Sample records for space station eventually

  1. Space Station

    NASA Image and Video Library

    1991-01-01

    In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.

  2. KSC-01pp1362

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The P5 truss rolls into the Spaceport Florida hangar just before a rain storm. The truss eventually will be transported to the Space Station Processing Facility. The P5 is scheduled for delivery to the International Space Station on mission 12A.1 in April 2003

  3. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-01

    Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and "gone to seed." The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.

  4. KSC-2010-4382

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a robotics engineer animates the dexterous humanoid astronaut helper, Robonaut (R2) for the participants at a media event hosted by NASA. R2 will fly to the International Space Station aboard space shuttle Discovery on the STS-133 mission. Although it will initially only participate in operational tests, upgrades could eventually allow the robot to realize its true purpose -- helping spacewalking astronauts with tasks outside the space station. Photo credit: NASA/Jim Grossmann

  5. KSC-2010-4379

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Ron Diftler, NASA Robonaut project manager, describes the animation of the dexterous humanoid astronaut helper, Robonaut (R2) to the media. R2 will fly to the International Space Station aboard space shuttle Discovery on the STS-133 mission. Although it will initially only participate in operational tests, upgrades could eventually allow the robot to realize its true purpose -- helping spacewalking astronauts with tasks outside the space station. Photo credit: NASA/Jim Grossmann

  6. KSC-2010-4378

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Ron Diftler, NASA Robonaut project manager, describes the animation of the dexterous humanoid astronaut helper, Robonaut (R2) to the media. R2 will fly to the International Space Station aboard space shuttle Discovery on the STS-133 mission. Although it will initially only participate in operational tests, upgrades could eventually allow the robot to realize its true purpose -- helping spacewalking astronauts with tasks outside the space station. Photo credit: NASA/Jim Grossmann

  7. KSC-97PC1139

    NASA Image and Video Library

    1997-07-26

    The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  8. KSC-97PC1140

    NASA Image and Video Library

    1997-07-26

    The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  9. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  10. Experiments in Planetary and Related Sciences and the Space Station

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  11. International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.

    1997-01-01

    The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.

  12. KSC-00pp1387

    NASA Image and Video Library

    2000-09-07

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program

  13. KSC-00pp1389

    NASA Image and Video Library

    2000-09-07

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program

  14. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  15. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  16. Space Station - Risks and vision

    NASA Technical Reports Server (NTRS)

    Pedersen, K.

    1986-01-01

    In assessing the prospects of the NASA Space Station program, it is important to take account of the long term perspective embodied in the proposal; its international participants are seen as entering a complex web of developmental and operational interdependence of indefinite duration. It is noted to be rather unclear, however, to what extent this is contemplated by such potential partners as the ESA, which has its own program goals. These competing hopes for eventual autonomy in space station operations will have considerable economic, technological, and political consequences extending well into the next century.

  17. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronaut Bob Behnken, work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  18. STS-117 Media Showcase

    NASA Image and Video Library

    2007-02-06

    In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2006-09-17

    This view of the International Space Station, back dropped against the blackness of space and Earth, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT during the STS-115 mission. The unlinking completed after six days, two hours and two minutes of joint operations of the installation of the P3/P4 truss. The new 17 ton truss included batteries, electronics, a giant rotating joint, and sported a second pair of 240-foot solar wings. The new solar arrays will eventually double the onboard power of the Station when their electrical systems are brought online during the next shuttle flight, STS-116.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2006-09-17

    This view of the International Space Station, back dropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT during the STS-115 mission. The unlinking completed after six days, two hours and two minutes of joint operations of the installation of the P3/P4 truss. The new 17 ton truss included batteries, electronics, a giant rotating joint, and sported a second pair of 240-foot solar wings. The new solar arrays will eventually double the onboard power of the Station when their electrical systems are brought online during the next shuttle flight, STS-116.

  1. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  2. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06732 (17 Sept. 2006) --- This view of the International Space Station, backdropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  3. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06715 (17 Sept. 2006) --- This view of the International Space Station, backdropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  4. ISS during departure of STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-17

    STS115-318-026 (17 Sept. 2006) --- Backdropped by the blackness of space and Earth's horizon, the International Space Station moves away from Space Shuttle Atlantis. Earlier the STS-115 and Expedition 13 crews concluded six days of cooperative work onboard the shuttle and station. Undocking of the two spacecraft occurred at 7:50 a.m. (CDT) on Sept. 17, 2006. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  5. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06741 (17 Sept. 2006) --- This view of the International Space Station, backdropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  6. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06723 (17 Sept. 2006) --- This view of the International Space Station, backdropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  7. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06750 (17 Sept. 2006) --- This view of the International Space Station, backdropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. (CDT). The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  8. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06707 (17 Sept. 2006) --- This view of the International Space Station, backdropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  10. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronauts Eric Boe, right, and Bob Behnken work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  11. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronauts Bob Behnken, left, and Eric Boe work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  12. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, photographers focus on the Integrated Truss Structure Z1, an element of the International Space Station, suspended by a crane overhead. The truss is being moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  13. A lunar space station

    NASA Technical Reports Server (NTRS)

    Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam

    1989-01-01

    A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.

  14. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  15. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  16. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  17. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06765 (17 Sept. 2006) --- This view of the International Space Station, backdropped against a blue and white Earth, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  18. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06764 (17 Sept. 2006) --- This view of the International Space Station, backdropped against a blue and white Earth, was photographed shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. (CDT). The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  19. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06624 (17 Sept. 2006) --- This view of the International Space Station, backdropped against a cloud-covered Earth, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. (CDT). The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  20. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06767 (17 Sept. 2006) --- This view of the International Space Station, backdropped against a blue and white Earth, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. (CDT). The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  1. Overall exterior view of the ISS during undocking and Flyaround Operations for STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-19

    S115-E-06759 (17 Sept. 2006) --- This view of the International Space Station over a blue and white Earth was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT. The unlinking completed six days, two hours and two minutes of joint operations with the station crew. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  2. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  3. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  4. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  5. Mobile Transporter

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Space Shuttle Atlantis, STS-110 mission, deployed this railcar, called the Mobile Transporter, and an initial 43-foot section of track, the S0 (S-zero) truss, preparing the International Space Station (ISS) for future spacewalks. The first railroad in space, the Mobile Transporter will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The 27,000-pound S0 truss is the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002. STS-110's Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station.

  6. Installation of Radioskaf 11.2 Kit and batteries for Radioskaf (Suitsat-1) on Expedition 12

    NASA Image and Video Library

    2006-01-24

    ISS012-E-15655 (24 Jan. 2006) --- In the Unity node of the International Space Station, cosmonaut Valery I. Tokarev, Expedition 12 flight engineer representing Russia's Federal Space Agency, puts finishing touches on an old Russian Orlan spacesuit that will be released by hand from the space station during a spacewalk Feb. 3, 2006. Outfitted with a special radio transmitter and other gear, the spacesuit comprises a Russian experiment called SuitSat. It will fly free from the station as a satellite in orbit for several weeks of scientific research and radio tracking, including communications by amateur radio operators. Eventually, it will enter the atmosphere and be destroyed.

  7. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  8. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. The Z1 truss is placed in stand to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1 rests in the workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  10. The Z1 truss is lowered to stand to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, an overhead crane lowers the Integrated Truss Structure Z1 onto a workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  11. Plant Development and Genetics Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and 'gone to seed.' The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.

  12. Opportunities to Intercalibrate Radiometric Sensors From International Space Station

    NASA Technical Reports Server (NTRS)

    Roithmayr, C. M.; Lukashin, C.; Speth, P. W.; Thome, K. J.; Young, D. F.; Wielicki, B. A.

    2012-01-01

    Highly accurate measurements of Earth's thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. We consider the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission such as the Climate Absolute Radiance and Refractivity Observatory. In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of year-long simulations of orbital motion. We conclude that the International Space Station orbit is ideally suited for the purpose of intercalibration.

  13. Ariane 5 Rocket

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027267 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket, barely visible in the far background, just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its low orbit destination and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission. The elbow of Canadarm2 (Space Station Remote Manipulator System)is in the foreground.

  14. Key technology issues for space robotic systems

    NASA Technical Reports Server (NTRS)

    Schappell, Roger T.

    1987-01-01

    Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.

  15. STS-110 Crew Photographs Soyuz and Atlantis Docked to International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Docked to the International Space Station (ISS), a Soyuz vehicle (foreground) and the Space Shuttle Atlantis were photographed by a crew member in the Pirs docking compartment on the orbital outpost. Atlantis launched on April 8, 2002, carrying the the STS-110 mission which prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's scapulas were based out of the Station's Quest Airlock.

  16. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  17. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  18. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  19. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  20. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  1. KSC-02PD0336

    NASA Image and Video Library

    2002-03-19

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, the Integrated Truss Structure S0 is ready for transport to the launch pad on mission STS-110. Scheduled for launch April 4, the 11-day mission will feature Space Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  4. New Gateway Installed onto Space Station on This Week @NASA – August 19, 2016

    NASA Image and Video Library

    2016-08-19

    Outside the International Space Station, Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA installed the first of two International Docking Adapters onto the forward end of the station’s Harmony module, during a spacewalk on Aug. 19. The new docking port will be used by the Boeing CST-100 “Starliner” and SpaceX Crew Dragon commercial crew spacecraft being developed to transport U.S. astronauts to and from the station. The second International Docking Adapter – currently under construction – eventually will be placed on the space-facing side of the Harmony module. Also, Commercial Crew Access Arm Installed on Launchpad, Behind the Scenes of our Journey to Mars, Asteroid Redirect Mission Milestone, Asteroid Sample Return Mission Approaches, and Chasing Greenhouse Gases in the Midwest!

  5. STS-110 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  6. STS-110 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  7. STS-92 crew heads for Astrovan for trip to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Three happy astronauts make their way to the waiting Astrovan that will take the STS-92 crew to Launch Pad 39A for liftoff of Space Shuttle Discovery. From left, they are Mission Specialists Michael Lopez-Alegria and Koichi Wakata, and Commander Brian Duffy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT.

  8. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  9. STS-92 M.S. Koichi Wakata suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan signals thumbs up for a second launch attempt. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  10. STS-92 M.S. Jeff Wisoff suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff signals thumbs up for a second launch attempt. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  11. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  12. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  13. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000, carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  14. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000 carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  15. KSC-2010-4444

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida prepare to load the dexterous humanoid astronaut helper, Robonaut 2, or R2, into the Permanent Multipurpose Module, or PMM. Packed inside a launch box called SLEEPR, or Structural Launch Enclosure to Effectively Protect Robonaut, R2 will be placed in the in the same launch orientation as space shuttle Discovery's STS-133 crew members -- facing toward the nose of the shuttle with the back taking all the weight. Although R2 will initially only participate in operational tests, upgrades could eventually allow the robot to realize its true purpose -- helping spacewalking astronauts with tasks outside the International Space Station. STS-133 is targeted to launch Nov. 1. Photo credit: NASA/Frankie Martin

  16. Development of a computer program to generate typical measurement values for various systems on a space station

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1987-01-01

    The elements of a simulation program written in Ada were developed. The program will eventually serve as a data generator of typical readings from various space station equipment involved with Communications and Tracking, and will simulate various scenarios that may arise due to equipment malfunction or failure, power failure, etc. In addition, an evaluation of the Ada language was made from the viewpoint of a FORTRAN programmer learning Ada for the first time. Various strengths and difficulties associated with the learning and use of Ada are considered.

  17. The Flight Telerobotic Servicer (FTS) - A focus for automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Hinkal, Sanford W.; Andary, James F.; Watzin, James G.; Provost, David E.

    1987-01-01

    The concept, fundamental design principles, and capabilities of the FTS, a multipurpose telerobotic system for use on the Space Station and Space Shuttle, are discussed. The FTS is intended to assist the crew in the performance of extravehicular tasks; the telerobot will also be used on the Orbital Maneuvering Vehicle to service free-flyer spacecraft. The FTS will be capable of both teleoperation and autonomous operation; eventually it may also utilize ground control. By careful selection of the functional architecture and a modular approach to the hardware and software design, the FTS can accept developments in artificial intelligence and newer, more advanced sensors, such as machine vision and collision avoidance.

  18. Logical steps to moon, Mars and beyond

    NASA Astrophysics Data System (ADS)

    Kuriki, Kyoichi

    1993-10-01

    A scenario of the space activities aimed at exploration of moon, Mars, and other planets is proposed. The scenario uses motivations based on the fundamental human instinct, i.e. intellectual curiosity and survival of the humankind. It is shown how these key drivers are threading through the known programs including Space Shuttle and Space Station, Space Energy Exploitation and Space Factory, Lunar Base, and Mars Base. It is concluded that an eventual goal of the mission from planet earth is to set Noah's Arc off into space in the next millenium.

  19. KSC-2010-4872

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. In the background, space shuttle Discovery is on Launch Pad 39A awaiting liftoff on the STS-133 mission to the International Space Station. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  20. KSC-98pc644

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  1. KSC-98pc645

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  2. STS-92 M.S. Leroy Chiao suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Leroy Chiao gives thumbs up for launch. With him (left) is VITT Mission Lead Roland Nedelkovich, from Houston. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  3. STS-92 Pilot Pam Melroy suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Pilot Pamela Ann Melroy smiles during suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  4. STS-92 Commander Brian Duffy suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Commander Brian Duffy solemnly undergoes suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  5. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  7. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  8. New directions for space solar power

    NASA Astrophysics Data System (ADS)

    Mankins, John C.

    2009-07-01

    Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.

  9. Pathways to Colonization

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2003-01-01

    The steps required for space colonization are many to grow from our current 3-person International Space Station, now under construction, to an infrastructure that can support hundreds and eventually thousands of people in space. This paper will summarize the author's findings from numerous studies and workshops on related subjects and identify some of the critical next steps toward space colonization. Findings will be drawn from the author s previous work on space colony design, space infrastructure workshops, and various studies that addressed space policy. In conclusion, this paper will note that significant progress has been made on space facility construction through the International Space Station program, and that significant efforts are needed in the development of new reusable Earth to Orbit transportation systems. The next key steps will include reusable in space transportation systems supported by in space propellant depots, the continued development of inflatable habitat and space elevator technologies, and the resolution of policy issues that will establish a future vision for space development.

  10. Toward large space systems. [Space Construction Base development from shuttles

    NASA Technical Reports Server (NTRS)

    Daros, C. J.; Freitag, R. F.; Kline, R. L.

    1977-01-01

    The design of the Space Transportation System, consisting of the Space Shuttle, Spacelab, and upper stages, provides experience for the development of more advanced space systems. The next stage will involve space stations in low earth orbit with limited self-sufficiency, characterized by closed ecological environments, space-generated power, and perhaps the first use of space materials. The third phase would include manned geosynchronous space-station activity and a return to lunar operations. Easier access to space will encourage the use of more complex, maintenance-requiring satellites than those currently used. More advanced space systems could perform a wide range of public services such as electronic mail, personal and police communication, disaster control, earthquake detection/prediction, water availability indication, vehicle speed control, and burglar alarm/intrusion detection. Certain products, including integrated-circuit chips and some enzymes, can be processed to a higher degree of purity in space and might eventually be manufactured there. Hardware including dishes, booms, and planar surfaces necessary for advanced space systems and their development are discussed.

  11. Medical care capabilities for Space Station Freedom: A phase approach

    NASA Technical Reports Server (NTRS)

    Doarn, C. R.; Lloyd, C. W.

    1992-01-01

    As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.

  12. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  13. Reference Guide to the International Space Station

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.

    2006-01-01

    The International Space Station (ISS) is a great international, technological, and political achievement. It is the latest step in humankind's quest to explore and live in space. The research done on the ISS may advance our knowledge in various areas of science, enable us to improve life on this planet, and give us the experience and increased understanding that can eventually equip us to journey to other worlds. As a result of the Station s complexity, few understand its configuration, its design and component systems, or the complex operations required in its construction and operation. This book provides high-level insight into the ISS. The ISS is in orbit today, operating with a crew of three. Its assembly will continue through 2010. As the ISS grows, its capabilities will increase, thus requiring a larger crew. Currently, 16 countries are involved in this venture. This CD-ROM includes multimedia files and animations.

  14. Ariane 5 Rocket

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027303 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket, just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its targeted low orbit and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission.

  15. KSC-99pp1375

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Looking over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility are Arne Aamodt, with Johnson Space Center, Yuriy Vladimirovich Usachev and Susan J. Helms. Usachev and Helms are two members of the STS-102 crew, who will be staying on the International Space Station (ISS). The third crew member is James S. Voss. They have been designated the Expedition II crew. Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  16. KSC-99pp1377

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-102 crew, known as the Expedition II crew, and workers from Johnson Space Center get a close look at the Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Making up the Expedition II crew are James S. Voss, Susan J. Helms and Yuriy Vladimirovich Usachev, of Russia. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  17. The Initial Nine Space Settlements

    NASA Astrophysics Data System (ADS)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.

  18. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  20. KSC-02pd0280

    NASA Image and Video Library

    2002-03-12

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is hard down on the launch pad after its mid-day rollout from the Vehicle Assembly Building. Part of the Fixed Service Structure is at left. On either side of the tail of Atlantis are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space

  1. KSC-02PD0341

    NASA Image and Video Library

    2002-03-20

    KENNEDY SPACE CENTER, FLA. -- STS-110 Commander Michael Bloomfield waves as he gets ready to depart KSC for Houston. He and the rest of the crew were at KSC for Terminal Countdown Demonstration Test activities that included payload familiarization and a simulated launch countdown. Scheduled for launch April 4, the 11-day STS-110 mission will feature Space Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  2. STS-92 M.S. Michael Lopez-Alegria suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During suitup in the Operations and Checkout Building, STS-92 Mission Specialist Michael E. Lopez-Alegria smiles and clasps his hands in anticipation of a second launch attempt. He and the rest of the crew will be heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  3. STS-92 M.S. Bill McArthur suits up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist William S. McArthur Jr. is fully suited up before the second launch attempt. He and the rest of the crew will be leaving soon for the ride to Launch Pad 39A on the Astrovan. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  4. STS-110 S0 Truss Removed From Cargo Bay

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Backdropped against the blackness of space and the Earth's horizon, the S0 (S-zero) truss is removed from Atlantis' cargo bay and onto the Destiny laboratory of the International Space Station (ISS) by Astronauts Ellen Ochoa, STS-110 mission specialist, and Daniel W. Bursch, Expedition Four flight engineer, using the ISS' Canadarm2. Space Shuttle Orbiter Atlantis, STS-110 mission, prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first use of the Station's robotic arm to maneuver spacewalkers around the Station and it was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  5. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. Space ventures and society long-term perspectives

    NASA Technical Reports Server (NTRS)

    Brown, W. M.

    1985-01-01

    A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.

  7. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  8. KSC-2013-3522

    NASA Image and Video Library

    2013-07-12

    CAPE CANAVERAL, Fla. -- This graphic depicts the patriotic endeavor of NASA's three Commercial Crew Program, or CCP, partners. The Boeing Company of Houston, Sierra Nevada Corporation, or SNC, of Louisville, Colo., and Space Exploration Technologies, or SpaceX, of Hawthorne, Calif., are working under the agency's Commercial Crew Integrated Capability, or CCiCap, initiative and Certification Products Contract, or CPC, phase to develop spaceflight capabilities that eventually could provide launch services to transport NASA astronauts to the International Space Station from U.S. soil. Shown along the bottom, from left, are: Boeing's integrated CST-100 spacecraft and United Launch Alliance, or ULA, Atlas V rocket SNC's integrated Dream Chaser spacecraft and Atlas V and SpaceX's integrated Dragon spacecraft and Falcon 9 rocket. In the center are artist depictions of company spacecraft in orbit. At the top is NASA's destination for crew transportation in low-Earth orbit, the International Space Station. For more information, visit www.nasa.gov/commercialcrew. Image credit: NASA

  9. KSC-2011-7043

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Pilot Doug Hurley visits with an employee inside Kennedy Space Center's Orbiter Processing Facility-2, where space shuttle Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Hurley, along with Commander Chris Ferguson and Mission Specialist Sandra Magnus, was at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-7051

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Commander Chris Ferguson signs an autograph for an employee inside Kennedy Space Center's Orbiter Processing Facility-2, where space shuttle Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Ferguson, along Pilot Doug Hurley and Mission Specialist Sandra Magnus, was at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-7048

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Commander Chris Ferguson autographs a book for an employee inside Kennedy Space Center's Orbiter Processing Facility-2, where space shuttle Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Ferguson, along Pilot Doug Hurley and Mission Specialist Sandra Magnus, was at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-7046

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Pilot Doug Hurley signs an autograph for an employee inside Kennedy Space Center's Orbiter Processing Facility-2, where space shuttle Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Hurley, along with Commander Chris Ferguson and Mission Specialist Sandra Magnus, was at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-7049

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Commander Chris Ferguson and Mission Specialist Sandra Magnus sign autographs for employees inside Kennedy Space Center's Orbiter Processing Facility-2, where space shuttle Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. The astronauts, along with Pilot Doug Hurley, were at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-7055

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – Inside Kennedy Space Center's Orbiter Processing Facility-2, STS-135 Pilot Doug Hurley inspects the windows on space shuttle Atlantis. Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Hurley, along with Commander Chris Ferguson and Mission Specialist Sandra Magnus, was at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-7050

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Mission Specialist Sandra Magnus signs an autograph for an employee inside Kennedy Space Center's Orbiter Processing Facility-2, where space shuttle Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Magnus, along with Commander Chris Ferguson and Pilot Doug Hurley, was at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-7052

    NASA Image and Video Library

    2011-09-19

    CAPE CANAVERAL, Fla. – STS-135 Pilot Doug Hurley and Mission Specialist Sandra Magnus stand next to a wheel on space shuttle Atlantis inside Kennedy Space Center's Orbiter Processing Facility-2. Atlantis is being prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. The astronauts, along Commander Chris Ferguson, were at the center for the traditional post-flight crew return presentation. STS-135 Mission Specialist Rex Walheim was unable to attend the Kennedy event. In July 2011, Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  17. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. KSC-98pc646

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  19. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-27

    ISS013-E-69723 (27 August 2006) --- This vertical view of Hurricane Ernesto was taken by the crew of the International Space Station on Sunday, Aug. 27, 2006, from an altitude of about 215 miles. At that time, Ernesto was approaching Cuba and was expected to eventually make landfall on the coast of southern Florida.

  20. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-27

    ISS013-E-69720 (27 August 2006) --- This vertical view of Hurricane Ernesto was taken by the crew of the International Space Station on Sunday, Aug. 27, 2006, from an altitude of about 215 miles. At that time, Ernesto was approaching Cuba and was expected to eventually make landfall on the coast of southern Florida.

  1. Project Argo: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Project Argo is the design of a manned Space Transportation Vehicle (STV) that would transport payloads between LEO (altitude lying between 278 to 500 km above the Earth) and GEO (altitude is approximately 35,800 km above the Earth) and would be refueled and refurbished at the Space Station Freedom. Argo would be man's first space-based manned vehicle and would provide a crucial link to geosynchronous orbit where the vast majority of satellites are located. The vehicle could be built and launched shortly after the space station and give invaluable space experience while serving as a workhorse to deliver and repair satellites. Eventually, if a manned space station is established in GEO, then Argo could serve as the transport between the Space Station Freedom and a Geostation. If necessary, modifications could be made to allow the vehicle to reach the moon or possibly Mars. Project Argo is unique in that it consists of the design and comparison of two different concepts to accomplish the same mission. The first is an all-propulsive vehicle which uses chemical propulsion for all of its major maneuvers between LEO and GEO. The second is a vehicle that uses aeroassisted braking during its return from GEO to LEO by passing through the upper portions of the atmosphere.

  2. KSC-99pp1376

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- STS-102 crew member Susan J. Helms looks over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Helms is one of three who will be staying on the ISS as the Expedition II crew. The others are Yuriy Vladimirovich Usachev and James S. Voss. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  3. KSC-99pp1378

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- From a work stand in the Space Station Processing Facility, STS-102 crew members James S. Voss (left) and Yuriy Vladimirovich Usachev (right), of Russia, look over the Pressurized Mating Adapter (PMA-3). The PMA-3 is a component of the International Space Station (ISS). Voss and Usachev are two crew members who will be staying on the ISS as the Expedition II crew. The third is Susan J. Helms. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  4. Dynamic Modeling of Solar Dynamic Components and Systems

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  5. Highlights of Science Launching on SpaceX CRS-15

    NASA Image and Video Library

    2018-06-24

    A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. Among the research being delivered is science that studies the use of artificial intelligence for crew support, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. The International Space Station is a convergence of science, technology and human innovation that demonstrates new technologies and enables research not possible on Earth. The space station has been occupied continuously since November 2000. In that time, more than 230 people and a variety of international and commercial spacecraft have visited the orbiting laboratory. The space station remains the springboard to NASA's next great leap in exploration, including future human missions to the Moon and eventually to Mars. Highlighted investigations shown: Mobile Companion/CIMON: https://go.nasa.gov/2JCgPRf ECOSTRESS: https://go.nasa.gov/2sT87DV Angiex Cancer Therapy: https://go.nasa.gov/2LA1Cgc Rodent Research-7: https://go.nasa.gov/2JlVQlC Chemical Gardens: https://go.nasa.gov/2JDCYie Follow updates on the science conducted aboard the space station on Twitter: https://twitter.com/iss_research For more information on how you can conduct your research in microgravity, visit https://go.nasa.gov/2q84LJj HD Download: https://archive.org/details/jsc2018m000428_Highlights_of_Science_Launching_on_SpaceX_CRS-15

  6. STS-110 Astronaut Morin Totes S0 Keel Pins During EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hovering in space some 240 miles above the blue and white Earth, STS-110 astronaut M.E. Morin participates in his first ever and second of four scheduled space walks for the STS-110 mission. He is seen toting one of the S0 (S-Zero) keel pins which were removed from their functional position on the truss and attached on the truss' exterior for long term stowage. The 43-foot-long, 27,000 pound S0 truss was the first of 9 segments that will make up the International Space Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The mission completed the installations and preparations of the S0 truss and the Mobile Transporter within four space walks. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission was launched April 8, 2002 and returned to Earth April 19, 2002.

  7. Yurchikhin in Service Module

    NASA Image and Video Library

    2013-06-15

    ISS036-E-008165 (15 June 2013) --- Expedition 36 Flight Engineer Fyodor Yurchikhin with Russia's Federal Space Agency (Roscosmos) takes pictures of a highly anticipated event from a window in the Pirs module on the International Space Station. His electronic still camera is equipped with a 400mm lens to capture distant images of the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) “Albert Einstein.” The spacecraft eventually moved in much closer and successfully docked to the orbital outpost at 2:07 GMT, June 15, 2013, following a ten-day period of free-flight.

  8. KSC-02pd0303

    NASA Image and Video Library

    2002-03-18

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  9. STS-110 M.S. Smith suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith relaxes during suit fit, which is part of Terminal Countdown Demonstration Test activities. The TCDT is held at KSC prior to each Space Shuttle flight to provide flight crews an opportunity to participate in simulated launch countdown activities. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  10. STS-110 M.S. Smith driving M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  11. KSC-99pp1379

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-102's Expedition II discuss the Pressurized Mating Adapter (PMA-3) (top of photo) with workers from Johnson Space Center. From left are Yuriy Vladimirovich Usachev, Dave Moore (JSC), Susan J. Helms, James S. Voss, Arne Aamodt and Matt Myers (both of JSC). The PMA-3 is a component of the International Space Station (ISS). Voss, Helms and Usachev will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  12. KSC-99pp1380

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, members of the STS-102 crew pose with workers from Johnson Space Center in front of the Pressurized Mating Adapter (PMA-3), a component of the International Space Station (ISS). From left are Dave Moore (JSC), Susan J. Helms, Arne Aamodt (JSC), Yuriy Vladimirovich Usachev, Matt Myers (JSC) and James S. Voss. Voss, Helms and Usachev, known as the Expedition II crew, will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  13. Personal Spaces: Students Creating Meaning through Big Ideas

    ERIC Educational Resources Information Center

    Sakatani, Ken; Pistolesi, Edie

    2009-01-01

    Every once in a while, stray fragments from art or popular culture spark one's imaginations and trigger an idea for developing an art curriculum project. In this article, the authors begin with the interior world of extraterrestrial aliens within the Grand Central Station locker from "Men in Black II," and led eventually to the authors' students…

  14. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-27

    ISS013-E-69696 (27 August 2006) --- This oblique image of Hurricane Ernesto on the horizon was taken by the crew of the International Space Station on Sunday, Aug. 27, 2006, from an altitude of about 215 miles. At that time, Ernesto was approaching Cuba and was expected to eventually make landfall on the coast of southern Florida.

  15. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  16. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.- funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  17. STS-110 Atlantis rolls out to Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the foreground, white herons at the canal's edge pay scant attention the immense Space Shuttle towering above them. The Shuttle is inching its way to the top of the launch pad. In the background are seen the Rotating Service Structure (open) and the Fixed Service Structure, which holds the 80-foot lightning mast on top. The Shuttle sits on top of the Mobile Launcher Platform, which rests on the crawler-transporter. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space.

  18. KSC-02pd0278

    NASA Image and Video Library

    2002-03-12

    KENNEDY SPACE CENTER, FLA. -- In the foreground, white herons at the canal's edge pay scant attention the immense Space Shuttle towering above them. The Shuttle is inching its way to the top of the launch pad. In the background are seen the Rotating Service Structure (open) and the Fixed Service Structure, which holds the 80-foot lightning mast on top. The Shuttle sits on top of the Mobile Launcher Platform, which rests on the crawler-transporter. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space

  19. Ariane 5 Rocket

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027287 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket (faint squiggly vertical form in the midst of darkness above the clouds), just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its approaching low orbit destination and its eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission.

  20. Ariane 5 Rocket

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027323 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket, barely visible in the far background, just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its low orbit destination and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission. The elbow of Canadarm2 is in the foreground.

  1. STS-92 crew heads for Astrovan for trip to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Eager to get to the launch pad and liftoff of Space Shuttle Discovery on mission STS-92, the crew hurries to the waiting Astrovan for the trip. From left are Mission Specialists Michael E. Lopez-Alegria, Koichi Wakata of Japan, William S. McArthur Jr., Leroy Chiao and Peter J.K. '''Jeff''' Wisoff; Pilot Pamela Ann Melroy; and Commander Brian Duffy. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  2. STS-92 crew heads for Astrovan for trip to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Smiling and waving at photographers and onlookers, the STS-92 crew hurries to the waiting Astrovan for the trip to Launch Pad 39A and liftoff of Space Shuttle Discovery. Clockwise from right, leading the way are Commander Brian Duffy and Pilot Pamela Ann Melroy; then Mission Specialists Leroy Chiao, Koichi Wakata of Japan, Michael Lopez-Alegria, William S. McArthur Jr. and Peter J.K. '''Jeff''' Wisoff. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  3. KSC-2010-4918

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers check the hoist connections on External Fuel Tank-122 as it is lifted toward a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2010-4914

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers secure wires from an overhead hoist to External Fuel Tank-122, for its lift into a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2010-4923

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, External Fuel Tank-122 is being lowered toward a test stand where it will be checked out before launch. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2010-4916

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers monitor the progress of External Fuel Tank-122 as it is lifted toward a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2010-4921

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, External Fuel Tank-122 is lifted high over the transfer aisle of the Vehicle Assembly Building during operations to transfer it into a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2010-4925

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, External Fuel Tank-122 is being lowered onto a test stand where it will be checked out before launch. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2010-4922

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, External Fuel Tank-122 is being lowered toward a test stand where it will be checked out before launch. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2010-4913

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, External Fuel Tank-122 sits on its transporter in the transfer aisle waiting to be lifted into a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2010-4919

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, External Fuel Tank-122 is suspended vertically over the transfer aisle of the Vehicle Assembly Building as it is lifted toward a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2010-4917

    NASA Image and Video Library

    2010-09-29

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers check the hoist connections on External Fuel Tank-122 as it is lifted toward a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis

  13. STS-110 M.S. Smith, Ross, and Walheim in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- (Left to right) STS-110 Mission Specialists Steven Smith, Jerry Ross and Rex Walheim settle into their seats aboard Space Shuttle Atlantis prior to a simulated launch countdown. The simulation is part of Terminal Countdown Demonstration Test activities. TCDT also includes emergency egress training and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  14. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  15. KSC-00pp1356

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  16. KSC00pp1356

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  17. STS-110 M.S. Ross in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  18. STS-110 M.S. Morin in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Waiting his turn at driving the M-113 armored personnel carrier is STS-110 Mission Specialist Lee Morin. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  19. STS-110 Pilot Frick in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Pilot Stephen Frick waits inside the M-113 armored personnel carrier to begin training on driving the vehicle, which is part of Terminal Countdown Demonstration Test activities. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  20. STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa waits her turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Pilot Stephen Frick. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  1. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment which eventually led to its status as an accepted risk for ISS EVAs.

  2. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  3. Simulation of Ophthalmic Alterations at the Arctic, Antarctica and the International Space Station for Long-Duration Spaceflight

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio; Gonçalves, Cristiane

    2016-07-01

    Well, we propose a series of long-period medical simulations in scientific bases at the Arctic, at Antarctica and aboard the International Space Station (ISS), involving natural ophthalmic diseases such as radiation, solar and trauma retinopathy, keratoconus, cataract, glaucoma, etc., and ophthalmic alterations by accidental injuries. These natural diseases, without a previous diagnosis, specially those specific retinopathy, appear after 1 month to 1.5 year, in average. Such studies will be valuable for the human deep-space exploration because during long-duration spaceflight, such as staying at the ISS, a Moon base and a manned trip to planet Mars, requires several months within such environments, and during such periods ophthalmic diseases and accidents might eventually occur, which could seriously affect the 'round-the-clock' work schedule of the astronauts and the long-duration spaceflight manned program.

  4. Issues of health care under weightlessness.

    PubMed

    Sekiguchi, C

    1994-01-01

    This review will address issues of effects of space flights on the body. Cardiovascular deconditioning often induce symptoms like orthostatic intolerance after flight, and during flight there will be space motion sickness during the first few days with headache, malaise, nausea and eventually vomiting. These symptoms disappear and do not interfere with the performance of the astronauts after several days. During long-term flights, effects will be muscle atrophy and calcium loss from the skeleton. Radiation effects will be a significant issue, increasing with the length of the space flight. Also during long-term flights, psychological problems will become of increasing importance. Astronaut health care will be discussed related to Space Shuttle missions and Space Station missions. Furthermore, countermeasures for long-term space flights (up to 6 months) will be outlined. The NASA health care programme is reviewed, and the frequency of illnesses and injuries encountered in the NASA programme is discussed. There will be a need for setting up an international health care programme in view of the upcoming international cooperation in the Space Station era. It is emphasized that the Space Station is an international platform. Therefore, the health care team will be composed of international personnel, mainly from NASA with participation of Europe, Canada, Russia, and Japan. Specialized medical doctors will form the team and support the crew members from the ground. Some issues, such as medical licensing and responsibility, remain to be solved.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  6. Close-up view Pea pods in Russian Lada greenhouse

    NASA Image and Video Library

    2003-05-12

    ISS007-E-05295 (May 2003) --- Inside the Russian Lada greenhouse, these peas have dried and “gone to seed.” They are part of an experiment to investigate plant development and genetics. The crew of the International Space Station (ISS) will soon harvest the seeds. Eventually, some will be re-planted onboard the ISS and some will be returned to Earth for further study.

  7. The Z1 truss is ready to be moved into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), a worker makes sure the Integrated Truss Structure Z1 is ready to be moved into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  8. KSC-2010-4892

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves from the Turn Basin to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Once inside the Vehicle Assembly Building, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-4891

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves from the Turn Basin to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Once inside the Vehicle Assembly Building, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-4895

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, enters the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-4890

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves from the Turn Basin to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Once inside the Vehicle Assembly Building, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-4897

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, has been moved inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-4896

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves into the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  14. STS-92 crew poses for group photo before launch preparations

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew begin their journey to Launch Pad 39A with a snack. Seated at the table (left to right) are Mission Specialists William S. McArthur Jr., Leroy Chiao and Koichi Wakata of Japan; Commander Brian Duffy; Pilot Pamela Ann Melroy; and Mission Specialists Peter J.K. '''Jeff''' Wisoff and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  15. The Space Station Prototype Program - The development of a regenerative life support system for extended-duration missions.

    NASA Technical Reports Server (NTRS)

    Willis, N. C., Jr.; Neel, J. M.

    1972-01-01

    Design concepts and test philosophies which may contribute to the development of a low-cost maintainable environmental control/life support system are examined. It is shown that the concept of producing flight prototype equipment during a developmental program can reduce the eventual cost of a flight system by incorporating realistic flight-type design requirements without imposing exacting design features and stringent controls. A flight prototype design is one that can be converted readily into an actual flight design without any conceptual change. Modularity of subsystems provides the system and the program a degree of flexibility relative to the eventual vehicle configuration and technological improvements.

  16. Chapter 8: Materials for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2017-01-01

    Materials science and processing research in space can be thought of as a field of study that began with the sounding rocket experiments in the 1950s. Material science studies of the lunar surface materials returned during the Apollo missions enabled the study of lunar resource utilization. The study of materials science and processing in space continued with over 30 years of microgravity materials processing research which continues today in the International Space Station. These studies are the technical foundation that could enable lower cost human exploration through the use of in-situ propellant production, the production of energy from space resources, and the eventual establishment of a substantial portion of humanity living self sufficiently off Earth.

  17. STS-110 Commander Bloomfield in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Commander Michael Bloomfield is eager to take his turn turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. To his left is Mission Specialist Steven Smith. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  18. STS-110 M.S. Smith and Ross in slidewire basket during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialists Steven L. Smith (left) and Jerry L. Ross (right) get ready to climb out of the slidewire basket, part of emergency egress equipment on the launch pad.. The crew is taking part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown, held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  19. KSC-2010-4852

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- The Pegasus Barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, nears NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  20. KSC-2010-4865

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jim Grossmann

  1. KSC-2010-4839

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  2. KSC-2010-4840

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  3. KSC-2010-4876

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- The Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  4. KSC-2010-4862

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- NASA's Pegasus barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin of NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  5. KSC-2010-4836

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  6. KSC-2010-4874

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- The Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  7. KSC-2010-4841

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  8. KSC-2010-4833

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  9. KSC-2010-4838

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Pegasus Barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  10. KSC-2010-4871

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-4837

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  12. KSC-2010-4834

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  13. KSC-2010-4835

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  14. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-27

    ISS013-E-69718 (27 August 2006) --- This vertical view of Hurricane Ernesto was taken by the crew of the International Space Station on Sunday, Aug. 27, 2006, from an altitude of about 215 miles. At that time, Ernesto was approaching Cuba and was expected to eventually make landfall on the coast of southern Florida. Part of a Russian spacecraft, docked to the orbital outpost, is visible in upper left corner.

  15. Avionics upgrade strategies for the Space Shuttle and derivatives

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    Some approaches aimed at providing a low-cost, low-risk strategy to upgrade the shuttle onboard avionics are described. These approaches allow migration to a shuttle-derived vehicle and provide commonality with Space Station Freedom avionics to the extent practical. Some goals of the Shuttle cockpit upgrade include: offloading of the main computers by distributing avionics display functions, reducing crew workload, reducing maintenance cost, and providing display reconfigurability and context sensitivity. These goals are being met by using a combination of off-the-shelf and newly developed software and hardware. The software will be developed using Ada. Advanced active matrix liquid crystal displays are being used to meet the tight space, weight, and power consumption requirements. Eventually, it is desirable to upgrade the current shuttle data processing system with a system that has more in common with the Space Station data management system. This will involve not only changes in Space Shuttle onboard hardware, but changes in the software. Possible approaches to maximizing the use of the existing software base while taking advantage of new language capabilities are discussed.

  16. STS-92 Crew Walkout

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-92 crew eagerly walk out of the Operations and Checkout Building for the second time for their trip to Launch Pad 39A. On the left side, from front to back, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao and Koichi Wakata of Japan. On the right side, front to back, are Commander Brian Duffy and Mission Specialists Peter J.K . Wisoff, William S. McArthur Jr. and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT. [Photo taken with a Nikon D1 camera.

  17. STS-92 crew exits O&C on way to Launch Pad 39A for the second time

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew greets cheering onlookers as they exit the Operations and Checkout Building for the trip to Launch Pad 39A and liftoff of Space Shuttle Discovery. In rows of two, starting at front, are Pilot Pamela Ann Melroy and Commander Brian Duffy; Mission Specialists Leroy Chiao, Peter J.K. '''Jeff''' Wisoff; Koichi Wakata, William S. McArthur Jr.; and Michael E. Lopez-Alegria taking up the rear. . This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  18. KSC-2010-4908

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- This overhead view shows the Space Shuttle Program's last external fuel tank, ET-122, as it is being transported to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea, carried in the Pegasus Barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kevin O'Connell

  19. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, arrives inside the RLV hangar, located near the Shuttle Landing Facility at KSC. Approaching bad weather caused the detour as a precaution. The truss will eventually be transferred to the Operations and Checkout Building for processing. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  20. KSC-00pp1357

    NASA Image and Video Library

    2000-09-13

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  1. Fundamental Biological Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Yost, Bruce; Fletcher, L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    The fundamental Biology Program of NASA's Life Sciences Division is chartered with enabling and sponsoring research on the International Space Station (ISS) in order to understand the effects of the space flight environment, particularly microgravity, on living systems. To accomplish this goal, NASA Ames Research Center (ARC) has been tasked with managing the development of a number of biological habitats, along with their support systems infrastructure. This integrated suite of habitats and support systems is being designed to support research requirements identified by the scientific community. As such, it will support investigations using cells and tissues, avian eggs, insects, plants, aquatic organisms and rodents. Studies following organisms through complete life cycles and over multiple generations will eventually be possible. As an adjunct to the development of these basic habitats, specific analytical and monitoring technologies are being targeted for maturation to complete the research cycle by transferring existing or emerging analytical techniques, sensors, and processes from the laboratory bench to the ISS research platform.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1999-11-30

    These five STS-97 crew members posed for a traditional portrait during training. On the front row, left to right, are astronauts Michael J. Bloomfield, pilot; Marc Garneau, mission specialist representing the Canadian Space Agency (CSA); and Brent W. Jett, Jr., commander. In the rear, wearing training versions of the extravehicular mobility unit (EMU) space suits, (left to right) are astronauts Carlos I. Noriega, and Joseph R. Tarner, both mission specialists. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  3. KSC-2010-4843

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  4. KSC-2010-4850

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  5. KSC-2010-4846

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  6. KSC-2010-4830

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, ushers the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  7. KSC-2010-4853

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  8. KSC-2010-4856

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- NASA's Pegasus barge moves through the bridge at Port Canaveral, Fla. The barge is carrying the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  9. KSC-2010-4829

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, ushers the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  10. KSC-2010-4859

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- NASA's Pegasus barge is pulled toward NASA's Kennedy Space Center in Florida by a tug boat. The barge is carrying the Space Shuttle Program's last external fuel tank, ET-122 and traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett

  11. KSC-2010-4845

    NASA Image and Video Library

    2010-09-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller

  12. Paving the Path for Human Space Exploration: The Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hansen, Lauri

    2016-01-01

    Lauri Hansen, Director of Engineering at NASA Johnson Space Center will discuss the challenges of human space exploration. The future of human exploration begins with our current earth reliant missions in low earth orbit. These missions utilize the International Space Station to learn how to safely execute deep space missions. In addition to serving as an exploration test bed and enabling world class research, the International Space Station enables NASA to build international and commercial partnerships. NASA's next steps will be to enable the commercialization of low earth orbit while concentrating on developing the spacecraft and infrastructure necessary for deep space exploration and long duration missions. The Orion multi-purpose crew vehicle and the Space Launch System rocket are critical building blocks in this next phase of exploration. There are many challenges in designing spacecraft to perform these missions including safety, complex vehicle design, and mass challenges. Orion development is proceeding well, and includes a significant partnership with the European Space Agency (ESA) to develop and build the Service Module portion of the spacecraft. Together, NASA and ESA will provide the capability to take humans further than we have ever been before - 70,000 km past the moon. This will be the next big step in expanding the frontiers of human exploration, eventually leading to human footprints on Mars.

  13. STS-110 crew in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With fellow crew members Mission Specialists Rex Walheim and Ellen Ochoa (waving her arm) and a trainer aboard, STS-110 Pilot Stephen Frick stirs up dust behind the M-113 armored personnel carrier as he practices driving it. The training is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  14. STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa practices driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. Accompanying her are fellow crew members Mission Specialist Rex Walheim (far left) and Pilot Stephen Frink (second from left). In front is the trainer. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  15. STS-110 M.S. Ross and Smith in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With STS-110 Mission Specialists Jerry Ross (far left) and Steven Smith (third from left) on board, Commander Michael Bloomfield scatters dust as he practices driving the M-113 armored personnel carrier. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  16. KSC00pp1353

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  17. KSC-00pp1353

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  18. Psychological aspects of living in space - architectural challenges

    NASA Astrophysics Data System (ADS)

    Häuplik, Sandra; Lorenz, Susanne

    2002-10-01

    Space missions have generally involved crews, drawn from a highly homogeneous pool (such as white, educated, young adult males) and functioned for limited periods of time. Future missions may involve crews drawn from a more heterogeneous pool and missions could eventually last years. 3 to 5-person groups are considered appropriate for the Space Shuttle and the first interplanetry missions. In addition to the above mentioned topics the success of a mission will no longer be dependent only on safety issues due to technological progress, but sociological and psychological aspects will become important determinants off the success or failure of future space missions. To create and ensure the social and psychological balance an adequate spatial planning is essential. In the following essay notions for a conception basis of designing a space station will be described.

  19. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  20. Lab-on-a-Chip: From Astrobiology to the International Space Station

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Wainwright, Nor; Steele, Andrew; Gunter, Dan; Monaco, Lisa A.; Wells, Mark E.; Morris, Heather C.; Boudreaux, Mark E.

    2008-01-01

    The continual and long-term habitation of enclosed environments, such as Antarctic stations, nuclear submarines and space stations, raises unique engineering, medical and operational challenges. There is no easy way out and no easy way to get supplies in. This situation elevates the importance of monitoring technology that can rapidly detect events within the habitat that affect crew safety such as fire, release of toxic chemicals and hazardous microorganisms. Traditional methods to monitor microorganisms on the International Space Station (ISS) have consisted of culturing samples for 3-5 days and eventual sample return to Earth. To augment these culture methods with new, rapid molecular techniques, we developed the Lab-on-a-Chip Application Development - Portable Test System (LOCAD-PTS). The system consists of a hand-held spectrophotometer, a series of interchangeable cartridges and a surface sampling/dilution kit that enables crew to collect samples and detect a range of biological molecules, all within 15 minutes. LOCAD-PTS was launched to the ISS aboard Space Shuttle Discovery in December 2006, where it was operated for the first time during March-May 2007. The surfaces of five separate sites in the US Lab and Node 1 of ISS were analyzed for endotoxin, using cartridges that employ the Limulus Amebocyte Lysate (LAL) assay; results of these tests will be presented. LOCAD-PTS will remain permanently onboard ISS with new cartridges scheduled for launch in February and October of 2008 for the detection of fungi (Beta-glucan) and Gram-positive bacteria (lipoteichoic acid), respectively.

  1. M.S. Wakata and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan exits the Astrovan on its return to the Operations and Checkout Building. Behind him is Mission Specialist Leroy Chiao. The scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  2. Pilot Melory and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pamela Ann Melroy exits the Astrovan on its return to the Operations and Checkout Building. Behind her is Mission Specialist Koichi Wakata of Japan. The scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  3. Commander Duffy and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy pauses in the door of the Astrovan before exiting at the Operations and Checkout Building. The vehicle is returning the crew after the scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  4. Three Years of Global Positioning System Experience on International Space Station

    NASA Technical Reports Server (NTRS)

    Gomez, Susan

    2005-01-01

    The International Space Station global positioning systems (GPS) receiver was activated in April 2002. Since that time, numerous software anomalies surfaced that had to be worked around. Some of the software problems required waivers, such as the time function, while others required extensive operator intervention, such as numerous power cycles. Eventually, enough anomalies surfaced that the three pieces of code included in the GPS unit have been re-written and the GPS units were upgraded. The technical aspects of the problems are discussed, as well as the underlying causes that led to the delivery of a product that has had numerous problems. The technical aspects of the problems included physical phenomena that were not well understood, such as the affect that the ionosphere would have on the GPS measurements. The underlying causes were traced to inappropriate use of legacy software, changing requirements, inadequate software processes, unrealistic schedules, incorrect contract type, and unclear ownership responsibilities.

  5. Three Years of Global Positioning System Experience on International Space Station

    NASA Technical Reports Server (NTRS)

    Gomez, Susan

    2006-01-01

    The International Space Station global positioning system (GPS) receiver was activated in April 2002. Since that time, numerous software anomalies surfaced that had to be worked around. Some of the software problems required waivers, such as the time function, while others required extensive operator intervention, such as numerous power cycles. Eventually enough anomalies surfaced that the three pieces of code included in the GPS unit have been re-written and the GPS units upgraded. The technical aspects of the problems are discussed, as well as the underlying causes that led to the delivery of a product that has had so many problems. The technical aspects of the problems included physical phenomena that were not well understood, such as the affect that the ionosphere would have on the GPS measurements. The underlying causes were traced to inappropriate use of legacy software, changing requirements, inadequate software processes, unrealistic schedules, incorrect contract type, and unclear ownership responsibilities..

  6. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronauts Steven L. Smith (right) and Rex J. Walheim work in tandem on the third scheduled EVA session in which they released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm (out of frame). Part of the Destiny laboratory and a glimpse of the Earth's horizon are seen in the lower portion of this digital image. The STS-110 mission prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the S0 (S-zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  8. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components.

  9. ART/Ada and CLIPS/Ada

    NASA Technical Reports Server (NTRS)

    Culbert, Chris

    1990-01-01

    Although they have reached a point of commercial viability, expert systems were originally developed in artificial intelligence (AI) research environments. Many of the available tools still work best in such environments. These environments typically utilize special hardware such as LISP machines and relatively unfamiliar languages such as LISP or Prolog. Space Station applications will require deep integration of expert system technology with applications developed in conventional languages, specifically Ada. The ability to apply automation to Space Station functions could be greatly enhanced by widespread availability of state-of-the-art expert system tools based on Ada. Although there have been some efforts to examine the use of Ada for AI applications, there are few, if any, existing products which provide state-of-the-art AI capabilities in an Ada tool. The goal of the ART/Ada Design Project is to conduct research into the implementation in Ada of state-of-the-art hybrid expert systems building tools (ESBT's). This project takes the following approach: using the existing design of the ART-IM ESBT as a starting point, analyze the impact of the Ada language and Ada development methodologies on that design; redesign the system in Ada; and analyze its performance. The research project will attempt to achieve a comprehensive understanding of the potential for embedding expert systems in Ada systems for eventual application in future Space Station Freedom projects. During Phase 1 of the project, initial requirements analysis, design, and implementation of the kernel subset of ART-IM functionality was completed. During Phase 2, the effort has been focused on the implementation and performance analysis of several versions with increasing functionality. Since production quality ART/Ada tools will not be available for a considerable time, and additional subtask of this project will be the completion of an Ada version of the CLIPS expert system shell developed by NASA. This tool will provide full syntactic compatibility with any eventual products of the ART/Ada design while allowing SSFP developers early access to this technology.

  10. KSC-2010-4904

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-4906

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller

  12. The Z1 truss is moved into the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  13. The Z1 truss is lifted up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  14. The Z1 truss is prepped in the PCR for transfer to Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers prepare to move the Integrated Truss Structure Z1 out of the payload canister. Once inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  15. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  16. Zeoponic Plant Growth Substrate Development at the Johnson Space Center and Possible Use at a Martian Outpost

    NASA Technical Reports Server (NTRS)

    Gruener, John E.; Ming, Douglas W.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) is developing a substrate, termed zeoponics, that will slowly release all of the essential nutrients into solution for plant growth experiments in advanced life support system testbeds. This substrate is also potentially useful in the near future on the Space Shuttle and International Space Station and could eventually be used at an outpost on Mars. Chemical analyses of the Martian soil by the Viking and Mars Pathfinder missions have indicated that several of the elements required for plant growth are available in the soil. It may be possible to use the martian soil as the bulk substrate for growing food crops, while using smaller amounts of zeoponic substrate as an amendment to rectify any nutrient deficiencies.

  17. KSC-2010-4899

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- This panoramic image shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, through the Port Canaveral locks on its way to the Turn Basin at NASA's Kennedy Space Center in Florida. Once docked, the tank will be offloaded from the barge and transported to the Vehicle Assembly Building (VAB). The tank traveled 900 miles by sea, carried in the barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin

  18. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, is moved from the Shuttle Landing Facility toward the newly constructed RLV hangar (viewed here from inside the hangar) as precaution against bad weather approaching the Center (background). The truss will eventually be transferred to the Operations and Checkout Building for processing. In the background is the Super Guppy transport that brought it to KSC. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P- 1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  19. Investigation of the Utilization of Modern Industrial Methods, Processes, Ergonomics, and the Internet in the Scientific Environment

    NASA Technical Reports Server (NTRS)

    Myer, Spencer S., Jr.

    2005-01-01

    On Oct. 1, 2001 Cleveland State University and NASA Glenn Research Center embarked on the above named cooperative agreement. Because NASA's research facilities often exhibit instances where the failure to use state-of-the-art technologies and methods to improve on outmoded systems of interface and control, and this runs contrary to the NASA philosophy of "faster, better, and cheaper", it was deemed an ideal opportunity for this collaboration. The main objectives of the proposed effort were to research and investigate the use of the latest technologies, methods, techniques, etc. which pertain to control and interface with industrial and research systems and facilities. The work was done in large part at NASA Glenn Research Center, using selected research facilities as real-world laboratories; such as certain Microgravity Science Division and Space Station projects. Microgravity Science Division at Glenn Research Center designs and builds experiments to be flown on the Space Shuttle and eventually on the International Space Station. Economy of space, weight, complexity, data storage, ergonomics, and many other factors present problems that also exist in industry. Many of the solutions can come from the same areas of study mentioned above.

  20. Plant-centered biosystems in space environments: technological concepts for developing a plant genetic assessment and control system.

    PubMed

    Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E

    2003-06-01

    Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.

  1. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Before dawn, the payload canister (left) with the Integrated Truss Structure Z1 moves slowly up the crawlerway ramp on Launch Pad 39A toward Space Shuttle Discovery in the background. The canister will be lifted up the Rotating Service Structure to the Payload Changeout Room where the Z1 will be removed and transferred to Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  2. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With the onset of dawn, the payload canister (left) with the Integrated Truss Structure Z1 inside begins its journey up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  3. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister at left draws closer to the Rotating Service Structure where it will be lifted to the Payload Changeout Room. There its cargo, the Integrated Truss Structure Z1, will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  4. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As the sky grows lighter, , the payload canister (left) with the Integrated Truss Structure Z1 inside is slowly lifted up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  5. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  6. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  7. Space Transportation and Destination Facilities

    NASA Technical Reports Server (NTRS)

    Smitherman, David; McClure, Wallace

    1999-01-01

    The Space Transportation and Destination Facilities section focused on space transportation vehicles-from use of existing vehicles to development of specialized transports-and on space stations, space business parks, space hotels, and other facilities in space of the kind that eventually would provide services for general public space travel (PST) and tourism. For both transportation and destination facilities, the emphasis was on the identification of various strategies to enable a realistic incremental progression in the development and acquisition of such facilities, and the identification of issues that need resolution to enable formation of viable businesses. The approach was to determine the best: (1) Strategies for general PST and tourism development through the description and analysis of a wide range of possible future scenarios. With these scenarios in mind the section then identified. (2) Key issues to be explored. (3) opportunities to eliminate barriers. (4) Recommendations for future actions. (5) Top-level requirements and characteristics for general PST and tourism systems and services that would guide the development of transportation and destination facilities.

  8. STS-97 and Expedition One Crews Pose for Onboard Photo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  9. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience

    NASA Astrophysics Data System (ADS)

    Rembala, Richard; Ower, Cameron

    2009-10-01

    MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic operator on-orbit of some of the more routine tasks. Overall these proposed approaches when used effectively offer the potential to drive down operations overhead and allow more efficient and productive robotic operations.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021060 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021061 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021284 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021044 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021296 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021028 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020884 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021046 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020610 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  19. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021024 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  20. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021058 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021085 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020576 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020594 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021081 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020856 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020683 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021037 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020581 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021293 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021286 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020892 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021054 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021080 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. ATV2 launch views

    NASA Image and Video Library

    2011-02-16

    JSC2011-E-017489 (16 Feb. 2011) --- The Ariane 5 rocket is pictured just after lift off from Europe?s Spaceport in Kourou, French Guiana. ESA?s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its targeted low orbit and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission. Photo courtesy of ESA/Stephane Corvaja and P. Baudon

  15. Ares V: Progress Towards a Heavy Lift Capability for the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's new exploration initiative will again take humans beyond low Earth orbit, to the moon, and into deep space. The space agency is developing a new fleet of launch vehicles that will fulfill the national goals of replacing the Space Shuttle fleet, completing the International Space Station, establishing a permanent outpost on the moon, and eventually traveling to Mars. Separate crew and cargo vehicles emerged from mission architecture studies - the Ares I to carry the Orion crew exploration vehicle and its crew of4 to 6 astronauts, and the Ares V to carry the Altair lunar lander or other supplies to support future exploration missions. (Figure 1) These vehicles will be designed to be safe, affordable, sustainable, reliable, operable with the safety, reliability, flexibility, and operability to serve this nation's manned and unmanned exploration programs for the coming decades. This paper discusses recent and current progress on the Ares V and planned future activities.

  16. An Exploration Perspective of Beamed Energy Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John W.

    2007-01-01

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

  17. The STS-92 crew exits O&C on way to Launch Pad 39A for the second time

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew eagerly walk out of the Operations and Checkout Building for the second time for their trip to Launch Pad 39A. On the left side, from front to back, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao and Koichi Wakata of Japan. On the right side, front to back, are Commander Brian Duffy and Mission Specialists Peter J.K. '''Jeff''' Wisoff, William S. McArthur Jr. and Michael E. Lopez-Alegria. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. This launch is the fourth for Duffy and Wisoff, the third for Chiao and McArthur, second for Wakata and Lopez-Alegria, and first for Melroy. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT. [Photo taken with a Nikon D1 camera.

  18. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister with the Integrated Truss Structure Z1 inside arrives at the spot under the Rotating Service Structure where the canister can be lifted to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  19. KSC-99pp0477

    NASA Image and Video Library

    1999-04-29

    The STS-96 crew pose for a group photo after emergency egress training at Launch Pad 39B. From left are Mission Specialist Ellen Ochoa (Ph.D.); Pilot Rick Douglas Husband; Mission Specialists Julie Payette, Daniel Barry (M.D., Ph.D.), and Tamara E. Jernigan (Ph.D.); Commander Kent V. Rominger; and Mission Specialist Valery Ivanovich Tokarev. Payette is with the Canadian Space Agency, and Ivanovich Tokarev with the Russian Space Agency. Behind them is the tip of the external tank, which is 153.8 feet high. The external tank provides fuel to the three space shuttle main engines in the orbiter during liftoff and ascent. It is eventually jettisoned, entering the Earth's atmosphere, breaking up and impacting a remote ocean area. STS-96, scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  20. Refinements in the Design of the Ares V Cargo Launch Vehicle for NASA's, Exploration Strategy

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA is developing a new launch vehicle fleet to fulfill the national goals of replacing the shuttle fleet, completing the International Space Station (ISS), and exploring the Moon on the way to eventual exploration of Mars and beyond. Programmatic and technical decisions during early architecture studies and subsequent design activities were focused on safe, reliable operationally efficient vehicles that could support a sustainable exploration program. A pair of launch vehicles was selected to support those goals the Ares I crew launch vehicle and the Ares V cargo launch vehicle. They will be the first new human-rated launch vehicles developed by NASA in more than 30 years (Figure 1). Ares I will be the first to fly, beginning space station ferry operations no later than 2015. It will be able to carry up to six astronauts to ISS or support up to four astronauts for expeditions to the moon. Ares V is scheduled to be operational in the 2020 timeframe and will provide the propulsion systems and payload to truly extend human exploration beyond low-Earth orbit. (LEO).

  1. The STS-92 crew exits O&C on way to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Striding happily to the waiting Astrovan for the trip to Launch Pad 39A are (left to right) STS-92 Mission Specialists Michael E. Lopez-Alegria, Koichi Wakata of Japan, Peter J.K. '''Jeff''' Wisoff, Leroy Chiao and William S. McArthur; Pilot Pamela Ann Melroy; and Commander Brian Duffy. STS-92 is scheduled for liftoff to the International Space Station (ISS) at 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  2. The STS-92 crew exits O&C on way to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew strides eagerly to the waiting Astrovan that will take them to Launch Pad 39A for liftoff at 8:05 p.m. EDT to the International Space Station (ISS). They are (from front to back) Pilot Pamela Ann Melroy and Commander Brian Duffy; and Mission Specialists Leroy Chiao and William S. McArthur Jr.; Peter J.K. Wisoff; Michael E. Lopez-Alegria and Koichi Wakata of Japan. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Wakata. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020596 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021078 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020619 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020601 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021072 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021067 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Mission and Safety Critical (MASC) plans for the MASC Kernel simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.

  10. Evaluations of Three Methods for Remote Training

    NASA Technical Reports Server (NTRS)

    Woolford, B.; Chmielewski, C.; Pandya, A.; Adolf, J.; Whitmore, M.; Berman, A.; Maida, J.

    1999-01-01

    Long duration space missions require a change in training methods and technologies. For Shuttle missions, crew members could train for all the planned procedures, and carry documentation of planned procedures for a variety of contingencies. As International Space Station (ISS) missions of three months or longer are carried out, many more tasks will need to be performed for which little or no training was received prior to launch. Eventually, exploration missions will last several years, and communications with Earth will have long time delays or be impossible at times. This series of three studies was performed to identify the advantages and disadvantages of three types of training for self-instruction: video-conferencing; multimedia; and virtual reality. These studies each compared two types of training methods, on two different types of tasks. In two of the studies, the subject's were in an isolated, confined environment analogous to space flight; the third study was performed in a laboratory.

  11. MOOSE: Manned On-Orbit Servicing Equipment

    NASA Technical Reports Server (NTRS)

    Budinoff, J. (Editor); Leontsinis, N. (Editor); Lane, J. (Editor); Singh, R. (Editor); Angelone, K.; Boswell, C.; Chamberlain, I.; Concha, M.; Corrodo, M.; Custodio, O.

    1993-01-01

    The ability to service satellites has thus far been limited to low earth orbit platforms within reach of the Space Shuttle. Other orbits, such as geosynchronous orbits containing high-value spacecraft have not been attainable by a servicing vehicle. The useful life of a satellite can be extended by replacing spent propellant and damaged orbital replacement units, forestalling the need for eventual replacement. This growing need for satellite on-orbits servicing can be met by the Manned On-Orbit Servicing Equipment (MOOSE). Missions requiring orbit transfer capability, precision manipulation and maneuvering, and man-in-the-loop control can be accomplished using MOOSE. MOOSE is a flexible, reusable, single operator, aerobraking spacecraft designed to refuel, repair, and service orbiting spacecraft. MOOSE will be deployed from Space Station Freedom, (SSF), where it will be stored, resupplied, and refurbished.

  12. Risks, designs, and research for fire safety in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.; Urban, David

    1991-01-01

    Current fire protection for spacecraft relies mainly on fire prevention through the use of nonflammable materials and strict storage controls of other materials. The Shuttle also has smoke detectors and fire extinguishers, using technology similar to aircraft practices. While experience has shown that the current fire protection is adequate, future improvements in fire safety technology to meet the challenges of long duration space missions, such as the Space Station Freedom, are essential. All spacecraft fire protection systems, however, must deal with the unusual combustion characteristics and operational problems in the low gravity environment. The features of low gravity combustion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be addressed eventually to provide effective and conservative fire protection systems are discussed.

  13. A comparative analysis of high-speed rail station development into destination and multi-use facilities : the case of San Jose Diridon.

    DOT National Transportation Integrated Search

    2017-02-01

    As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic develo...

  14. Behavioral Adaptations of Female Mice on the International Space Station

    NASA Technical Reports Server (NTRS)

    Strieter, I.; Moyer, E. L.; Lowe, M.; Choi, S.; Gong, C.; Cadena, Sam; Stodieck, Louis; Globus, R. K.; Ronca, A. E.

    2017-01-01

    Adult female mice were sent to the International Space Station (ISS) as part of an early life science mission utilizing NASA's Rodent Habitat. Its primary purpose was to provide further insight into the influence of a microgravity environment on various aspects of mammalian physiology and well-being as part of an ongoing program of research aimed ultimately at understanding and ameliorating the deleterious influences of space on the human body. The present study took advantage of video collected from fixed, in-flight cameras within the habitat itself, to assess behavioral adaptations observed among in-flight mice aboard the ISS and differences in behavior with respect to a control group on the ground. Data collection consisted of several behavioral measures recorded by a trained observer with the assistance of interactive behavior analysis software. Specific behavioral measures included frequencies of conspecific interactionsociability, time spent feeding and conducting hygienic behavior, and relative durations of thigmotactic behavior, which is commonly used as an index of anxiety. Data were used to test tentative hypotheses that such behaviors differ significantly across mice under microgravity versus 1g conditions, and the assumption that the novel experience of microgravity itself may represent an initially anxiogenic stimulus which an animal will eventually acclimate to, perhaps through habituation.

  15. Refining the Ares V Design to Carry Out NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.

  16. NASA Exploration Launch Projects Systems Engineering Approach for Astronaut Missions to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.

  17. KSC-2012-1322

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to industry partners and stakeholders during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 people from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  18. KSC-2012-1325

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Phil McAlister, NASA's director of Commercial Spaceflight Development, talks to industry partners and stakeholders during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 people from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  19. KSC-2012-1333

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to media during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 industry partners and stakeholders from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  20. KSC-2012-1326

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to industry partners and stakeholders during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 people from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  1. KSC-2012-1332

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to media during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 industry partners and stakeholders from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  2. KSC-2012-1330

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to media during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 industry partners and stakeholders from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  3. KSC-2012-1323

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to industry partners and stakeholders during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 people from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  4. KSC-2012-1331

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Ed Mango, program manager for NASA's Commercial Crew Program CCP, talks to media during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 industry partners and stakeholders from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  5. KSC-2012-1324

    NASA Image and Video Library

    2012-02-14

    COCOA BEACH, Fla. -- Phil McAlister, NASA's director of Commercial Spaceflight Development, talks to industry partners and stakeholders during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 people from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett

  6. Biotelemeters for Space Flights and Fetal Monitoring

    NASA Technical Reports Server (NTRS)

    Mundt, Carsten W.; Ricks, Robert D.; Hines, John W.

    1999-01-01

    Pill-shaped biotelemeters originally designed for space flight applications will soon be used for monitoring the health of a fetus during and after in-utero fetal surgery. The authors developed a family of biotelemeters that are not only small enough for rodent studies on board the space shuttle or international space station, but also fit through a 10 mm trocar, a plastic tube that is used in endoscopic fetal surgery to obtain minimally invasive access to the fetus. The first 'pill' measures pressure and temperature, and is currently undergoing long-term leakage and biocompatibility tests. A second pill under development measures pH and temperature. A prototype of the 'pH-pill' has been built and successfully tested and is presently being miniaturized into the same dimensions as the 'pressure pill'. Additional pills measuring heart rate, ECG, other ions such as calcium and potassium, and eventually glucose and blood gases, will follow. All pills are designed for ultra-low power consumption yielding lifetimes of up to 10 months in order to meet the requirements of fetal monitoring, but also to provide the capability of long-term space station experiments. Each pill transmits its pulse-interval-modulated signal on a unique carrier frequency in the frequency range of 174-216MHz. A custom-designed multi-channel receiver demodulates and decodes each pill signal and sends the data to a LabVIEW program that performs real-time data analysis and display. A patent for the pill family and its data analysis system is pending.

  7. Naval Station Guantanamo Bay: History and Legal Issues Regarding Its Lease Agreements

    DTIC Science & Technology

    2016-11-17

    parcels of land to the United States for use as naval or coaling stations. Naval Station Guantanamo Bay, Cuba, was the sole installation established...protected harbor, coaling station, and eventually a convoy staging area and airfield. Because the station is a facility of the United States Navy...Cuba will sell or lease to the United States lands necessary for coaling or naval stations at certain specified points, to be agreed upon with the

  8. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach.

  9. A comparative analysis of high speed rail station development into destination and/or multi-use facilities : the case of San Jose Diridon.

    DOT National Transportation Integrated Search

    2017-02-01

    As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the : eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic deve...

  10. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  11. KSC-99pp0773

    NASA Image and Video Library

    1999-06-18

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations & Checkout Bldg. (O&C) look over a central component of the International Space Station (ISS), the S0 (S zero) truss. It is undergoing processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes are being installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the spring of 2001

  12. KSC-2012-6553

    NASA Image and Video Library

    2012-09-28

    HOUSTON -- NASA Astronaut Lee Archambault performs an evaluation of reach and visibility of controls and displays during an end-of-year interior layout evaluation of The Boeing Company's CST-100 spacecraft. The evaluation at Boeing's Houston Product Support Center in Texas was part of the company's ongoing work supporting its funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing

  13. A Plasma Rocket Demonstration on the International Space Station

    NASA Astrophysics Data System (ADS)

    Petro, A.

    2002-01-01

    in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One feature of this concept is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. For this reason the system is called the Variable Specific Impulse Magneto-plasma Rocket or VASIMR. This ability to vary specific impulse and thrust will allow for optimum low thrust interplanetary trajectories and results in shorter trip times than is possible with fixed specific impulse systems while preserving adequate payload margins. demonstrations are envisioned. A ground-based experiment of a low-power VASIMR prototype rocket is currently underway at the Advanced Space Propulsion Laboratory. The next step is a proposal to build and fly a 25-kilowatt VASIMR rocket as an external payload on the International Space Station. This experiment will provide an opportunity to demonstrate the performance of the rocket in space and measure the induced environment. The experiment will also utilize the space station for its intended purpose as a laboratory with vacuum conditions that cannot be matched by any laboratory on Earth. propulsion on the space station. An electric propulsion system like VASIMR, if provided with sufficient electrical power, could provide continuous drag force compensation for the space station. Drag compensation would eliminate the need for reboosting the station, an operation that will consume about 60 metric tons of propellant in a ten-year period. In contrast, an electric propulsion system would require very little propellant. In fact, a system like VASIMR can use waste hydrogen from the station's life support system as its propellant. This waste hydrogen is otherwise dumped overboard. Continuous drag compensation would also improve the microgravity conditions on the station. So electric propulsion can reduce propellant delivery requirements and thereby increase available payload capacity and at the same time improve the conditions for scientific research. and the space environment. This is a beneficial effect that prevents a charge buildup on the station. The station already operates two dedicated non-propulsive plasma contactor devices for this purpose. A VASIMR rocket would function as an additional plasma contactor. would be delivered to orbit in the Space Shuttle payload bay. It would be mounted on a standard payload attachment structure. After removal from the payload bay by the shuttle robotic arm, it would be handed to the space station robotic arm which would place it at an external payload attach site on the station truss. A mating device for power and data connections exists at the payload site. The experiment would receive one to three kilowatts of power from the station. About 600 watts would be used for cryogenic cooling and control devices. Additional power would be stored in a set of batteries. The VASIMR experiment would be operated for short periods when the batteries can provide power to the amplifiers that feed radio-frequency power to the thruster assembly. The thruster assembly is composed of an inner tube in which the neutral propellant is injected and ionized and a larger tube, which supports the radio frequency antennas, which ionize the gas and heat the plasma. Electromagnet coils that provide the magnetic field to constrain the flow of the plasma and form the magnetic exit nozzle surround these tubes. to this supply are planned for the experiment. The experiment will carry two dedicated propellant tanks which each have the capacity to store all the propellant needed for an experimental program lasting several months. With two propellant tanks, the opportunity exists to perform experiments with more than one type of propellant. Hydrogen is the primary choice for propellant but deuterium and helium are also of interest and might also be included. All the propellant is stored and used in gaseous form at ambient temperature. rocket. There is a superconducting electromagnet that will need to be maintained at cryogenic temperatures in order to operate properly. The magnet is in close proximity to the plasma so a combination of compact insulation and passive and active heat transport techniques will be employed. activity requirements. However, provisions will be included to capitalize on the presence of humans in case repairs or servicing is required. The batteries, propellant tanks, and electronic components will be designed for on-orbit removal and replacement, if necessary. could be located on the station to provide useful thrust for drag compensation. In order to provide power for continuous thrusting, it may be necessary to augment the power generation system for the station. Another attractive possibility is to develop an electric propulsion testbed for the space station. This testbed could be used for testing and certifying a variety of propulsion systems at various stages of maturity while providing thrust for the space station. This station facility would be a valuable asset for commercial and government space transportation programs. more powerful and capable propulsion systems that will be demonstrated on free-flying spacecraft in near-Earth space and eventually on missions to the planets.

  14. Vice President Pence Visits NASA's Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence got a first-hand look at the public-private partnerships at America’s multi-user spaceport on Thursday, July 6, during a visit to NASA’s Kennedy Space Center in Florida. Speaking in the center’s iconic Vehicle Assembly Building, the Vice President thanked employees for their commitment to America’s continued leadership in the space frontier, before taking a tour showcasing both NASA and commercial work that will soon lead to U.S.-based astronaut launches and eventual missions into deep space. The Vice President started his visit at Shuttle Landing Facility, the former space shuttle landing strip now leased and operated by Space Florida. He also visited the Neil Armstrong Operations and Checkout Building, where the Orion spacecraft is being prepped for its first integrated flight with the Space Launch System (SLS) in 2019. A driving tour showcased the mobile launch platform being readied for SLS flights as well as two commercial space facilities: Launch Complex 39A, the historic Apollo and shuttle pad now leased by SpaceX and used for commercial launches, and Boeing’s facility, where engineers are prepping the company’s Starliner capsule for crew flights to the space station in the same facility once used to do the same thing for space shuttles.

  15. KSC-02pd0387

    NASA Image and Video Library

    2002-04-03

    KENNEDY SPACE CENTER, FLA. -- While gathering with friends and family at the pad, the STS-110 crew poses in front of Space Shuttle Atlantis still enclosed by the Rotating Service Structure. Standing left to right are Mission Specialist Steven Smith, Jerry Ross and Lee Morin; Pilot Stephen Frick; Mission Specialist Rex Walheim; Commander Michael Bloomfield; and Mission Specialist Ellen Ochoa. The mission continues the expansion of the International Space Station by delivering and installing the S0 Integrated Truss Structure, the initial section of a framework that will eventually hold the power and cooling systems needed for future international research laboratories. The payload also comprises the Canadian Mobile Transporter (attached to the S0 truss), power distribution system modules, a heat pipe radiator for cooling, computers and a pair of rate gyroscopes. The 11-day mission is the 13th assembly flight to the ISS and includes four spacewalks to attach the S0 truss to the U.S. Lab Destiny. Launch is scheduled for April 4

  16. KSC-02pd0388

    NASA Image and Video Library

    2002-04-03

    KENNEDY SPACE CENTER, FLA. -- While gathering with friends and family at the pad, the STS-110 crew poses in front of Space Shuttle Atlantis still enclosed by the Rotating Service Structure. Standing left to right are Mission Specialist Steven Smith, Jerry Ross and Lee Morin; Pilot Stephen Frick; Mission Specialist Rex Walheim; Commander Michael Bloomfield; and Mission Specialist Ellen Ochoa. The mission continues the expansion of the International Space Station by delivering and installing the S0 Integrated Truss Structure, the initial section of a framework that will eventually hold the power and cooling systems needed for future international research laboratories. The payload also comprises the Canadian Mobile Transporter (attached to the S0 truss), power distribution system modules, a heat pipe radiator for cooling, computers and a pair of rate gyroscopes. The 11-day mission is the 13th assembly flight to the ISS and includes four spacewalks to attach the S0 truss to the U.S. Lab Destiny. Launch is scheduled for April 4

  17. KSC-2009-1212

    NASA Image and Video Library

    2009-01-16

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is moved above the Ares I-X segment 7. Ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-2009-1214

    NASA Image and Video Library

    2009-01-16

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is lowered into the Ares I-X segment 7. Ballast assemblies are being installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2009-1211

    NASA Image and Video Library

    2009-01-16

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is lifted toward the Ares I-X segments for installation. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2009-1213

    NASA Image and Video Library

    2009-01-16

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is lowered into the Ares I-X segment 7. Ballast assemblies are being installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis

  1. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  2. Neutron Environment Calculations for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Clowdsley, M. S.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Heinbockel, J. H.; Atwell, W.

    2001-01-01

    The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth's magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth's atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors. The models discussed herein are being developed to evaluate the natural and induced environment data for the Intelligence Synthesis Environment Project and eventual use in spacecraft optimization.

  3. NASA takes stock

    NASA Technical Reports Server (NTRS)

    Frosch, R. A.

    1979-01-01

    The history of NASA activities and achievements in the past decade is reviewed with consideration given to the Apollo expeditions and the post-Apollo planetary exploration. Progress in spaceborne astronomy and in satellite communications is characterized as revolutionary. It is also noted that Landsat alone may eventually repay the United States for the cost of the entire space program. Special attention is given to the Shuttle program which will be the key to all operations in space for the next decade including the Galileo mission to Jupiter (1982) and the Space Telescope (1983). Future missions could include a Venus orbiter with imaging radar to finally penetrate the cloud cover of the planet and to map its surface; a rover or sample return expedition to Mars; a Saturn orbiter combined with a probe of its Titan satellite, and an examination of Halley's Comet. Finally the next decade should bring the data needed to make a 'go' or 'no go' decision on the concept of SPS that would beam solar energy into earth stations.

  4. Development of liquid handling techniques in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1995-01-01

    A large number of experiments dealing with protein crystal growth and also with growth of crystals from solution require complicated fluid handling procedures including filling of empty containers with liquids, mixing of solutions, and stirring of liquids. Such procedures are accomplished in a straight forward manner when performed under terrestrial conditions in the laboratory. However, in the low gravity environment of space, such as on board the Space Shuttle or an Earth-orbiting space station, these procedures sometimes produced entirely undesirable results. Under terrestrial conditions, liquids usually completely separate from the gas due to the buoyancy effects of Earth's gravity. Consequently, any gas pockets that are entrained into the liquid during a fluid handling procedure will eventually migrate towards the top of the vessel where they can be removed. In a low gravity environment any folded gas bubble will remain within the liquid bulk indefinitely at a location that is not known a priori resulting in a mixture of liquid and vapor.

  5. KSC-2013-3511

    NASA Image and Video Library

    2013-09-04

    LAS VEGAS, Nev. – Engineers prepare a mock-up of The Boeing Company's CST-100 spacecraft for the third and final series of simulated contingency water landing scenarios at Bigelow Aerospace's headquarters near Las Vegas. The CST-100 is designed for ground landings, but could splash down on the water, if necessary. The tests are part of the company’s ongoing work supporting its funded Space Act Agreement with NASA’s Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing/Kelly George

  6. KSC-2013-3513

    NASA Image and Video Library

    2013-09-04

    LAS VEGAS, Nev. – A mock-up of The Boeing Company's CST-100 spacecraft is prepared for the third and final series of simulated contingency water landing scenarios at Bigelow Aerospace's headquarters near Las Vegas. The CST-100 is designed for ground landings, but could splash down on the water, if necessary. The tests are part of the company’s ongoing work supporting its funded Space Act Agreement with NASA’s Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing/Kelly George

  7. KSC-2013-3510

    NASA Image and Video Library

    2013-09-04

    LAS VEGAS, Nev. – An engineer prepares a mock-up of The Boeing Company's CST-100 spacecraft for the third and final series of simulated contingency water landing scenarios at Bigelow Aerospace's headquarters near Las Vegas. The CST-100 is designed for ground landings, but could splash down on the water, if necessary. The tests are part of the company’s ongoing work supporting its funded Space Act Agreement with NASA’s Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing/Kelly George

  8. KSC-2013-3512

    NASA Image and Video Library

    2013-09-04

    LAS VEGAS, Nev. – A mock-up of The Boeing Company's CST-100 spacecraft floats following the third and final series of simulated contingency water landing scenarios at Bigelow Aerospace's headquarters near Las Vegas. The CST-100 is designed for ground landings, but could splash down on the water, if necessary. The tests are part of the company’s ongoing work supporting its funded Space Act Agreement with NASA’s Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing/Kelly George

  9. KSC-2012-1470

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronaut John Glenn poses for a photo in front of the Project Mercury monument at Launch Complex-14 LC-14 at Cape Canaveral Air Force Station in Florida. During events at the Cape and NASA's Kennedy Space Center, Glenn is marking the 50th anniversary of being the first American astronaut to orbit the Earth inside the Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  10. KSC-2012-1469

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Mercury astronaut John Glenn poses for a photo in front of the Project Mercury monument at Launch Complex-14 LC-14 at Cape Canaveral Air Force Station in Florida. During events at the Cape and NASA's Kennedy Space Center, Glenn is marking the 50th anniversary of being the first American astronaut to orbit the Earth inside the Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett

  11. Deep-space navigation applications of improved ground-based optical astrometry

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter.

  12. KSC-2012-5609

    NASA Image and Video Library

    2012-09-19

    CAPE CANAVERAL, Fla. -- NASA's Commercial Crew Program, or CCP, hosts a pre-proposal conference to inform prospective companies about the recently released request for contract proposals and updates to the certification requirements for crewed missions to the International Space Station, or ISS. The two-phase certification process, called Certification Products Contract, or CPC, will enable NASA to eventually purchase service missions to fly astronauts to and from the ISS. From left, Ed Mango, CCP's program manager Steve Janney, CPC contracting officer Maria Collura, CCP certification manager Tom Simon, CPC Evaluation Team chair Brent Jett, CCP deputy program manager and Kathy Lueders, manager of the ISS Transportation Integration Office. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett

  13. KSC-2012-5603

    NASA Image and Video Library

    2012-09-19

    CAPE CANAVERAL, Fla. -- NASA's Commercial Crew Program, or CCP, hosts a pre-proposal conference to inform prospective companies about the recently released request for contract proposals and updates to the certification requirements for crewed missions to the International Space Station, or ISS. The two-phase certification process, called Certification Products Contract, or CPC, will enable NASA to eventually purchase service missions to fly astronauts to and from the ISS. From left, Ed Mango, CCP's program manager Steve Janney, CPC contracting officer Maria Collura, CCP certification manager Tom Simon, CPC Evaluation Team chair Brent Jett, CCP deputy program manager and Kathy Lueders, manager of the ISS Transportation Integration Office. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett

  14. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  15. Power systems for production, construction, life support and operations in space

    NASA Technical Reports Server (NTRS)

    Sovie, Ronald J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.

  16. Power systems for production, construction, life support, and operations in space

    NASA Technical Reports Server (NTRS)

    Sovie, Ronald J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.

  17. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  18. Decreased human circadian pacemaker influence after 100 days in space: a case study

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kennedy, K. S.; Rose, L. R.; Linenger, J. M.

    2001-01-01

    OBJECTIVE: The objectives of this study were (1) to assess the circadian rhythms and sleep of a healthy, 42-year-old male astronaut experiencing microgravity (weightlessness) for nearly 5 months while living aboard Space Station Mir as it orbited Earth and (2) to determine the effects of prolonged space flight on the endogenous circadian pacemaker, as indicated by oral temperature and subjective alertness rhythms, and their ramifications for sleep, alertness, and performance. METHODS: For three 12- to 14-day blocks of time (spread throughout the mission), oral temperatures were taken and subjective alertness was self-rated five times per day. Sleep diaries and performance tests were also completed daily during each block. RESULTS: Examination of the subject's circadian alertness and oral temperature rhythms suggested that the endogenous circadian pacemaker seemed to function quite well up to 90 days in space. Thereafter (on days 110-122), the influence of the endogenous circadian pacemaker on oral temperature and subjective alertness circadian rhythms was considerably weakened, with consequent disruptions in sleep. CONCLUSIONS: Space missions lasting more than 3 months might result in diminished circadian pacemaker influence in astronauts, leading to eventual sleep problems.

  19. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  20. Space Resource Roundtable Rationale

    NASA Astrophysics Data System (ADS)

    Duke, Michael

    1999-01-01

    Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That is why there is an emphasis in NASA programs on propellant production on Mars - NASA plans missions to Mars, so could make use of those propellants. For other types of applications, however, it will be up to market forces to define the materials and products needed and develop the technologies for extracting them from space resources. Some leading candidates among the potential products from space resources are propellants for other space activities, water from the Moon for use in space, silicon for photovoltaic energy collection in space, and, eventually, He-3 from the Moon for fusion energy production. As the capabilities for manufacturing materials in space are opened up by research aboard the International Space Station, new opportunities for utilization of space resources may emerge. Whereas current research emphasizes increasing knowledge, one program objective should be the development of industrial production techniques for space. These will be based on the development of value-added processing in space, where materials are brought to the space facility, processed there, and returned to Earth. If enough such space processing is developed that the materials transportation requirements are measured in the hundreds of tons a year level, opportunities for substituting lunar materials may develop. The fundamental message is that it is not possible to develop space resources in a vacuum. One must have three things: a recoverable resource, technology to recover it, and a customer. Of these, the customer probably is the most important. All three must be integrated in a space resource program. That is what the Space Resource Roundtable, initiated with this meeting, will bring together.

  1. Algeria LPG pipeline is build by Bechtel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horner, C.

    1984-08-01

    The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

  2. Proposal for a zero-gravity toilet facility for the space station

    NASA Technical Reports Server (NTRS)

    Fleri, Edgar L., Jr.; Galliano, Paul A.; Harrison, Mark E.; Johnson, William B.; Meyer, Gregory J.

    1989-01-01

    This proposed toilet facility has a straightforward design. It has few moving parts and is easily maintained. Air and water flow provide sanitary movement of the waste. The toilet's chambers are coated with Teflon which, along with the water flow, makes it self-cleaning. An added disinfectant called Betadiene kills any bacteria that may form on the chamber walls. The chair is contoured to take into account the neutral body position and the necessary strain position for defecation. Restraints at the ankles, knees, and midsection hold the body in the chair. The waste is stored in discs of Gortex material which are inside a replaceable storage chamber. This chamber can be removed, capped and stored until eventual return to earth.

  3. STS-92 Mission Specialist Chiao suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Leroy Chiao signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for Chiao. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  4. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...

  5. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...

  6. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  7. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  8. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  9. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  10. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  11. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  12. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  13. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  14. A study of space station needs, attributes and architectural options

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mission requirements, economic benefits, and time table of deployment of the space station are discussed. It is concluded that: (1) mission requirements overwhelmingly support the need for a space station; (2) a single space station is the way to begin; (3) the space station must evolve its capability; (4) the orbit transfer vehicle aspect of the space station will provide significant economic benefit; and (5) an early, affordable, effective way to start the space station program is needed.

  15. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...

  16. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...

  17. 14 CFR 1214.400 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order... International Space Station, the January 29, 1998, Agreement Among the Government of Canada, Governments of...

  18. 14 CFR 1214.400 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order... International Space Station, the January 29, 1998, Agreement Among the Government of Canada, Governments of...

  19. KSC-97PC1729

    NASA Image and Video Library

    1997-11-21

    KENNEDY SPACE CENTER, FLA. -- The frustum of a forward skirt assembly of a spent solid rocket booster (SRB) from the STS-87 launch on Nov. 19 is transported into the Hangar AF area at Cape Canaveral Air Station. Hangar AF is a building originally used for Project Mercury, the first U.S. manned space program. The SRBs are the largest solid propellant motors ever flown and the first designed for reuse. After a Shuttle is launched, the SRBs are jettisoned at two minutes, seven seconds into the flight. At six minutes and 44 seconds after liftoff, the spent SRBs, weighing about 165,000 lb., have slowed their descent speed to about 62 mph and splashdown takes place in a predetermined area. They are retrieved from the Atlantic Ocean by special recovery vessels and returned for refurbishment and eventual reuse on future Shuttle flights. Once at Hangar AF, the SRBs are unloaded onto a hoisting slip and mobile gantry cranes lift them onto tracked dollies where they are safed and undergo their first washing

  20. KSC-97PC1725

    NASA Image and Video Library

    1997-11-21

    KENNEDY SPACE CENTER, FLA. -- Seen carrying a spent solid rocket booster (SRB) from the STS-87 launch on Nov. 19 is the solid rocket booster recovery ship Liberty Star as it reenters the Hangar AF area at Cape Canaveral Air Station. Hangar AF is a building originally used for Project Mercury, the first U.S. manned space program. The SRBs are the largest solid propellant motors ever flown and the first designed for reuse. After a Shuttle is launched, the SRBs are jettisoned at two minutes, seven seconds into the flight. At six minutes and 44 seconds after liftoff, the spent SRBs, weighing about 165,000 lb., have slowed their descent speed to about 62 mph and splashdown takes place in a predetermined area. They are retrieved from the Atlantic Ocean by special recovery vessels and returned for refurbishment and eventual reuse on future Shuttle flights. Once at Hangar AF, the SRBs are unloaded onto a hoisting slip and mobile gantry cranes lift them onto tracked dollies where they are safed and undergo their first washing

  1. KSC-97PC1727

    NASA Image and Video Library

    1997-11-21

    KENNEDY SPACE CENTER, FLA. -- Seen carrying a spent solid rocket booster (SRB) from the STS-87 launch on Nov. 19 is the solid rocket booster recovery ship Liberty Star as it reenters the Hangar AF area at Cape Canaveral Air Station. Hangar AF is a building originally used for Project Mercury, the first U.S. manned space program. The SRBs are the largest solid propellant motors ever flown and the first designed for reuse. After a Shuttle is launched, the SRBs are jettisoned at two minutes, seven seconds into the flight. At six minutes and 44 seconds after liftoff, the spent SRBs, weighing about 165,000 lb., have slowed their descent speed to about 62 mph and splashdown takes place in a predetermined area. They are retrieved from the Atlantic Ocean by special recovery vessels and returned for refurbishment and eventual reuse on future Shuttle flights. Once at Hangar AF, the SRBs are unloaded onto a hoisting slip and mobile gantry cranes lift them onto tracked dollies where they are safed and undergo their first washing

  2. KSC-2013-3067

    NASA Image and Video Library

    2013-07-08

    LAS VEGAS, Nev. – The Boeing Company performed simulated contingency water landing scenarios with a mock-up CST-100 spacecraft at Bigelow Aerospace's headquarters near Las Vegas. The CST-100 is designed for ground landings, but could splash down on the water, if necessary. During the water tests, Department of Defense search-and-recovery personnel practiced pulling five Boeing engineers out of the capsule and to safety. The tests are part of the company’s ongoing work supporting its funded Space Act Agreement with NASA’s Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing

  3. KSC-2013-4198

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  4. KSC-2013-4124

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Blue Origin

  5. Expedition 52 Crew Patch-042517

    NASA Image and Video Library

    2016-11-17

    ISS052-s-001 (01/27/2016) --- Orbiting the Earth continuously since 1998, the International Space Station (ISS) is one of our greatest engineering achievements. It is depicted in gold, symbolic of constancy and excellence. Flying directly toward a sunrise represents the ISS’s contributions to a bright future. That sunrise and the Earth beneath ituses blue, white, red, and green, the combined national colors of Italy, Russia, and the United States, symbolizing the crew’s cohesiveness. Crewmember names are in blue symbolizing devotion and loyalty. The white border represents sunlight unscattered by the Earth’s atmosphere. Symbolic of new Russian and U.S. spacecraft that will further human exploration, the patch is shaped as a capsule. The number 52 is drawn as a path eventually leading to Mars. Finally, the stars symbolize the values of leadership, trust, teamwork, and excellence lived by mission control teams throughout the history of human space programs, as well as their global vigilance in operating the ISS.

  6. Demonstration of precise estimation of polar motion parameters with the global positioning system: Initial results

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1991-01-01

    Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.

  7. 14 CFR § 1214.400 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order... International Space Station, the January 29, 1998, Agreement Among the Government of Canada, Governments of...

  8. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business Innovative Research Program (SBIR) is also discussed, as these activities, from development of recyclable packaging for ISS to additive manufacturing capabilities for metals and electronics, could also potentially be infused into future exploration capabilities. Key data from ISM projects to date will also be summarized.

  9. 14 CFR § 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false International Space Station crewmember responsibilities. § 1214.402 Section § 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...

  10. jsc2018m000321_Destination_Station-MP4

    NASA Image and Video Library

    2018-05-11

    Destination Station---- When you can’t come to the International Space Station, the essence of the space station can come to you! Beginning May 15, Destination Station arrives in Salt Lake City, UT to share the impacts of the station on our daily lives. Here’s a peek at some of the ways you can learn more about what the International Space Station is doing right now. ___________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  11. 47 CFR 25.140 - Qualifications of Fixed-Satellite space station licensees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Qualifications of Fixed-Satellite space station... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications of Fixed-Satellite space station licensees. (a) [Reserved] (b) Each applicant for a space station...

  12. Space station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1986-01-01

    A program to design, fabricate and test a 50 lb sub f (222 N) thruster was undertaken (Contract NAS 3-24656) to demonstrate the applicability of the reverse flow concept as an item of auxiliary propulsion for the space station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f- seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52 N/square cm) and a nozzle area ratio of 40. Superimposed was also the objective of operating with a strainless steel spherical combustion chamber, which limited the wall temperature to 1700 F (1200 K), an objective specific impulse of 400 lb sub f sec/lbm (3923 N-seconds/Kg), and a demonstration of 500,000 lb sub f-seconds (2,224,000 N-seconds) of impulse. The demonstration of these objectives required a number of design iterations which eventually culminated in a very successful 1000 second demonstration, almost immediately followed by a changed program objective imposed to redesign and demonstrate at a mixture ratio (O/F) of 8. This change was made and more then 250,000 lb sub f seconds (1,112,000 N-seconds) of impulse was successfully demonstrated at a mixture ratio of 8. This document contains a description of the effort conducted during the program to design and demonstrate the thrusters involved.

  13. 47 CFR 25.276 - Points of communication.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authorization, an earth station is authorized to transmit to any space station in the same radio service provided that permission has been received from the space station operator to access that space station. (b) Space stations licensed under this part are authorized to provide service to earth stations located...

  14. 47 CFR 25.276 - Points of communication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorization, an earth station is authorized to transmit to any space station in the same radio service provided that permission has been received from the space station operator to access that space station. (b) Space stations licensed under this part are authorized to provide service to earth stations located...

  15. 47 CFR 25.276 - Points of communication.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... authorization, an earth station is authorized to transmit to any space station in the same radio service provided that permission has been received from the space station operator to access that space station. (b) Space stations licensed under this part are authorized to provide service to earth stations located...

  16. KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  17. KSC-98pc280

    NASA Image and Video Library

    1998-02-06

    The STS-90 Neurolab payload is honored with a ceremony after being lowered into its payload canister in KSC's Operations and Checkout Building for the last time. This phase of the Shuttle program is winding down as the second phase of the International Space Station (ISS) program gets under way. Microgravity and life science research that formerly was conducted in Spacelab modules, such as Neurolab, will eventually be conducted inside the completed ISS. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  18. STS-92 Commander Duffy suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy has his launch and entry suit checked before launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Duffy. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  19. STS-92 Mission Specialist Wisoff suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff looks relaxed as he signals a thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Wisoff. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  20. STS-92 Mission Specialist McArthur suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist William S. McArthur Jr. signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for McArthur. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  1. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  2. STS-92 Pilot Melroy suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pamela Ann Melroy has her helmet checked during suitup for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the first for Melroy. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  3. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.

  4. Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Condon, Gerald; Williams, Jacob

    2012-01-01

    The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.

  5. A long-time limit for world subway networks.

    PubMed

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthelemy, Marc

    2012-10-07

    We study the temporal evolution of the structure of the world's largest subway networks in an exploratory manner. We show that, remarkably, all these networks converge to a shape that shares similar generic features despite their geographical and economic differences. This limiting shape is made of a core with branches radiating from it. For most of these networks, the average degree of a node (station) within the core has a value of order 2.5 and the proportion of k = 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as the square root of the number of stations, the current proportion of branches represents about half of the total number of stations, and the average diameter of branches is about twice the average radial extension of the core. Spatial measures such as the number of stations at a given distance to the barycentre display a first regime which grows as r(2) followed by another regime with different exponents, and eventually saturates. These results--difficult to interpret in the framework of fractal geometry--confirm and yield a natural explanation in the geometric picture of this core and their branches: the first regime corresponds to a uniform core, while the second regime is controlled by the interstation spacing on branches. The apparent convergence towards a unique network shape in the temporal limit suggests the existence of dominant, universal mechanisms governing the evolution of these structures.

  6. A long-time limit for world subway networks

    PubMed Central

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthelemy, Marc

    2012-01-01

    We study the temporal evolution of the structure of the world's largest subway networks in an exploratory manner. We show that, remarkably, all these networks converge to a shape that shares similar generic features despite their geographical and economic differences. This limiting shape is made of a core with branches radiating from it. For most of these networks, the average degree of a node (station) within the core has a value of order 2.5 and the proportion of k = 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as the square root of the number of stations, the current proportion of branches represents about half of the total number of stations, and the average diameter of branches is about twice the average radial extension of the core. Spatial measures such as the number of stations at a given distance to the barycentre display a first regime which grows as r2 followed by another regime with different exponents, and eventually saturates. These results—difficult to interpret in the framework of fractal geometry—confirm and yield a natural explanation in the geometric picture of this core and their branches: the first regime corresponds to a uniform core, while the second regime is controlled by the interstation spacing on branches. The apparent convergence towards a unique network shape in the temporal limit suggests the existence of dominant, universal mechanisms governing the evolution of these structures. PMID:22593096

  7. Space Station needs, attributes and architectural options. Volume 2, book 2, part 3: Communication system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.

  8. Space Station transition through Spacelab

    NASA Technical Reports Server (NTRS)

    Craft, Harry G., Jr.; Wicks, Thomas G.

    1990-01-01

    It is appropriate that NASA's Office of Space Science and Application's science management structures and processes that have proven successful on Spacelab be applied and extrapolated to Space Station utilization, wherever practical. Spacelab has many similarities and complementary aspects to Space Station Freedom. An understanding of the similarities and differences between Spacelab and Space Station is necessary in order to understand how to transition from Spacelab to Space Station. These relationships are discussed herein as well as issues which must be dealt with and approaches for transition and evolution from Spacelab to Space Station.

  9. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  10. Choices at Space Station End of Life

    NASA Astrophysics Data System (ADS)

    Burke, J. D.; Coderre, K. M.; Dator, J. A.

    Extending International Space Station (ISS) operations will expand the scope for deciding its fate at its end of life. In this paper we examine the choices likely to be available at that distant unknown day when it is decided, for whatever reasons, to bring crew-directed engineering and science operations to a close. Of course a premature accidental termination is possible at any time, and measures to cope with that (and return to normal if possible) should be kept ready and augmented as ISS service capacities improve, but here we do not focus on accidents. Rather, we consider what may be done with an old but functioning spacecraft after it is declared surplus. We use the technique of Futures Studies to look at the choices. Without attempting prediction, futurists develop a set of empirically-based alternate futures, describe the likely consequences of each, and point to preferred outcomes. For the ISS at end of scheduled operation the choices are in three classes: DOWN, STAY, or UP. In the DOWN choice, after possible salvage and transfer of long-running investigations to another (e.g., Chinese-led) international station, the ISS is commanded to descend and burn up. The STAY choice, not viable in the long run, might be chosen to provide time for later decisions, but eventually it would prove impractical to continue re-boosting to maintain the station in Low Earth Orbit (LEO). In the UP choice the ISS is propelled, by heavy-lift boost impulses or a low-thrust spiral-out or a combination of both, into a high orbit with a lifetime of hundreds of years, opening the prospect of a wide variety of options to be compared in search of a preferred longer-term future. The decision to boost the ISS into a high orbit could be completely rational based on any of several arguments, or it could be partly irrational as in the case of the USS Constitution, an eighteenth- century warship saved from the ship-breakers by a poem.

  11. Space teleoperations technology for Space Station evolution

    NASA Technical Reports Server (NTRS)

    Reuter, Gerald J.

    1990-01-01

    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  12. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  13. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch and integration costs. The MSRF facilities will include modular components, which can be exchanged to provide inserts specifically matched to the engineering requirements of the particular Principal Investigator. To defray costs and avoid duplication of engineering effort NASA is also pursuing the possibility of using facilities provided by international partners. By this means it is anticipated that all of the types of research outlined in the previous paragraph can be done on the ISS.

  14. Modular space station mass properties

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.

  15. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  16. The challenge of the US Space Station

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.

  17. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  1. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  2. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  3. KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  4. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  6. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  7. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  8. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  9. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  10. Assembling, maintaining and servicing Space Station

    NASA Technical Reports Server (NTRS)

    Doetsch, K. H.; Werstiuk, H.; Creasy, W.; Browning, R.

    1987-01-01

    The assembly, maintenance, and servicing of the Space Station and its facilities are discussed. The tools and facilities required for the assembly, maintenance, and servicing of the Station are described; the ground and transportation infrastructures needed for the Space Station are examined. The roles of automation and robotics in reducing the EVAs of the crew, minimizing disturbances to the Space Station environment, and enhancing user friendliness are investigated. Servicing/maintenance tasks are categorized based on: (1) urgency, (2) location of servicing/maintenance, (3) environmental control, (4) dexterity, (5) transportation, (6) crew interactions, (7) equipment interactions, and (8) Space Station servicing architecture. An example of a servicing mission by the Space Station for the Hubble Space Telescope is presented.

  11. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  12. System impacts of solar dynamic and growth power systems on space station

    NASA Technical Reports Server (NTRS)

    Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.

    1986-01-01

    Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.

  13. Space Station Freedom. A Foothold on the Future.

    ERIC Educational Resources Information Center

    David, Leonard

    This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space"; (4) "Dreams Fulfilled" (summarizing the history of the space station development, including the…

  14. Space Station Environmental Control/Life Support System engineering

    NASA Technical Reports Server (NTRS)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  15. NASA space station automation: AI-based technology review

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  16. Personnel occupied woven envelope robot power

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.

  17. Definition of technology development missions for early space stations: Large space structures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.

  18. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  19. 47 CFR 25.172 - Requirements for reporting space station control arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... case of a non-U.S.-licensed space station, prior to commencing operation with U.S. earth stations. (1... earth station(s) communicating with the space station from any site in the United States. (3) The location, by city and country, of any telemetry, tracking, and command earth station that communicates with...

  20. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  1. Function, form, and technology - The evolution of Space Station in NASA

    NASA Technical Reports Server (NTRS)

    Fries, S. D.

    1985-01-01

    The history of major Space Station designs over the last twenty-five years is reviewed. The evolution of design concepts is analyzed with respect to the changing functions of Space Stations; and available or anticipated technology capabilities. Emphasis is given to the current NASA Space Station reference configuration, the 'power tower'. Detailed schematic drawings of the different Space Station designs are provided.

  2. KSC-2013-3624

    NASA Image and Video Library

    2013-08-21

    LAS CRUCES, N.M. – A thruster glows red during a hot-fire test for Boeing’s CST-100 spacecraft orbital maneuvering and attitude control OMAC system. During the tests at NASA’s White Sands Test Facility in Las Cruces, N.M., Boeing and partner Aerojet Rocketdyne tested two thrusters to demonstrate stable combustion and performance in a vacuum, simulating a space environment. Two additional thrusters were tested in a vacuum to demonstrate long-duration mission survivability. The 24 thrusters that compose the CST-100’s OMAC system will be jettisoned with the service module after the deorbit burn, prior to re-entry. The tests completed Milestone 9 of the company's funded Space Act Agreement with NASA’s Commercial Crew Program, or CCP, during the Commercial Crew Integrated Capability, or CCiCap, initiative. CCP is intended to lead to the availability of commercial human spaceflight services for government and commercial customers to low-Earth orbit. Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily. For more information about CCP, go to http://www.nasa.gov/commercialcrew. Photo credit: Boeing

  3. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  4. Space station as a vital focus for advancing the technologies of automation and robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio; Herman, Daniel H.

    1988-01-01

    A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

  5. The challenge of assembling a space station in orbit

    NASA Technical Reports Server (NTRS)

    Brand, Vance D.

    1990-01-01

    Assembly of a space station in orbit is a challenging and complicated task. If mankind is to exploit the knowledge already gained from space flight and continue to advance the frontiers of space exploration, then space stations in orbit must be part of the overall space infrastructure. Space stations, like the Freedom, having relatively large mass which greatly exceeds the lifting capability of their transportation system, are candidates for on-orbit assembly. However, when a large wide-body booster is available, there are significant advantages to having a deployable space station assembled on Earth and transported into orbit intact or in a few large pieces. The United States will build the Space Station Freedom by the assembly method. Freedom's assembly is feasible, but a significant challenge, and it will absorb much of NASA's effort in the next 8 years. The Space Station Freedom is an international program which will be the centerpiece of the free world's space activities in the late 1990's. Scientific information and products from the Space Station Freedom and its use as a transportation depot will advance technology and facilitate the anticipated manned space exploration surge to the Moon and Mars early in the 21st century.

  6. Tether applications for space station

    NASA Technical Reports Server (NTRS)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  7. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  8. A distributed planning concept for Space Station payload operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  9. Space Station Redesign Team: Final report to the Advisory Committee on the Redesign of the Space Station

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the result of the Space Station Redesign Team's activity. Its purpose is to present without bias, and in appropriate detail, the characteristics and cost of three design and management approaches for the Space Station Freedom. It was presented to the Advisory Committee on the Redesign of the Space Station on 7 Jun. 1993, in Washington, D.C.

  10. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  11. Space Station

    NASA Image and Video Library

    1972-01-01

    This is an artist's concept of a modular space station. In 1970 the Marshall Space Flight Center arnounced the completion of a study concerning a modular space station that could be launched by the planned-for reusable Space Shuttle. The study envisioned a space station composed of cylindrical sections 14 feet in diameter and of varying lengths joined to form any one of a number of possible shapes. The sections were restricted to 14 feet in diameter and 58 feet in length to be consistent with a shuttle cargo bay size of 15 by 60 feet. Center officials said that the first elements of the space station could be in orbit by about 1978 and could be manned by three or six men. This would be an interim space station with sections that could be added later to form a full 12-man station by the early 1980s.

  12. 46 CFR 154.320 - Cargo control stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Arrangements § 154.320 Cargo control stations. (a) Cargo control stations must be above the weather deck. (b) If a cargo control station is in accommodation, service, or control spaces or has access to such a space, the station must: (1) Be a gas safe space; (2) Have an access to the space that meets § 154.330...

  13. 46 CFR 154.320 - Cargo control stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Arrangements § 154.320 Cargo control stations. (a) Cargo control stations must be above the weather deck. (b) If a cargo control station is in accommodation, service, or control spaces or has access to such a space, the station must: (1) Be a gas safe space; (2) Have an access to the space that meets § 154.330...

  14. 46 CFR 154.320 - Cargo control stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Arrangements § 154.320 Cargo control stations. (a) Cargo control stations must be above the weather deck. (b) If a cargo control station is in accommodation, service, or control spaces or has access to such a space, the station must: (1) Be a gas safe space; (2) Have an access to the space that meets § 154.330...

  15. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  16. Space Station Freedom - A resource for aerospace education

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1988-01-01

    The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.

  17. KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. Build Your Own Space Station

    NASA Technical Reports Server (NTRS)

    Bolinger, Allison

    2016-01-01

    This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.

  19. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  20. Concepts for the evolution of the Space Station Program

    NASA Technical Reports Server (NTRS)

    Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.

    1986-01-01

    An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.

  1. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  2. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  3. 14 CFR 1214.400 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope. 1214.400 Section 1214.400 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order...

  4. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  5. STS-92 Mission Specialist Wakata suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan waves while his launch and entry suit is checked during suitup for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Wakata. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  6. Fire behavior and risk analysis in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.

    1988-01-01

    Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.

  7. Space Station: Leadership for the Future

    NASA Technical Reports Server (NTRS)

    Martin, Franklin D.; Finn, Terence T.

    1987-01-01

    No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.

  8. Space station needs, attributes and architectural options. Volume 3, task 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mission requirements of the space station program are investigated. Mission parameters are divided into user support from private industry, scientific experimentation, U.S. national security, and space operations away from the space station. These categories define the design and use of the space station. An analysis of cost estimates is included.

  9. Space station full-scale docking/berthing mechanisms development

    NASA Technical Reports Server (NTRS)

    Burns, Gene C.; Price, Harold A.; Buchanan, David B.

    1988-01-01

    One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.

  10. Space station MSFC-DPD-235/DR no. MA-05 phase C/D program development plan. Volume 2: Phase C/D, programmatic requirements

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.

  11. Growth requirements for multidiscipline research and development on the evolutionary space station

    NASA Technical Reports Server (NTRS)

    Meredith, Barry; Ahlf, Peter; Saucillo, Rudy; Eakman, David

    1988-01-01

    The NASA Space Station Freedom is being designed to facilitate on-orbit evolution and growth to accommodate changing user needs and future options for U.S. space exploration. In support of the Space Station Freedom Program Preliminary Requirements Review, The Langley Space Station Office has identified a set of resource requirements for Station growth which is deemed adequate for the various evolution options. As part of that effort, analysis was performed to scope requirements for Space Station as an expanding, multidiscipline facility for scientific research, technology development and commercial production. This report describes the assumptions, approach and results of the study.

  12. Space station needs, attributes and architectural options: Study summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station needs, attributes, and architectural options that affect the future implementation and design of a space station system are examined. Requirements for candidate missions are used to define functional attributes of a space station. Station elements that perform these functions form the basic station architecture. Alternative ways to accomplish these functions are defined and configuration concepts are developed and evaluated. Configuration analyses are carried to the point that budgetary cost estimates of alternate approaches could be made. Emphasis is placed on differential costs for station support elements and benefits that accrue through use of the station.

  13. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  14. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Qualifications of fixed-satellite space station... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications of fixed-satellite space station licensees. (a) New fixed-satellites shall comply with the...

  15. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Qualifications of fixed-satellite space station... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications of fixed-satellite space station licensees. (a) New fixed-satellites shall comply with the...

  16. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Qualifications of fixed-satellite space station... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications of fixed-satellite space station licensees. (a) New fixed-satellites shall comply with the...

  17. Space Station Program implications from the viewpoint of the Space Station Operations Task Force

    NASA Technical Reports Server (NTRS)

    Paules, Granville E.; Lyman, Peter; Shelley, Carl B.

    1987-01-01

    An operational concept for the Space Station which has been developed by the Space Station Operations Task Force is described. The operations functions are described, and the relationships of these functions to the overall framework for operations are defined. Product flows for the recommended framework are discussed, and the roles and responsibilities for the proposed operations organization during both the development and the mature operations phases of the Space Station Program are examined.

  18. Space Station fluid management logistics

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  19. Space station operations task force. Panel 3 report: User development and integration

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  20. Space Station program status and research capabilities

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1995-01-01

    Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.

  1. Sensitivity study of Space Station Freedom operations cost and selected user resources

    NASA Technical Reports Server (NTRS)

    Accola, Anne; Fincannon, H. J.; Williams, Gregory J.; Meier, R. Timothy

    1990-01-01

    The results of sensitivity studies performed to estimate probable ranges for four key Space Station parameters using the Space Station Freedom's Model for Estimating Space Station Operations Cost (MESSOC) are discussed. The variables examined are grouped into five main categories: logistics, crew, design, space transportation system, and training. The modification of these variables implies programmatic decisions in areas such as orbital replacement unit (ORU) design, investment in repair capabilities, and crew operations policies. The model utilizes a wide range of algorithms and an extensive trial logistics data base to represent Space Station operations. The trial logistics data base consists largely of a collection of the ORUs that comprise the mature station, and their characteristics based on current engineering understanding of the Space Station. A nondimensional approach is used to examine the relative importance of variables on parameters.

  2. The US space station: Potential base for a spaceborne microwave facility

    NASA Technical Reports Server (NTRS)

    Mcconnell, D.

    1983-01-01

    Concepts for a U.S. space station were studied to achieve the full potential of the Space Shuttle and to provide a more permanent presence in space. The space station study is summarized in the following questions: Given a space station in orbit in the 1990's, how should it best be used to achieve science and applications objectives important at that time? To achieve those objectives, of what elements should the station be comprised and how should the elements be configured and equipped. These questions are addressed.

  3. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  4. Space station needs, attributes and architectural options study. Volume 5: Cost benefits and programmatic analyses

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The science, applications, commercial, U.S. national security and space operations missions that would require or be materially benefited by the availability of a permanent manned space station in low Earth orbit are considered. Space station attributes and capabilities which will be necessary to satisfy these mission requirements are identified. Emphasis is placed on the identification and validation of potential users, their requirements, and the benefits accruing to them from the existence of a space station, and the programmatic and cost implications of a space station program.

  5. The ecology of microorganisms in a small closed system: Potential benefits and problems for space station

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.

    1986-01-01

    The inevitble presence on the space station of microorganisms associated with crew members and their environment will have the potential for both benefits and a range of problems including illness and corrosion of materials. This report reviews the literature presenting information about microorganisms pertinent to Environmental Control and Life Support (ECLS) on the space station. The perspective of the report is ecological, viewing the space station as an ecosystem in which biological relationships are affected by factors such as zero gravity and by closure of a small volume of space. Potential sites and activities of microorganisms on the space station and their environmental limits, microbial standards for the space station, monitoring and control methods, effects of space factors on microorganisms, and extraterrestrial contamination are discussed.

  6. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  7. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Automatically controlled digital station. 97...

  8. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Automatically controlled digital station. 97...

  9. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Automatically controlled digital station. 97...

  10. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Automatically controlled digital station. 97...

  11. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  12. 47 CFR 25.140 - Further requirements for license applications for geostationary space stations in the Fixed...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for geostationary space stations in the Fixed-Satellite Service and the 17/24 GHz Broadcasting... Further requirements for license applications for geostationary space stations in the Fixed-Satellite... § 25.114, applicants for geostationary-orbit FSS space stations must provide an interference analysis...

  13. International Space Station (ISS)

    NASA Image and Video Library

    1997-07-20

    Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.

  14. KSC-2009-6507

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  15. Space-to-Ground: Quick Work: 10/13/2017

    NASA Image and Video Library

    2017-10-12

    Astronauts continue maintenance outside the International Space Station...and artificial gravity on the station? Space to Ground is your weekly update on what's happening aboard the International Space Station.

  16. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  17. Fifth anniversary of the first element of the International Spac

    NASA Image and Video Library

    2003-12-03

    Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.

  18. Dual keel Space Station payload pointing system design and analysis feasibility study

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.

    1988-01-01

    A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.

  19. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  20. On-orbit spacecraft/stage servicing during STS life cycle

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A comprehensive and repesentative set of shuttle payloads was identified for shuttle and space station servicing missions. The classes of servicing functions were determined and the general servicing support required for the set of referenced spacecraft was allocated. A candidtate strawman space station was depicted from a synthesis of space station concepts derived from NASA space station architecture studies done by eight contractors. The shuttle servicing hardware and kits were identified and their applicability in transitioning servicing capability to the space station was evaluated.

  1. Ultra Low Power, Radiation Tolerant UHF Radio Technologies for In Situ Communication Applications

    NASA Technical Reports Server (NTRS)

    Lay, N. E.

    2001-01-01

    For future deep space missions, significant reductions in the mass and power requirements for short-range telecommunication systems will be critical in enabling a wide variety of new mission concepts. These possibilities include penetrators, gliders, miniature rovers, and sensor networks. Under joint funding from NASA's Cross Enterprise and JPL's Telecommunications and Mission technology programs, recent development activity has focused on the design of ultralow mass and power transceiver systems and subsystems suitable for operation in a flight environment. For these efforts, the functionality of the transceiver has been targeted towards a specific Mars communications scenario. However, the overall architecture is well suited to any short or medium range application where a remote probe will aperiodically communicate with a base station, possibly an orbiter, for the eventual purpose of relaying science information back to Earth. In 2001, these sponsors have been augmented with collaborative expertise and funding from JPL's Center for Integrated Space Microsystems in order to migrate existing concepts and designs to a System on a Chip (SOAC) solution. Additional information is contained in the original extended abstract.

  2. KSC-2013-4164

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin’s test stand, back right, is framed by a wind mill at the company’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3. The engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  3. KSC-2013-4197

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – The sun sets over a test stand at Blue Origin’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3, on Nov. 20. The BE-3 fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  4. Overview: Human Factors Issues in Space Station Architecture

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    An overview is presented of human factors issues in space station architecture. The status of the space station program is given. Habitability concerns such as vibroacoustics, lighting systems, privacy and work stations are discussed in detail.

  5. Efficient placement of structural dynamics sensors on the space station

    NASA Technical Reports Server (NTRS)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  6. NASA Space Exploration Logistics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

    2006-01-01

    As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

  7. Mars Wars: The Rise and Fall of the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Hogan, Thor

    2007-08-01

    The rise of Space Exploration Initiative (SEI) and its eventual demise represents one of the landmark episodes in the history of the American space program ranking with the creation of NASA, the decision to go to the Moon, the post-Apollo planning process, and the space station decision. The story of this failed initiative is one shaped by key protagonists and critical battles. It is a tale of organizational, cultural, and personal confrontation. Organizational skirmishes involved the Space Council versus NASA, the White House versus congressional appropriators, and the Johnson Space Center versus the rest of the space agency all seeking control of the national space policy process. Cultural struggles pitted the increasingly conservative engineering ethos of NASA against the faster, better, cheaper philosophy of a Space Council looking for innovative solutions to technical problems. Personality clashes matched Vice President Dan Quayle and Space Council Executive Secretary Mark Albrecht against NASA Administrator Dick Truly and Johnson Space Center Director Aaron Cohen. In the final analysis, the demise of SEI was a classic example of a defective decision-making process one that lacked adequate high-level policy guidance, failed to address critical fiscal constraints, developed inadequate programmatic alternatives, and garnered no congressional support. Some space policy experts have argued that SEI was doomed to fail, due primarily to the immense budgetary pressures facing the nation during the early 1990's. This book will argue, however, that the failure of the initiative was not predetermined; instead, it was the result of a deeply flawed policy process that failed to develop (or even consider) policy options that may have been politically acceptable given the existing political environment.

  8. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  9. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  10. 78 FR 66964 - International Space Station Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-128)] International Space Station Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the International Space Station Advisory Committee...

  11. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  12. Space station tracking requirements feasibility study, volume 2

    NASA Technical Reports Server (NTRS)

    Udalov, Sergei; Dodds, James

    1988-01-01

    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.

  13. Space station tracking requirements feasibility study, volume 1

    NASA Technical Reports Server (NTRS)

    Udalov, Sergei; Dodds, James

    1988-01-01

    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.

  14. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  15. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  16. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  17. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  18. MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing

    NASA Technical Reports Server (NTRS)

    Gates, Thomas G.

    1988-01-01

    The Marshall Space Flight Center maintains an active history program to assure that the foundation of the Center's history is captured and preserved for current and future generations. As part of that overall effort, the Center began a project in 1987 to capture historical information and documentation on the Marshall Center's roles regarding Space Shuttle and Space Station. This document is MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing. It contains acronyms and abbreviations used in Space Station documentation and in the Historian Annotated Bibliography of Space Station Program. The information may be used by the researcher as a reference tool.

  19. KSC-06pd0971

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  20. KSC-06pd0970

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

Top