Microgravity Research Results and Experiences from the NASA Mir Space Station Program
NASA Technical Reports Server (NTRS)
Schagheck, R. A.; Trach, B.
2000-01-01
The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.
Microgravity research results and experiences from the NASA/MIR space station program.
Schlagheck, R A; Trach, B L
2003-12-01
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.
Early use of Space Station Freedom for NASA's Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
Rhome, Robert C.; O'Malley, Terence F.
1992-01-01
The paper describes microgravity science opportunities inherent to the restructured Space Station and presents a synopsis of the scientific utilization plan for the first two years of ground-tended operations. In the ground-tended utilization mode the Space Station is a large free-flyer providing a continuous microgravity environment unmatched by any other platform within any existing U.S. program. It is pointed out that the importance of this period of early Space Station mixed-mode utilization between crew-tended and ground-tended approaches is of such magnitude that Station-based microgravity science experiments many become benchmarks to the disciplines involved. The traffic model that is currently being pursued is designed to maximize this opportunity for the U.S. microgravity science community.
International Space Station Increment-2 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2002-01-01
This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.
Acceleration Environment of the International Space Station
NASA Technical Reports Server (NTRS)
McPherson, Kevin; Kelly, Eric; Keller, Jennifer
2009-01-01
Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
International Space Station Increment-3 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos
2002-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.
NASA Astrophysics Data System (ADS)
Titov, V. A.
2018-03-01
The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy
2006-01-01
This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2002-01-01
The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.
Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution
NASA Technical Reports Server (NTRS)
McPherson, Kevin
1999-01-01
Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.
Space Station Freedom - Optimized to support microgravity research and earth observations
NASA Technical Reports Server (NTRS)
Bilardo, Vincent J., Jr.; Herman, Daniel J.
1990-01-01
The Space Station Freedom Program is reviewed, with particular attention given to the Space Station configuration, program elements description, and utilization accommodation. Since plans call for the assembly of the initial SSF configuration over a 3-year time span, it is NASA's intention to perform useful research on it during the assembly process. The research will include microgravity experiments and observational sciences. The specific attributes supporting these attempts are described, such as maintainance of a very low microgravity level and continuous orientation of the vehicle to maintain a stable, accurate local-vertical/local-horizontal attitude.
NASA Technical Reports Server (NTRS)
Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy
2004-01-01
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6. c2004 Elsevier Ltd. All rights reserved.
Space Station Freedom Utilization Conference
NASA Technical Reports Server (NTRS)
1992-01-01
The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.
Psychophysiology in microgravity and the role of exercise
NASA Technical Reports Server (NTRS)
Shaw, J. M.; Hackney, A. C.
1994-01-01
The Space Transportation-Shuttle (STS) Program has greatly expanded our capabilities in space by allowing for missions to be flown more frequently, less expensively, and to encompass a greater range of goals than ever before. However, the scope of the United State's role and involvement in space is currently at the edge of a new and exciting era. The National Aeronautics and Space Administration (NASA) has plans for placing an orbiting space station (Space Station Freedom) into operation before the year 2000. Space Station Freedom promises to redefine the extent of our involvement in space even further than the STS program. Space Station crewmembers will be expected to spend extended periods of time (approximately 30 to 180 days) in space exposed to an extremely diverse and adverse environment (e.g., the major adversity being the chronic microgravity condition). Consequently, the detrimental effects of exposure to the microgravity environment is of primary importance to the biomedical community responsible for the health and well-being of the crewmembers. Space flight and microgravity exposure present a unique set of stressors for the crewmember; weightlessness, danger, isolation/confinement, irregular work-rest cycles, separation from family/friends, and mission/ground crew interrelationships. A great deal is beginning to be known about the physiological changes associated with microgravity exposure, however, limited objective psychological findings exist. Examination of this latter area will become of critical concern as NASA prepares to place crewmembers on the longer space missions that will be required on Space Station Freedom. Psychological factors, such as interpersonal relations will become increasingly important issues, especially as crews become more heterogeneous in the way of experience, professional background, and assigned duties. In an attempt to minimize the detrimental physiological effects of prolonged space flight and microgravity exposure, the United States and Russian space agencies have taken steps to implement various countermeasure programs. One of the principle countermeasures used by both nations is exercise during space flight. The purpose is to present a brief overview of the major research findings examining the psychophysiological changes associated with microgravity exposure, and to address the potential role of exercise as a countermeasure in affecting these psychophysiological changes.
International Space Station Increment-4/5 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2003-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.
Biotechnology opportunities on Space Station
NASA Technical Reports Server (NTRS)
Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis
1987-01-01
Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.
NASA Technical Reports Server (NTRS)
Liu, F. C.
1986-01-01
The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.
Singh, Nitin K.; Blachowicz, Adriana; Romsdahl, Jillian; ...
2017-04-13
Presented here are the whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station. These baseline sequences will help to understand the observed production of novel bioactive compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nitin K.; Blachowicz, Adriana; Romsdahl, Jillian
Presented here are the whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station. These baseline sequences will help to understand the observed production of novel bioactive compounds.
Microgravity Particle Research on the Space Station
NASA Technical Reports Server (NTRS)
Squyres, Steven W. (Editor); Mckay, Christopher P. (Editor); Schwartz, Deborah E. (Editor)
1987-01-01
Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.
Accommodation requirements for microgravity science and applications research on space station
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Holland, L. R.; Wear, W. O.
1985-01-01
Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.
Singh, Nitin K.; Blachowicz, Adriana; Romsdahl, Jillian; Wang, Clay; Torok, Tamas
2017-01-01
ABSTRACT The whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station are presented here. These baseline sequences will help to understand the observed production of novel bioactive compounds. PMID:28408692
Microgravity Acceleration Environment of the International Space Station (panel)
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Foster, William M.; Schafer, Craig P.
2001-01-01
This paper examines the microgravity environment provided to the early science experiments by the International Space Station vehicle which is under construction. The microgravity environment will be compared with predicted levels for this stage of assembly. Included are initial analyses of the environment and preliminary identification of some sources of accelerations. Features of the operations of the accelerometer instruments, the data processing system, and data dissemination to users are also described.
NASA Technical Reports Server (NTRS)
Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric
2004-01-01
The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2003-01-01
The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2002-01-01
The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.
PIMS Data Storage, Access, and Neural Network Processing
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.; Moskowitz, Milton E.
1998-01-01
The Principal Investigator Microgravity Services (PIMS) project at NASA's Lewis Research Center has supported microgravity science Principal Investigator's (PIs) by processing, analyzing, and storing the acceleration environment data recorded on the NASA Space Shuttles and the Russian Mir space station. The acceleration data recorded in support of the microgravity science investigated on these platforms has been generated in discrete blocks totaling approximately 48 gigabytes for the Orbiter missions and 50 gigabytes for the Mir increments. Based on the anticipated volume of acceleration data resulting from continuous or nearly continuous operations, the International Space Station (ISS) presents a unique set of challenges regarding the storage of and access to microgravity acceleration environment data. This paper presents potential microgravity environment data storage, access, and analysis concepts for the ISS era.
Singh, Nitin K; Blachowicz, Adriana; Romsdahl, Jillian; Wang, Clay; Torok, Tamas; Venkateswaran, Kasthuri
2017-04-13
The whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station are presented here. These baseline sequences will help to understand the observed production of novel bioactive compounds. Copyright © 2017 Singh et al.
NASA Technical Reports Server (NTRS)
Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.
2000-01-01
NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.
Microgravity Science Glovebox Aboard the International Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jordan, Lee P.
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Baugher, Charles R.; Delombard, Richard
1990-01-01
In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.
2002-01-01
This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
1996-03-24
Astronaut Michael Clifford places a liquid nitrogen Dewar containing frozen protein solutions aboard Russia's space station Mir during a visit by the Space Shuttle (STS-76). The protein samples were flash-frozen on Earth and will be allowed to thaw and crystallize in the microgravity environment on Mir Space Station. A later crew will return the Dewar to Earth for sample analysis. Dr. Alexander McPherson of the University of California at Riverside is the principal investigator. Photo credit: NASA/Johnson Space Center.
1996-09-20
Astronaut Tom Akers places a liquid nitrogen Dewar containing frozen protein solutions aboard Russia's space Station Mir during a visit by the Space Shuttle (STS-79). The protein samples were flash-frozen on Earth and will be allowed to thaw and crystallize in the microgravity environment on Mir Space Station. A later crew will return the Dewar to Earth for sample analysis. Dr. Alexander McPherson of the University of California at Riverside is the principal investigator. Photo credit: NASA/Johnson Space Center.
SpeedyTime-4_Microgravity_Science_Glovebox
2017-08-03
Doing groundbreaking science can mean working with dangerous materials; how do the astronauts on the International Space Station protect themselves and their ship in those cases? They use the Microgravity Science Glovebox: in this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson pulls a rack out of the wall of the Destiny Laboratory to show us how astronauts access a sealed environment for science and technology experiments that involve potentially hazardous materials. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
MSG: Microgravity Science Glovebox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baugher, C.R.; Ramachandran, N.; Roark, W.
1996-12-31
The capabilities of the Space Station glovebox facility is described. Tentatively scheduled to be launched in 1999, this facility called the Microgravity Sciences Glovebox (MSG), will provide a robust and sophisticated platform for doing microgravity experiments on the Space Station. It will provide an environment not only for testing and evaluating experiment concepts, but also serve as a platform for doing fairly comprehensive science investigations. Its design has evolved substantially from the middeck glovebox, now flown on Space Shuttle missions, not only in increased experiment volume but also in significant capability enhancements. The system concept, functionality and architecture are discussedmore » along with technical information that will benefit potential science investigators.« less
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
Microgravity combustion science: A program overview
NASA Technical Reports Server (NTRS)
1989-01-01
The promise of microgravity combustion research is introduced by way of a brief survey of results, the available set of reduced gravity facilities, and plans for experimental capabilities in the Space Station era. The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity, in the form of long duration microgravity laboratories, and need, in the form of spacecraft fire safety and a variety of terrestrial applications, to pursue fresh insight into the basic physics of combustion. The microgravity environment enables a new range of experiments to be performed since buoyancy-induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments become permissible. The range of experiments completed to date was not broad, but is growing. Unexpected phenomena have been observed often in microgravity combustion experiments, raising questions about the degree of accuracy and completion of our classical understanding and our ability to estimate spacecraft fire hazards. Because of the field's relative immaturity, instrumentation has been restricted primarily to high-speed photography. To better explain these findings, more sophisticated diagnostic instrumentation, similar to that evolving in terrestrial laboratories, is being developed for use on Space Station Freedom and, along the way, in existing microgravity facilities.
Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid
2013-01-01
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction. PMID:19609626
Commerce Lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.
Artificial gravity studies and design considerations for Space Station centrifuges
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.
1984-01-01
The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.
NASA science utilization plans for the Space Station.
Reeves, E M; Cressy, P J
1995-10-01
The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.
Effect of science laboratory centrifuge of space station environment
NASA Technical Reports Server (NTRS)
Searby, Nancy
1990-01-01
It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.
Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie
2014-01-01
The “GENARA A” experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected. PMID:24618597
Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie
2014-01-01
The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.
2009-01-30
ISS018-E-024515 (30 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
The Low Temperature Microgravity Physics Facility Project
NASA Technical Reports Server (NTRS)
Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.;
2000-01-01
We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.
1997-03-11
The Microgravity Science Glovebox (MSG) is being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Vibration Isolation for the International Space Station
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2000-01-01
The International Space Station (ISS) is being envisioned as a laboratory for experiments in numerous microgravity (micrograms) science disciplines. Predictions of the ISS acceleration environment indicate that the ambient acceleration levels ill exceed levels that can be tolerated by the science experiments. Hence, microgravity vibration isolation systems are being developed to attenuate the accelerations to acceptable levels. While passive isolation systems are beneficial in certain applications, active isolation systems are required to provide attenuation at low frequencies and to mitigate directly induced payload disturbances. To date, three active isolation systems have been successfully tested in the orbital environment. A fourth system called g-LIMIT is currently being developed for the Microgravity Science Glovebox and is manifested for launch on the UF-1 mission. This paper presents an overview of microgravity vibration isolation technology and the g-LIMIT system in particular.
International Space Station (ISS)
2002-07-10
This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
Space station internal environmental and safety concerns
NASA Technical Reports Server (NTRS)
Cole, Matthew B.
1987-01-01
Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.
NASA Technical Reports Server (NTRS)
Smith, M.; Barratt, M.; Lloyd, C.
1992-01-01
Because of the time and distance involved in returning a patient from space to a definitive medical care facility, the capability for Advanced Cardiac Life Support (ACLS) exists onboard Space Station Freedom. Methods: In order to evaluate the effectiveness of terrestrial ACLS protocols in microgravity, a medical team conducted simulations during parabolic flights onboard the KC-135 aircraft. The hardware planned for use during the MTC phase of the space station was utilized to increase the fidelity of the scenario and to evaluate the prototype equipment. Based on initial KC-135 testing of CPR and ACLS, changes were made to the ventricular fibrillation algorithm in order to accommodate the space environment. Other constraints to delivery of ACLS onboard the space station include crew size, minimum training, crew deconditioning, and limited supplies and equipment. Results: The delivery of ACLS in microgravity is hindered by the environment, but should be adequate. Factors specific to microgravity were identified for inclusion in the protocol including immediate restraint of the patient and early intubation to insure airway. External cardiac compressions of adequate force and frequency were administered using various methods. The more significant limiting factors appear to be crew training, crew size, and limited supplies. Conclusions: Although ACLS is possible in the microgravity environment, future evaluations are necessary to further refine the protocols. Proper patient and medical officer restraint is crucial prior to advanced procedures. Also emphasis should be placed on early intubation for airway management and drug administration. Preliminary results and further testing will be utilized in the design of medical hardware, determination of crew training, and medical operations for space station and beyond.
NASA Technical Reports Server (NTRS)
Lin, Paul P.; Jules, Kenol
2002-01-01
An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.
1986-01-01
Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.
NASA Technical Reports Server (NTRS)
2001-01-01
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
2001-05-31
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
The venture space alliance commercial application of microgravity research
NASA Astrophysics Data System (ADS)
Whitton, Dave
1999-01-01
The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.
2000-01-31
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
Microgravity research in the era of Space Station Freedom
NASA Technical Reports Server (NTRS)
Lee, Mark C.
1989-01-01
NASA has developed numerous microgravity research-related missions planned for the period of 1991 to 1994, leading to Space Station Freedom (SSF). Space Transportation System (STS) flights are designed with the philosophy that STS, Spacelab, and SSF will constitute an integrated system allowing an evolutionary approach to microgravity research in low earth orbit. Ground experiments, tested and refined on short-duration STS flights, will be developed and deployed on SSF where long-duration operation is required. In addition, this sequence will ensure maximum scientific return, encourage growth of the research community, and increase the chances of identifying new techniques and processes to be used in the SSF time frame. The paper discusses the rationale, justification, and approach taken by NASA to fully exploit this environment.
NASA Technical Reports Server (NTRS)
Alhorn, Dean
1998-01-01
Vibration isolation is a necessity in the development of science in space and especially those experiments destined for operation on the International Space Station (ISS). The premise of microgravity scientific research is that in space, disturbances are minimized and experiments can be conducted in the absence of gravity. Although microgravity conditions exist in space, disturbances are still present in various forms and can be detrimental to the success of a microgravity experiment. Due to the plethora of disturbances and the various types that will occur on the space station, the microgravity community has elected to incorporate various means of isolating scientific payloads from these unwanted vibrations. Designing these vibration isolators is a crucial task to achieve true microgravity science. Since conventional methods of isolating payloads can achieve only limited isolation, new technologies are being developed to achieve the goal of designing a generic vibration isolation system. One such system being developed for the Microgravity Science Glovebox (MSG) is called g-LIMIT which stands for Glovebox Integrated Microgravity Isolation Technology. The g-LIMIT system is a miniaturized active vibration isolator for glovebox experiments. Although the system is initially developed for glovebox experiments, the g-LIMIT technology is designed to be upwardly scaleable to provide isolation for a broad range of users. The g-LIMIT system is scheduled to be flown on the UF-2 mission in August of the year 2000 and will be tested shortly thereafter. Once the system has been fully qualified, the hardware will become available for other researchers and will provide a platform upon which the goal of microgravity science can be achieved.
Space Station Freedom Utilization Conference: Executive summary
NASA Technical Reports Server (NTRS)
1992-01-01
From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.
Protein crystal growth in microgravity
NASA Technical Reports Server (NTRS)
Carter, Daniel
1992-01-01
The overall scientific goals and rationale for growing protein crystals in microgravity are discussed. Data on the growth of human serum albumin crystals which were produced during the First International Microgravity Laboratory (IML-1) are presented. Potential scientific advantages of the utilization of Space Station Freedom are discussed.
The Development of the Low Temperature Microgravity Physics Facility
NASA Technical Reports Server (NTRS)
Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.;
2000-01-01
We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide long duration (4.5 months) low temperature (1.4K) and microgravity conditions for scientists to perform breakthrough investigations on board the International Space Station.
2017-07-17
In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Neurology of microgravity and space travel
NASA Technical Reports Server (NTRS)
Fujii, M. D.; Patten, B. M.
1992-01-01
Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.
Astronaut-Induced Disturbances to the Microgravity Environment of the Mir Space Station
NASA Technical Reports Server (NTRS)
Newman, Dava J.; Amir, Amir R.; Beck, Sherwin M.
2001-01-01
In preparation for the International Space Station, the Enhanced Dynamic Load Sensors Space Flight Experiment measured the forces and moments astronauts exerted on the Mir Space Station during their daily on-orbit activities to quantify the astronaut-induced disturbances to the microgravity environment during a long-duration space mission. An examination of video recordings of the astronauts moving in the modules and using the instrumented crew restraint and mobility load sensors led to the identification of several typical astronaut motions and the quantification or the associated forces and moments exerted on the spacecraft. For 2806 disturbances recorded by the foot restraints and hand-hold sensor, the highest force magnitude was 137 N. For about 96% of the time, the maximum force magnitude was below 60 N, and for about 99% of the time the maximum force magnitude was below 90 N. For 95% of the astronaut motions, the rms force level was below 9.0 N. It can be concluded that expected astronaut-induced loads from usual intravehicular activity are considerably less than previously thought and will not significantly disturb the microgravity environment.
Recent NASA research accomplishments aboard the ISS
NASA Technical Reports Server (NTRS)
Pellis, Neal R.; North, Regina M.
2004-01-01
The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations. Published by Elsevier Ltd.
The Influence of Microgravity on Plants
NASA Technical Reports Server (NTRS)
Levine, Howard G.
2010-01-01
This slide presentation reviews the studies and the use of plants in various space exploration scenarios. The current state of research on plant growth in microgravity is reviewed, with several questions that require research for answers to assist in our fundamental understanding of the influence of microgravity and the space environment on plant growth. These questions are posed to future Principal Investigators and Payload Developers, attending the meeting, in part, to inform them of NASA's interest in proposals for research on the International Space Station.
1997-03-11
This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Science and Technology Research Directions for the International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.
Introduction of International Microgravity Strategic Planning Group
NASA Technical Reports Server (NTRS)
Rhome, Robert
1998-01-01
Established in May 6, 1995, the purpose of this International Strategic Planning Group for Microgravity Science and Applications Research is to develop and update, at least on a biennial basis, an International Strategic Plan for Microgravity Science and Applications Research. The member space agencies have agreed to contribute to the development of a Strategic Plan, and seek the implementation of the cooperative programs defined in this Plan. The emphasis of this plan is the coordination of hardware construction and utilization within the various areas of research including biotechnology, combustion science, fluid physics, materials science and other special topics in physical sciences. The Microgravity Science and Applications International Strategic Plan is a joint effort by the present members - ASI, CNES, CSA, DLR, ESA, NASA, and NASDA. It represents the consensus from a series of discussions held within the International Microgravity Strategic Planning Group (IMSPG). In 1996 several space agencies initiated multilateral discussions on how to improve the effectiveness of international microgravity research during the upcoming Space Station era. These discussions led to a recognition of the need for a comprehensive strategic plan for international microgravity research that would provide a framework for cooperation between international agencies. The Strategic Plan is intended to provide a basis for inter-agency coordination and cooperation in microgravity research in the environment of the International Space Station (ISS) era. This will be accomplished through analysis of the interests and goals of each participating agency and identification of mutual interests and program compatibilities. The Plan provides a framework for maximizing the productivity of space-based research for the benefit of our societies.
Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.
Microgravity cultivation of cells and tissues
NASA Technical Reports Server (NTRS)
Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.
1999-01-01
In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.
Technology development for laser-cooled clocks on the International Space Station
NASA Technical Reports Server (NTRS)
Klipstein, W. M.
2003-01-01
The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.
Space-to-Ground: Stuffed with Science: 11/17/2017
2017-11-16
S.S. Gene Cernan arrives to station...Experiment will examine how microgravity affects the bacteria's ability to thrive...and who answers astronauts questions about experiments? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
International Space Station (ISS)
2002-07-10
Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
Low frequency vibration isolation technology for microgravity space experiments
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Brown, Gerald V.
1989-01-01
The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments.
Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco-Javier; Graziana, Annick; Carnero-Diaz, Eugénie
2014-01-01
Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between µ g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity.
Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco-Javier; Graziana, Annick; Carnero-Diaz, Eugénie
2014-07-16
Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between µ g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity.
The effect of simulated microgravity on bacteria from the mir space station
NASA Astrophysics Data System (ADS)
Baker, Paul W.; Leff, Laura
2004-03-01
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
The effect of simulated microgravity on bacteria from the Mir space station.
Baker, Paul W; Leff, Laura
2004-01-01
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
The effect of simulated microgravity on bacteria from the Mir space station
NASA Technical Reports Server (NTRS)
Baker, Paul W.; Leff, Laura
2004-01-01
The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Porosity inside a metal casting
NASA Technical Reports Server (NTRS)
2003-01-01
Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.
2003-01-22
Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.
NASA Astrophysics Data System (ADS)
Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.
2018-05-01
The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.
International Space Station -- Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
2000-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
Planning for the scientific use of the international Space Station complex
NASA Technical Reports Server (NTRS)
Halpern, R. E.
1988-01-01
Plans for the development of an international Space Station complex in cooperation with Japan, Canada, and the European Space Agency are reviewed. The discussion covers the planned uses of the Space Station, the principal research facilities, allocation of the resources available to the research facilities, and tactical and strategic planning related to the Space Station project. Particular attention is given to problems related to microgravity sciences and approaches to the solutions of these problems.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.
1997-03-11
This photo shows one of three arrays of air filters inside the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Glove
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Interior Reach
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Space Station Freedom Utilization Conference. Executive summary
NASA Technical Reports Server (NTRS)
1993-01-01
The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2015-01-01
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). A technician is working on the Advanced Automated Directional Solidification Furnace (AADSF), which will be used by researchers to study the solidification of semiconductor materials in microgravity. Scientists will be able to better understand how microgravity influences the solidification process of these materials and develop better methods for controlling that process during future Space flights and Earth-based production. All STS-87 experiments are scheduled for launch on Nov. 19 from KSC
Weightlessness and the human skeleton: A new perspective
NASA Technical Reports Server (NTRS)
Holick, Michael F.
1994-01-01
It is now clear after more than two decades of space exploration that one of the major short- and long-term effects of microgravity on the human body is the loss of bone. The purpose of this presentation will be to review the data regarding the impact of microgravity and bed rest on calcium and bone metabolism. The author takes the position in this Socratic debate that the effect of microgravity on bone metabolism can be either reversed or mitigated. As we begins to contemplate long-duration space flight and habitation of Space Station Freedom and the moon, one of the issues that needs to be addressed is whether humans need to maintain a skeleton that has been adapted for the one-g force on earth. Clearly, in the foreseeable future, a healthy and structurally sound skeleton will be required for astronauts to shuttle back and forth from earth to the moon, space station, and Mars. Based on most available data from bed-rest studies and the short- and long-duration microgravity experiences by astronauts and cosmonauts, bone loss is a fact of life in this environment. With the rapid advances in understanding of bone physiology it is now possible to contemplate measures that can prevent or mitigate microgravity-induced bone loss. Will the new therapeutic approaches for enhancing bone mineralization be useful for preventing significant bone loss during long-term space flight? Are there other approaches such as exercise and electrical stimulation that can be used to mitigate the impact of microgravity on the skeleton? A recent study that evaluated the effect of microgravity on bone modeling in developing chick embryos may perhaps provide a new perspective about the impact of microgravity on bone metabolism.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
Singh, Bhim S. (Editor)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).
Umbilical Stiffness Matrix Characterization and Testing for Microgravity Science Payloads
NASA Technical Reports Server (NTRS)
Engberg, Robert C.
2003-01-01
This paper describes efforts of testing and analysis of various candidate cables and umbilicals for International Space Station microgravity science payloads. The effects of looping, large vs. small displacements, and umbilical mounting configurations were assessed. A 3-DOF stepper motor driven fixture was used to excite the umbilicals. Forces and moments were directly measured in all three axes with a 6-DOF load cell in order to derive suitable stiffness matrices for design and analysis of vibration isolation controllers. Data obtained from these tests were used to help determine the optimum type and configuration of umbilical cables for the International Space Station microgravity science glovebox (MSG) vibration isolation platform. The data and procedures can also be implemented into control algorithm simulations to assist in validation of actively controlled vibration isolation systems. The experimental results of this work are specific in support of the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) isolation platform, to be located in the microgravity science glovebox aboard the U.S. Destiny Laboratory Module.
NASA Technical Reports Server (NTRS)
Priem, Richard J.
1988-01-01
The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified.
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Working Volume
NASA Technical Reports Server (NTRS)
1997-01-01
Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Labels
NASA Technical Reports Server (NTRS)
1997-01-01
Labels are overlaid on a photo (0003837) of the Microgravity Science Glovebox (MSG). The MSG is being developed by the European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
An assessment of the microgravity and acoustic environments in Space Station Freedom using VAPEPS
NASA Technical Reports Server (NTRS)
Bergen, Thomas F.; Scharton, Terry D.; Badilla, Gloria A.
1992-01-01
The Vibroacoustic Payload Environment Prediction System (VAPEPS) was used to predict the stationary on-orbit environments in one of the Space Station Freedom modules. The model of the module included the outer structure, equipment and payload racks, avionics, and cabin air and duct systems. Acoustic and vibratory outputs of various source classes were derived and input to the model. Initial results of analyses, performed in one-third octave frequency bands from 10 to 10,000 Hz, show that both the microgravity and acoustic environments will be exceeded in some one-third octave bands with the current SSF design. Further analyses indicate that interior acoustic level requirements will be exceeded even if the microgravity requirements are met.
The Biotechnology Facility for International Space Station.
Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy
2004-03-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.
2012-01-01
An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.
The Biotechnology Facility for International Space Station
NASA Technical Reports Server (NTRS)
Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy
2004-01-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.
User Needs, Benefits, and Integration of Robotic Systems in a Space Station Laboratory
NASA Technical Reports Server (NTRS)
Dodd, W. R.; Badgley, M. B.; Konkel, C. R.
1989-01-01
The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics.
2014-02-14
ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
2014-02-14
ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046381 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
2014-02-12
ISS038-E-046393 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio works with BASS-II
2014-02-18
ISS038-E-053250 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046387 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
2014-02-12
ISS038-E-046394 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio works with BASS-II
2014-02-18
ISS038-E-053251 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046391 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
The opportunities for space biology research on the Space Station
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Souza, Kenneth A.
1987-01-01
The life sciences research facilities for the Space Station are being designed to accommodate both animal and plant specimens for long durations studies. This will enable research on how living systems adapt to microgravity, how gravity has shaped and affected life on earth, and further the understanding of basic biological phenomena. This would include multigeneration experiments on the effects of microgravity on the reproduction, development, growth, physiology, behavior, and aging of organisms. To achieve these research goals, a modular habitat system and on-board variable gravity centrifuges, capable of holding various animal, plant, cells and tissues, is proposed for the science laboratory.
Gram staining apparatus for space station applications
NASA Technical Reports Server (NTRS)
Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.
1990-01-01
A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.
NASA Technical Reports Server (NTRS)
Cohen, M. M.
1985-01-01
The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.
2017 Space Station Science in Pictures
2018-01-02
From molecular biology to fluid physics, life sciences and robotics, 2017 was a robust year for research aboard Earth’s only microgravity laboratory. The International Space Station hosts more than 300 experiments during a given Expedition, each working to further space exploration and/or benefit life back on Earth. Here’s a look back at just some of the science that happened on the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001167_2017_Space_Station_Science_in_Pictures _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Space Station Biological Research Project.
Johnson, C C; Wade, C E; Givens, J J
1997-06-01
To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.
Space Station Biological Research Project
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Wade, C. E.; Givens, J. J.
1997-01-01
To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.
SSC microgravity sounding rocket program MASER.
Jonsson, R
1988-01-01
The Swedish Microgravity Sounding Rocket program MASER is presented. Especially the MASER 1 payload is depicted, but also an outlook for the future possibilities within the Short Duration Flight Opportunities is given. Furthermore the coordination and relation with the German TEXUS program is touched upon. With the two TEXUS and MASER programs--possibly together with other fascinating projects like M-ARIES and MG-M-ARIANNE--the microgravity scientific community in Europe should get reasonable amounts of flight opportunities in preparation for the big space venture the European Space Station.
Microgravity Science Glovebox - Interior Lamps
NASA Technical Reports Server (NTRS)
1997-01-01
An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Payload Processing for Mice Drawer System
NASA Technical Reports Server (NTRS)
Brown, Judy
2007-01-01
Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.
International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology
NASA Technical Reports Server (NTRS)
Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.
2015-01-01
In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.
Space Station Freedom: A foothold on the future
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.
Microgravity science and applications projects and payloads
NASA Technical Reports Server (NTRS)
Crouch, R. K.
1987-01-01
An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.
NASA Technical Reports Server (NTRS)
Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.
1999-01-01
This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
2001-01-01
The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046385 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a computer while setting up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
NASA Astrophysics Data System (ADS)
1993-03-01
The symposium includes topics on the Columbus Programme and Precursor missions, the user support and ground infrastructure, the scientific requirements for the Columbus payloads, the payload operations, and the Mir missions. Papers are presented on Columbus Precursor Spacelab missions, the role of the APM Centre in the support of Columbus Precursor flights, the refined decentralized concept and development support, the Microgravity Advanced Research and Support (MARS) Center update, and the Columbus payload requirements in human physiology. Attention is also given to the fluid science users requirements, European space science and Space Station Freedom, payload operations for the Precursor Mission E1, and the strategic role of automation and robotics for Columbus utilization. Other papers are on a joint Austro-Soviet space project AUSTROMIR-91; a study of cognitive functions in microgravity, COGIMIR; the influence of microgravity on immune system and genetic information; and the Mir'92 project. (For individual items see A93-26552 to A93-26573)
NASA Technical Reports Server (NTRS)
Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf
2000-01-01
The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C>
2006-01-01
Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.
NASA Technical Reports Server (NTRS)
Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.
1992-01-01
Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.
Development of a Simulation Capability for the Space Station Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Johnson, Terry L.; Tolson, Robert H.
1998-01-01
To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.
Protein crystallization aboard the Space Shuttle and the Mir space station
NASA Technical Reports Server (NTRS)
Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.
1993-01-01
Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.
International Workshop on Vibration Isolation Technology for Microgravity Science Applications
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F. (Editor)
1992-01-01
The International Workshop on Vibration Isolation Technology for Microgravity Science Applications was held on April 23-25, 1991 at the Holiday Inn in Middleburg Heights, Ohio. The main objective of the conference was to explore vibration isolation requirements of space experiments and what level of vibration isolation could be provided both by present and planned systems on the Space Shuttle and Space Station Freedom and by state of the art vibration isolation technology.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
17th International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.
The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe
2016-12-01
Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.
Gram staining apparatus for space station applications.
Molina, T C; Brown, H D; Irbe, R M; Pierson, D L
1990-01-01
A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space. Images PMID:1690529
SAMS Acceleration Measurements on Mir from June to November 1995
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin
1996-01-01
The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott
2007-01-01
This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.
Fluid Studies on the International Space Station
NASA Technical Reports Server (NTRS)
Motil, Brian J.
2016-01-01
Will discuss the recent activities on the international space station, including the adiabatic two phase flow, capillary flow and interfacial phenomena, and boiling and condensation. Will also give a historic introduction to Microgravity Studies at Glenn Research Center. Talk will be given to students and faculty at University of Louisville.
Williams works at the MSG during Expedition 13
2006-05-04
ISS013-E-14536 (4 May 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, conducts the first run of the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Williams works at the MSG during Expedition 13
2006-05-04
ISS013-E-14573 (4 May 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, conducts the first run of the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Williams works at the MSG during Expedition 13
2006-05-04
ISS013-E-14524 (4 May 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, conducts the first run of the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Williams works at the MSG during Expedition 13
2006-05-04
ISS013-E-14537 (4 May 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, conducts the first run of the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Williams works at the MSG during Expedition 13
2006-05-04
ISS013-E-14531 (4 May 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, conducts the first run of the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Ostrogorsky, A.; Marin, C.; Volz, M. P.; Bonner, W. A.
2005-01-01
Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. The experiments were conducted in a furnace with a transparent gradient section, and a video camera, sending images to the earth. The real time images (i) helped seeding, (ii) allowed a direct measurement of the solidification rate. The post-flight characterization of the crystals includes: computed x-ray tomography, Secondary Ion Mass Spectroscopy (SIMS), Hall measurements, Atomic Absorption (AA), and 4 point probe analysis. For the first time in microgravity, several crystals having nearly identical initial transients were grown. Reproducible initial transients were obtained with Te-doped InSb. Furthermore, the diffusion controlled end-transient was demonstrated experimentally (SUBSA 02). From the initial transients, the diffusivity of Te and Zn in InSb was determined.
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.
2002-01-01
The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.
Without Gravity: Designing Science Equipment for the International Space Station and Beyond
NASA Technical Reports Server (NTRS)
Sato, Kevin Y.
2016-01-01
This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.
Solidification Using the Baffle in Sealed Ampoules
NASA Technical Reports Server (NTRS)
Ostrogorsky, A.; Marin, C.; Churilov, A.; Volz, M. P.; Bonner, W. A.; Spivey, R. A.; Smith, G.
2003-01-01
Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. In July, August and September of 2002, 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. Ground based tests, related numerical modeling and images of the growth process obtained in microgravity are presented.
1997-03-11
This photo shows the access through the internal airlock on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). The airlock will allow the insertion or removal of equipment and samples without opening the working volume of the glovebox. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
NASA Astrophysics Data System (ADS)
Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.
The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival
Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations
NASA Technical Reports Server (NTRS)
Alhorn, Dean Carl
1999-01-01
Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.
2008-07-31
ISS017-E-012288 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
2008-07-31
ISS017-E-012283 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Development of space technology for ecological habitats
NASA Technical Reports Server (NTRS)
Martello, N. V.
1986-01-01
The development of closed ecological systems for space stations is discussed. Growth chambers, control systems, microgravity, ecosystem stability, lighting equipment, and waste processing systems are among the topics discussed.
NASA's Microgravity Research Program
NASA Technical Reports Server (NTRS)
Woodard, Dan
1998-01-01
This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.
NASA Technical Reports Server (NTRS)
Sheredy, William A.
2003-01-01
The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.
NASA Astrophysics Data System (ADS)
Jones, Scott B.; Or, Dani
1999-04-01
Plants grown in porous media are part of a bioregenerative life support system designed for long-duration space missions. Reduced gravity conditions of orbiting spacecraft (microgravity) alter several aspects of liquid flow and distribution within partially saturated porous media. The objectives of this study were to evaluate the suitability of conventional capillary flow theory in simulating water distribution in porous media measured in a microgravity environment. Data from experiments aboard the Russian space station Mir and a U.S. space shuttle were simulated by elimination of the gravitational term from the Richards equation. Qualitative comparisons with media hydraulic parameters measured on Earth suggest narrower pore size distributions and inactive or nonparticipating large pores in microgravity. Evidence of accentuated hysteresis, altered soil-water characteristic, and reduced unsaturated hydraulic conductivity from microgravity simulations may be attributable to a number of proposed secondary mechanisms. These are likely spawned by enhanced and modified paths of interfacial flows and an altered force ratio of capillary to body forces in microgravity.
Charles Brady in Life and Microgravity Spacelab (LMS) Onboard STS-78
NASA Technical Reports Server (NTRS)
1996-01-01
Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. In this onboard photograph, mission specialist Charles Brady is working in the LMS.
NASA Technical Reports Server (NTRS)
Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.
1986-01-01
A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.
NASA Technical Reports Server (NTRS)
Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK
1987-01-01
The genesis of igneous rocks on terrestrial planets can only be understood through experiments at pressures corresponding to those in planetary mantles (10 to 50 kbar). Such experiments typically require a piston-cylinder apparatus, and an apparatus that has the advantage of controllable pressure and temperature, adequate sample volume, rapid sample quench, and minimal danger of catastrophic failure. It is proposed to perform high-pressure and high-temperature piston-cylinder experiments aboard the Space Station. The microgravity environment in the Space Station will minimize settling due to density contrasts and may, thus, allow experiments of moderate duration to be performed without a platinoid capsule and without the sample having to touch the container walls. The ideal pressure medium would have the same temperatures. It is emphasized, however, that this proposed experimental capability requires technological advances and innovations not currently available.
SAMS-II Requirements and Operations
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.
1998-01-01
The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.
Survey of Active Vibration Isolation Systems for Microgravity Applications
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration-sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. A tutorial discussion of the microgravity vibration isolation problem, including a description of the acceleration environment of the International Space Station and attenuation requirements, as well as a comparison or the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation is provided. The flight test results of the three demonstrated systems: suppression of transient accelerations by levitation, the microgravity vibration isolation mount, and the active rack isolation system are surveyed.
Anderson uses laptop computer in the U.S. Laboratory during Joint Operations
2007-06-13
S117-E-07134 (12 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, uses a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station while Space Shuttle Atlantis (STS-117) was docked with the station. Astronaut Sunita Williams, flight engineer, is at right.
Effect of microgravity on plant growth
NASA Technical Reports Server (NTRS)
Lewis, Norman G.
1994-01-01
The overall goal of this research is to determine the effect of microgravity proper on plant growth (metabolism and cell wall formation). In addressing this goal, the work conducted during this grant period was divided into three components: analyses of various plant tissues previously grown in space aboard MIR Space Station; analyses of wheat tissues grown on Shuttle flight STS-51; and Phenylpropanoid metabolism and plant cell wall synthesis (earth-based investigations).
Payload vibration isolation in a microgravity environment
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.
Rocket seedling production on the international space station: Growth and nutritional properties
NASA Astrophysics Data System (ADS)
Colla, Giuseppe; Battistelli, Alberto; Proietti, Simona; Moscatello, Stefano; Rouphael, Youssef; Cardarelli, Mariateresa; Casucci, Marco
2007-09-01
Producing sprouts directly during space missions may represent an interesting opportunity to offer high-quality fresh ready to eat food to the astronauts. The goal of this work was to compare, in terms of growth and nutritional quality, rocket (Eruca sativa Mill.) seedlings grown in the International Space Station during the ENEIDE mission with those grown in a ground-based experiment (in presence and absence of clinorotation). The rocket seedlings obtained from the space-experiment were thinner and more elongated than those obtained in the ground-based experiment. Cotyledons were often closed in the seedlings grown in the space experiment. Quantitative (germination, fresh and dry weight) and qualitative (glucose, fructose, sucrose and starch) traits of rocket seedling were negatively affected by micrograv-ity, especially those recorded on seedlings grown under real microgravity conditions The total chlorophyll, and carotenoids of seedlings obtained in the space experiment were strongly reduced in comparison to those obtained in the ground-based experiment (presence and absence of clinorotation). The results showed that it is possible to produce rocket seedlings in the ISS; however, further studies are needed to define the optimal environmental conditions for producing rocket seedlings with high nutritional value
NASA Technical Reports Server (NTRS)
Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.
NASA Technical Reports Server (NTRS)
2001-01-01
Computer-generated drawing shows the relative scale and working space for the Microgravity Science Glovebox (MSG) being developed by NASA and the European Space Agency for science experiments aboard the International Space Station (ISS). The person at the glovebox repesents a 95th percentile American male. The MSG will be deployed first to the Destiny laboratory module and later will be moved to ESA's Columbus Attached Payload Module. Each module will be filled with International Standard Payload Racks (green) attached to standoff fittings (yellow) that hold the racks in position. Destiny is six racks in length. The MSG is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (dark circle) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Working Volume
NASA Technical Reports Server (NTRS)
1997-01-01
Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-03-11
This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). The airlock will allow the insertion or removal of equipment and samples without opening the working volume of the glovebox. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996
NASA Technical Reports Server (NTRS)
1997-01-01
NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.
International Space Station (ISS)
2003-10-20
In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).
Seed-to-seed growth of Arabidopsis thaliana on the International Space Station
NASA Technical Reports Server (NTRS)
Link, B. M.; Durst, S. J.; Zhou, W.; Stankovic, B.
2003-01-01
The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
2000-01-30
Tim Broach (seen through window) of NASA/Marshall Spce Flight Center (MSFC), demonstrates the working volume inside the Microgravity Sciences Glovebox being developed by the European Space Agency (ESA) for use aboard the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup is the same size as the flight hardware. Observing are Tommy Holloway and Brewster Shaw of The Boeing Co. (center) and John-David Bartoe, ISS research manager at NASA/John Space Center and a payload specialist on Spacelab-2 mission (1985). Photo crdit: NASA/Marshall Space Flight Center (MSFC)
Space Shuttle STS-87 Columbia launch
NASA Technical Reports Server (NTRS)
1997-01-01
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia (STS-87) soared from Launch Pad 39B on the fourth flight of the United States Microgravity Payload (USMP-4) and Spartan-201 satellite which were managed by scientists and engineers from the Marshall Space Flight Center. During the 16-day mission, the crew oversaw experiments in microgravity; deployed and retrieved a solar satellite; and tested a new experimental camera, the AERCam Sprint. Two crew members, Dr. Takao Doi and Winston Scott also performed a spacewalk to practice International Space Station maneuvers.
Spread and SpreadRecorder An Architecture for Data Distribution
NASA Technical Reports Server (NTRS)
Wright, Ted
2006-01-01
The Space Acceleration Measurement System (SAMS) project at the NASA Glenn Research Center (GRC) has been measuring the microgravity environment of the space shuttle, the International Space Station, MIR, sounding rockets, drop towers, and aircraft since 1991. The Principle Investigator Microgravity Services (PIMS) project at NASA GRC has been collecting, analyzing, reducing, and disseminating over 3 terabytes of collected SAMS and other microgravity sensor data to scientists so they can understand the disturbances that affect their microgravity science experiments. The years of experience with space flight data generation, telemetry, operations, analysis, and distribution give the SAMS/ PIMS team a unique perspective on space data systems. In 2005, the SAMS/PIMS team was asked to look into generalizing their data system and combining it with the nascent medical instrumentation data systems being proposed for ISS and beyond, specifically the Medical Computer Interface Adapter (MCIA) project. The SpreadRecorder software is a prototype system developed by SAMS/PIMS to explore ways of meeting the needs of both the medical and microgravity measurement communities. It is hoped that the system is general enough to be used for many other purposes.
Flight- and Ground-Based Materials Science Programs at NASA
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
1999-01-01
The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.
Fluids and Combustion Facility-Combustion Integrated Rack
NASA Technical Reports Server (NTRS)
Francisco, David R.
1998-01-01
This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
2003-08-26
KENNEDY SPACE CENTER, FLA. - From left, the Consul General of Japan Ko Kodaira, his daughter Reiko, astronaut Dr. Takao Doi, and Kodaira's wife Marie pause for a photograph in the Space Station Processing Facility during their visit to Kennedy Space Center (KSC). Doi represented Japan on Space Shuttle mission STS-87, the fourth U.S Microgravity Payload flight. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.
2003-01-22
One of the first materials science experiments on the International Space Station -- the Solidification Using a Baffle in Sealed Ampoules (SUBSA) -- will be conducted during Expedition Five inside the Microgravity Science Glovebox. The glovebox is the first dedicated facility delivered to the Station for microgravity physical science research, and this experiment will be the first one operated inside the glovebox. The glovebox's sealed work environment makes it an ideal place for the furnace that will be used to melt semiconductor crystals. Astronauts can change out samples and manipulate the experiment by inserting their hands into a pair of gloves that reach inside the sealed box. Dr. Aleksandar Ostrogorsky, a materials scientist from the Rensselaer Polytechnic Institute, Troy, N.Y., and the principal investigator for the SUBSA experiment, uses the gloves to examine an ampoule like the ones used for his experiment inside the glovebox's work area. The Microgravity Science Glovebox and the SUBSA experiment are managed by NASA's Marshall Space Flight Center in Huntsville, Ala.
2009-08-01
ISS020-E-026859 (1 Aug. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Space station operations enhancement using tethers
NASA Astrophysics Data System (ADS)
Bekey, I.
1984-10-01
Space tethers represent a tool of unusual versatility for applications to operations involving space stations. The present investigation is concerned with a number of applications which exploit the dynamic, static, and electrodynamic properties of tethers. One of the simplest applications of a tethered system on the Space Station might be that of a remote docking port, allowing the Shuttle to dock with no contamination or disturbance effects. Attention is also given to tethered platforms, a tethered microgravity facility, a tethered space station propellant facility, electrodynamic tether principles, a tether power generator, a tether thrust generator (motor), and an electrodynamic tether for drag makeup and energy storage.
Measurement and Characterization of the Acceleration Environment on Board the Space Station
NASA Technical Reports Server (NTRS)
Baugher, Charles R. (Editor)
1990-01-01
This workshop provides a comprehensive overview of the work and status of each of these areas to provide a basis for establishing a systematic approach to the challenge of avoiding these difficulties during the Space Station era of materials experimentation. The discussions were arranged in the order of: the scientific understanding of the requirements for a micro-gravity environment, a history of acceleration measurements on spacecraft, the state of accelerometer technology, and the current understanding of the predicted Space Station environment.
Medaka Fish Embryo Developed for STS-78 Life and Microgravity Spacelab (LMS)
NASA Technical Reports Server (NTRS)
1996-01-01
Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents the development of Medaka Fish Embryos, one of the many studies of the LMS mission.
2017-02-13
iss050e042164 (02/13/2017) --- NASA astronaut Peggy Whitson (right) and ESA (European Space Agency) astronaut Thomas Pesquet setup the Microgravity Science Glovebox (MSG) for the Microgravity Expanded Stem Cells (MESC) experiment. MESC cultivates human stem cells aboard the International Space Station for use in clinical trials to evaluate their use in treating disease. Results also advance future studies on how to scale up expansion of stem cells for treating stroke and other conditions.
2013-11-10
ISS037-E-028590 (10 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 37/38 flight engineer, enters data into a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Seale, D. B.; Boraas, M. E.; Sommer, C. V.
1989-01-01
The probable sources and implications of microbial contamination on the proposed Space Station are discussed. Because of the limited availability of material, facilities and time on the Space Station, we are exploring the feasibility of replacing traditional incubation methods for assessing microbial contamination with rapid, automated methods. Some possibilities include: ATP measurement, microscopy and telecommunications, and molecular techniques such as DNA probes or monoclonal antibodies. Some of the important ecological factors that could alter microbes in space include microgravity, exposure to radiation, and antibiotic resistance.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-18
ISS012-E-16184 (18 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, sets up the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment hardware inside the Microgravity Science Glovebox (MSG) facility in the Destiny laboratory on the International Space Station.
International Space Station Crew Return Vehicle: X-38. Educational Brief.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…
A Survey of Active Vibration Isolation Systems for Microgravity Applications
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. This paper provides a tutorial discussion of the microgravity vibration isolation problem including a description of the acceleration environment of the International Space Station and attenuation requirements as well as a comparison of the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation. This paper also surveys the flight test results of the three demonstrated systems: Suppression of Transient Accelerations By Levitation (STABLE); the Microgravity Vibration Isolation Mount (MIM); and the Active Rack Isolation System (ARIS).
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Rodriguez, Branelle R.; Broyan, James Lee, Jr.
2008-01-01
Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (<0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Cibuzar, Branelle R.; Broyan, James Lee, Jr.
2009-01-01
Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (<0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.
U.S. Materials Science on the International Space Station: Status and Plans
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.
2010-01-01
This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.
1997-01-14
The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.
NASA Technical Reports Server (NTRS)
Lloyd, Charles W.
1993-01-01
The Space Station Freedom (SSF) Health Maintenance Facility (HMF) will provide medical care for crew members for up to 10 days. An integral part of the required medical care consists of providing intravenous infusion of fluids, electrolyte solutions, and nutrients to sustain an ill or injured crew member. In terrestrial health care facilities, intravenous solutions are normally stored in large quantities. However, due to the station's weight and volume constraints, an adequate supply of the required solutions cannot be carried onboard SSF. By formulating medical fluids onboard from concentrates and station water as needed, the Fluid Therapy System (FTS) eliminates weight and volume concerns regarding intravenous fluids. The first full-system demonstration of FTS is continuous microgravity will be conducted in Spacelab-Japan (SL-J). The FTS evaluation consists of two functional objectives and an in-flight demonstration of intravenous administration of fluids. The first is to make and store sterile water and IV solutions onboard the spacecraft. If intravenous fluids are to be produced in SSF, successful sterilization of water and reconstituting of IV solutions must be achieved. The second objective is to repeat the verification of the FTS infusion pump, which had been performed in Spacelab Life Sciences - 1 (SLS-1). during SLS-1, the FTS IV pump was operated in continuous microgravity for the first time. The pump functioned successfully, and valuable knowledge on its performance in continuous microgravity was obtained. Finally, the technique of starting an IF in microgravity will be demonstrated. The IV technique requires modifications in microgravity, such as use of restraints for equipment and crew members involved.
Advanced Technology for Isolating Payloads in Microgravity
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
1997-01-01
One presumption of scientific microgravity research is that while in space disturbances are minimized and experiments can be conducted in the absence of gravity. The problem with this assumption is that numerous disturbances actually occur in the space environment. Scientists must consider all disturbances when planning microgravity experiments. Although small disturbances, such as a human sneeze, do not cause most researchers on earth much concern, in space, these minuscule disturbances can be detrimental to the success or failure of an experiment. Therefore, a need exists to isolate experiments and provide a quiescent microgravity environment. The objective of microgravity isolation is to quantify all possible disturbances or vibrations and then attenuate the transmission of the disturbance to the experiment. Some well-defined vibration sources are: experiment operations, pumps, fans, antenna movements, ventilation systems and robotic manipulators. In some cases, it is possible to isolate the source using simple vibration dampers, shock absorbers and other isolation devices. The problem with simple isolation systems is that not all vibration frequencies are attenuated, especially frequencies less than 0.1 Hz. Therefore, some disturbances are actually emitted into the environment. Sometimes vibration sources are not well defined, or cannot be controlled. These include thermal "creak," random acoustic vibrations, aerodynamic drag, crew activities, and other similar disturbances. On some "microgravity missions," such as the United States Microgravity Laboratory (USML) and the International Microgravity Laboratory (IML) missions, the goal was to create extended quiescent times and limit crew activity during these times. This might be possible for short periods, but for extended durations it is impossible due to the nature of the space environment. On the International Space Station (ISS), vehicle attitude readjustments are required to keep the vehicle in a minimum torque orientation and other experimental activities will occur continually, both inside and outside the station. Since all vibration sources cannot be controlled, the task of attenuating the disturbances is the only realistic alternative. Several groups have independently developed technology to isolate payloads from the space environment. Since 1970, Honeywell's Satellite Systems Division has designed several payload isolation systems and vibration attenuators. From 1987 to 1992, NASA's Lewis Research Center (LeRC) performed research on isolation technology and developed a 6 degree-of-freedom (DOF) isolator and tested the system during 70 low gravity aircraft flight trajectories. Beginning in early 1995, NASA's Marshall Space Flight Center (MSFC) and McDonnell Douglas Aerospace (MDA) jointly developed the STABLE (Suppression of Transient Accelerations By Levitation Evaluation) isolation system. This 5 month accelerated effort produced the first flight of an active microgravity vibration isolation system on STS-73/USML-02 in late October 1995. The Canadian Space Agency developed the Microgravity Vibration Isolation Mount (MIM) for isolating microgravity payloads and this system began operating on the Russian Mir Space Station in May 1996. The Boeing Defense & Space Group, Missiles & Space Division developed the Active Rack Isolation System (ARIS) for isolating payloads in a standard payload rack. ARIS was tested in September 1996 during the STS-79 mission to Mir. Although these isolation systems differ in their technological approach, the objective is to isolate payloads from disturbances. The following sections describe the technologies behind these systems and the different types of hardware used to perform isolation. The purpose of these descriptions is not to detail the inner workings of the hardware but to give the reader an idea of the technology and uses of the hardware components. Also included in the component descriptions is a paragraph detailing some of the advances in isolation technology for that particular component. The final section presents some concluding thoughts and a summary of anticipated advances in research and development for isolating microgravity experiments.
Kuipers replaces the ESEM-1 with new ESEM in the U.S. Laboratory
2011-12-28
ISS030-E-033367 (28 Dec. 2011) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, replaces the faulty Exchangeable Standard Electronic Module 1 (ESEM-1) behind the front panel of the Microgravity Science Glovebox Remote Power Distribution Assembly (MSG RPDA) with the new spare. The ESEM is used to distribute station main power to the entire MSG facility.
Kuipers works at the MSG in the U.S. Laboratory
2012-01-16
ISS030-E-032779 (16 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works at the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Nespoli works with BXF Hardware in the US Lab MSG
2011-04-28
ISS027-E-017809 (28 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Nespoli works with BXF Hardware in the US Lab MSG
2011-04-28
ISS027-E-017810 (28 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Space Station Crew Member Discusses Life in Space with Houston Students
2018-02-13
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 13 with students at the downtown campus of the University of Houston. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.
Space_Station_Crew_Member_Discusses_Life_in_Space_with_Texas_Students
2018-02-14
Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 14 with students at the Briarhill Middle School in Highland Village, Texas. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.
Mauclaire, Laurie; Egli, Marcel
2010-08-01
Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.
Microgravity Environment Description Handbook
NASA Technical Reports Server (NTRS)
DeLombard, Richard; McPherson, Kevin; Hrovat, Kenneth; Moskowitz, Milton; Rogers, Melissa J. B.; Reckart, Timothy
1997-01-01
The Microgravity Measurement and Analysis Project (MMAP) at the NASA Lewis Research Center (LeRC) manages the Space Acceleration Measurement System (SAMS) and the Orbital Acceleration Research Experiment (OARE) instruments to measure the microgravity environment on orbiting space laboratories. These laboratories include the Spacelab payloads on the shuttle, the SPACEHAB module on the shuttle, the middeck area of the shuttle, and Russia's Mir space station. Experiments are performed in these laboratories to investigate scientific principles in the near-absence of gravity. The microgravity environment desired for most experiments would have zero acceleration across all frequency bands or a true weightless condition. This is not possible due to the nature of spaceflight where there are numerous factors which introduce accelerations to the environment. This handbook presents an overview of the major microgravity environment disturbances of these laboratories. These disturbances are characterized by their source (where known), their magnitude, frequency and duration, and their effect on the microgravity environment. Each disturbance is characterized on a single page for ease in understanding the effect of a particular disturbance. The handbook also contains a brief description of each laboratory.
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion
NASA Technical Reports Server (NTRS)
Silver, Joel A.; Kane, Daniel J.
1999-01-01
Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements of molecular oxygen. Current progress of this work and future application possibilities for these methods on the International Space Station are discussed.
Third United States Microgravity Payload: One Year Report
NASA Technical Reports Server (NTRS)
Currieri, P. A. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)
1998-01-01
This document reports the one year science results for the Third United States Microgravity Payload (USMP-3). The USMP-3 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about seven major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive space station era.
Fourth United States Microgravity Payload: One Year Report
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C. (Compiler); Curreri, Peter A. (Compiler); McCauley, D. E. (Compiler)
1999-01-01
This document reports the one year science results for the Fourth United States Microgravity Payload (USMP-4). The USMP-4 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about eight major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
International Space Station Increment-2 Quick Look Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric
2001-01-01
The objective of this quick look report is to disseminate the International Space Station (ISS) Increment-2 reduced gravity environment preliminary analysis in a timely manner to the microgravity scientific community. This report is a quick look at the processed acceleration data collected by the Microgravity Acceleration Measurement System (MAMS) during the period of May 3 to June 8, 2001. The report is by no means an exhaustive examination of all the relevant activities, which occurred during the time span mentioned above for two reasons. First, the time span being considered in this report is rather short since the MAMS was not active throughout the time span being considered to allow a detailed characterization. Second, as the name of the report implied, it is a quick look at the acceleration data. Consequently, a more comprehensive report, the ISS Increment-2 report, will be published following the conclusion of the Increment-2 tour of duty. NASA sponsors the MAMS and the Space Acceleration Microgravity System (SAMS) to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the MAMS and the SAMS units were launched on STS-100 from the Kennedy Space Center for installation on the ISS. The MAMS unit was flown to the station in support of science experiments requiring quasisteady acceleration data measurements, while the SAMS unit was flown to support experiments requiring vibratory acceleration data measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The ISS reduced gravity environment analysis presented in this report uses mostly the MAMS acceleration data measurements (the Increment-2 report will cover both systems). The MAMS has two sensors. The MAMS Orbital Acceleration Research Experiment Sensor Subsystem, which is a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle. The MAMS High Resolution Acceleration Package is used to characterize the ISS vibratory environment up to 100 Hz. This quick look report presents some selected quasi-steady and vibratory activities recorded by the MAMS during the ongoing ISS Increment-2 tour of duty.
A simulation facility for testing Space Station assembly procedures
NASA Technical Reports Server (NTRS)
Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.
1994-01-01
NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-18
ISS012-E-16162 (18 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-19
ISS012-E-16237 (19 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.
PromISS 4 hardware set up in the MSG during Expedition 12
2006-01-19
ISS012-E-16245 (19 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.
Alternate assembly sequence databook for the Tier 2 Bus-1 option of the International Space Station
NASA Technical Reports Server (NTRS)
Brewer, L. M.; Cirillo, W. M.; Cruz, J. N.; Hall, J. B.; Troutman, P. A.; Monell, D. W.; Garn, M. A.; Heck, M. L.; Kumar, R. R.; Llewellyn, C. P.
1995-01-01
The JSC International Space Station program office requested that SSB prepare a databook to document the alternate space station assembly sequence known as Tier 2, which assumes that the Russian participation has been eliminated and that the functions that were supplied by the Russians (propulsion, resupply, initial attitude control, communications, etc.) are now supplied by the U.S. Tier 2 utilizes the Lockheed Bus-l to replace much of the missing Russian functionality. The space station at each stage of its buildup during the Tier 2 assembly sequence is characterized in terms of of properties, functionality, resource balances, operations, logistics, attitude control, microgravity environment and propellant usage. The assembly sequence as analyzed was defined by JSC as a first iteration, with subsequent iterations required to address some of the issues that the analysis in this databook identified. Several significant issues were identified, including: less than desirable orbit lifetimes, shortage of EVA, large flight attitudes, poor microgravity environments, and reboost propellant shortages. Many of these issues can be resolved but at the cost of possible baseline modifications and revisions in the proposed Tier 2 assembly sequence.
User needs, benefits and integration of robotic systems in a space station laboratory
NASA Technical Reports Server (NTRS)
Farnell, K. E.; Richard, J. A.; Ploge, E.; Badgley, M. B.; Konkel, C. R.; Dodd, W. R.
1989-01-01
The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established.
Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Vogt, Gregory L.; Wargo, Michael J.
1997-01-01
The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire.
2014-01-12
ISS038-E-029062 (12 Jan. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2014-01-12
ISS038-E-029077 (12 Jan. 2014) --- In the International Space Station's Harmony node, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2014-01-12
ISS038-E-029065 (12 Jan. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2014-01-12
ISS038-E-029059 (12 Jan. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a video camera to photograph the Ant Forage Habitat Facility which will study ant behavior and colonization in microgravity.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (right) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
SpaceX CRS-13 "What's on Board?" Mission Science Briefing
2017-12-11
Yasaman Shirazi, mission scientist at NASA’s Ames Research Center in Mountain View, California, speaks on an investigation testing drug delivery systems for combatting muscle breakdown in microgravity with members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.
SpaceX CRS-13 "What's on Board?" Mission Science Briefing
2017-12-11
In the Kennedy Space Center’s Press Site auditorium, Alessandro Grattoni, principal investigator at Houston Methodist Research Institute, shows the small hardware to be tested during an investigation into a drug delivery systems for combatting muscle breakdown in microgravity. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Research experiences on materials science in space aboard Salyut and Mir
NASA Technical Reports Server (NTRS)
Regel, Liya L.
1992-01-01
From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.
1992-10-22
This is a Space Shuttle Columbia (STS-52) onboard photograph of the United States Microgravity Payload-1 (USMP-1) in the cargo bay. The USMP program is a series of missions developed by NASA to provide scientists with the opportunity to conduct research in the unique microgravity environment of the Space Shuttle's payload bay. The USMP-1 mission was designed for microgravity experiments that do not require the hands-on environment of the Spacelab. Science teams on the ground would remotely command and monitor instruments and analyze data from work stations at NASA's Spacelab Mission Operation Control facility at the Marshall Space Flight Center (MSFC). The USMP-1 payload carried three investigations: two studied basic fluid and metallurgical processes in microgravity, and the third would characterize the microgravity environment onboard the Space Shuttle. The three experiments that made up USMP-1 were the Lambda Point Experiment, the Space Acceleration Measurement System, and the Materials for the Study of Interesting Phenomena of Solidification Earth and in Orbit (MEPHISTO). The three experiments were mounted on two cornected Mission Peculiar Equipment Support Structures (MPESS) mounted in the orbiter's cargo bay. The USMP program was managed by the MSFC and the MPESS was developed by the MSFC.
A feasibility study of a microgravity enhancement system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Diamond, Preston S.; Tolson, Robert H.
1993-01-01
The current low frequency microgravity requirements for Space Station Freedom (SSF) call for a level of less than 1 micro-g over 50 percent of all the laboratory racks for continuous periods of 30 days for at least 180 days per year. While this requirement is attainable for some of the laboratory modules for the Permanently Manned Configuration (PMC), it can not be met for the Man-Tended Configuration (MTC). In addition, many experiments would prefer even lower acceleration levels. To improve the microgravity environment, the Microgravity Enhancement System (MESYS) will apply a continuous thrust to SSF, to negate the disturbing gravity gradient and drag forces. The MESYS consists of a sensor, throttle-able thrusters and a control system. Both a proof mass system and accelerometer were evaluated for use as the sensor. The net result of the MESYS will be to shift the microgravity contours from the center of mass to a chosen location. Results indicate the MESYS is not feasible for MTC since it will require 5,073 kg of hydrazine fuel and 7,660 watts of power for 30 days of operation during average atmospheric conditions. For PMC, the MESYS is much more practical since only 4,008 kg of fuel and 5,640 watts of power are required.
BISE (Bodies in the Space Environment) experiment
2009-04-18
ISS019-E-010149 (18 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, sets up equipment for the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
1997-09-08
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Seen in the foreground at right is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. The metallic breadbox-like structure behind the IDGE is the Confined Helium Experiment (CHeX) that will study one of the basic influences on the behavior and properties of materials by using liquid helium confined between solid surfaces and microgravity. The large white vertical cylinder at left is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube behind it is MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Just below the left end of MEPHISTO is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
1997-01-12
KENNEDY SPACE CENTER, FLA. -- Like a rising sun lighting up the night, the Space Shuttle Atlantis soars from Launch Pad 39B at 4:27:23 a.m. EST Jan. 12 on its way to dock with the Mir space station for the fifth time. The 10-day mission will feature the transfer of Mission Specialist Jerry Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996. The other STS-81 crew members include Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists John M. Grunsfeld, Peter J. K. "Jeff" Wisoff and Marsha S. Ivins. During the five-day docking operations, the Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module that will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station.The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission
Life sciences biomedical research planning for Space Station
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine
1987-01-01
The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1990-01-01
NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.
Overview of NASA's microgravity combustion science and fire safety program
NASA Technical Reports Server (NTRS)
Ross, Howard D.
1993-01-01
The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity -- in the form of long duration microgravity laboratories -- and need -- in the form of spacecraft fire safety and a variety of terrestrial applications -- to pursue fresh insight into the basic physics of combustion. Through microgravity, a new range of experiments can be performed since: (1) Buoyancy-induced flows are nearly eliminated; (2) Normally obscured forces and flows may be isolated; (3) Gravitational settling or sedimentation is nearly eliminated; and (4) Larger time or length scales in experiments become permissible.
Gas/Liquid Separator Being Developed for Microgravity
NASA Technical Reports Server (NTRS)
Hoffmann, Monica I.
2002-01-01
The examination and research of how liquids and gases behave in very low gravity will improve our understanding of the behavior of fluids on Earth. The knowledge of multiphase fluid behavior is applicable to many industries on Earth, including the pharmaceutical, biotechnology, chemical, and nuclear industries, just to name a few. In addition, this valuable knowledge applies very well to the engineering and design of microgravity materials processing and of life-support systems for extended space flight. Professors Ashok Sangani of Syracuse University and Donald Koch of Cornell University are principal investigators in the Microgravity Fluid Physics Program, which is managed and sponsored by the NASA Glenn Research Center. Their flight experiment entitled "Microgravity Observations of Bubble Interactions" (MOBI) is planned for operation in the Fluids and Combustion Facility aboard the International Space Station.
1999-01-01
Line drawing depicts the location of one of three racks that will make up the Materials Science Research Facility in the U.S. Destiny laboratory module to be attached to the International Space Station (ISS). Other positions will be occupied by a variety of racks supporting research in combustion, fluids, biotechnology, and human physiology, and racks to support lab and station opertions. The Materials Science Research Facility is managed by NASA's Marshall Space Flight Center. Photo credit: NASA/Marshall Space Flight Center
Increasing the usefulness of Shuttle with SPACEHAB
NASA Astrophysics Data System (ADS)
Stone, Barbara A.; Rossi, David A.
1992-08-01
SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.
Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)
NASA Technical Reports Server (NTRS)
Hutchens, Cindy; Graves, Rex
2004-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.
Microgravity human factors workstation development
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Wilmington, Robert P.; Morris, Randy B.; Jensen, Dean G.
1992-01-01
Microgravity evaluations of workstation hardware as well as its system components were found to be very useful for determining the expected needs of the Space Station crew and for refining overall workstation design. Research at the Johnson Space Center has been carried out to provide optimal workstation design and human interface. The research included evaluations of hand controller configurations for robots and free flyers, the identification of cursor control device requirements, and the examination of anthropometric issues of workstation design such as reach, viewing distance, and head clearance.
2000-01-31
The optical bench for the Fluid Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2000-01-31
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2000-01-31
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2000-01-31
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
Microgravity and Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.
SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)
2011-10-17
ISS029-E-027431 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.
SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)
2011-10-17
ISS029-E-027435 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.
Penny Pettigrew in the Payload Operations Integration Center
2017-11-09
Penny Pettigrew chats in real time with a space station crew member conducting an experiment in microgravity some 250 miles overhead. The Payload Operations Integration Center cadre monitor science communications on station 24 hours a day, seven days a week, 365 days per year.
Microbiology on Space Station Freedom
NASA Technical Reports Server (NTRS)
Pierson, Duane L. (Editor); Mcginnis, Michael R. (Editor); Mishra, S. K. (Editor); Wogan, Christine F. (Editor)
1991-01-01
This panel discussion convened in Houston, Texas, at the Lunar and Planetary Institute, on November 6 to 8, 1989, to review NASA's plans for microbiology on Space Station Freedom. A panel of distinguished scientists reviewed, validated, and recommended revisions to NASA's proposed acceptability standards for air, water, and internal surfaces on board Freedom. Also reviewed were the proposed microbiology capabilities and monitoring plan, disinfection procedures, waste management, and clinical issues. In the opinion of this advisory panel, ensuring the health of the Freedom's crews requires a strong goal-oriented research effort to determine the potential effects of microorganisms on the crewmembers and on the physical environment of the station. Because there are very few data addressing the fundamental question of how microgravity influences microbial function, the panel recommended establishing a ground-based microbial model of Freedom, with subsequent evaluation using in-flight shuttle data. Sampling techniques and standards will be affected by both technological advances in microgravity-compatible instrumentation, and by changes in the microbial population over the life of the station.
Biorack - plants in microgravity
1997-02-18
STS081-318-020 (12-22 Jan. 1997) --- Astronaut Peter J. K. (Jeff) Wisoff at biorack in the Spacehab Double Module (DM) checks on a botanical experiment, onboard the Space Shuttle Atlantis, during the Atlantis and Russia's Mir Space Station docking mission.
2016-03-21
ISS047e012492 (03/21/2016) --- NASA astronaut Tim Kopra stows hardware from the OASIS experiment aboard the International Space Station. OASIS, which stands for Observation and Analysis of Smectic Islands In Space, studies the unique behavior of liquid crystals in microgravity.
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
NASA Astrophysics Data System (ADS)
Kato, Yuko; Mogami, Yoshihiro; Baba, Shoji A.
We proposed a space experiment aboard International Space Station to explore the effects of microgravity on the longevity of a Paramecium cell clone. Earlier space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. In preparation of the space experiment, we assessed the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age. It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment supports the prediction that the clonal longevity of Paramecium under microgravity decreases. Effects of gravity on proliferation are discussed in terms of energetics of swimming during gravikinesis and gravitaxis of Paramecium.
Space Studies Board Annual Report 1994
NASA Technical Reports Server (NTRS)
1995-01-01
The following summaries of major reports are presented: (1) 'Scientific Opportunities in the Human Exploration of Space;' (2) 'A Space Physics Paradox;' (3) 'An Integrated Strategy for the Planetary Sciences;' and (4) 'ONR (Office of Naval Research) Research Opportunities in Upper Atmospheric Sciences.' Short reports on the following topics are also presented: life and microgravity sciences and the Space Station Program, the Space Infrared Telescope Facility and the Stratospheric Observatory for infrared astronomy, the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe, and the utilization of the Space Station.
Nineteenth International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard (Compiler)
2000-01-01
The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here
PI Microgravity Services Role for International Space Station Operations
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.
2012-01-01
Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2003-01-01
Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.
A surgical support system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Campbell, M. R.; Billica, R. D.; Johnston, S. L.
1992-01-01
Surgical techniques in microgravity are being developed for the Health Maintenance Facility (HMF) on Space Station Freedom (SSF). This will be a presentation of the proposed surgical capabilities and ongoing hardware and procedural investigations. Methods: Procedures and prototype hardware, which include a medical restraint system, a surgical overhead isolation canopy, a suction device, and a regional laminar flow device were evaluated. This was accomplished by realistic sterile surgical simulations involving both mannequins and animals during KC-135 parabolic flight and in a high fidelity ground based HMF mockup. Results: Animal surgery in the environment of microgravity allowed the observation of unique arterial and venous bleeding characteristics for the first time. The ability to control bleeding and to prevent cabin atmosphere contamination was also demonstrated. Conclusions: The procedures and prototype hardware tested provided valuable information and should be investigated and developed further. The use of standard surgical techniques are possible in microgravity if the principles of personnel and supply restraint and operative field containment are adhered to.
A study of concept options for the evolution of Space Station Freedom
NASA Technical Reports Server (NTRS)
Kowitz, Herbert R.; Brender, Karen D.; Cirillo, William M.; Collier, Lisa; Ganoe, George G.; Gould, Marston J.; Kaszubowski, Martin; Lawrence, George F.; Llewellyn, Charles P.; Reaux, Ray
1990-01-01
Two conceptual evolution configurations for Space Station Freedom, a research and development configuration, and a transportation node configuration are described and analyzed. Results of pertinent analyses of mass properties, attitude control, microgravity, orbit lifetime, and reboost requirements are provided along with a description of these analyses. Also provided are brief descriptions of the elements and systems that comprise these conceptual configurations.
Wakata works with InSPACE hardware
2009-07-13
ISS020-E-019099 (13 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Wakata works with InSPACE hardware
2009-07-14
ISS020-E-020303 (14 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Gaseous Non-Premixed Flame Research Planned for the International Space Station
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.
2014-01-01
Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.
Microgravity cursor control device evaluation for Space Station Freedom workstations
NASA Technical Reports Server (NTRS)
Adam, Susan; Holden, Kritina L.; Gillan, Douglas; Rudisill, Marianne
1991-01-01
This research addressed direct manipulation interface (curser-controlled device) usability in microgravity. The data discussed are from KC-135 flights. This included pointing and dragging movements over a variety of angles and distances. Detailed error and completion time data provided researchers with information regarding cursor control shape, selection button arrangement, sensitivity, selection modes, and considerations for future research.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2001-01-01
This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Commerce Lab - A program of commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, J.; Atkins, H. L.; Williams, J. R.
1985-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
NASA Technical Reports Server (NTRS)
Laster, Rachel M.
2004-01-01
Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to carefully synthesize frequency and acceleration patterns of unknown events within the Excel database into a new file to determine whether or not certain information that is received i s considered a real vibratory source. Once considered as a vibratory source, further analysis is carried out. The resulting information is used to retrain the MEMS to recognize them as known patterns. These different vibratory disturbances are being constantly monitored to observe if, in any way, the disturbances have an effect on the microgravity environment that research experiments are exposed to. If the disturbance has little or no effect on the experiments, then research is continued. However, if the disturbance is harmful to the experiment, scientists act accordingly by either minimizing the source or terminating the research and neither NASA's time nor money is wasted.
Flocculation and aggregation in a microgravity environment (FAME)
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.
1994-01-01
An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata is dressed in protective clothing before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
NASA Technical Reports Server (NTRS)
Oubre, Cherie; Khodadad, Christina; Castro, Victoria; Ott, Mark; Pollack, Lawrence; Roman, Monsi
2017-01-01
The RAZOR EX (Registered Trademark) PCR unit was initially developed by the DoD as part of an SBIR project to detect and identify biothreats during field deployment. The system was evaluated by NASA as a commercial technology for future microbial monitoring requirements and has been successfully demonstrated in microgravity on-board the International Space Station.
Kuipers conducts ARGES experiment OPS at the MSG during EXP 8 / EXP 9
2004-04-24
ISS008-E-22134 (24 April 2004) --- European Space Agency (ESA) astronaut Andre Kuipers of the Netherlands is pictured near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station (ISS).
Gerst with MSG during BASS session
2014-06-13
European Space Agency astronaut Alexander Gerst,Expedition 40 flight engineer,works with samples and hardware for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
1997-01-12
The Space Shuttle Atlantis transforms the early morning at KSC into near-daylight as its more than 7 million pounds of rocket thrust propels it from Launch Pad 39B at 4:27:23 a.m. EST Jan. 12 on its way to dock with the Mir space station for the fifth time.The 10-day mission will feature the transfer of Mission Specialist Jerry Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996. The other STS-81 crew members include Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists John M. Grunsfeld, Peter J. K. "Jeff" Wisoff and Marsha S. Ivins. During the five-day docking operations, the Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module that will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission
1997-01-12
Like a rising sun lighting up the night, the Space Shuttle Atlantis soars from Launch Pad 39B at 4:27:23 a.m. EST Jan. 12 on its way to dock with the Mir space station for the fifth time. The 10-day mission will feature the transfer of Mission Specialist Jerry Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996. The other STS-81 crew members include Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists John M. Grunsfeld, Peter J. K. "Jeff" Wisoff and Marsha S. Ivins. During the five-day docking operations, the Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module that will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station.The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission
NASA Technical Reports Server (NTRS)
Guo, Boyun
2005-01-01
Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.
1992-06-25
Space Shuttle Columbia (STS-50) onboard photo of astronauts working in United States Microgravity Laboratory (USML-1). USML-1 will fly in orbit for extended periods of time attached to the Shuttle, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The scientific data gained from the USML-1 missions will constitute a landmark in space science, pioneering investigations into the role of gravity in a wide array of important processes and phenomena. In addition, the missions will also provide much of the experience in performing research in space and in the design of instruments needed for Space Station Freedom and the programs to follow in the 21st Century.
NASA Astrophysics Data System (ADS)
Babaevskii, P. G.; Kozlov, N. A.; Agapov, I. G.; Reznichenko, G. M.; Churilo, N. V.; Churilo, I. V.
2016-09-01
The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.
A technician monitors the CHeX, a USMP-4 experiment which will be flown on STS-87, in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC.
BISE (Bodies in the Space Environment) experiment
2009-04-09
ISS019-E-005710 (9 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
BISE (Bodies in the Space Environment) experiment
2009-04-18
ISS019-E-010155 (18 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
BISE (Bodies in the Space Environment) experiment
2009-05-02
ISS019-E-013388 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
BISE (Bodies in the Space Environment) experiment run
2009-09-26
ISS020-E-042187 (26 Sept. 2009) --- NASA astronaut Nicole Stott, Expedition 20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
BISE (Bodies in the Space Environment) experiment
2009-10-05
ISS020-E-045307 (5 Oct. 2009) --- NASA astronaut Jeffrey Williams, Expedition 21 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
BISE (Bodies in the Space Environment) experiment
2009-04-09
ISS019-E-005706 (9 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
BISE (Bodies in the Space Environment) experiment
2009-05-02
ISS019-E-013399 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
2009-05-16
ISS019-E-017339 (16 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.
2001-01-01
In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.
SpaceX CRS-10 "What's On Board" Science Briefing
2017-02-17
Paul Reichert, associate principal scientist at Merck Research Laboratories in Kenilworth, New Jersey, left, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on growth of crystals in microgravity planned for the International Space Station following the arrival of a Dragon spacecraft. The Dragon is scheduled to be launched from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.
SpaceX CRS-10 What's on Board Science Briefing
2017-02-17
During the SpaceX CRS-10 "What's On Board?" Science Briefing inside the Press Site Auditorium, members of social media learned about the science aboard the Dragon spacecraft. The briefing focused on growth of crystals in microgravity planned for the International Space Station following the arrival of a Dragon spacecraft. The Dragon is scheduled to be launched from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
2010-08-30
ISS024-E-012668 (30 Aug. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
2010-08-30
ISS024-E-012670 (30 Aug. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.
The Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
Kundu, Sampa
2004-01-01
Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is included in the original extended abstract.
The issue is leadership. [Space Station program
NASA Technical Reports Server (NTRS)
Beggs, J. M.
1985-01-01
Four NASA Phase B centers (NASA-Johnson, NASA-Marshall, NASA-Goddard, and NASA-Lewis) are responsible for construction, assembly, servicing, habitat, and other particular tasks and functions of the Space Station. The project has been joined by the aerospace programs of Canada, Japan, and the European Space Agency, ensuring technological and financial support, and cooperative use by the participants. Some of the future uses of the Space Station include biomedical research and applications; experiments in solar-terrestrial physics and astronomy; building, maintenance, and launching of space instruments and planetary missions; manufacturing and processing of materials that call for the conditions of microgravity and weightlessness; supporting communication operations; and improving earth and atmospheric observations. The political significance of the Space Station as a symbol of leadership and of friendly cooperation is noted.
Proceedings of the Twentieth International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard (Compiler)
2001-01-01
The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenthaler, G.W.; Koster, J.N.
1987-01-01
Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.
The opportunities for space biology research on the Space Station
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Souza, Kenneth A.
1987-01-01
The goals of space biology research to be conducted aboard the Space Station in 1990s include long-term studies of reproduction, development, growth, physiology, behavior, and aging in both animals and plants. They also include studies of the mechanisms by which gravitational stimuli are sensed, processed, and transmitted to a responsive site, and of the effect of microgravity on each component. The Space Station configuration will include a life sciences research facility, where experiment cyles will be on a 90-day basis (since the Space Station missions planned for the 1990s call for 90-day intervals). A modular approach is taken to accomodate animal habitats, plant growth chambers, and other specimen holding facilities; the modular habitats would be transportable between the launch systems, habitat racks, a workbench, and a variable-gravity centrifuge (included for providing artificial gravity and accurately controlled acceleration levels aboard Space Station).
2014-06-18
ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
Checinska Sielaff, Aleksandra; Singh, Nitin K; Allen, Jonathan E; Thissen, James; Jaing, Crystal; Venkateswaran, Kasthuri
2016-12-29
The draft genome sequences of 20 biosafety level 2 (BSL-2) opportunistic pathogens isolated from the environmental surfaces of the International Space Station (ISS) were presented. These genomic sequences will help in understanding the influence of microgravity on the pathogenicity and virulence of these strains when compared with Earth strains. Copyright © 2016 Checinska Sielaff et al.
NASA Technical Reports Server (NTRS)
Motil, Susan M.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.
Space Station RT and E Utilization Study
NASA Technical Reports Server (NTRS)
Wunsch, P. K.; Anderson, P. H.
1989-01-01
Descriptive information on a set of 241 mission concepts was reviewed to establish preliminary Space Station outfitting needs for technology development missions. The missions studied covered the full range of in-space technology development activities envisioned for early Space Station operations and included both pressurized volume and attached payload requirements. Equipment needs were compared with outfitting plans for the life sciences and microgravity user communities, and a number of potential outfitting additions were identified. Outfitting implementation was addressed by selecting a strawman mission complement for each of seven technical themes, by organizing the missions into flight scenarios, and by assessing the associated outfitting buildup for planning impacts.
Duque works at the MSG for PromISS 2 in the Lab during Expedition Seven / 8 OPS
2003-10-27
ISS008-E-05009 (27 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque of Spain works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2
NASA Technical Reports Server (NTRS)
Perkey, John K.
1992-01-01
The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.
Microbial identification system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Brown, Harlan D.; Scarlett, Janie B.; Skweres, Joyce A.; Fortune, Russell L.; Staples, John L.; Pierson, Duane L.
1989-01-01
The Environmental Health System (EHS) and Health Maintenance Facility (HMF) on Space Station Freedom will require a comprehensive microbiology capability. This requirement entails the development of an automated system to perform microbial identifications on isolates from a variety of environmental and clinical sources and, when required, to perform antimicrobial sensitivity testing. The unit currently undergoing development and testing is the Automated Microbiology System II (AMS II) built by Vitek Systems, Inc. The AMS II has successfully completed 12 months of laboratory testing and evaluation for compatibility with microgravity operation. The AMS II is a promising technology for use on Space Station Freedom.
Compact field color schlieren system for use in microgravity materials processing
NASA Technical Reports Server (NTRS)
Poteet, W. M.; Owen, R. B.
1986-01-01
A compact color schlieren system designed for field measurement of materials processing parameters has been built and tested in a microgravity environment. Improvements in the color filter design and a compact optical arrangement allowed the system described here to retain the traditional advantages of schlieren, such as simplicity, sensitivity, and ease of data interpretation. Testing was accomplished by successfully flying the instrument on a series of parabolic trajectories on the NASA KC-135 microgravity simulation aircraft. A variety of samples of interest in materials processing were examined. Although the present system was designed for aircraft use, the technique is well suited to space flight experimentation. A major goal of this effort was to accommodate the main optical system within a volume approximately equal to that of a Space Shuttle middeck locker. Future plans include the development of an automated space-qualified facility for use on the Shuttle and Space Station.
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to the left of it is MEPHISTO, a French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Seen at right behind the AADSF in the circular white cover is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). The large white vertical cylinder in the middle of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to its left is MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Seen to the right of the AADSF is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
NASA Astrophysics Data System (ADS)
Urban, James E.; Supra, Laura; MacKnight, Allen
2000-01-01
A unique combination of researchers are investigating biological and engineering aspects of a biological wastewater treatment system which could effectively function to treat gray water in a microgravity environment such as that on the International Space Station and human-occupied interplanetary spacecraft. As part of the effort, 23 bacterial strains have been isolated from a bioprocessor operating at unit gravity and various strain combinations have been tested in microgravity for survivability and reduction of total organic carbon in ersatz gray water. All tested strains survive equally well in microgravity and unit gravity and each is capable of reducing TOC in microgravity. While the results reported are encouraging, they also reveal that current testing procedures and equipment are inadequate for fully evaluating bioprocessing in microgravity. .
2009-05-16
ISS019-E-017334 (16 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses a computer near the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Technology development activities for housing research animals on Space Station Freedom
NASA Technical Reports Server (NTRS)
Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.
1991-01-01
The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.
NASA Technical Reports Server (NTRS)
Brooks, Carolyn A.; Sharma, Govind C.; Beyl, Caula A.
1990-01-01
A desire for fresh vegetables for consumption during long term space missions has been foreseen. To meet this need in a microgravity environment within the limited space and energy available on Space Station requires highly productive vegetable cultivars of short stature to optimize vegetable production per volume available. Special water and nutrient delivery systems must also be utilized. As a first step towards fresh vegetable production in the microgravity of Space Station, several soil-less capillary action media were evaluated for the ability to support growth of two root crops (radish and carrot) which are under consideration for inclusion in a semi-automated system for production of salad vegetables in a microgravity environment (Salad Machine). In addition, productivity of different cultivars of radish was evaluated as well as the effect of planting density and cultivar on carrot production and size. Red Prince radish was more productive than Cherry Belle and grew best on Jiffy Mix Plus. During greenhouse studies, vermiculite and rock wool supported radish growth to a lesser degree than Jiffy Mix Plus but more than Cellular Rooting Sponge. Comparison of three carrot cultivars (Planet, Short n Sweet, and Goldinhart) and three planting densities revealed that Short n Sweet planted at 25.6 sq cm/plant had the greatest root fresh weight per pot, the shortest mean top length, and intermediate values of root length and top fresh weight per pot. Red Prince radish and Short n Sweet carrot showed potential as productive cultivars for use in a Salad Machine. Results of experiments with solid capillary action media were disappointing. Further research must be done to identify a solid style capillary action media which can productively support growth of root crops such as carrot and radish.
Information systems requirements for the Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
Kicza, M. E.; Kreer, J. R.
1991-01-01
NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced wiithin the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.
Information systems requirements for the microgravity science and applications program
NASA Technical Reports Server (NTRS)
Kicza, M. E.; Kreer, J. R.
1990-01-01
NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced within the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.
NASA Astrophysics Data System (ADS)
Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.
2017-08-01
To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in protective clothing, talks with workers before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
Cygnus Orbital ATK OA-6 Liftoff
2016-03-22
At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.
Cygnus Orbital ATK OA-6 Rollout
2016-03-21
At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.
Deformation and Flexibility Equations for ARIS Umbilicals Idealized as Planar Elastica
NASA Technical Reports Server (NTRS)
Hampton, R. David; Leamy, Michael J.; Bryant, Paul J.; Quraishi, Naveed
2005-01-01
The International Space Station relies on the active rack isolation system (ARIS) as the central component of an integrated, stationwide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an international standard payload rack from disturbances due to the motion of the Space Station. Disturbances to microgravity experiments on ARIS isolated racks are transmitted primarily via the ARIS power and vacuum umbilicals. Experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller s bandwidth at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This work documents the development and verification of equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, inextensible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially curved (not necessarily circular), cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical slope changes monotonically. The treatment is applicable to the ARIS power and vacuum umbilicals under the indicated assumptions.
Should the Space Station be an ark?
Wassersug, R
1994-08-01
This essay explores the pros and cons of maximizing the number of species that can be maintained on the Space Station. It reviews some of the history of comparative space biology to show that different cultures have different perspectives on the study of non-traditional research organisms (ie non-rodents) in space. Despite these differences, there are simple principles that all international partners in the Space Station endeavour should be able to uphold when deciding what facilities to build and what species to fly. As an argument for maximizing the taxonomic diversity on the Space Station, examples are given to show how very similar organisms may have different reactions to microgravity. At the same time the political pressure in the USA to make the Space Station an institution specifically servicing the 'health, well-being and economic benefits of people on earth', is acknowledged. Ultimately the justification for what species will be on the Space Station should rest with the quality of the scientific questions being asked.
Cassidy conducts BASS Experiment Test Operations
2013-04-05
ISS035-E-015081 (5 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, Cassidy conducted a run of the experiment, which examined the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Zeolite Crystal Growth in Microgravity and on Earth
NASA Technical Reports Server (NTRS)
2003-01-01
The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.
1997-01-12
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Atlantis transforms the early morning at KSC into near-daylight as its more than 7 million pounds of rocket thrust propels it from Launch Pad 39B at 4:27:23 a.m. EST Jan. 12 on its way to dock with the Mir space station for the fifth time.The 10-day mission will feature the transfer of Mission Specialist Jerry Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996. The other STS-81 crew members include Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists John M. Grunsfeld, Peter J. K. "Jeff" Wisoff and Marsha S. Ivins. During the five-day docking operations, the Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module that will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission
2000-01-31
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2011-03-16
Astronaut Doug Wheelock discusses his experiences while living on the International Space Station during a tweetup at NASA Headquarters in Washington, Wednesday, March 16, 2011. Wheelock, who has accumulated a total of 178 days in space, assumed command of the International Space Station and the Expedition 25 crew. During Expedition 25, there were more than 120 microgravity experiments in human research; biology and biotechnology; physical and materials sciences; technology development; and Earth and space sciences. Wheelock also responded to an emergency shutdown of half of the station's external cooling system and supported three unplanned spacewalks to replace the faulty pump module that caused the shutdown. His efforts restored the station's critical cooling system to full function. The mission duration was 163 days. Photo Credit: (NASA/Paul E. Alers)
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This photograph shows astronaut Ken Bowersox conducting the Astroculture experiment in the middeck of the orbiter Columbia. This experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water as well as lower the costs of removing carbon dioxide in human space habitats. The Astroculture experiment flew aboard the STS-50 mission in June 1992 and was managed by the Marshall Space Flight Center.
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Astroculture experiment rack in the middeck of the orbiter. The Astroculture experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water, as well as lower the costs of removing carbon dioxide in human space habitats. The USML-1 flew aboard the STS-50 mission on June 1992 and was managed by the Marshall Space Flight Center.
1997-09-08
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Seen at right in the circular white cover is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to the left of it is MEPHISTO, a French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Just below MEPHISTO is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. The The metallic breadbox-like structure behind the AADSF is the Confined Helium Experiment (CHeX) that will study one of the basic influences on the behavior and properties of materials by using liquid helium confined between solid surfaces and microgravity. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
2013-08-01
NASA astronaut Karen Nyberg,Expedition 36 flight engineer,works with the InSPACE-3 experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. InSPACE-3 applies different magnetic fields to vials of colloids,or liquids with microscopic particles,and observes how fluids can behave like a solid. Also sent as Twitter message.
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
Dan Close, chief scientific officer at 490 BioTech, discusses the company's Metabolic Tracking investigation to evaluate the use of a new method to test, in microgravity, the metabolic impacts of pharmaceutical drugs. This is one of the scientific materials that will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.
2000-07-29
NASA representatives prepare for another day's work answering questions and handing out posters at AirVenture 2000. Part of their demonstrations included a training model of the Middeck Glovebox used aboard the Space Shuttle and Russian Mir Space Station. This and several other devices were used to explain to the public the kinds of research that have been conducted aboard the Space Shuttle and that will continue aboard the International Space Station (ISS). The exhibit was part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.
2002-10-15
STS112-E-06083 (15 October 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
2002-10-15
STS112-E-06078 (15 October 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Microgravity particle reduction system
NASA Technical Reports Server (NTRS)
Brandon, Vanessa; Joslin, Michelle; Mateo, Lili; Tubbs, Tracey
1988-01-01
The Controlled Ecological Life Support System (CELSS) project, sponsored by NASA, is assembling the knowledge required to design, construct, and operate a system which will grow and process higher plants in space for the consumption by crew members of a space station on a long term space mission. The problem of processing dry granular organic materials in microgravity is discussed. For the purpose of research and testing, wheat was chosen as the granular material to be ground into flour. Possible systems which were devised to transport wheat grains into the food processor, mill the wheat into flour, and transport the flour to the food preparation system are described. The systems were analyzed and compared and two satisfactory systems were chosen. Prototypes of the two preferred systems are to be fabricated next semester. They will be tested under simulated microgravity conditions and revised for maximum effectiveness.
Comparison of Magnetorheological Fluids on Earth and in Space
NASA Technical Reports Server (NTRS)
2002-01-01
These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.
Perrin poses next to the MSG in the U.S. Laboratory during STS-111
2002-06-09
STS111-318-017 (5-19 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, floats near the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). Perrin represents CNES, the French Space Agency.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Mingo, C.; Jeter, L.; Volz, M. P.
2005-01-01
The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Volz, M. P.; Anilkumar, A.
2006-01-01
The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.
Creating Simulated Microgravity Patient Models
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Bacal, Kira
2004-01-01
The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).
NASA Astrophysics Data System (ADS)
Balsamo, Michele; Barravecchia, Ivana; Mariotti, Sara; Merenda, Alessandra; De Cesari, Chiara; Vukich, Marco; Angeloni, Debora
2014-12-01
Exposure to microgravity during space flight (SF) of variable length induces suffering of the endothelium (the cells lining all blood vessels), mostly responsible for health problems found in astronauts and animals returning from space. Of interest to pre-nosological medicine, the effects of microgravity on astronauts are strikingly similar to the consequences of sedentary life, senescence and degenerative diseases on Earth, although SF effects are accelerated and reversible. Thus, microgravity is a significant novel model for better understanding of common pathologies. A comprehensive cell and molecular biology study is needed in order to explain pathophysiological findings after SFs. This project will study the effects of microgravity and cosmic radiation on endothelial cells (ECs) cultured on the International Space Station through analysis of 1) cell transcriptome, 2) DNA methylome, 3) DNA damage and cell senescence, 4) variations in cell cycle and cell morphology. This project has been selected by the European Space Agency and the Italian Space Agency and is presently in preparation. The ground study presented here was performed to determine the biological and engineering requirements that will allow us to retrieve suitable samples after culturing, fixing and storing ECs in space. We expect to identify molecular pathways activated by space microgravity in microvascular ECs, which may shed light on pathogenic molecular mechanisms responsible for endothelial suffering shared by astronauts and individuals affected with aging, degenerative and sedentary life-associated pathologies on Earth.
NASA Technical Reports Server (NTRS)
Padgett, Niki; Smith, Trent
2018-01-01
A major factor in long-term human exploration of the solar system is crop growth in microgravity. Space crops can provide fresh, nutritious food to supplement diets for astronauts. Important factors impacting space plant growth and consumption are water delivery to root zone in microgravity, sanitation methods for microbiological safety, plant responses to light quality/spectrum, and identifying optimal edible plants suitable for growth on the International Space Station (ISS). Astronauts growing their own food on the ISS provides necessary data for crop production for long duration deep space missions. The seed film project can be used in Advanced Plant Habitat and Veggies that are currently being utilized on the ISS.
Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.
A scientific role for Space Station Freedom: Research at the cellular level
NASA Technical Reports Server (NTRS)
Johnson, Terry C.; Brady, John N.
1993-01-01
The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.
2014-06-18
ISS040-E-013952 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, enters data in a computer during test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES (out of frame). The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
SpaceX CRS-13 "What's on Board?" Mission Science Briefing
2017-12-11
Alessandro Grattoni, principal investigator at Houston Methodist Research Institute, left, and Yasaman Shirazi, mission scientist at NASA’s Ames Research Center in Mountain View, California, speak on an investigation testing drug delivery systems for combatting muscle breakdown in microgravity. The presentation was for members of social media gathered in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.
The NASA Microgravity Fluid Physics Program: Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.
2003-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.
Estimated Muscle Loads During Squat Exercise in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.
2012-01-01
Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.
National space test centers - Lewis Research Center Facilities
NASA Technical Reports Server (NTRS)
Roskilly, Ronald R.
1990-01-01
The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.
A preview of a microgravity laser light scattering instrument
NASA Astrophysics Data System (ADS)
Meyer, W. V.; Ansari, R. R.
1991-01-01
The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.
Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences
NASA Astrophysics Data System (ADS)
Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.
The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge Rotor, which is capable of supporting variable gravity experiments from microgravity through 2g.
Soviet space flight: the human element.
Garshnek, V
1988-05-01
Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.
Candle Flames in Microgravity Video
NASA Technical Reports Server (NTRS)
1997-01-01
This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP3, the discussion focuses on the following topics: Monitoring Physiological Variables With Membrane Probes; Real Time Confocal Laser Scanning Microscopy, Potential Applications in Space Medicine and Cell Biology; Optimum Versus Universal Planetary and Interplanetary Habitats; Application of Remote Sensing and Geographic Information System Technologies to the Prevention of Diarrheal Diseases in Nigeria; A Small G Loading Human Centrifuge for Space Station ERA; Use of the Bicycle Ergometer on the International Space Station and Its Influence On The Microgravity Environment; Munich Space Chair (MSC) - A Next Generation Body Restraint System for Astronauts; and Thermoelectric Human-Body Cooling Units Used By NASA Space Shuttle Astronauts.
SpaceX CRS-12 "What's on Board?" Science Briefing
2017-08-13
Sebastian Mathea of the University of Oxford in England, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. Mathea is principal investigator for the Crystallization of LRRK2 Under Microgravity Conditions experiment. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.
NASA Technical Reports Server (NTRS)
Margle, Janice M. (Editor)
1987-01-01
Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.
Pettit holds MSG Glove in the Columbus Laboratory
2012-01-17
ISS030-E-049556 (17 Jan. 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, holds a Microgravity Science Glovebox (MSG) glove in the Columbus laboratory of the International Space Station.
2009-05-16
ISS019-E-017344 (16 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
2009-05-16
ISS019-E-017342 (16 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.
Opportunities for Science on the ISS: A Unique Laboratory Environment
NASA Technical Reports Server (NTRS)
Kugler, Justin; Edeen, Marybeth
2010-01-01
This slide presentation reviews the opportunities for scientific discoveries on the International Space Station (ISS). With the crew tended, and availability of long-term studies and the capabilities of the ISS (i.e. microgravity, exposure to the thermosphere and observations at high altitude and velocity) there are many examples of scientific experiments. There are several examples showing that microgravity is different from the effects of gravity.
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1994-01-01
In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.
Risks and issues in fire safety on the Space Station
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
A fire in the inhabited portion of a spacecraft is a greatly feared hazard, but fire protection in space operations is complicated by two factors. First, the spacecraft cabin is an enclosed volume, which limits the resources for fire fighting and the options for crew escape. Second, an orbiting spacecraft experiences a balance of forces, creating a near-zero-gravity (microgravity) environment that profoundly affects the characteristics of fire initiation, spread, and suppression. The current Shuttle Orbiter is protected by a fire-detection and suppression system whose requirements are derived of necessity from accepted terrestrial and aircraft standards. While experience has shown that Shuttle fire safety is adequate, designers recognize that improved systems to respond specifically to microgravity fire characteristics are highly desirable. Innovative technology is particularly advisable for the Space Station, a forthcoming space community with a complex configuration and long-duration orbital missions, in which the effectiveness of current fire-protection systems is unpredictable. The development of risk assessments to evaluate the probabilities and consequences of fire incidents in spacecraft are briefly reviewed. It further discusses the important unresolved issues and needs for improved fire safety in the Space Station, including those of material selection, spacecraft atmospheres, fire detection, fire suppression, and post-fire restoration.
Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
Link, Bruce M; Busse, James S; Stankovic, Bratislav
2014-10-01
Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves.
Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights.
Kozlovskaya, Inessa B; Yarmanova, E N; Yegorov, A D; Stepantsov, V I; Fomina, E V; Tomilovaskaya, E S
2015-12-01
The system of countermeasures for the adverse effects of microgravity developed in the USSR supported the successful implementation of long-duration spaceflight (LDS) programs on the Salyut and Mir orbital stations and was subsequently adapted for flights on the International Space Station (ISS). From 2000 through 2010, crews completed 26 ISS flight increments ranging in duration from 140 to 216 d, with the participation of 27 Russian cosmonauts. These flights have made it possible to more precisely determine a crew-member's level of conditioning, better assess the advantages and disadvantages of training processes, and determine prospects for future developments.
Specimen Sample Preservation for Cell and Tissue Cultures
NASA Technical Reports Server (NTRS)
Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert
1996-01-01
The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.
Science in a Box: An Educator Guide with NASA Glovebox Activities in Science, Math, and Technology.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Education Dept.
The Space Shuttle and International Space Station provide a unique microgravity environment for research that is a critical part of the National Aeronautics and Space Administration's (NASA) mission to improve the quality of life on Earth and enable the health and safety of space explorers for long duration missions beyond our solar system. This…
2013-10-03
ISS037-E-006456 (3 Oct. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, enters data into a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
2013-10-03
ISS037-E-006458 (3 Oct. 2013) --- NASA astronaut Karen Nyberg, Expedition 37 flight engineer, enters data into a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Reisman works with MSG in Columbus
2008-04-14
ISS016-E-036417 (14 April 2008) --- NASA astronaut Garrett Reisman, Expedition 16/17 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
2010-07-14
ISS024-E-008369 (14 July 2010)--- Astronaut Shannon Walker, Expedition 24 flight engineer, works on the Smoke Aerosol Measurement Experiment (SAME) inside the Microgravity Science Glovebox (MSG) in the European laboratory Columbus on the International Space Station.
2011-11-07
ISS029-E-040013 (7 Nov. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, works at the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
2010-07-14
ISS024-E-008364 (14 July 2010)--- Astronaut Shannon Walker, Expedition 24 flight engineer, works on the Smoke Aerosol Measurement Experiment (SAME) inside the Microgravity Science Glovebox (MSG) in the European laboratory Columbus on the International Space Station.
NASA Technical Reports Server (NTRS)
Guisinger, M. M.; Kiss, J. Z.
1999-01-01
The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.
NASA's Microgravity Science Program
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.
STS-42 Commander Grabe works with MWPE at IML-1 Rack 8 aboard OV-103
NASA Technical Reports Server (NTRS)
1992-01-01
STS-42 Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) (portable laptop computer, keyboard cursor keys, a two-axis joystick, and a track ball) at Rack 8 in the International Microgravity Laboratory 1 (IML-1) module. The test was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earth-bound conditions with the operator in a typical one-G standing position. For STS-42, the workstation was redesigned to evaluate the effects of microgravity on the ability of crewmembers to interact with a computer workstation. Information gained from this experiment will be used to design workstations for future Spacelab missions and Space Station Freedom (SSF).
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim
1999-01-01
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.
McCrory, J L; Lemmon, D R; Sommer, H J; Prout, B; Smith, D; Korth, D W; Lucero, J; Greenisen, M; Moore, J; Kozlovskaya, I; Pestov, I; Stepansov, V; Miyakinchenko, Y; Cavanagh, P R
1999-08-01
A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." The conference publication consists of the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference. Ninety papers are presented in 21 technical sessions, and a special exposition session presents 32 posters describing the work of principal investigators new to NASA's program in this discipline. Eighty-eight papers and 25 posters are presented in their entirety on the CD-ROM.
Johnsson, A; Solheim, B G B; Iversen, T-H
2009-01-01
In a microgravity experiment onboard the International Space Station, circumnutations of Arabidopsis thaliana were studied. Plants were cultivated on rotors under a light:dark (LD) cycle of 16 : 8 h, and it was possible to apply controlled centrifugation pulses. Time-lapse images of inflorescence stems (primary, primary axillary and lateral inflorescences) documented the effect of microgravity on the circumnutations. Self-sustained circumnutations of side stems were present in microgravity but amplitudes were mostly very small. In darkness, centrifugation at 0.8 g increased the amplitude by a factor of five to ten. The period at 0.8 g was c. 85 min, in microgravity roughly of the same magnitude. In white light the period decreased to c. 60 min at 0.8 g (microgravity value not measurable). Three-dimensional data showed that under 0.8 g side stems rotated in both clockwise and counter-clockwise directions. Circumnutation data for the main stem in light showed a doubling of the amplitude and a longer period at 0.8 g than in microgravity (c. 80 vs 60 min). For the first time, the importance of gravity in amplifying minute oscillatory movements in microgravity into high-amplitude circumnutations was unequivocally demonstrated. The importance of these findings for the modelling of gravity effects on self-sustained oscillatory movements is discussed.
Space Station and the life sciences
NASA Technical Reports Server (NTRS)
White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.
1983-01-01
Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.
International Space Station (ISS)
2002-07-05
Expedition Five flight engineer Peggy Whitson is shown installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory aboard the International Space Station (ISS). SUBSA examines the solidification of semiconductor crystals from a melted material. Semiconductor crystals are used for many products that touch our everyday lives. They are found in computer chips, integrated circuits, and a multitude of other electronic devices, such as sensors for medical imaging equipment and detectors of nuclear radiation. Materials scientists want to make better semiconductor crystals to be able to further reduce the size of high-tech devices. In the microgravity environment, convection and sedimentation are reduced, so fluids do not remove and deform. Thus, space laboratories provide an ideal environment of studying solidification from the melt. This investigation is expected to determine the mechanism causing fluid motion during production of semiconductors in space. It will provide insight into the role of the melt motion in production of semiconductor crystals, advancing our knowledge of the crystal growth process. This could lead to a reduction of defects in semiconductor crystals produced in space and on Earth.
Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity
Link, Bruce M.; Busse, James S.
2014-01-01
Abstract Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. Key Words: Arabidopsis—Branch—Inflorescence—Microgravity—Morphology—Seed—Space. Astrobiology 14, 866–875. PMID:25317938
The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.
2002-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.
Perrin floats next to the MSG in the Destiny U.S. Lab during STS-111 UF-2 docked OPS
2002-06-09
STS111-E-5120 (9 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, floats near the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). Perrin represent CNES, the French Space Agency.
Gerst with MSG during BASS session
2014-06-13
ISS040-E-011004 (13 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, works with samples and hardware for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
DeWinne of ESA works with experiments housed in the MSG in the U.S. Laboratory
2002-11-01
ISS005-E-19073 (1 November 2002) --- Belgian Soyuz 5 Flight Engineer Frank DeWinne, of the European Space Agency (ESA), works with experiments housed in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Gerst with MSG during BASS session
2014-06-13
ISS040-E-011006 (13 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, works with samples and hardware for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Melvin on FD during Expedition 16/STS-122 Joint Operations
2008-02-10
S122-E-007587 (10 Feb. 2008) --- Astronaut Leland Melvin, STS-122 mission specialist, witnesses microgravity in action on the aft flight deck of Space Shuttle Atlantis while docked with the International Space Station. A package of food, scissors and a spoon float freely near Melvin.
2011-03-16
A tweetuup participant videotapes with her iPhone and tweets as astronaut Doug Wheelock discusses his experiences while living on the International Space Station during a tweetup at NASA Headquarters in Washington, Wednesday, March 16, 2011. Wheelock, who has accumulated a total of 178 days in space, assumed command of the International Space Station and the Expedition 25 crew. During Expedition 25, there were more than 120 microgravity experiments in human research; biology and biotechnology; physical and materials sciences; technology development; and Earth and space sciences. Wheelock also responded to an emergency shutdown of half of the station's external cooling system and supported three unplanned spacewalks to replace the faulty pump module that caused the shutdown. His efforts restored the station's critical cooling system to full function. The mission duration was 163 days. Photo Credit: (NASA/Paul E. Alers)
Flight Engineer Donald R. Pettit works with the InSpace experiments in the MSG in the U.S. Lab
2003-04-01
ISS006-E-41733 (1 April 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works with the InSpace (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
2018-05-15
NASA engineers discussed the Life Sciences Glovebox, the agency's newest research facility for the International Space Station today at Marshall Space Flight Center in Huntsville, Alabama. The Life Sciences Glovebox will be used to study the long-term impact of microgravity on human physiology, revealing new ways to improve life on Earth while protecting human explorers during long-duration deep space missions.
2000-01-31
Students from Albuquerque, MN, tour through the mockup of the U.S. Destiny laboratory module that will be attached to the International Space Station (ISS). Behind them are the racks for the Fluids and Combustion Facility being developed by Glenn Research Center. The mockup was on display at the Space Tehnology International Forum in Albuquerque, MN. Photo credit: NASA/Marshall Space Flight Center
Commerce Lab - An enabling facility and test bed for commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, Jack; Atkins, Harry L.; Williams, John R.
1986-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
Arora, Sandeep
2017-01-01
Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry. PMID:28216729
Arora, Sandeep
2017-01-01
Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.
NASA Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
1992-01-01
Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.
Distance and Size Perception in Astronauts during Long-Duration Spaceflight
Clément, Gilles; Skinner, Anna; Lathan, Corinna
2013-01-01
Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions. PMID:25369884
NASA Technical Reports Server (NTRS)
Hampton, Roy David; Whorton, Mark S.
1999-01-01
Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station (ISS) have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, since there is a kinematic relationship among the various states, any frequency weighting applied to one state will implicitly weight other states. These implicit frequency-weighting effects must be considered, for intelligent frequency-weighting filter assignment. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
Coarsening Dynamics of Inclusions and Thermocapillary Phenomena in Smectic Liquid Crystal Bubbles
NASA Astrophysics Data System (ADS)
Park, Cheol; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Trittel, Torsten; Eremin, Alexey; Stannarius, Ralf; Tin, Padetha; Hall, Nancy
The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that probe interfacial and hydrodynamic behavior of thin spherical-bubbles of smectic liquid crystal in microgravity. Smectic films are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS flight hardware was launched on SpaceX-6 in April 2015 and experiments were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We will describe the behavior of collective island dynamics on the bubbles, including temperature gradient-induced themomigration, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.
1996-06-20
Launched on June 20, 1996, the STS-78 mission’s primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. In this photo, LMS mission scientist Patton Downey and LMS mission manager Mark Boudreaux display the flag that was flown for the mission at MSFC.
2013-04-05
ISS035-E-014971 (6 April 2013) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Cassidy conducts BASS Flame Test
2013-04-09
ISS035-E-16429 (9 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment located in the U.S. lab Destiny onboard the Earth-orbiting International Space Station. Cassidy over a period of several days, has conducted several "runs" of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015900 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted several runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015679 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted a series of runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2014-07-23
ISS040-E-073120 (23 July 2014) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Reid Wiseman (out of frame), Expedition 40 flight engineer, conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-05
ISS035-E-014987 (6 April 2013) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015827 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted a series of runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015930 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted several runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2014-06-27
ISS040-E-023287 (27 June 2014) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Reid Wiseman (out of frame), Expedition 40 flight engineer, conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Student Pave Way for First Microgravity Experiments on International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Orbital ATK CRS-7 "What's on Board" Science Briefing
2017-04-17
Sourzv Sinha, with Oconolinx, discusses the ADCs(antibody-drug conjugates) in Microgravity experiment during a "What's on Board' science breifing to NASA Social participants at the agency's Kennedy Space Center in Florida. The briefing was for Orbital ATK's seventh commercial resupply services mission, CRS-7, to the International Space Station. Orbital ATK's Cygnus pressurized cargo module is set to launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18. Liftoff is scheduled for 11:11 a.m. EDT.
International Space Station -- Fluid Physics Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The optical bench for the Fluid Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station -- Combustion Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station -- Fluid Physics Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station - Combustion Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station -- Combustion Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
Research on ignition and flame spread of solid materials in Japan
NASA Technical Reports Server (NTRS)
Ito, Kenichi; Fujita, Osamu
1995-01-01
Fire safety is one of the main concerns for crewed missions such as the space station. Materials used in spacecraft may burn even if metalic. There are severe restrictions on the materials used in spacecraft from the view of fire safety. However, such restrictions or safety standards are usually determined based on experimental results under normal gravity, despite large differences between the phenomena under normal and microgravity. To evaluate the appropriateness of materials for use in space, large amount of microgravity fire-safety combustion data is urgently needed. Solid material combustion under microgravity, such as ignition and flame spread, is a relatively new research field in Japan. As the other reports in this workshop describe, most of microgravity combustion research in Japan is droplet combustion as well as some research on gas phase combustion. Since JAMIC, the Japan Microgravity Center, (which offers 10 seconds microgravity time) opened in 1992, microgravity combustion research is robust, and many drop tests relating to solid combustion (paper combustion, cotton string combustion, metal combustion with Aluminium or Magnesium) have been performed. These tests proved that the 10 seconds of microgravity time at JAMIC is useful for solid combustion research. Some experiments were performed before JAMIC opened. For example, latticed paper was burned under microgravity by using a 50 m drop tower to simulate porous material combustion under microgravity. A 50 m tower provides only 2 seconds microgravity time however, and it was not long enough to investigate the solid combustion phenomena.
2000-01-31
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2000-01-31
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees to access the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2000-01-31
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2001-01-24
Experiments with colloidal solutions of plastic microspheres suspended in a liquid serve as models of how molecules interact and form crystals. For the Dynamics of Colloidal Disorder-Order Transition (CDOT) experiment, Paul Chaikin of Princeton University has identified effects that are attributable to Earth's gravity and demonstrated that experiments are needed in the microgravity of orbit. Space experiments have produced unexpected dendritic (snowflake-like) structures. To date, the largest hard sphere crystal grown is a 3 mm single crystal grown at the cool end of a ground sample. At least two more additional flight experiments are plarned aboard the International Space Station. This image is from a video downlink.
Decades of Data: Extracting Trends from Microgravity Crystallization History
NASA Technical Reports Server (NTRS)
Judge, R. A.; Snell, E. H.; Kephart, R.; vanderWoerd, M.
2004-01-01
The reduced acceleration environment of an orbiting spacecraft has been proposed as an ideal environment for biological crystal growth as the first sounding rocket flight in 1981 many crystallization experiments have flown with some showing improvement and others not. To further explore macromolecule crystal improvement in microgravity we have accumulated data from published reports and reports submitted by 63 missions including the Space Shuttle program, unmanned satellites, the Russian Space Station MIR and sounding rocket experiments. While it is not at this point in time a comprehensive record of all flight crystallization experimental results, there is however sufficient information for emerging trends to be identified. In this study the effects of the acceleration environment, the techniques of crystallization, sample molecular weight and the response of individual macromolecules to microgravity crystallization will be investigated.
STS-87 Payload Canister being raised into PCR
NASA Technical Reports Server (NTRS)
1997-01-01
A payload canister containing the primary payloads for the STS-87 mission is lifted into the Payload Changeout Room at Pad 39B at Kennedy Space Center. The STS-87 payload includes the United States Microgravity Payload-4 (USMP-4) and Spartan-201. Spartan- 201 is a small retrievable satellite involved in research to study the interaction between the Sun and its wind of charged particles. USMP-4 is one of a series of missions designed to conduct scientific research aboard the Shuttle in the unique microgravity environment for extended periods of time. In the past, USMP missions have provided invaluable experience in the design of instruments needed for the International Space Station (ISS) and microgravity programs to follow in the 21st century. STS-87 is scheduled for launch Nov. 19.
2010-07-15
ISS024-E-008351 (15 July 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with the Smoke Aerosol Measurement Experiment (SAME) in the Microgravity Sciences Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
Expedition Five Science Officer Whitson in Destiny module with MSG
2002-10-11
STS112-E-05145 (11 October 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Creamer works with IVGEN Experiment Payload in Columbus MSG
2010-05-03
ISS023-E-033108 (6 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
Creamer works with IVGEN Experiment Payload in Columbus MSG
2010-05-03
ISS023-E-033107 (6 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.
2014-01-01
This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.
NASA Technical Reports Server (NTRS)
Del Basso, Steve
2000-01-01
The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
1997-11-19
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers
NASA Technical Reports Server (NTRS)
1997-01-01
Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers.
Behavioral Adaptations of Female Mice on the International Space Station
NASA Technical Reports Server (NTRS)
Strieter, I.; Moyer, E. L.; Lowe, M.; Choi, S.; Gong, C.; Cadena, Sam; Stodieck, Louis; Globus, R. K.; Ronca, A. E.
2017-01-01
Adult female mice were sent to the International Space Station (ISS) as part of an early life science mission utilizing NASA's Rodent Habitat. Its primary purpose was to provide further insight into the influence of a microgravity environment on various aspects of mammalian physiology and well-being as part of an ongoing program of research aimed ultimately at understanding and ameliorating the deleterious influences of space on the human body. The present study took advantage of video collected from fixed, in-flight cameras within the habitat itself, to assess behavioral adaptations observed among in-flight mice aboard the ISS and differences in behavior with respect to a control group on the ground. Data collection consisted of several behavioral measures recorded by a trained observer with the assistance of interactive behavior analysis software. Specific behavioral measures included frequencies of conspecific interactionsociability, time spent feeding and conducting hygienic behavior, and relative durations of thigmotactic behavior, which is commonly used as an index of anxiety. Data were used to test tentative hypotheses that such behaviors differ significantly across mice under microgravity versus 1g conditions, and the assumption that the novel experience of microgravity itself may represent an initially anxiogenic stimulus which an animal will eventually acclimate to, perhaps through habituation.
Is skeletal muscle ready for long-term spaceflight and return to gravity?
NASA Technical Reports Server (NTRS)
Riley, D. A.
1999-01-01
It is now clear that prevention of muscle debilitation during spaceflight will require a broader approach than simple exercise aimed at strengthening of the muscle fibers. The levels of several hormones and receptors are altered by unloading and must be returned to homeostasis. Pharmacotherapy and gene transfer strategies to raise the relative level of structural proteins may minimize the problems faced by astronauts in readapting to Earth-gravity. Up to now, we have only minimally exploited microgravity for advancing our understanding of muscle biology. A research laboratory in the space station with a centrifuge facility (gravity control) is essential for conducting basic research in this field. Microgravity has proven an excellent tool for noninvasively perturbing the synthesis of muscle proteins in the search for molecular signals and gene regulatory factors influencing differentiation, growth, maintenance and atrophy of muscle. Understanding the relation between blood flow and interstitial edema and between workload and subsequent structural failure are but two important problems that require serious attention. The roles of hormones and growth factors in regulating gene expression and their microgravity-induced altered production are other urgent issues to pursue. These types of studies will yield information that advances basic knowledge of muscle biology and offers insights into countermeasure design. This knowledge is likely to assist rehabilitation of diseased or injured muscles in humans on Earth, especially individuals in the more vulnerable aging population and persons participating in strenuous sports. Will the skeletal muscle system be prepared for the increased exposure to microgravity and the return to gravity loading without injury when space station is operational? The answer depends in large part on continued access to space and funding of ground-based models and flight experiments. The previous two decades of spaceflight research have described the effects of microgravity on multiple systems. The next generation of experiments promises to be even more exciting as we are challenged to define the cellular and molecular mechanisms of microgravity-induced changes.
Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity.
Owens, Gwen E; New, Danielle M; Olvera, Alejandra I; Manzella, Julia Ashlyn; Macon, Brittney L; Dunn, Joshua C; Cooper, David A; Rouleau, Robyn L; Connor, Daniel S; Bjorkman, Pamela J
2016-10-01
Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.
Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity
Owens, Gwen E.; New, Danielle M.; Olvera, Alejandra I.; Manzella, Julia Ashlyn; Macon, Brittney L.; Dunn, Joshua C.; Cooper, David A.; Rouleau, Robyn L.; Connor, Daniel S.; Bjorkman, Pamela J.
2016-01-01
Huntington’s disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity. PMID:27710941
Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment
NASA Technical Reports Server (NTRS)
Ashby, N.
2003-01-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.
Space commerce - Preparing for the next century
NASA Technical Reports Server (NTRS)
Stone, Barbara A.
1991-01-01
The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.
NASA Technical Reports Server (NTRS)
Gentry, Gregory J.; Reysa, Richard P.; Williams, Dave E.
2004-01-01
The International Space Station continues to build up its life support equipment capability. Several ECLS equipment failures have occurred since Lab activation in February 2001. Major problems occurring between February 2001 and February 2002 were discussed in other works. Major problems occurring between February 2002 and February 2003 are discussed in this paper, as are updates from previously ongoing unresolved problems. This paper addresses failures, and root cause, with particular emphasis on likely micro-gravity causes. Impact to overall station operations and proposed and accomplished fixes will also be discussed.
Sathishkumar, Yesupatham; Krishnaraj, Chandran; Rajagopal, Kalyanaraman; Sen, Dwaipayan; Lee, Yang Soo
2016-02-01
In this study, the transcriptional alterations in Penicillium chrysogenum under simulated microgravity conditions were analyzed for the first time using an RNA-Seq method. The increasing plethora of eukaryotic microbial flora inside the spaceship demands the basic understanding of fungal biology in the absence of gravity vector. Penicillium species are second most dominant fungal contaminant in International Space Station. Penicillium chrysogenum an industrially important organism also has the potential to emerge as an opportunistic pathogen for the astronauts during the long-term space missions. But till date, the cellular mechanisms underlying the survival and adaptation of Penicillium chrysogenum to microgravity conditions are not clearly elucidated. A reference genome for Penicillium chrysogenum is not yet available in the NCBI database. Hence, we performed comparative de novo transcriptome analysis of Penicillium chrysogenum grown under microgravity versus normal gravity. In addition, the changes due to microgravity are documented at the molecular level. Increased response to the environmental stimulus, changes in the cell wall component ABC transporter/MFS transporters are noteworthy. Interestingly, sustained increase in the expression of Acyl-coenzyme A: isopenicillin N acyltransferase (Acyltransferase) under microgravity revealed the significance of gravity in the penicillin production which could be exploited industrially.
Robust Control for The G-Limit Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
Many microgravity science experiments need an active isolation system to provide a sufficiently quiescent acceleration environment. The g-LIMIT vibration isolation system will provide isolation for Microgravity Science Glovebox experiments in the International Space Station. While standard control system technologies have been demonstrated for these applications, modern control methods have the potential for meeting performance requirements while providing robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H infinity methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/mu controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Hrovat, Kenneth; Moskowitz, Milton; McPherson, Kevin M.
1998-01-01
The microgravity environment of the NASA Shuttles and Russia's Mir space station have been measured by specially designed accelerometer systems. The need for comparisons between different missions, vehicles, conditions, etc. has been addressed by the two new processes described in this paper. The Principal Component Spectral Analysis (PCSA) and Quasi-steady Three-dimensional Histogram QTH techniques provide the means to describe the microgravity acceleration environment of a long time span of data on a single plot. As described in this paper, the PCSA and QTH techniques allow both the range and the median of the microgravity environment to be represented graphically on a single page. A variety of operating conditions may be made evident by using PCSA or QTH plots. The PCSA plot can help to distinguish between equipment operating full time or part time, as well as show the variability of the magnitude and/or frequency of an acceleration source. A QTH plot summarizes the magnitude and orientation of the low-frequency acceleration vector. This type of plot can show the microgravity effects of attitude, altitude, venting, etc.
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1988-01-01
The requirements for a nonintrusive optical diagnostic facility for Space Station are assessed by examining the needs of current and future combustion experiments to be flown aboard the Space Station. Requirements for test section geometry and size, spatial and temporal resolution, species type and concentration range, and temperature range are reviewed. The feasibility of the development of this system is also addressed. The suitability of this facility to non-combustion experiments in gases and liquids is also considered.
Tether Elevator Crawler Systems (TECS)
NASA Technical Reports Server (NTRS)
Swenson, Frank R.
1987-01-01
One of the needs of the experimenters on the space station is access to steady and controlled-variation microgravity environments. A method of providing these environments is to place the experiment on a tether attached to the space station. This provides a high degree of isolation from structural oscillations and vibrations. Crawlers can move these experiments along the tethers to preferred locations, much like an elevator. This report describes the motion control laws developed for these crawlers and the testing of laboratory models of these tether elevator crawlers.
2014-06-18
ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.
Scherer, G F E; Pietrzyk, P
2014-01-01
Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram
2016-09-01
Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.
Three-Dimensional Printing in Zero Gravity
NASA Technical Reports Server (NTRS)
Werkheiser, Niki
2015-01-01
The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.
Medical and Urologic Issues in Space Flight and Lunar/Mars Exploration
NASA Technical Reports Server (NTRS)
Jones, Jeffrey A.
2004-01-01
Dr. Jeffrey Jones will be talking about medical issues in space flight secondary to microgravity: fluid shifts, orthostatic changes, muscle and endurance losses, bone mineral losses, radiation exposure, etc. He will discuss the International Space Station (ISS) benefits to medicine. He will show the ISS crew video and share the President's new vision as per the speaker's bureau direction.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
Whitson works at the MSG in the U.S. Laboratory during Expedition Five
2002-07-08
ISS005-E-07142 (8 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works near the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Dyson works with IVGEN Experiment Payload in Columbus MSG
2010-05-03
ISS023-E-030740 (3 May 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 23 flight engineer, works with experiment hardware in the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.
Whitson works at the MSG in the U.S. Laboratory during Expedition Five
2002-07-09
ISS005-E-07187 (9 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Whitson works at the MSG in the U.S. Laboratory during Expedition Five
2002-07-08
ISS005-E-07157 (8 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
Anderson during a MSG Leak Test in the US Lab during Expedition 15
2007-06-28
ISS015-E-14705 (28 June 2007) --- Astronaut Clayton C. Anderson, Expedition 15 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Whitson works at the MSG in the U.S. Laboratory during Expedition Five
2002-07-08
ISS005-E-07161 (8 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).
NASA Technical Reports Server (NTRS)
Rappole, C. L.; Louvier, S. A.
1985-01-01
A study to design a food service system using current technology to serve a small scale Space Station was conducted. The psychological, sociological and nutritional factors affecting feeding in microgravity conditions was investigated. The logistics of the food service system was defined.
2002-12-12
These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.