempts are described, such as maintainance of a very low microgravity level and continuous orientation of the vehicle to maintain a stable, accurate local-vertical/local-horizontal attitude.

  3. STS-92 group photo with workers in SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers who have supported mission STS-92 gather for a photo with the crew: (left to right) Mission Specialists Koichi Wakata of Japan, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao; Pilot Pam Melroy; and Commander Brian Duffy. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  4. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Astrophysics Data System (ADS)

    Vaughan, W. W.; Green, C. E.

    1985-03-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  5. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.; Green, C. E.

    1985-01-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  6. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  7. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  8. Management of the Space Station Freedom onboard local area network

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.; Mitchell, Randy C.

    1991-01-01

    An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-06-08

    Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.

  10. EAC training and medical support for International Space Station astronauts.

    PubMed

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2000-11-01

    The operation of the International Space Station (ISS) will be a global multilateral endeavour. Each International Partner will be responsible for the operation of its elements and for providing a crew complement proportional to its share of the overall resources. The preparations of the European Astronaut Centre to furnish training and medical support for the ISS astronauts are described.

  11. Natural environment design criteria for the space station program definition phase

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1984-01-01

    The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.

  12. STS-117 Media Showcase

    NASA Image and Video Library

    2007-02-06

    In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

  13. Space Shuttle Solid Rocket Booster Lightweight Recovery System

    NASA Technical Reports Server (NTRS)

    Wolf, Dean; Runkle, Roy E.

    1995-01-01

    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.

  14. Direct solar heating for Space Station application

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.

  15. The International Space Station Assembly on Schedule

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.

  16. KSC-07pd2871

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians help guide the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, into place for installation on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  17. KSC-07pd2863

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is ready to be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  18. KSC-07pd2870

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians help guide the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, into place for installation on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  19. KSC-07pd2866

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is moved across the facility. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  20. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, photographers focus on the Integrated Truss Structure Z1, an element of the International Space Station, suspended by a crane overhead. The truss is being moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  1. KSC-08pd0605

    NASA Image and Video Library

    2008-02-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister at right for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company

  2. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  3. The International Space Station: A Pathway to the Future

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas

    2004-01-01

    Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

  4. KSC00pp0849

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  5. KSC-00pp0849

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  6. A study of concept options for the evolution of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kowitz, Herbert R.; Brender, Karen D.; Cirillo, William M.; Collier, Lisa; Ganoe, George G.; Gould, Marston J.; Kaszubowski, Martin; Lawrence, George F.; Llewellyn, Charles P.; Reaux, Ray

    1990-01-01

    Two conceptual evolution configurations for Space Station Freedom, a research and development configuration, and a transportation node configuration are described and analyzed. Results of pertinent analyses of mass properties, attitude control, microgravity, orbit lifetime, and reboost requirements are provided along with a description of these analyses. Also provided are brief descriptions of the elements and systems that comprise these conceptual configurations.

  7. Space station systems analysis study. Part 1, volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.

  8. Space Station accommodation of life sciences in support of a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.; Willshire, Kelli F.; Hagaman, Jane A.; Seddon, Rhea M.

    1989-01-01

    Results of a life science impact analysis for accommodation to the Space Station of a manned Mars mission are discussed. In addition to addressing such issues as on-orbit vehicle assembly and checkout, the study also assessed the impact of a life science research program on the station. A better understanding of the effects on the crew of long duration exposure to the hostile space environment and to develop controls for adverse effects was the objective. Elements and products of the life science accommodation include: the identification of critical research areas; the outline of a research program consistent with the mission timeframe; the quantification of resource requirements; the allocation of functions to station facilities; and a determination of the impact on the Space Station program and of the baseline configuration. Results indicate the need at the Space Station for two dedicated life science lab modules; a pocket lab to support a 4-meter centrifuge; a quarantine module for the Mars Sample Return Mission; 3.9 man-years of average crew time; and 20 kilowatts of electrical power.

  9. STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.

    NASA Image and Video Library

    2005-05-06

    JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.

  10. KSC-00pp1055

    NASA Image and Video Library

    2000-07-31

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)

  11. KSC-00pp1053

    NASA Image and Video Library

    2000-07-31

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At the bottom left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. The truss is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the center of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)

  12. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch).

  13. KSC-00pp1442

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- A training officer controls elements of a fire training exercise at Cape Canaveral Air Force Station Pad 30 for firefighters with Fire and Emergency Services at the Naval Station Mayport, Fla. The firefighters tackled flames from a burning simulated aircraft.

  14. KSC00pp1442

    NASA Image and Video Library

    2000-09-14

    KENNEDY SPACE CENTER, FLA. -- A training officer controls elements of a fire training exercise at Cape Canaveral Air Force Station Pad 30 for firefighters with Fire and Emergency Services at the Naval Station Mayport, Fla. The firefighters tackled flames from a burning simulated aircraft.

  15. Unity connecting module placed in new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  16. Trajectory determinations and collection of micrometeoroids on the space station. Report of the Workshop on Micrometeorite Capture Experiments

    NASA Technical Reports Server (NTRS)

    Hoerz, F. (Editor)

    1986-01-01

    Summaries of papers presented at the Workshop on Micrometeorite Capture Experiments are compiled. The goals of the workshop were to define the scientific objectives and the resulting performance requirements of a potential Space Station facility and to identify the major elements of a coherent development program that would generate the desired capabilities within the next decade. Specific topics include cosmic dust and space debris collection techniques, particle trajectory and source determination, and specimen analysis methods.

  17. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    NASA Technical Reports Server (NTRS)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  18. Preliminary control/structure interaction study of coupled Space Station Freedom/Assembly Work Platform/orbiter

    NASA Technical Reports Server (NTRS)

    Singh, Sudeep K.; Lindenmoyer, Alan J.

    1989-01-01

    Results are presented from a preliminary control/structure interaction study of the Space Station, the Assembly Work Platform, and the STS orbiter dynamics coupled with the orbiter and station control systems. The first three Space Station assembly flight configurations and their finite element representations are illustrated. These configurations are compared in terms of control authority in each axis and propellant usage. The control systems design parameters during assembly are computed. Although the rigid body response was acceptable with the orbiter Primary Reaction Control System, the flexible body response showed large structural deflections and loads. It was found that severe control/structure interaction occurred if the stiffness of the Assembly Work Platform was equal to that of the station truss. Also, the response of the orbiter Vernier Reaction Control System to small changes in inertia properties is examined.

  19. International Space Station Bacteria Filter Element Service Life Evaluation

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  20. Crewmembers Celebrate Thanksgiving on MDDK

    NASA Image and Video Library

    2008-11-27

    S126-E-013836 (27 Nov. 2008) --- Stationed near the shuttle's galley and stowage lockers, astronauts Heidemarie Stefanyshyn-Piper and Shane Kimbrough, STS-126 mission specialists, assemble the elements of Thanksgiving dinner on the middeck of the Space Shuttle Endeavour, while the orbiter is docked with the International Space Station. A Russian cosmonaut and seven other astronauts are not far away from the scene and all ten shared the meal and observance at a common place and time, on the eve of the scheduled Nov. 28 undocking of the shuttle and station.

  1. Progress toward establishing a US national laboratory on the International Space Station

    NASA Astrophysics Data System (ADS)

    Uhran, Mark L.

    2010-01-01

    The International Space Station (ISS) is rapidly approaching the long-awaited completion of assembly. All United States (US) core elements have been integrated and tested on-orbit and the principle elements of the European and Japanese laboratories were successfully deployed in 2008. The fully envisioned configuration is on schedule to be completed as planned by the end of US government fiscal year 2010. Section 507 of the NASA Authorization Act of 2005 designated the US segment of the ISS as a " national laboratory", thereby opening up its use to other US government agencies, US private firms and US non-profit institutions. This paper reports on progress toward identifying and entering into agreements with entities outside of NASA that plan to use the ISS in the post-assembly timeframe. The original 1984 vision of a robust, multi-mission space station serving as a platform for the advancement of US science, technology and industry will soon be achieved.

  2. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, cranes help offload the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane. The third of three for the International Space Station, the module will be moved on a transporter to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  3. KSC-07pd2867

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is moved toward the base, in the background. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  4. KSC-07pd2869

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians aid with the lowering of the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, toward the base. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  5. KSC-07pd2864

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians adjust the cables of an overhead crane on the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre. The arm will be moved to and installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  6. KSC-07pd2865

    NASA Image and Video Library

    2007-10-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians begin raising the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, for its move across the facility. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton

  7. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is moved closer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  8. Preparation and Launch of the JEM ISS Elements - A NASA Mission Manager's Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    The pre-flight launch site preparations and launch of the Japanese Experiment Module (JEM) elements of the International Space Station required an intense multi-year, international collaborative effort between US and Japanese personnel at the Kennedy Space Center (KSC). This presentation will provide a brief overview of KSC, a brief overview of the ISS, and a summary of authors experience managing the NASA team responsible that supported and conducted the JEM element operations.

  9. Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.

    2007-01-01

    The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.

  10. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  11. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  13. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  14. Real-Time Operation of the International Space Station

    NASA Astrophysics Data System (ADS)

    Suffredini, M. T.

    2002-01-01

    The International Space Station is on orbit and real-time operations are well underway. Along with the assembly challenges of building and operating the International Space Station , scientific activities are also underway. Flight control teams in three countries are working together as a team to plan, coordinate and command the systems on the International Space Station.Preparations are being made to add the additional International Partner elements including their operations teams and facilities. By October 2002, six Expedition crews will have lived on the International Space Station. Management of real-time operations has been key to these achievements. This includes the activities of ground teams in control centers around the world as well as the crew on orbit. Real-time planning is constantly challenged with balancing the requirements and setting the priorities for the assembly, maintenance, science and crew health functions on the International Space Station. It requires integrating the Shuttle, Soyuz and Progress requirements with the Station. It is also necessary to be able to respond in case of on-orbit anomalies and to set plans and commands in place to ensure the continues safe operation of the Station. Bringing together the International Partner operations teams has been challenging and intensely rewarding. Utilization of the assets of each partner has resulted in efficient solutions to problems. This paper will describe the management of the major real-time operations processes, significant achievements, and future challenges.

  15. KSC-00pp1662

    NASA Image and Video Library

    2000-11-07

    The International Space Station ground operations officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key is presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to him are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  16. KSC00pp1662

    NASA Image and Video Library

    2000-11-07

    The International Space Station ground operations officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key is presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to him are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  17. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  18. Development of an Environmental Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.

    1999-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  19. An Environment Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, M. Ralph; Clifton, Kenneth S.

    1998-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  20. Thermal protection in space technology

    NASA Technical Reports Server (NTRS)

    Salakhutdinov, G. M.

    1982-01-01

    The provision of heat protection for various elements of space flight apparata has great significance, particularly in the construction of manned transport vessels and orbital stations. A popular explanation of the methods of heat protection in rocket-space technology at the current stage as well as in perspective is provided.

  1. The evolution of automation and robotics in manned spaceflight

    NASA Technical Reports Server (NTRS)

    Moser, T. L.; Erickson, J. D.

    1986-01-01

    The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.

  2. Space station human productivity study. Volume 4: Issues

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The 305 Issues contained represent topics recommended for study in order to develop requirements in support of space station crew performance/productivity. The overall subject matter, space station elements affecting crew productivity, was organized into a coded subelement listing, which is included for the reader's reference. Each issue is numbered according to the 5-digit topical coding scheme. The requirements column on each Issue page shows a cross-reference to the unresolved requirement statement(s). Because topical overlaps were frequently encountered, many initial Issues were consolidated. Apparent gaps, therefore, may be accounted for by an Issue described within a related subelement. A glossary of abbreviations used throughout the study documentation is also included.

  3. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  4. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  5. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  6. Design of a monitor and simulation terminal (master) for space station telerobotics and telescience

    NASA Technical Reports Server (NTRS)

    Lopez, L.; Konkel, C.; Harmon, P.; King, S.

    1989-01-01

    Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator.

  7. Computer-aided modeling and prediction of performance of the modified Lundell class of alternators in space station solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Demerdash, Nabeel A. O.; Wang, Ren-Hong

    1988-01-01

    The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.

  8. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  9. ISS Node-1 and PMA-1 rotated in KSC's SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.

  10. Development and testing of the rack insertion device

    NASA Technical Reports Server (NTRS)

    Strickland, G. Scott

    1995-01-01

    Installing and removing experiment racks in a Space Station Logistics Module will become a repetitive operation at Kennedy Space Center (KSC) in the near future. A Rack Insertion Device (RID) consisting of an Extendible Boom, End Effector, and Positioning Base is being developed for the task. This paper discusses the key elements of the RlD's function and design. Prototype test results for the RlD's Extendible Boom and End Effector are presented. Also discussed are future end effectors that will further enhance the RlD's Space Station processing capability.

  11. KSC00pp1374

    NASA Image and Video Library

    2000-09-15

    KENNEDY SPACE CENTER, FLA. -- STS-92 Commander Brian Duffy is seated at the controls of Discovery to take part in a simulated countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that he and other crew members have been performing. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  12. KSC-00pp1374

    NASA Image and Video Library

    2000-09-15

    KENNEDY SPACE CENTER, FLA. -- STS-92 Commander Brian Duffy is seated at the controls of Discovery to take part in a simulated countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that he and other crew members have been performing. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  13. KSC-00pp0846

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  14. KSC-00pp0850

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  15. KSC-00pp0841

    NASA Image and Video Library

    2000-06-30

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  16. KSC-00pp0842

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  17. KSC-00pp0844

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  18. KSC00pp0862

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  19. KSC-00pp0845

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  20. KSC-00pp0852

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  1. KSC00pp0864

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  2. KSC00pp0844

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  3. KSC00pp0846

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  4. KSC-00pp0843

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  5. KSC-00pp0864

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  6. KSC00pp0841

    NASA Image and Video Library

    2000-06-30

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  7. KSC00pp0851

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  8. KSC-00pp0848

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  9. KSC-00pp0851

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  10. KSC-00pp0847

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  11. KSC00pp0842

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  12. KSC00pp0850

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  13. KSC00pp0848

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  14. KSC-00pp0862

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  15. KSC00pp0852

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  16. KSC00pp0843

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  17. KSC00pp0845

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  18. KSC00pp0847

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  19. International Space Station (ISS)

    NASA Image and Video Library

    2003-02-09

    This is the STS-115 insignia. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4. Following the installation of the segments utilizing both the shuttle and the station robotic arms, a series of three space walks completed the final connections and prepared for the deployment of the station's second set of solar arrays. To reflect the primary mission of the flight, the patch depicts a solar panel as the main element. As the Space Shuttle Atlantis launches towards the ISS, its trail depicts the symbol of the Astronaut Office. The star burst, representing the power of the sun, rises over the Earth and shines on the solar panel. The shuttle flight number 115 is shown at the bottom of the patch, along with the ISS assembly designation 12A (the 12th American assembly mission). The blue Earth in the background reminds us of the importance of space exploration and research to all of Earth's inhabitants.

  20. Space: exploration-exploitation and the role of man.

    PubMed

    Loftus, J P

    1986-10-01

    The early years of space activity have emphasized a crew role similar to that of the test pilot or the crew of a high performance aircraft; even the Apollo lunar exploration missions were dominated by the task of getting to and from the moon. Skylab was a prototype space station and began to indicate the range of other functional roles man will play in space. The operation of the Space Shuttle has the elements of the operation of any other high performance flight vehicle during launch and landing; but in its on-orbit operations, it is often a surrogate space station, developing techniques and demonstrating the role of a future space station in various functions. In future space systems, the role of the crew will encompass all of the activities pursued in research laboratories, manufacturing facilities, maintenance shops, and construction sites. The challenge will be to design the tasks and the tools so that the full benefit of the opportunities offered by performing these functions in space can be attained.

  1. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments.

  2. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers standing inside the payload canister help guide the Joint Airlock Module into place. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  3. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is lifted from its workstand for a transfer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  4. High data rate modem simulation for the space station multiple-access communications system

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    1987-01-01

    The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.

  5. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  6. Space Station Crew Member Discusses Robotics with Puerto Rican Students

    NASA Image and Video Library

    2018-01-12

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed various elements of robotic hardware and robotic work on the orbital laboratory during an in-flight educational event Jan. 12 with students gathered at the Puerto Rico Institute of Robotics in San Juan, Puerto Rico. Acaba, who has roots in Puerto Rico, is scheduled to return to Earth in late February to complete a five-and-a-half month mission.

  7. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  8. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  9. EVA training for Exp. 27 crew member Ron Garan, Exp. 28 Mike Fossum and STS-135 Doug Hurley, Rex Walheim and Sandra Magnus

    NASA Image and Video Library

    2011-01-18

    JSC2011-E-003204 (18 Jan. 2011) --- NASA astronauts Rex Walheim, STS-135 mission specialist; and Mike Fossum (foreground), Expedition 28 flight engineer and Expedition 29 commander; use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  10. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  11. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  12. Space station thermal control surfaces. Volume 1: Interim report

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.

    1978-01-01

    The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.

  13. KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  14. Columbus future evolution potential

    NASA Astrophysics Data System (ADS)

    Altmann, G.; Rausch, G.; Sax, H.

    Europe is at a crossroads in the evolution of manned space flight. Following the invitation of President Reagan to participate in the US Space Station Programme, Europe is now to decide on the content and financial envelope for such a programme. The actual path chosen will determine the way forward to the end of this century and beyond. The preparatory Columbus programme initiated in 1985 and planned to be completed by the end of 1987 has now reached a critical point with the definition of a new programme baseline for further study in phase B2 running from November 1986 to May 1987. The new programme baseline as described in chapter 3 covers the following elements: ∘ A pressurised module for permanent attachment to the NASA Space Station, to be launched by the NASA STS. ∘ A man-tended free flyer (MTFF) consisting of a pressurised module and a resource module to be designed and developed for a launch by ARIANE 5. ∘ A polar platform primarily dedicated to Earth Observation user requirements designed for launch by ARIANE 5. ∘ As an option an enhanced version of the present EURECA carrier to be deployed as a coorbiting platform dedicated primarily to microgravity and space sciences. The planned contribution to the international Space Station based on the above space segment definition must be viewed in the light of a European long term plan, the ultimate goal of which is an autonomous capability. Considering that the core element of a potential European Space Station is the MTFF the paper will describe in more detail how the presently defined MTFF capability could grow further to satisfy the needs of interested user communities in the long term. The evolution of this element will essentially pass through two stages, the man-tended stage during which automated systems (robotics) will assist with the implementation of research and commercial processes and the manned stage where permanent presence of man in combination with automated systems will bring about the degree of flexibility needed for efficient operations in space. The present assumptions made in the context of describing the future potential of the MTFF are subject to revision as further results become available from the ongoing COLUMBUS programme definition process.

  15. STS-100 MPLM Raffaello is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The Multi-Purpose Logistics Module Raffaello is lowered into the payload canister alongside the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS-100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.

  16. STS-100 MPLM Raffaello is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Viewed from the end, the Multi- Purpose Logistics Module Raffaello is lowered into the payload canister behind the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS-100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.

  17. Video requirements for materials processing experiments in the space station US laboratory

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.

    1989-01-01

    Full utilization of the potential of the materials research on the Space Station can be achieved only if adequate means are available for interactive experimentation between the science facilities and ground-based investigators. Extensive video interfaces linking these three elements are the only alternative for establishing a viable relation. Because of the limit in the downlink capability, a comprehensive complement of on-board video processing, and video compression is needed. The application of video compression will be an absolute necessity since it's effectiveness will directly impact the quantity of data which will be available to ground investigator teams, and their ability to review the effects of process changes and the experiment progress. Video data compression utilization on the Space Station is discussed.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  19. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, taxis onto the parking apron at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  20. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (right) help guide offloading of the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  1. KSC01pp0234

    NASA Image and Video Library

    2001-02-01

    An Airbus “Beluga” air cargo plane, The Super Transporter, taxis onto the parking apron at KSC’s Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency’s Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo

  2. The Automated Logistics Element Planning System (ALEPS)

    NASA Technical Reports Server (NTRS)

    Schwaab, Douglas G.

    1991-01-01

    The design and functions of ALEPS (Automated Logistics Element Planning System) is a computer system that will automate planning and decision support for Space Station Freedom Logistical Elements (LEs) resupply and return operations. ALEPS provides data management, planning, analysis, monitoring, interfacing, and flight certification for support of LE flight load planning activities. The prototype ALEPS algorithm development is described.

  3. KSC-04PD-2102

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, a technician begins checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  4. KSC-04PD-2103

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, technicians begin checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys, and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  5. 2013 certified IMS infrasound stations: IS37 (Bardufoss, Norway) and IS58 (Midway, USA)

    NASA Astrophysics Data System (ADS)

    Haralabus, Georgios; Marty, Julien; Kramer, Alfred; Mialle, Pierrick; Robertson, James

    2014-05-01

    The Infrasound component of the International Monitoring System (IMS) of the Comprehensive Nuclear?Test?Ban Treaty Organization (CTBTO) includes 60 infrasound stations out of which 47 are currently certified. The latest two additions to this Infrasound network, namely IS58 on Sand Island, Midway Atoll, United States of America (USA), and IS37 in Bardufoss, Norway, are presented here. Both stations were certified in 2013. IS58 is a 4 element infrasound array arranged in a triangular geometry with a central component. The triangular bases vary from 1.1 to 1.8 km. The micropressure sensors deployed at each element were Chaparral 50A microbarometers. Signals from IS58 were processed by the International Data Centre (IDC) and detection associated not only with microbaroms but also with the activity of the Kliuchevskoi volcano in the Russian Peninsula Kamchatka were built. These initial results indicate good detection capability of the IS58 station for low wind conditions. In Norway the topography allowed for a large element array, so IS37 was built with 10-elements that have average spacing of 1 km. This design allows the formation of several triangles with baseline of 1 to 2 km and also a triangular sub array with spacing of approximately 360 m. The sensors utilized in IS37 elements were MB2005 microbarometers. Initial data analysis by IDC identified distant microbarom sources with strong azimuth and frequency content variability as well as strong detections from local sources, namely the Finnfjord ferro-alloy plant in Norway and the Kiruna iron mine in Sweden.

  6. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  7. Space station architectural elements model study

    NASA Technical Reports Server (NTRS)

    Taylor, T. C.; Spencer, J. S.; Rocha, C. J.; Kahn, E.; Cliffton, E.; Carr, C.

    1987-01-01

    The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused) volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor.

  8. Characterization of Bacilli Isolated from the Confined Environments of the Antarctic Concordia Station and the International Space Station

    NASA Astrophysics Data System (ADS)

    Timmery, Sophie; Hu, Xiaomin; Mahillon, Jacques

    2011-05-01

    Bacillus and related genera comprise opportunist and pathogen species that can threaten the health of a crew in confined stations required for long-term missions. In this study, 43 Bacilli from confined environments, that is, the Antarctic Concordia station and the International Space Station, were characterized in terms of virulence and plasmid exchange potentials. No specific virulence feature, such as the production of toxins or unusual antibiotic resistance, was detected. Most of the strains exhibited small or large plasmids, or both, some of which were related to the replicons of the Bacillus anthracis pXO1 and pXO2 virulence elements. One conjugative element, the capacity to mobilize and retromobilize small plasmids, was detected in a Bacillus cereus sensu lato isolate. Six out of 25 tested strains acquired foreign DNA by conjugation. Extremophilic bacteria were identified and exhibited the ability to grow at high pH and salt concentrations or at low temperatures. Finally, the clonal dispersion of an opportunist isolate was demonstrated in the Concordia station. Taken together, these results suggest that the virulence potential of the Bacillus isolates in confined environments tends to be low but genetic transfers could contribute to its capacity to spread.

  9. Automation and robotics and related technology issues for Space Station customer servicing

    NASA Technical Reports Server (NTRS)

    Cline, Helmut P.

    1987-01-01

    Several flight servicing support elements are discussed within the context of the Space Station. Particular attention is given to the servicing facility, the mobile servicing center, and the flight telerobotic servicer (FTS). The role that automation and robotics can play in the design and operation of each of these elements is discussed. It is noted that the FTS, which is currently being developed by NASA, will evolve to increasing levels of autonomy to allow for the virtual elimination of routine EVA. Some of the features of the FTS will probably be: dual manipulator arms having reach and dexterity roughly equivalent to that of an EVA-suited astronaut, force reflection capability allowing efficient teleoperation, and capability of operating from a variety of support systems.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-04

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  12. [Bone metabolism in human space flight and bed rest study].

    PubMed

    Ohshima, Hiroshi; Mukai, Chiaki

    2008-09-01

    Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.

  13. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.

  14. STS-115 Vitual Lab Training

    NASA Image and Video Library

    2005-06-07

    JSC2005-E-21191 (7 June 2005) --- Astronaut Steven G. MacLean, STS-115 mission specialist representing the Canadian Space Agency, uses the virtual reality lab at the Johnson Space Center to train for his duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  15. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside a darkened U.S. Lab module, in the Space Station Processing Facility (SSPF), astronaut James Voss (left) joins STS-98 crew members Commander Kenneth D. Cockrell (foreground), and Pilot Mark Polansky (right) to check out equipment in the Lab. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  16. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  17. International Space Station Electrodynamic Tether Reboost Study

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Herrmann, M.

    1998-01-01

    The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, nor conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.

  18. KSC-00pp1950

    NASA Image and Video Library

    2000-12-22

    In the Space Station Processing Facility, workers along the edge of the payload canister watch as the U.S. Lab Destiny is lowered into the canister. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST

  19. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  20. International Space Station -- Fluid Physics Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees to access the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  1. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  2. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  3. Incorporation of privacy elements in space station design

    NASA Technical Reports Server (NTRS)

    Harrison, Albert A.; Caldwell, Barrett; Struthers, Nancy J.

    1988-01-01

    Privacy exists to the extent that individuals can control the degree of social contact that they have with one another. The opportunity to withdraw from other people serves a number of important psychological and social functions, and is in the interests of safety, high performance, and high quality of human life. Privacy requirements for Space Station crew members are reviewed, and architectual and other guidelines for helping astronauts achieve desired levels of privacy are suggested. In turn, four dimensions of privacy are discussed: the separation of activities by areas within the Space Station, controlling the extent to which astronauts have visual contact with one another, controlling the extent to which astronauts have auditory contact with one another, and odor control. Each section presents a statement of the problem, a review of general solutions, and specific recommendations. The report is concluded with a brief consideration of how selection, training, and other procedures can also help Space Station occupants achieve satisfactory levels of seclusion.

  4. Experiment module concepts study. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The minimum number of standardized (common) module concepts that will satisfy the experiment program for manned space stations at least cost is investigated. The module interfaces with other elements such as the space shuttle, ground stations, and the experiments themselves are defined. The total experiment module program resource and test requirements are also considered. The minimum number of common module concepts that will satisfy the program at least cost is found to be three, plus a propulsion slice and certain experiment-peculiar integration hardware. The experiment modules rely on the space station for operational, maintenance, and logistic support. They are compatible with both expendable and shuttle launch vehicles, and with servicing by shuttle, tug, or directly from the space station. A total experiment module program cost of approximately $2319M under the study assumptions is indicated. This total is made up of $838M for experiment module development and production, $806M for experiment equipment, and $675M for interface hardware, experiment integration, launch and flight operations, and program management and support.

  5. KSC-00pp1686

    NASA Image and Video Library

    2000-11-10

    Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  6. KSC-00pp1687

    NASA Image and Video Library

    2000-11-10

    The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  7. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  8. View of MISSE-8 taken during a session of EVA

    NASA Image and Video Library

    2011-07-12

    ISS028-E-016111 (12 July 2011) --- This close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.

  9. Catastrophic Failure Modes Assessment of the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Lutz, B. E. P.; Goodwin, C. J.

    1996-01-01

    This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration.

  10. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  11. KSC00pp0863

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  12. KSC-00pp0863

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  13. STS-116 Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station's robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station's Oxygen Generation System.

  14. Space Station technology testbed: 2010 deep space transport

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).

  15. KSC-2013-4331

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the center's director, Bob Cabana, cuts a 15th anniversary cake during an employee celebration commemorating the start of assembly of the International Space Station. Cabana served as commander of STS-88, the space shuttle mission that launched the first American-built element of the space station, beginning the effort to construct the orbiting complex. Also participating in the ceremony were STS-88 mission specialists Nancy Currie and Jerry Ross. The Russian Space Agency's Functional Cargo Block, named "Zarya," was launched from the Baikonur Cosmodrome in Kazakhstan on Nov. 20, 1998. Two weeks later, on Dec. 4, 1998, the space shuttle Endeavour lifted off from Kennedy on STS-88 with node 1, called "Unity." In addition to Cabana, Curie and Ross, the crew also included pilot Rick Sturckow, along with mission specialists Jim Newman and Sergei Krikalev, a Russian cosmonaut. For more information, visit: http://www.nasa.gov/mission_pages/station/main/index.html Photo credit: NASA/Jim Grossman

  16. KSC-2013-4332

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the center's director, Bob Cabana, speaks during an employee celebration commemorating the 15th anniversary of the start of assembly of the International Space Station. Cabana served as commander of STS-88, the space shuttle mission that launched the first American-built element of the space station, beginning the effort to construct the orbiting complex. Also participating in the ceremony were STS-88 mission specialists Nancy Currie and Jerry Ross. The Russian Space Agency's Functional Cargo Block, named "Zarya," was launched from the Baikonur Cosmodrome in Kazakhstan on Nov. 20, 1998. Two weeks later, on Dec. 4, 1998, the space shuttle Endeavour lifted off from Kennedy on STS-88 with node 1, called "Unity." In addition to Cabana, Curie and Ross, the crew also included pilot Rick Sturckow, along with mission specialists Jim Newman and Sergei Krikalev, a Russian cosmonaut. For more information, visit: http://www.nasa.gov/mission_pages/station/main/index.html Photo credit: NASA/Jim Grossman

  17. KSC-2013-4334

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the center's director, Bob Cabana, right, speaks during an employee celebration commemorating the 15th anniversary of the start of assembly of the International Space Station. Cabana served as commander of STS-88, the space shuttle mission that launched the first American-built element of the space station, beginning the effort to construct the orbiting complex. Participating in the presentation, from the left, are STS-88 crew members Nancy Currie, Jerry Ross and Cabana. The Russian Space Agency's Functional Cargo Block, named "Zarya," was launched from the Baikonur Cosmodrome in Kazakhstan on Nov. 20, 1998. Two weeks later, on Dec. 4, 1998, the space shuttle Endeavour lifted off from Kennedy on STS-88 with node 1, called "Unity." In addition to Cabana, Curie and Ross, the crew also included pilot Rick Sturckow, along with mission specialists Jim Newman and Sergei Krikalev, a Russian cosmonaut. For more information, visit: http://www.nasa.gov/mission_pages/station/main/index.html Photo credit: NASA/Jim Grossman

  18. Progress on the International Space Station - We're Part Way up the Mountain

    NASA Technical Reports Server (NTRS)

    Fortenberry, Lindy; Bartoe, John-David F.; Holloway, Thomas

    2001-01-01

    The first phase of the International Space Station construction has been completed, and research has begun. Russian, U.S., and Canadian hardware is on orbit, and Italian logistics modules have visited often. With the delivery of the U.S. Laboratory, Destiny, significant research capability is in place, and dozens of U.S. and Russian experiments have been conducted. Crew members have been on orbit continuously since November 2000. Several "bumps in the road" have occurred along the way, and each has been systematically overcome. Enormous amounts of hardware and software are being developed by the International Space Station partners and participants around the world and are largely on schedule for launch. Significant progress has been made in the testing of completed elements at launch sites in the United States and Kazakhstan. Over 250,000 kilograms of flight hardware have been delivered to the Kennedy Space Center and integrated testing of several elements wired together has progressed extremely well. Mission control centers are fully functioning in Houston, Moscow, and Canada, and operations centers Darmstadt, Tsukuba, Turino, and Huntsville will be going on line as they are required. Extensive coordination efforts continue among the space agencies of the five partners and two participants, involving 16 nations. All of them continue to face their own challenges and have achieved significant successes. This paper will discuss the contributions of the International Space Station partners and participants, their accomplished milestones, and upcoming events. The International Space Station program, the largest and most complicated peacetime project in history, has progressed part way up the mountain, and the partners are continuing their journey to the top. The International Space Station (ISS) is unprecedented in its technological, engineering, and management complexity, and is one of the largest international collaborations ever undertaken. The ISS is a dramatic example of the ability of nations to work together as a team toward common goals and dreams. The challenges encountered and overcome by the international ISS team have been likened to climbing a mountain. Construction of the ISS has progressed rapidly in the past year. ISS is now a functioning microgravity laboratory in space hosting a permanent human presence, prompting the characterization that we are "part way up the mountain, and the team continues its climb."

  19. STS-100 MPLM Raffaello is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Workers inside the payload canister wait for the Multi-Purpose Logistics Module Raffaello to be lowered inside. It joins the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS- 100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.

  20. KSC-00pp1194

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, an element of the International Space Station, is lifted from a work stand to move it to the Integrated Electronic Assembly for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  1. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  2. KENNEDY SPACE CENTER, FLA. - NASA's Space Infrared Telescope Facility (SIRTF) lifts off from Launch Pad 17-B, Cape Canaveral Air Force Station, on Aug. 25 at 1:35:39 a.m. EDT. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-25

    KENNEDY SPACE CENTER, FLA. - NASA's Space Infrared Telescope Facility (SIRTF) lifts off from Launch Pad 17-B, Cape Canaveral Air Force Station, on Aug. 25 at 1:35:39 a.m. EDT. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  3. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  4. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  8. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. STS-98 Destiny in Atlantis's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, Atlantis'''s payload bay doors are ready to be closed over the U.S. Laboratory Destiny (lower left). Next to it is the Canadian robotic arm, which will play a major role in moving Destiny to its place on the International Space Station. Destiny, a key element in the construction of the Space Station, is 28 feet long and weighs 16 tons. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will be launched Feb. 7 on STS-98, the seventh construction flight to the ISS.

  10. Unity connecting module before being moved to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  11. Expendable launch vehicle transportation for the space station

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.

    1988-01-01

    Logistics transportation will be a critical element in determining the Space Station Freedom's level of productivity and possible evolutionary options. The current program utilizes the Space Shuttle as the only logistics support vehicle. Augmentation of the total transportation capability by expendable launch vehicles (ELVs) may be required to meet demanding requirements and provide for enhanced manifest flexibility. The total operational concept from ground operations to final return of support hardware or its disposal is required to determine the ELV's benefits and impacts to the Space Station Freedom program. The characteristics of potential medium and large class ELVs planned to be available in the mid-1990's (both U.S. and international partners' vehicles) indicate a significant range of possible transportation systems with varying degrees of operational support capabilities. The options available for development of a support infrastructure in terms of launch vehicles, logistics carriers, transfer vehicles, and return systems is discussed.

  12. Unity connecting module in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  13. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), workers guide the suspended Unity connecting module, part of the International Space Station, as they move it to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  14. Unity connecting module lifted from workstand before move to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility (SSPF) oversee the lifting of the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  15. Unity connecting module moving to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF) the Unity connecting module, part of the International Space Station, hangs suspended during its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  16. Unity connecting module prepared for move to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility (SSPF) attach a frame to lift the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  17. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  18. Tethered nuclear power for the space station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  19. Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  20. Modal test/analysis correlation of Space Station structures using nonlinear sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  1. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  2. Behavioral Health and Performance, Risk to Mitigation Strategy

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren; Whitemire, Alexandra

    2009-01-01

    This poster reviews the working of the Behavioral Health and Performance (BHP) group, which supports the research element which manages an integrated program for future space flight. The BHP operations group supports astronauts and their families in all phases of the International Space Station Mission, and post mission effects.

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  4. View of MISSE-8 taken during a session of EVA

    NASA Image and Video Library

    2011-07-12

    ISS028-E-016107 (12 July 2011) --- This medium close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.

  5. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  6. Element Material Exposure Experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ito, Masaaki; Ishii, Masahiro

    1992-01-01

    The National Space Development Agency of Japan (NASDA) is planning to perform an 'Element Material Exposure Experiment' using the Exposed Facility Flyer Unit (EFFU). This paper presents an initial design of experiments proposed for this project by our company. The EFFU is installed on the Space Flyer Unit (SFU) as a partial model of the Space Station JEM exposed facility. The SFU is scheduled to be launched by H-2 rocket in January or February of 1994, then various tests will be performed for three months, on orbit of 500 km altitude, and it will be retrieved by the U.S. Space Shuttle and returned to the ground. The mission sequence is shown.

  7. The computer-communication link for the innovative use of Space Station

    NASA Technical Reports Server (NTRS)

    Carroll, C. C.

    1984-01-01

    The potential capability of the computer-communications system link of space station is related to innovative utilization for industrial applications. Conceptual computer network architectures are presented and their respective accommodation of innovative industrial projects are discussed. To achieve maximum system availability for industrialization is a possible design goal, which would place the industrial community in an interactive mode with facilities in space. A worthy design goal would be to minimize the computer-communication management function and thereby optimize the system availability for industrial users. Quasi-autonomous modes and subnetworks are key design issues, since they would be the system elements directly effecting the system performance for industrial use.

  8. KSC-00pp1371

    NASA Image and Video Library

    2000-09-15

    STS-92 Mission Specialist Koichi Wakata of Japan (center) gets help from United Space Alliance Mechanical Technician Vinny Difranzo (left) and NASA Quality Assurance Specialist Danny Wyatt (right) in suiting up in the White Room. Wakata and other crew members are taking part in a simulated countdown KSC for Terminal Countdown Demonstration Test (TCDT) activities. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  9. KSC00pp1371

    NASA Image and Video Library

    2000-09-15

    STS-92 Mission Specialist Koichi Wakata of Japan (center) gets help from United Space Alliance Mechanical Technician Vinny Difranzo (left) and NASA Quality Assurance Specialist Danny Wyatt (right) in suiting up in the White Room. Wakata and other crew members are taking part in a simulated countdown KSC for Terminal Countdown Demonstration Test (TCDT) activities. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  10. International Space Station -- Fluid Physics Ra;ck

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  11. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  12. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  13. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  14. STS-115 Vitual Lab Training

    NASA Image and Video Library

    2005-06-07

    JSC2005-E-21192 (7 June 2005) --- Astronauts Christopher J. Ferguson (left), STS-115 pilot, and Daniel C. Burbank, mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  15. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  16. International Space Station Environmental Control and Life Support System: Verification for the Pressurized Mating Adapters

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMA 1 and PMA 2 flew to ISS on Flight 2A and PMA 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and the detailed Element Verification methodologies utilized during the Qualification phase for the PMAs.

  17. International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.

  18. KSC-98pc644

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  19. KSC-98pc645

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  20. Considerations for a design and operations knowledge support system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Crouse, Kenneth H.; Wechsler, Donald B.; Flaherty, Douglas R.

    1989-01-01

    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF.

  1. Programmable Ultra-Lightweight System Adaptable Radio

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The programmable ultra-lightweight system adaptable radio (PULSAR) is a NASA Marshall Space Flight Center transceiver designed for the CubeSat market, but has the potential for other markets. The PULSAR project aims to reduce size, weight, and power while increasing telemetry data rate. The current version of the PULSAR has a mass of 2.2 kg and a footprint of 10.8 cm2. The height depends on the specific configuration. The PULSAR S-Band Communications Subsystem is an S- and X-band transponder system comprised of a receiver/detector (receiver) element, a transmitter element(s), and related power distribution, command, control, and telemetry element for operation and information interfaces. It is capable of receiving commands, encoding and transmitting telemetry, as well as providing tracking data in a manner compatible with Earthbased ground stations, near Earth network, and deep space network station resources. The software-defined radio's (SDR's) data format characteristics can be defined and reconfigured during spaceflight or prior to launch. The PULSAR team continues to evolve the SDR to improve the performance and form factor to meet the requirements that the CubeSat market space requires. One of the unique features is that the actual radio design can change (somewhat), but not require any hardware modifications due to the use of field programmable gate arrays.

  2. Biomedical Monitoring and Countermeasures Facility

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.

    1992-01-01

    The Space Station Freedom Program (SSFP) represents the transition within the US Space program from the 'heroic' era of space flight (characterized most vividly by the Mercury and Apollo programs) to an epoch characterized by routine access to the space environment. In this new era, the unique characteristics of the microgravity environment will enable new types of research activities, primarily in the life sciences, materials science, and biotechnology fields. In addition to its role as a'microgravity science laboratory,' Space Station Freedom (SSF) constitutes the operational platform on which the knowledge and skills needed to continue our exploration of space will be acquired. In the area of spacecraft operations, these skills include the ability to assemble, operate, and maintain large structures in space. In the area of crew operations, the potentially harmful effects of extended exposure to microgravity must be understood in order to keep the crew mission capable. To achieve this goal, the complex process of physiological deconditioning must be monitored, and countermeasures utilized as needed to keep the individual crew members within acceptable physiological limits. The countermeasures program under development for the SSF Program is titled the Biomedical Monitoring and Countermeasures (BMAC) program. As implied by the name, this activity has two primary products, a biomedical monitoring element and a countermeasures development effort. The program is a critical path element in the overall SSF Program, and should be considered an essential element of operations on board the space station. It is readily apparent that the capability to both protect and optimize the health and performance of the human operators on board SSF will be a critical element in the overall success of the SSFP. Previous experience within the Russian space program has demonstrated that the time required for countermeasures on extended missions can become a monumental operational burden. Therefore, one of the primary objectives of the countermeasures development activity will be to design and implement countermeasures which are significantly more effective than the existing generation. Other primary objectives include the following: to set health and human performance standards for all mission phases; to determine critical issues that affect performance or return to flight status; to develop and implement monitoring systems to follow health and performance status; and to understand risk, and balance the resource costs of countermeasures vs. the benefit gained.

  3. Regenerative particulate filter development

    NASA Technical Reports Server (NTRS)

    Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.

    1972-01-01

    Development, design, and fabrication of a prototype filter regeneration unit for regenerating clean fluid particle filter elements by using a backflush/jet impingement technique are reported. Development tests were also conducted on a vortex particle separator designed for use in zero gravity environment. A maintainable filter was designed, fabricated and tested that allows filter element replacement without any leakage or spillage of system fluid. Also described are spacecraft fluid system design and filter maintenance techniques with respect to inflight maintenance for the space shuttle and space station.

  4. Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Martinovic, Zoran

    2009-01-01

    The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.

  5. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  6. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  7. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1997-10-01

    The Zvezda Service Module, the first Russian contribution and third element to the International Space Station (ISS), is shown under construction in the Krunichev State Research and Production Facility (KhSC) in Moscow. Russian technicians work on the module shortly after it completed a pressurization test. In the foreground is the forward portion of the module, including the spherical transfer compartment and its three docking ports. The forward port docked with the cornected Functional Cargo Block, followed by Node 1. Launched via a three-stage Proton rocket on July 12, 2000, the Zvezda Service Module serves as the cornerstone for early human habitation of the Station, providing living quarters, life support system, electrical power distribution, data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  9. KSC-00pp0181

    NASA Image and Video Library

    2000-02-03

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.

  10. KSC00pp0181

    NASA Image and Video Library

    2000-02-03

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.

  11. KSC-2010-4872

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. In the background, space shuttle Discovery is on Launch Pad 39A awaiting liftoff on the STS-133 mission to the International Space Station. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  13. An isolation-enhanced quad-element antenna using suspended solid wires for LTE small-cell base stations

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Sheng; Zhou, Huang-Cheng

    2017-05-01

    This paper presents a multiple-input-multiple-output (MIMO) antenna that has four-unit elements enabled by an isolation technique for long-term evolution (LTE) small-cell base stations. While earlier studies on MIMO base-station antennas cope with either a lower LTE band (698-960 MHz) or an upper LTE band (1710-2690 MHz), the proposed antenna meets the full LTE specification, yet it uses the maximum number of unit elements to increase channel capacity. The antenna configuration is optimized for good impedance matching and high radiation efficiency. In particular, as the spacing between unit elements is so small that severe mutual coupling occurs, we propose a simple structure with extremely low costs to enhance the isolation. By using suspended solid wires interconnecting the position having strong coupled current of two adjacent elements, an isolation enhancement of 37 dB is achieved. Although solid wires inherently aim at direct-current applications, this work successfully employs such a low-cost technique to microwave antenna development. Experimental results have validated the design guidelines and the proposed configuration, showing that antenna performances including impedance matching, isolation, radiation features, signal correlation, and channel capacity gain are highly desired for LTE small-cell base stations.

  14. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000, carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  15. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000 carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  16. KSC-00pp1661

    NASA Image and Video Library

    2000-11-07

    Boeing workers officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key will be presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to Jett are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  17. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  18. Mir survey just before docking

    NASA Image and Video Library

    1997-05-16

    STS084-730-002 (15-24 May 1997) --- A Space Shuttle Atlantis point-of-view frame showing the docking port and target during separation from with Russia's Mir Space Station. The picture should be held with the retracted Kristall solar array at right. Other elements partially visible are Kvant-2 (top), Spektr (bottom) and Core Module (left).

  19. SKYLAB (SL)-3 - EXPERIMENT HARDWARE

    NASA Image and Video Library

    1973-11-08

    S74-19675 (1974) --- Medium close-up view of the M512 materials processing equipment storage assembly and the M518 electric furnace in the Multiple Docking Adapter (MDA), one of the primary elements of the Skylab space station. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Photo credit: NASA

  20. MISSE 6-Testing Materials in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S; Kinard, William H.

    2008-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.

  1. KSC-05PD-0375

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker inside the Multi-Purpose Logistics Module Raffaello is ready for installation of the Human Research Facility-2 (HRF-2) science rack. Raffaello will fly on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  2. KSC-05PD-0369

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare the Human Research Facility-2 (HRF-2) science rack for installation into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  3. KSC-05PD-0372

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Rack Insertion Device moves the Human Research Facility-2 (HRF-2) science rack toward the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  4. KSC-05PD-0368

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack sits on a stand waiting to be installed into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  5. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers move the first half of the fairing around the Space Infrared Telescope Facility (SIRTF) behind it for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers move the first half of the fairing around the Space Infrared Telescope Facility (SIRTF) behind it for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  6. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the top of the fairing is seen as it moves into place around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the top of the fairing is seen as it moves into place around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  7. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing is moved around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing is moved around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  8. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing (background) moves toward the Space Infrared Telescope Facility (foreground) for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing (background) moves toward the Space Infrared Telescope Facility (foreground) for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  9. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers watch as the first half of the fairing moves closer around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers watch as the first half of the fairing moves closer around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  10. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  11. Collapse of composite tubes under end moments

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Cooper, Paul A.

    1992-01-01

    Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.

  12. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments. Different positions in the room are explained to Senator Jones by MSFC controller Beau Simpson.

  13. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility hold part of the equipment to close the hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  14. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility close the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  15. Unity hatch closed in preparation for launch on STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Space Station Processing Facility make final preparations for closing the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2006-12-09

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station’s robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station’s Oxygen Generation System.

  17. KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

    NASA Image and Video Library

    2003-05-30

    KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  18. One year old and growing: a status report of the International Space Station and its partners

    NASA Technical Reports Server (NTRS)

    Bartoe, J. D.; Fortenberry, L.

    2000-01-01

    The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future. Published by Elsevier Science Ltd.

  19. Control - Demands mushroom as station grows

    NASA Technical Reports Server (NTRS)

    Szirmay, S. Z.; Blair, J.

    1983-01-01

    The NASA space station, which is presently in the planning stage, is to be composed of both rigid and nonrigid modules, rotating elements, and flexible appendages subjected to environmental disturbances from the earth's atmospheric gravity gradient, and magnetic field, as well as solar radiation and self-generated disturbances. Control functions, which will originally include attitude control, docking and berthing control, and system monitoring and management, will with evolving mission objectives come to encompass such control functions as articulation control, autonomous navigation, space traffic control, and large space structure control. Attention is given to the advancements in modular, distributed, and adaptive control methods, as well as system identification and hardware fault tolerance techniques, which will be required.

  20. Animal research facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  1. Conceptual design of a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Mikulas, M. M., Jr.; Wallsom, R. E.; Jensen, J. K.

    1984-01-01

    A mobile remote manipulator system has been identified as a necessary device for space station. A conceptual design for an MRMS is presented which features (1) tracks on the MRMS and guide pins only on the truss structure, (2) a push/pull drive mechanism which rotates to permit movement in four directions, and (3) spacecrane and mobile foot restraint manipulators (or arms). Operational and design features of the MRMS elements are described and illustrated. Concepts are also presented which permit rotating the operational plane of the MRMS through 90 deg. Such a system has been found to have great utility for initial space station construction, maintenance and repair, and to provide a construction capability for future station growth or large spacecraft assembly and/or servicing.

  2. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  3. Space Station Freedom pressurized element interior design process

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  4. Creation of biological module for self-regulating ecological system by the way of polymerization of composite materials in free space.

    PubMed

    Kondyurin, A; Lauke, B; Kondyurina, I; Orba, E

    2004-01-01

    The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Amateur Radio on the International Space Station - the First Operational Payload on the ISS

    NASA Astrophysics Data System (ADS)

    Bauer, F. H.; McFadin, L.; Steiner, M.; Conley, C. L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found Amateur Radio and its connection to life on Earth to be a constant companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the FGB to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early in the development of ISS, an international organization called ARISS (Amateur Radio on the International Space Station) was formed to coordinate the construction and operation of amateur radio (ham radio) equipment on ISS. ARISS represents a melding of the volunteer teams that have pioneered the development and use of amateur radio equipment on human spaceflight vehicles. The Shuttle/Space Amateur Radio Experiment (SAREX) team enabled Owen Garriott to become the first astronaut ham to use amateur radio from space in 1983. Since then, amateur radio teams in the U.S. (SAREX), Germany, (SAFEX), and Russia (Mirex) have led the development and operation of amateur radio equipment on board NASA's Space Shuttle, Russia's Mir space station, and the International Space Station. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the Amateur Radio public, 3) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. To date, over 65 schools have been selected from around the world for scheduled contacts with the orbiting ISS crew. Ten or more students at each school ask the astronauts questions, and the nature of these contacts embodies the primary goal of the ARISS program, -- to excite student's interest in science, technology and amateur radio. The ARISS team has developed various hardware elements for the ISS amateur radio station. These hardware elements have flown to ISS on three Shuttle flights and one Progress flight. The initial educational outreach system supports voice and packet (computer-to-computer radio link) capabilities. In addition, two Extra Vehicular Activities (EVAs) have been completed to install two antenna systems. These antenna systems were designed to be shared between the amateur radio equipment and a Russian EVA television system. These new antenna systems will ultimately enable a key facet of the amateur radio station to move into the Service Module living quarters, providing a more comfortable station set up for the ISS crew. In the future, ARISS hopes to fly a Slow Scan Television system on board the ISS as well as developing new systems for external mounting on the ISS. This paper will discuss the development, qualification, installation and operation of the ARISS amateur radio system. It will also discuss some of the challenges that the ARISS- international team of volunteers overcame to bring its first phase of equipment on ISS to fruition.

  6. Resiman during Expedition 16/STS-123 EVA 1

    NASA Image and Video Library

    2008-03-14

    ISS016-E-032705 (13/14 March 2008) --- Astronaut Garrett Reisman, Expedition 16 flight engineer, uses a digital camera to expose a photo of his helmet visor during the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the seven-hour and one-minute spacewalk, Reisman and astronaut Rick Linnehan (out of frame), STS-123 mission specialist, prepared the Japanese logistics module-pressurized section (JLP) for removal from Space Shuttle Endeavour's payload bay; opened the Centerline Berthing Camera System on top of the Harmony module; removed the Passive Common Berthing Mechanism and installed both the Orbital Replacement Unit (ORU) tool change out mechanisms on the Canadian-built Dextre robotic system, the final element of the station's Mobile Servicing System.

  7. Mechanical design of a low concentration ratio solar array for a space station application

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  8. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    NASA Technical Reports Server (NTRS)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  9. KSC-00pp0867

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  10. KSC-00pp0868

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  11. KSC00pp0867

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  12. KSC00pp0869

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  13. KSC-00pp0866

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  14. KSC-00pp0865

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  15. KSC00pp0865

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  16. KSC00pp0866

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  17. KSC00pp0870

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  18. KSC00pp0868

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  19. KSC-00pp0869

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  20. KSC-00pp0870

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  2. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  3. Unity connecting module lowered to new site in SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, is lowered to its new location in the SSPF. In the background, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.

  4. The impact of integrated water management on the Space Station propulsion system

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1987-01-01

    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  5. Development of a computer program to generate typical measurement values for various systems on a space station

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1987-01-01

    The elements of a simulation program written in Ada were developed. The program will eventually serve as a data generator of typical readings from various space station equipment involved with Communications and Tracking, and will simulate various scenarios that may arise due to equipment malfunction or failure, power failure, etc. In addition, an evaluation of the Ada language was made from the viewpoint of a FORTRAN programmer learning Ada for the first time. Various strengths and difficulties associated with the learning and use of Ada are considered.

  6. Solar power satellite system definition study, phase 2. Volume 2: Reference system description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.

  7. Logistics: An integral part of cost efficient space operations

    NASA Technical Reports Server (NTRS)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  8. One Year Old and Growing: A Status Report on the International Space Station and Its Partners

    NASA Technical Reports Server (NTRS)

    Bartoe, John-David F.; Hall, Elizabeth

    1999-01-01

    The first elements of the International Space Station have been launched and docked together, and are performing well on-orbit. The Station is currently being operated jointly by NASA and Russian space organizations. In May 1999, the Space Shuttle was the first vehicle to dock to the International, Space Station. A crew of seven U.S. and Russian astronauts delivered 4000 pounds of supplies, made repairs to communications and battery systems, and installed external hardware during an EVA. The next module, the Russian Service Module, is due to join the orbital complex this year. This will initiate a period of rapid growth, with new modules and equipment continually added for the next five to six years, through assembly complete. The first crew is scheduled to begin permanent occupation of the International Space Station early next year. Hardware is being developed by Space Station partners and participants around the world and is largely on schedule for launch. Mission control centers are fully functioning in Houston and Moscow, with operations centers in St. Hubert, Darmstadt, Tsukuba, Turino, and Huntsville going on line as they are required. International crews are selected and in training. Coordination efforts continue with each of the five partners and two participants, involving 16 nations. All of them continue to face their own challenges and have achieved their own successes. This paper will discuss the status of the ISS partners and participants, their contributions and accomplished milestones, and upcoming events. It will also give a status report on the developments of the remainder of the ISS modules and components by each partner and participant. The ISS, the largest and most complicated peacetime project in history, is flying, and, with the help of all the ISS members, will continue to grow.

  9. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  10. The development of a cislunar space infrastructure

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective of the University of Colorado Advanced Mission Design Program is to define the characteristics and evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, an L1 space station, and a transportation system that anchors these elements to a low Earth orbit (LEO) station. The motivation of this project was based on the idea that a near-Earth space infrastructure is not an end but an important step in a larger plan to expand man's capabilities in space science and technology. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as facilitating the full exploration of the potential for science and industry on the lunar surface. This paper will provide a sound rationale and a detailed scenario in support of the cislunar infrastructure design.

  11. KSC-05PD-0371

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack is attached to the Rack Insertion Device that will install it into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  12. KSC-05PD-0374

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker watches as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  13. KSC-05PD-0370

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare to attach the Human Research Facility-2 (HRF-2) science rack onto the Rack Insertion Device. HRF-2 will be installed into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  14. KSC-05PD-0373

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker stands by as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  15. The Initial Nine Space Settlements

    NASA Astrophysics Data System (ADS)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.

  16. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialist Robert Curbeam works with equipment he will use in space to attach the U.S. Lab Destiny to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  17. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello begins rolling out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  18. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, an Airbus '''Beluga''' air cargo plane opens to reveal its cargo, the Italian Space Agency's Multi- Purpose Logistics Module Donatello, from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  19. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello rolls out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  20. KSC-98pc646

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  1. Using Distributed Operations to Enable Science Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload operations and discusses the benefits and drawbacks.

  2. Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  3. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    While checking out equipment during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, astronaut James Voss (center) and STS-98 crew members Commander Kenneth D. Cockrell (foreground) and Pilot Mark Polansky (right) pause for the camera. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  4. Report of the Cost Assessment and Validation Task Force on the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort. The Program size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap. A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule. The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program. The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required. Completion of ISS assembly is likely to be delayed from one to three years beyond December 2003.

  5. Cost Assessment and Validation Task Force on the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort; The Program, size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap; A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule; The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program; The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program, growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required; and Completion of ISS assembly is likely to be delayed from, one to three years beyond December 2003.

  6. The U.S. Lab placed in vacuum chamber for leak test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  7. Space-to-Space Communications System

    NASA Technical Reports Server (NTRS)

    Tu, Kwei; Gaylor, Kent; Vitalpur, Sharada; Sham, Cathy

    1999-01-01

    The Space-to-Space Communications System (SSCS) is an Ultra High Frequency (UHF) Time-Division-Multiple Access (TDMA) system that is designed, developed, and deployed by the NASA Johnson Space Center (JSC) to provide voice, commands, telemetry and data services in close proximity among three space elements: International Space Station (ISS), Space Shuttle Orbiter, and Extravehicular Mobility Units (EMU). The SSCS consists of a family of three radios which are, Space-to-Space Station Radio (SSSR), Space-to-Space Orbiter Radio (SSOR), and Space-to-Space Extravehicular Mobility Radio (SSER). The SSCS can support up to five such radios at a time. Each user has its own time slot within which to transmit voice and data. Continuous Phase Frequency Shift Keying (CPFSK) carrier modulation with a burst data rate of 695 kbps and a frequency deviation of 486.5 kHz is employed by the system. Reed-Solomon (R-S) coding is also adopted to ensure data quality. In this paper, the SSCS system requirements, operational scenario, detailed system architecture and parameters, link acquisition strategy, and link performance analysis will be presented and discussed

  8. Managing NASA's International Space Station Logistics and Maintenance Program

    NASA Technical Reports Server (NTRS)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  9. The principle of commonality and its application to the Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Thomas, L. Dale; Daniel, Charles C.

    1989-01-01

    The principle of commonality has achieved wide application in the communication, automotive, and aircraft industries. By the use of commonality, component development costs are minimized, logistics are simplified, and the investment costs of spares inventory are reduced. With space systems, which must be maintained and repaired in orbit, the advantages of commonality are compounded. Transportation of spares is expensive, on-board storage volume for spares is limited, and crew training and special tools needed for maintenance and repair are significant considerations. This paper addresses the techniques being formulated to realize the benefits of commonality in the design of the systems and elements of the Space Station Freedom Program, and include the criteria for determining the extent of commonality to be implemented.

  10. KSC-01pp0244

    NASA Image and Video Library

    2001-02-03

    The lid is off the shipping container with the Multi-Purpose Logistics Module Donatello inside. It sits on a transporter inside the Space Station Processing Facility. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  11. KSC-01pp0245

    NASA Image and Video Library

    2001-02-03

    Workers in the Space Station Processing Facility attach an overhead crane to the Multi-Purpose Logistics Module Donatello to lift it out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  12. KSC-01pp0246

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers help guide the overhead crane as it lifts the Multi-Purpose Logistics Module Donatello out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  13. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  14. KSC-01pp0247

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers help guide the Multi-Purpose Logistics Module Donatello as it moves the length of the SSPF toward a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  15. KSC-01pp0248

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers wait for the Multi-Purpose Logistics Module Donatello, suspended by an overhead crane, to move onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  16. EXPRESS Rack Mockup

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the International Space Station (ISS). EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle. The Racks stay on orbit continually, while experiments are exchanged in and out of the EXPRESS Racks as needed, remaining on the ISS for three months to several years, depending on the experiment's time requirements. A refrigerator-sized Rack can be divided into segments, as large as half of an entire rack or as small as a bread box. Payloads within EXPRESS Racks can operate independently of each other, allowing for differences in temperature, power levels, and schedules. Experiments contained within EXPRESS Racks may be controlled by the ISS crew or remotely by the Payload Rack Officer at the Payload Operations Center at the Marshall Space Flight Center (MSFC). The EXPRESS Rack system was developed by MSFC and built by the Boeing Co. in Huntsville, Alabama. Eight EXPRESS Racks are being built for use on the ISS.

  17. Space station/base food system study. Book 1: Element concept data sheets

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The detail engineering data sheets are presented for all concepts considered in the final phase of the study as well as those only carried through the interim phase due to non-applicability or deleted missions.

  18. KSC-98pc1807

    NASA Image and Video Library

    1998-12-04

    In a firing room of the Launch Control Center, U.S. Secretary of State Madeleine Albright speaks to the launch team after the successful launch of Space Shuttle Endeavour at 3:35:34 a.m. EST. During the nearly 12-day mission of STS-88, the six-member crew will mate in space the first two elements of the International Space Station the already-orbiting Zarya control module and the Unity connecting module carried by Endeavour

  19. KSC-98pc1808

    NASA Image and Video Library

    1998-12-04

    In a firing room of the Launch Control Center,U.S. Secretary of State Madeleine Albright waves to the personnel after her speech about the successful launch of Space Shuttle Endeavour. At her right is NASA Administrator Daniel Goldin. During the nearly 12-day mission of STS-88, the six-member crew will mate in space the first two elements of the International Space Station the already-orbiting Zarya control module and the Unity connecting module carried by Endeavour

  20. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    NASA Technical Reports Server (NTRS)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

Top