Space Station accommodation of attached payloads
NASA Technical Reports Server (NTRS)
Browning, Ronald K.; Gervin, Janette C.
1987-01-01
The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.
Express Payload Project - A new method for rapid access to Space Station Freedom
NASA Technical Reports Server (NTRS)
Uhran, Mark L.; Timm, Marc G.
1993-01-01
The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.
Contamination assessment for OSSA space station IOC payloads
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
An assessment is made of NASA/OSSA space station IOC payloads. The report has two main objectives, i.e., to provide realistic contamination requirements for space station attached payloads, serviced payloads and platforms, and to determine unknowns or major impacts requiring further assessment.
Dual keel Space Station payload pointing system design and analysis feasibility study
NASA Technical Reports Server (NTRS)
Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.
1988-01-01
A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.
A distributed planning concept for Space Station payload operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey
1994-01-01
The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.
NASA Technical Reports Server (NTRS)
Sledd, Annette M.; Mueller, Charles W.
1999-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System, was developed to provide Space Station accommodations for small, subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data, command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify power and data interfaces at the development site, Functional Checkout Units to allow Payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the analytical and physical integration processes, and facilitates simpler ISS payload development. The EXPRESS Rack has also formed the basis for the U.S. Life Sciences payload racks on Space Station.
The ISS EXPRESS Rack: An Innovative Approach of Rapid Integration
NASA Technical Reports Server (NTRS)
Sledd, Annette M.
2000-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System, was developed to provide Space Station accommodations for small, subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data, command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify power and data interfaces at the development site, Functional Checkout Units to allow Payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the analytical and physical integration processes, and facilitates simpler ISS payload development. The EXPRESS Rack has also formed the basis for the U.S. Life Sciences payload racks and the Window Observational Research Facility on Space Station.
Contamination assessment for OSSA space station IOC payloads
NASA Technical Reports Server (NTRS)
Chinn, S.; Gordon, T.; Rantanen, R.
1987-01-01
The results are presented from a study for the Space Station Planners Group of the Office of Space Sciences and Applications. The objectives of the study are: (1) the development of contamination protection requirements for protection of Space Station attached payloads, serviced payloads and platforms; and (2) the determination of unknowns or major impacts requiring further assessment. The nature, sources, and quantitative properties of the external contaminants to be encountered on the Station are summarized. The OSSA payload contamination protection requirements provided by the payload program managers are reviewed and the level of contamination awareness among them is discussed. Preparation of revisions to the contamination protection requirements are detailed. The comparative impact of flying the Station at constant atmospheric density rather than constant altitude is assessed. The impact of the transverse boom configuration of the Station on contamination is also assessed. The contamination protection guidelines which OSSA should enforce during their development of payloads are summarized.
Space station: Cost and benefits
NASA Technical Reports Server (NTRS)
1983-01-01
Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.
The Canadian SSRMS is moved to test stand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility help guide the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS) suspended from an overhead crane. The SSRMS is being moved to a test stand where it will be mated to its payload carrier. This pallet will later be installed into the payload bay of Space Shuttle Endeavour for launch to the International Space Station on STS-100 in April 2001. The 56-foot-long arm will be the primary means of transferring payloads between the orbiter payload bay and the Station. Its three segments comprise seven joints for highly flexible land precise movement, making it capable of moving around the Station's exterior like an inchworm.
NASA Technical Reports Server (NTRS)
Sledd, Annette; Danford, Mike; Key, Brian
2002-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.
Kennedy Space Center Launch and Landing Support
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer
2010-01-01
The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.
Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies
NASA Technical Reports Server (NTRS)
Jones, A. L.
1972-01-01
Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- After being moved from its workstand in the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo is suspended above the open doors of the payload canister below. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane lifts the Multi-Purpose Logistics Module Leonardo from a workstand to move it to the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, a worker at the bottom of the payload canister checks the descent of the Multi-Purpose Logistics Module Leonardo. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
MPLM Leonardo is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Space Station Processing Facility follow along as the Multi-Purpose Logistics Module Leonardo is moved along the ceiling toward the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.
Earth Science and Applications attached payloads on Space Station
NASA Technical Reports Server (NTRS)
Wicks, Thomas G.; Arnold, Ralph R.
1990-01-01
This paper describes the Office of Space Science and Applications' process for Attached Payloads on Space Station Freedom from development through on-orbit operations. Its primary objectives are to detail the sequential steps of the attached payload methodology by tracing in particular the selected Earth Science and Applications' payloads through this flow and relate the integral role of Marshall Space Flight Center's Science Utilization Management function of integration and operations.
Space vehicle with customizable payload and docking station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin
A "black box" space vehicle solution may allow a payload developer to define the mission space and provide mission hardware within a predetermined volume and with predetermined connectivity. Components such as the power module, radios and boards, attitude determination and control system (ADCS), command and data handling (C&DH), etc. may all be provided as part of a "stock" (i.e., core) space vehicle. The payload provided by the payload developer may be plugged into the space vehicle payload section, tested, and launched without custom development of core space vehicle components by the payload developer. A docking station may facilitate convenient developmentmore » and testing of the space vehicle while reducing handling thereof.« less
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
2008-10-21
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Multi-Purpose Logistics Module Leonardo is moved toward the payload canister at right. Leonardo is part of space shuttle Endeavour's payload on the STS-126 mission to the International Space Station. The payload canister will transfer the module to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in space shuttle Endeavour's payload bay. The module contains supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
The Extension of ISS Resources for Multi-Discipline Subrack Payloads
NASA Technical Reports Server (NTRS)
Sledd, Annette M.; Gilbert, Paul A. (Technical Monitor)
2002-01-01
The EXpedite the processing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.
SPACEHAB module is placed in payload canister in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility check the progress of the SPACEHAB module as it is lowered toward the payload canister below. The module, part of the payload on mission STS-106, will be placed in the payload canister for transport to the launch pad. STS-106 is scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew.
International Space Station Columbus Payload SoLACES Degradation Assessment
NASA Technical Reports Server (NTRS)
Hartman, William A.; Schmidl, William D.; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian
2016-01-01
SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers).
International Space Station (ISS)
2001-02-01
The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.
NASA Technical Reports Server (NTRS)
Smagala, Tom; Mcglew, Dave
1988-01-01
The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.
NASA Technical Reports Server (NTRS)
1983-01-01
The capabilities of the European Space Agency's SPAS and EURECA platforms for reference payload accommodation are considered. The instrument pointing subsystem, the position and hold mount, and the antenna pointing mechanism developed by Dornier are described. Relevant payloads for the space station are summarized and space station accommodation aspects are discussed.
2008-10-21
CAPE CANAVERAL, Fla. - The Multi-Purpose Logistics Module Leonardo is moved across the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Leonardo is part of space shuttle Endeavour's payload on the STS-126 mission to the International Space Station. The module will be installed in the waiting payload canister for transfer to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in space shuttle Endeavour's payload bay. The module contains supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
Members of the STS-100 crew look over hardware in SSPF during CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-100 Commander Kent Rominger and Mission Specialist Umberto Guidoni (right), with the European Space Agency, pose for a photo during Crew Equipment Interface Test activities in the Space Station Processing Facility. Behind them is the Space Station Remote Manipulator System (SSRMS), also known as the Canadian arm, which is part of the payload on their mission. The SSRMS is the primary means of transferring payloads between the orbiter payload bay and the International Space Station for assembly. The 56-foot-long robotic arm includes two 12-foot booms joined by a hinge. Seven joints on the arm allow highly flexible and precise movement. The payload also includes the Multi-Purpose Logistics Module (MPLM) Raffaello. MPLMs are pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the station aboard the Space Shuttle. Mission STS-100 is scheduled to launch April 19, 2001.
View of AMS-2 stowed in the Endeavour Payload Bay
2011-05-19
S134-E-007381 (19 May 2011) --- The Alpha Magnetic Spectrometer-2 (AMS) in the space shuttle Endeavour?s payload bay is featured in this image photographed by an STS-134 crew member while docked with the International Space Station. Shortly after this image was taken, the AMS was moved from the payload bay to the station?s starboard truss. Photo credit: NASA
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.
NASA Technical Reports Server (NTRS)
Taylor, Edith C.; Ross, Michael
1989-01-01
The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.
NASA Technical Reports Server (NTRS)
1984-01-01
Data sheets are presented for 11 internal payloads, 30 externally mounted payloads, and 46 free flyers. The importance of the space station to each payload element is rated on a scale of 1 to 10. The type of experiment noncommercial science and applications, commercial, technological, and operational is indicated and the payload and its objectives are described. Space is provided for noting requirements for power; data/communication; thermal environment; equipment physical characteristics; crew size; and service and maintenance.
Integrating International Space Station payload operations
NASA Technical Reports Server (NTRS)
Noneman, Steven R.
1996-01-01
The payload operations support for the International Space Station (ISS) payload is reported on, describing payload activity planning, payload operations control, payload data management and overall operations integration. The operations concept employed is based on the distribution of the payload operations responsibility between the researchers and ISS partners. The long duration nature of the ISS mission dictates the geographical distribution of the payload operations activities between the different national centers. The coordination and integration of these operations will be assured by NASA's Payload Operations Integration Center (POIC). The prime objective of the POIC is the achievement of unified operations through communication and collaboration.
The partnership: Space shuttle, space science, and space station
NASA Technical Reports Server (NTRS)
Culbertson, Philip E.; Freitag, Robert F.
1989-01-01
An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.
NASA Technical Reports Server (NTRS)
1983-01-01
The space station mission requirements data base consists of 149 attached and free-flying missions each of which is documented by a set of three interrelated documents: (1) NASA LaRC Data Sheets - with three sheets comprising a set for each payload element described. These sheets contain user payload element data necessary to drive Space Station architectural options. (2) GDC-derived operations descriptions that supplement the LaRC payload element data in the operations areas such as further descriptions of crew involvement, EVA, etc. (3) Payload elements synthesis sheets used by GDC to provide requirements traceability to data sources and to provide a narrative describing the basis for formulating the payload element requirements.
Payload Processing for Mice Drawer System
NASA Technical Reports Server (NTRS)
Brown, Judy
2007-01-01
Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.
2017-08-31
Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).
Space Station Freedom Data Assessment Study
NASA Technical Reports Server (NTRS)
Johnson, Anngienetta R.; Deskevich, Joseph
1990-01-01
The SSF Data Assessment Study was initiated to identify payload and operations data requirements to be supported in the Space Station era. To initiate the study payload requirements from the projected SSF user community were obtained utilizing an electronic questionnaire. The results of the questionnaire were incorporated in a personal computer compatible database used for mission scheduling and end-to-end communications analyses. This paper discusses data flow paths and associated latencies, communications bottlenecks, resource needs versus availability, payload scheduling 'warning flags' and payload data loading requirements for each major milestone in the Space Station buildup sequence. This paper also presents the statistical and analytical assessments produced using the data base, an experiment scheduling program, and a Space Station unique end-to-end simulation model. The modeling concepts and simulation methodologies presented in this paper provide a foundation for forecasting communication requirements and identifying modeling tools to be used in the SSF Tactical Operations Planning (TOP) process.
External Payload Interfaces on the International Space Station
NASA Astrophysics Data System (ADS)
Voels, S. A.; Eppler, D. B.; Park, B.
2000-12-01
The International Space Station (ISS) includes multiple payload locations that are external to the pressurized environment and that are suitable for astronomical and space science observations. These external or attached payload accommodation locations allow direct access to the space environment and fields of view that include the earth and/or space. NASA sponsored payloads will have access to several different types of standard external locations; the S3/P3 Truss Sites (with an EXPRESS Pallet interface), the Columbus Exposed Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). Payload accommodations at each of the standard locations named above will be described, as well as transport to and retrieval from the site. The Office of Space Science's ISS Research Program Office has an allocation equivalent to 25% of the external space and opportunities for proposing to use this allocation will be as Missions of Opportunity through the normal Explorer (UNEX, SMEX, MIDEX) Announcements of Opportunity.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Centered over the payload canister in the Space Station Processing Facility, the overhead crane begins lowering the Canadian robotic arm, SSRMS, on its pallet inside. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - An overhead crane moves along the top of the Space Station Processing Facility, carrying the Canadian robotic arm, SSRMS, on its pallet to the payload canister. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, an overhead crane lifts the pallet holding the Canadian robotic arm, SSRMS, to move it to the payload canister. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary
NASA Technical Reports Server (NTRS)
1989-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- A worker in the payload changeout room (PCR) on Launch Pad 39A monitors the payload ground-handling mechanism that is used to transfer the payload into the PCR and the shuttle's payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
An AI approach for scheduling space-station payloads at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Castillo, D.; Ihrie, D.; Mcdaniel, M.; Tilley, R.
1987-01-01
The Payload Processing for Space-Station Operations (PHITS) is a prototype modeling tool capable of addressing many Space Station related concerns. The system's object oriented design approach coupled with a powerful user interface provide the user with capabilities to easily define and model many applications. PHITS differs from many artificial intelligence based systems in that it couples scheduling and goal-directed simulation to ensure that on-orbit requirement dates are satisfied.
Penny Pettigrew in the Payload Operations Integration Center
2017-11-09
Penny Pettigrew is an International Space Station Payload Communications Manager, or PAYCOM, in the Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Alabama.
Space Station data management system architecture
NASA Technical Reports Server (NTRS)
Mallary, William E.; Whitelaw, Virginia A.
1987-01-01
Within the Space Station program, the Data Management System (DMS) functions in a dual role. First, it provides the hardware resources and software services which support the data processing, data communications, and data storage functions of the onboard subsystems and payloads. Second, it functions as an integrating entity which provides a common operating environment and human-machine interface for the operation and control of the orbiting Space Station systems and payloads by both the crew and the ground operators. This paper discusses the evolution and derivation of the requirements and issues which have had significant effect on the design of the Space Station DMS, describes the DMS components and services which support system and payload operations, and presents the current architectural view of the system as it exists in October 1986; one-and-a-half years into the Space Station Phase B Definition and Preliminary Design Study.
International Space Station Capabilities and Payload Accommodations
NASA Technical Reports Server (NTRS)
Kugler, Justin; Jones, Rod; Edeen, Marybeth
2010-01-01
This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.
2012-02-17
Space Shuttle Payloads: Kennedy Space Center was the hub for the final preparation and launch of the space shuttle and its payloads. The shuttle carried a wide variety of payloads into Earth orbit. Not all payloads were installed in the shuttle's cargo bay. In-cabin payloads were carried in the shuttle's middeck. Cargo bay payloads were typically large payloads which did not require a pressurized environment, such as interplanetary space probes, earth-orbiting satellites, scientific laboratories and International Space Station trusses and components. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
International Space Station (ISS)
2000-02-01
The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.
International Space Station Payload Training Overview
NASA Technical Reports Server (NTRS)
Underwood, Deborah B.; Noneman, Steven R.; Sanchez, Julie N.
2001-01-01
This paper describes payload crew training-related activities performed by NASA and the U.S. Payload Developer (PD) community for the International Space Station (ISS) Program. It describes how payloads will be trained and the overall training planning and integration process. The overall concept, definition, and template for payload training are described. The roles and responsibilities of individuals, organizations, and groups involved are discussed. The facilities utilized during payload training and the primary processes and activities performed to plan, develop, implement, and administer payload training for ISS crews are briefly described. Areas of improvement to crew training processes that have been achieved or are currently being worked are identified.
Astrophysical payload accommodation on the space station
NASA Technical Reports Server (NTRS)
Woods, B. P.
1985-01-01
Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.
2017-03-10
The Orbital ATK Cygnus spacecraft was encapsulted in its payload fairings inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 24, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Workers on the floor of the Space Station Processing Facility follow along as the overhead crane carries the Canadian robotic arm, SSRMS, on its pallet to the payload canister. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - The Multi-Purpose Logistics Module Raffaello is lowered into the payload canister alongside the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS-100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Viewed from the end, the Multi- Purpose Logistics Module Raffaello is lowered into the payload canister behind the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS-100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, the overhead crane rolls along the ceiling with the pallet and Canadian robotic arm, SSRMS, toward the payload canister, at right. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
Canadian robotic arm is moved to the payload canister for STS-100
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, the overhead crane carrying the pallet and Canadian robotic arm, SSRMS, nears the payload canister at right where the equipment will be placed. The arm is 57.7 feet (17.6 meters) long when fully extended and has seven motorized joints. It is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self-relocatable with a Latching End Effector, so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. The SSRMS is part of the payload on mission STS-100, scheduled to launch April 19 at 2:41 p.m. EDT from Launch Pad 39A, KSC.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.
2006-07-26
KENNEDY SPACE CENTER, FLA. - Shortly after midnight, the payload canister makes a slow journey to Launch Pad 39B. Inside the canister is the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2006-07-26
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39B, the payload canister is moved into position beneath the payload changeout room (PCR) for transfer of its cargo into the PCR. The canister holds the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
Accommodations for earth-viewing payloads on the international space station
NASA Astrophysics Data System (ADS)
Park, B.; Eppler, D. B.
The design of the International Space Station (ISS) includes payload locations that are external to the pressurized environment. These external or attached payload accommodation locations will allow direct access to the space environment at the ISS orbit and direct viewing of the earth and space. NASA sponsored payloads will have access to several different types of standard external locations; the S3 Truss Sites, the Columbus External Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). As the ISS Program develops, it may also be possible to locate external payloads at the P3 Truss Sites or at non-standard locations similar to the handrail-attached payloads that were flown during the MIR Program. Earth-viewing payloads may also be located within the pressurized volume of the US Lab in the Window Observational Research Facility (WORF). Payload accommodations at each of the locations will be described, as well as transport to and retrieval from the site.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello rises off the workstand via an overhead crane that will move it to the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, an overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move the MPLM to the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - The overhead crane in the Space Station Processing Facility traverses the length of the SSPF with the Multi-Purpose Logistics Module Raffaello to reach the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, workers on the floor walk along with the suspended Multi-Purpose Logistics Module Raffaello traveling overhead to the payload canister at right. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Space Station Processing Facility, an overhead crane is ready to lift the Multi-Purpose Logistics Module Raffaello in order to move it to the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers on Launch Pad 39A move the Multi-Purpose Logistics Module Leonardo out of the payload canister into the payload changeout room. The MPLM is the primary payload on mission STS-105 to the International Space Station. The mission includes a crew changeover on the Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the payload changeout room on Launch Pad 39A keep watch as they move the Multi-Purpose Logistics Module Leonardo out of the payload canister. The MPLM is the primary payload on mission STS-105 to the International Space Station. The mission includes a crew changeover on the Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
Space Station crew workload - Station operations and customer accommodations
NASA Technical Reports Server (NTRS)
Shinkle, G. L.
1985-01-01
The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.
The High Definition Earth Viewing (HDEV) Payload
NASA Technical Reports Server (NTRS)
Muri, Paul; Runco, Susan; Fontanot, Carlos; Getteau, Chris
2017-01-01
The High Definition Earth Viewing (HDEV) payload enables long-term experimentation of four, commercial-of-the-shelf (COTS) high definition video, cameras mounted on the exterior of the International Space Station. The payload enables testing of cameras in the space environment. The HDEV cameras transmit imagery continuously to an encoder that then sends the video signal via Ethernet through the space station for downlink. The encoder, cameras, and other electronics are enclosed in a box pressurized to approximately one atmosphere, containing dry nitrogen, to provide a level of protection to the electronics from the space environment. The encoded video format supports streaming live video of Earth for viewing online. Camera sensor types include charge-coupled device and complementary metal-oxide semiconductor. Received imagery data is analyzed on the ground to evaluate camera sensor performance. Since payload deployment, minimal degradation to imagery quality has been observed. The HDEV payload continues to operate by live streaming and analyzing imagery. Results from the experiment reduce risk in the selection of cameras that could be considered for future use on the International Space Station and other spacecraft. This paper discusses the payload development, end-to- end architecture, experiment operation, resulting image analysis, and future work.
International Space Station (ISS)
2001-05-14
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Workers inside the payload canister wait for the Multi-Purpose Logistics Module Raffaello to be lowered inside. It joins the Canadian robotic arm, SSRMS, already in place. Both elements are part of the payload on mission STS- 100 to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The arm has seven motorized joints and is capable of handling large payloads and assisting with docking the Space Shuttle. The SSRMS is self- relocatable with a Latching End Effector so it can be attached to complementary ports spread throughout the Station'''s exterior surfaces. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
Space station needs, attributes, and architectural options study
NASA Technical Reports Server (NTRS)
1983-01-01
The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.
2006-07-26
KENNEDY SPACE CENTER, FLA. - Nearing dawn on Launch Pad 39B, the payload canister is in position to be lifted into the payload changeout room (PCR) for transfer of its cargo into the PCR. The canister holds the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2006-07-26
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39B, the payload canister is lifted toward the payload changeout room (PCR) for transfer of its cargo into the PCR. The canister holds the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The red umbilical lines are still attached to the transporter, lower right. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2006-07-26
KENNEDY SPACE CENTER, FLA. - After a several-hour trip from the Canister Rotation Facility, the payload canister arrives on Launch Pad 39B. Inside the canister is the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The canister will be positioned alongside the rotating service structure and beneath the payload changeout room (PCR) for transfer of the truss into the PCR. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2006-07-26
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39B, the payload canister is lifted toward the payload changeout room (PCR) for transfer of its cargo into the PCR. The canister holds the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The red umbilical lines are still attached, lower right. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2006-07-26
KENNEDY SPACE CENTER, FLA. - Shortly after midnight, the payload canister and convoy negotiate the turn on the Saturn Causeway, heading for Launch Pad 39B. Inside the canister is the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
International Space Station Payload Operations Integration Center (POIC) Overview
NASA Technical Reports Server (NTRS)
Ijames, Gayleen N.
2012-01-01
Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism, including the longeron trunnion/scuff plate, Payload Disconnect Assembly and WIF socket. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
The Joint Airlock Module is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is moved closer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the S3/S4 integrated truss is being moved out of the payload canister. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2010-09-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane is poised over the Alpha Magnetic Spectrometer, or AMS, to lift the Payload Attach System, or PAS, up to the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Centaur operations at the space station
NASA Technical Reports Server (NTRS)
Porter, J.; Thompson, W.; Bennett, F.; Holdridge, J.
1987-01-01
A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads.
OA-7 Cargo Module Installation onto KAMAG
2017-03-15
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians use a crane to lift the Orbital ATK Cygnus pressurized cargo module, enclosed in its payload fairing, for transfer to a KAMAG transporter. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
Planning for Space Station Freedom laboratory payload integration
NASA Technical Reports Server (NTRS)
Willenberg, Harvey J.; Torre, Larry P.
1989-01-01
Space Station Freedom is being developed to support extensive missions involving microgravity research and applications. Requirements for on-orbit payload integration and the simultaneous payload integration of multiple mission increments will provide the stimulus to develop new streamlined integration procedures in order to take advantage of the increased capabilities offered by Freedom. The United States Laboratory and its user accommodations are described. The process of integrating users' experiments and equipment into the United States Laboratory and the Pressurized Logistics Modules is described. This process includes the strategic and tactical phases of Space Station utilization planning. The support that the Work Package 01 Utilization office will provide to the users and hardware developers, in the form of Experiment Integration Engineers, early accommodation assessments, and physical integration of experiment equipment, is described. Plans for integrated payload analytical integration are also described.
The UCP is placed in payload canister in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
The Integrated Cargo Carrier (ICC), with equipment on top, sits in a workstand in the Space Station Processing Facility. It will be moved into the payload canister for transport to Launch Pad 39B in preparation for mission STS-106, scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
DTN Implementation and Utilization Options on the International Space Station
NASA Technical Reports Server (NTRS)
Nichols, Kelvin; Holbrook, Mark; Pitts, Lee; Gifford, Kevin; Jenkins, Andrew; Kuzminsky, Sebastian
2010-01-01
This slide presentation reviews the implementation and future uses of Delay/Disruption Tolerant Networking (DTN) for space communication, using the International Space Station as the primary example. The presentation includes: (1) A brief introduction of the current communications architecture of the ISS (2) How current payload operations are handled in the non-DTN environment (3) Making the case to implement DTN into the current payload science operations model (4) Phase I DTN Operations: early implementation with BioServe's CGBA Payload (5) Phase II DTN Operations: Developing the HOSC DTN Gateway
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
International Space Station External Contamination Environment for Space Science Utilization
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica
2014-01-01
The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.
Conducting Research on the International Space Station Using the EXPRESS Rack Facilities
NASA Technical Reports Server (NTRS)
Thompson, Sean W.; Lake, Robert E.
2013-01-01
Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
International utilization and operations
NASA Technical Reports Server (NTRS)
Goldberg, Stanley R.
1989-01-01
The international framework of the Space Station Freedom Program is described. The discussion covers the U.S. space policy, international agreements, international Station elements, overall program management structure, and utilization and operations management. Consideration is also given to Freedom's user community, Freedom's crew, pressurized payload and attached payload accommodations, utilization and operations planning, user integration, and user operations.
STS-108 MPLM Raffaello is moved to payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Suspended from an overhead crane, the Multi-Purpose Logistics Module Raffaello is ready to be lowered into the payload canister. Raffaello is filled with supplies and equipment for mission STS-108 to the International Space Station. Launch is scheduled for Nov. 29 aboard Shuttle Endeavour. The 11-day mission to the International Space Station will also carry the replacement Expedition 4 crew.
STS-108 MPLM Raffaello is moved to payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Multi-Purpose Logistics Module Raffaello crosses the room as it moves toward the payload canister (right). Raffaello is filled with supplies and equipment for mission STS-108 to the International Space Station. Launch is scheduled for Nov. 29 aboard Shuttle Endeavour. The 11-day mission to the International Space Station will also carry the replacement Expedition 4 crew.
The Joint Airlock Module is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers standing inside the payload canister help guide the Joint Airlock Module into place. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
The Joint Airlock Module is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is lifted from its workstand for a transfer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.
How to get on board Space Station Freedom
NASA Technical Reports Server (NTRS)
Bartoe, John-David
1992-01-01
Space Station Freedom will accommodate researchers with interests in science, technology and commercial applications. NASA sponsors will be responsible for selecting the U.S. researchers for Space Station Freedom. The four NASA sponsors are: Office of Space Science and Applications (OSSA), Office of Aeronautics and Space Technology (OAST), Office of Commercial Programs (OCP), and the Office of Space Flight (OSF). The areas of research responsibility for each sponsor are presented. The researcher solicitation vehicles used by OSSA and OAST and the methodology for researchers seeking sponsorship from OCP and OSF as well as the pricing policy are discussed. Descriptions of flight planning, payload integration and operations functions are presented. Three categories of payloads and their respective payload integration times are discussed. Researchers are advised to contact a NASA sponsor and a source which lists the points of contact for the NASA sponsors is noted.
Russian RSC Energia employees attach trunnions to DM
NASA Technical Reports Server (NTRS)
1995-01-01
Employees of the Russian aerospace company RSC Energia attach trunnions to the Russian-built docking module in the Space Station Processing Facility at KSC so that it can be mounted in the payload bay of the Space Shuttle orbiter Atlantis. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.
University Research-1 Payload for SpaceX Launch
2014-03-12
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the University Research-1 payload developed by Texas Southern University in Houston is being prepared for loading aboard the SpaceX Dragon spacecraft for launch to the International Space Station. The experiment involves an investigation of countermeasures involving research into the efficacy of benzofuran-2-carboxylic acid derivatives as pharmacological countermeasures in mitigating the adverse effects of space flight and the International Space Station radiation environment on the immune system. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
2010-09-01
CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, check the progress of the Payload Attach System, or PAS, as it is lifted up to the Alpha Magnetic Spectrometer, where it will be attached to the bottom of the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-09-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician monitors the progress of the Payload Attach System, or PAS, as it is lifted up to the Alpha Magnetic Spectrometer, or AMS, where it will be attached to the bottom of the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-09-01
CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, monitor the guide wires of the overhead crane as it lifts the Payload Attach System, or PAS, up to the Alpha Magnetic Spectrometer, or AMS, for installation. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-09-01
CAPE CANAVERAL, Fla. -- A technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, check the progress of the Payload Attach System, or PAS, as it is lifted up to the Alpha Magnetic Spectrometer, or AMS, where it will be attached to the bottom of the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2009-10-30
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, workers monitor the lift of the canister containing the payload for space shuttle Atlantis' STS-129 mission to the International Space Station - Express Logistics Carriers 1 and 2 - into the Payload Changeout Room at Launch Pad 39A. Next, the payload will be installed in Atlantis' payload bay. The STS-129 crew will deliver two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Launch is set for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Amanda Diller
2006-07-26
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39B, the payload canister is lifted toward the payload changeout room (PCR) for transfer of its cargo into the PCR. The canister holds the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The red umbilical lines are still attached to the transporter, below it. To the right of the rotating structure is the fixed service structure with the 80-foot lightning mast on top. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton
2001-07-25
KENNEDY SPACE CENTER, Fla. -- The payload canister is lifted up the Rotating Service Structure on Launch Pad 39A. At right is Space Shuttle Discovery. Inside the canister are the primary payloads on mission STS-105, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room and then moved into the Discovery’s payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The payload canister is lifted up the Rotating Service Structure on Launch Pad 39A. At right is Space Shuttle Discovery. Inside the canister are the primary payloads on mission STS-105, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room and then moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
2017-03-17
The Orbital ATK Cygnus pressurized cargo module, enclosed in its payload fairing and secured on a KAMAG transporter, is transported from the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida to the Space Launch Complex 41 at Cape Canaveral Air Force Station, for mating to the United Launch Alliance (ULA) Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
The STS-92 crew checks out equipment they will use on their mission to the International Space Stati
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, STS-92 Mission Specialist Jeff Wisoff practices removing a wire harness from the Pressurized Mating Adapter-3, part of the payload on the STS-92 mission to the International Space Station (ISS). STS-92 is targeted for launch in December 1999. Other crew members visiting KSC are Commander Brian Duffy and Mission Specialists Koichi Wakata, Leroy Chiao, Michael Lopez-Alegria and Bill McArthur. STS-92 is the fourth U.S. flight for construction of the International Space Station. The payload also includes an integrated truss structure.
STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialist Robert Curbeam works with equipment he will use in space to attach the U.S. Lab Destiny to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.
2002-05-17
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-111 Mission Specialist Philippe Perrin, with the French Space Agency, looks over the payload installed in Endeavour's payload bay. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include payload familiarization and a simulated launch countdown. The crew also comprises Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialist Franklin Chang-Diaz. The payload on mission STS-111 to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. Traveling on Endeavour is also the Expedition 5 crew - Commander Valeri Korzun, Peggy Whitson and Sergei Treschev -- who will replace the Expedition 4 crew on the Station. Korzun and Treschev are with the Russian Space Agency. Launch of Endeavour is scheduled for May 30, 2002
2002-05-17
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-111 Mission Specialists Philippe Perrin, with the French Space Agency, and Franklin Chang-Diaz pause during their checkout of the payload installed in Endeavour's payload bay. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include payload familiarization and a simulated launch countdown. The crew also comprises Commander Kenneth Cockrell and Pilot Paul Lockhart. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. Traveling on Endeavour is also the Expedition 5 crew - Commander Valeri Korzun, Peggy Whitson and Sergei Treschev -- who will replace the Expedition 4 crew on the Station. Korzun and Treschev are with the Russian Space Agency. Launch of Endeavour is scheduled for May 30, 2002.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians install the second Materials International Space Station Experiments, or MISSE, in space shuttle Endeavour's payload bay. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
STS-97 P6 truss payload canister is lifted into payload changeout room
NASA Technical Reports Server (NTRS)
2000-01-01
On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Payload Changeout Room, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready to be transferred into Space Shuttle Discovery'''s payload bay. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.
1999-02-09
In the Space Station Processing Facility, STS-92 Mission Specialist Jeff Wisoff practices removing a wire harness from the Pressurized Mating Adapter-3, part of the payload on the STS-92 mission to the International Space Station (ISS). STS-92 is targeted for launch in December 1999. Other crew members visiting KSC are Commander Brian Duffy and Mission Specialists Koichi Wakata, Leroy Chiao, Michael Lopez-Alegria and Bill McArthur. STS-92 is the fourth U.S. flight for construction of the International Space Station. The payload also includes an integrated truss structure
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lifted by crane at the United Launch Alliance (ULA) Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The payload will be hoisted up and mated to the ULA Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
Atlas_V_OA-7_Payload_Mate_to_Booster
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lifted and mated onto the Centaur upper stage, or second stage, of the United Launch Alliance (ULA) rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-03-17
The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is hoisted up by crane at the United Launch Alliance (ULA) Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The payload will be mated to the ULA Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In its overhead passage down the Space Station Processing Facility, the U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo. Both are elements in the construction of the International Space Station. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers begin closing the hatch on the Multi-Purpose Logistics Module Leonardo before it is transferred to a payload canister. Leonardo is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers close the hatch on the Multi-Purpose Logistics Module Leonardo before it is transferred to a payload canister. Leonardo is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers begin closing the hatch on the Multi-Purpose Logistics Module Leonardo before it is transferred to a payload canister. Leonardo is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers are closing the hatch on the Multi-Purpose Logistics Module Leonardo before it is transferred to a payload canister. Leonardo is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Multi-Purpose Logistics Module Leonardo is being prepared for hatch closure before it is transferred to a payload canister. Leonardo is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Jim Grossmann
2009-01-11
CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss. Photo credit: NASA/Jim Grossmann
2009-01-11
CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss Photo credit: NASA/Jim Grossmann
2009-01-11
CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss Photo credit: NASA/Jim Grossmann
Microgravity research results and experiences from the NASA/MIR space station program.
Schlagheck, R A; Trach, B L
2003-12-01
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.
STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane begins lifting the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.
STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers attach an overhead crane to the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.
NASA Technical Reports Server (NTRS)
1987-01-01
The Advanced Space Design project for 1986-87 was the design of a two stage launch vehicle, representing a second generation space transportation system (STS) which will be needed to support the space station. The first stage is an unmanned winged booster which is fully reusable with a fly back capability. It has jet engines so that it can fly back to the landing site. This adds safety as well as the flexibility to choose alternate landing sites. There are two different second stages. One of the second stages is a manned advanced space shuttle called Space Shuttle II. Space Shuttle II has a payload capability of delivering 40,000 pounds to the space station in low Earth orbit (LEO), and returning 40,000 pounds to Earth. Servicing the space station makes the ability to return a heavy payload to Earth as important as being able to launch a heavy payload. The other second stage is an unmanned heavy lift cargo vehicle with ability to deliver 150,000 pounds of payload to LEO. This vehicle will not return to Earth; however, the engines and electronics can be removed and returned to Earth in the Space Shuttle II. The rest of the vehicle can then be used on orbit for storage or raw materials, supplies, and space manufactured items awaiting transport back to Earth.
Ohio Senator John Glenn tours the Space Station Processing Facility at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Ohio Senator John Glenn, at right, enjoys a tour of the Space Station Processing Facility at Kennedy Space Center. With Senator Glenn is Stephen Francois, director, Space Station and Shuttle Payloads, NASA. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.
NASA Technical Reports Server (NTRS)
Bacskay, Allen S.; Gilbert, Paul A. (Technical Monitor)
2002-01-01
The Expedite the PRocessing of Experiments to Space Station (ExPRESS) Pallet will be used as an experiment platform for external/unpressurized payloads to be flown aboard the International Space Station (ISS). The purpose of the ExPRESS Pallet is to provide an easy access to the ISS for Scientific Investigators that require an external platform for their experiment hardware. As the name of the ExPRESS Pallet implies, the objective of the ExPRESS program is to provide a simplified integration process in a short time period (24 months) for payloads to be flown on the ISS. The ExPRESS Pallet provides unique opportunities for research across many science disciplines, including earth observation, communications, solar and deep space viewing, and long-term exposure. The ExPRESS Pallet provides access to Ram, Wake, Nadir, Zenith and Earth Limb for viewing and exposure to the space environment. The ExPRESS Pallet will provide standard physical payload interfaces, and a standard integration template. The ExPS consists of the Pallet structure, payload Adapters, a subsystem assembly that includes data controller, power distribution and conversion, and Extra Vehicular Robotics compatibility. The ExPRESS Pallet provides the capability to changeout payloads on-orbit via the ExPRESS Pallet Adapter (ExPA). The following paragraphs will describe the Services and Accommodations available to the Payload developers by the ExPRESS Pallet and a brief description of the Integration process. More detailed information on the ExPRESS Pallet can be found in the ExPRESS Pallet Payload Accommodations Handbook, SSP 52000-PAH-EPP.
International Space Station Alpha user payload operations concept
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.
1994-01-01
International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.
International Space Station Science Information for Public Release on the NASA Web Portal
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Tate, Judy M.
2009-01-01
This document contains some of the descriptions of payload and experiment related to life support and habitation. These describe experiments that have or are scheduled to fly on the International Space Station. There are instructions, and descriptions of the fields that make up the database. The document is arranged in alphabetical order by the Payload
2008-11-19
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the mast deployment on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers deploy the mast on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the mast deployment on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston
Streamlining Payload Integration
NASA Technical Reports Server (NTRS)
Lufkin, Susan N.
2010-01-01
Payload integration onto space transport vehicles and the International Space Station (ISS) is a complex process. Yet, cargo transport is the sole reason for any space mission, be it for ferrying humans, science, or hardware. As the largest such effort in history, the ISS offers a wide variety of payload experience. However, for any payload to reach the Space Station under the current process, Payload Developers face a list of daunting tasks that go well beyond just designing the payload to the constraints of the transport vehicle and its stowage topology. Payload customers are required to prove their payload s functionality, structural integrity, and safe integration - including under less than nominal situations. They must also plan for or provide training, procedures, hardware labeling, ground support, and communications. In addition, they must deal with negotiating shared consumables, integrating software, obtaining video, and coordinating the return of data and hardware. All the while, they must meet export laws, launch schedules, budget limits, and the consensus of more than 12 panel and board reviews. Despite the cost and infrastructure overhead, payload proposals have increased. Just in the span from FY08 to FY09, the NASA Payload Space Station Support Office budget rose from $78M to $96M in attempt to manage the growing manifest, but the potential number of payloads still exceeds available Payload Integration Management manpower. The growth has also increased management difficulties due to the fact that payloads are more frequently added to a flight schedule late in the flow. The current standard ISS template for payload integration from concept to payload turn-over is 36 months, or 18 months if the payload already has a preliminary design. Customers are increasingly requiring a turn-around of 3 to 6-months to meet market needs. The following paper suggests options for streamlining the current payload integration process in order to meet customer schedule needs and reduce costs for both the integration support teams and the developers, without reducing quality or compromising safety. Issues for the key integration areas of planning, training, verification, and safety are presented in a Root-Cause Analysis study, with plausible solutions provided that involve technology and tools already available to the ISS community. Although based upon the ISS process, the payload integration techniques outlined herein also offer an integration template for any space transport endeavor.
1971-01-01
This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.
Space Communication and Navigation Testbed Communications Technology for Exploration
NASA Technical Reports Server (NTRS)
Reinhart, Richard
2013-01-01
NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.
The LEAN Payload Integration Process
NASA Technical Reports Server (NTRS)
Jordan, Lee P.; Young, Yancy; Rice, Amanda
2011-01-01
It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.
International Cooperation of Payload Operations on the International Space Station
NASA Technical Reports Server (NTRS)
Melton, Tina; Onken, Jay
2003-01-01
One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- The payload canister on its transporter sits beneath the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A. The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
2007-02-12
KENNEDY SPACE CENTER, FLA. -- The payload canister on its transporter arrives on Launch Pad 39A, stopping beneath the payload changeout room on the rotating service structure (RSS). The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay.The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
1996-08-22
KENNEDY SPACE CENTER, FLA. - The orbiter Ku-band antenna looms large in this view of the Space Shuttle Atlantis' payload bay. Visible just past the antenna system - stowed on the starboard side of the payload bay wall - is the Orbiter Docking System (ODS), and connected to the ODS via a tunnel is the Spacehab Double Module in the aft area of the payload bay. This photograph was taken from the starboard wing platform on the fifth level of the Payload Changeout Room (PCR) at Launch Pad 39A. Work is under way in the PCR to close Atlantis' payload bay doors for flight. Atlantis currently is being targeted for liftoff on Mission STS-79, the fourth docking of the U.S. Shuttle to the Russian Space Station Mir, around Sept. 12.
Space station executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
An executive summary of the modular space station study is presented. The subjects discussed are: (1) design characteristics, (2) experiment program, (3) operations, (4) program description, and (5) research implications. The modular space station is considered a candidate payload for the low cost shuttle transportation system.
Space Station Mission Planning System (MPS) development study. Volume 2
NASA Technical Reports Server (NTRS)
Klus, W. J.
1987-01-01
The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.
2008-10-15
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a worker prepares the equipment to help close the hatch on the Multi-Purpose Logistics Module Leonardo before it is transferred to a payload canister. Leonardo is the payload for space shuttle Endeavour's STS-126 mission to the International Space Station. The 15-day mission will deliver equipment and supplies to the space station in preparation for expansion from a three- to six-person resident crew aboard the complex. Leonardo holds supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch Nov. 14. Photo credit: NASA/Troy Cryder
Space Station as a Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Folley, Adrienne; Scheib, Jim
1995-01-01
There is need for a space platform for experiments investigating long duration exposure to space. This platform should be maintainable in the event of a malfunction, and experiments should be easily recoverable for analysis on Earth. The International Space Station provides such a platform. The current Space Station configuration has six external experiment attachment sites, providing utilities and data support distributed along the external truss. There are also other sites that could potentially support long duration exposure experiments. This paper describes the resources provided to payloads at these sites, and cites examples of integration of proposed long duration exposure experiments on these sites. The environments to which external attached payloads will be exposed are summarized.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the opening doors of the canister reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, workers prepare to open the canister containing the S3/S4 integrated truss. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2009-08-09
CAPE CANAVERAL, Fla. – On Launch Pad 39A, the payload ground-handling mechanism moves back after placing the multi-purpose logistics module Leonardo in space shuttle Discovery's payload bay. Leonardo is the primary payload on Discovery's STS-128 mission to the International Space Station. Beneath the module is the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jack Pfaller
Payload Bay Canister being transported to Pad 39A for a fit chec
2007-01-22
This payload canister is being transported to Launch Pad 39A for a "fit check." At a later date, the canister will be used to transport to the pad the S3/S4 solar arrays that are the payload for mission STS-117. The mission will launch on Space Shuttle Atlantis for the 21st flight to the International Space Station, and the crew of six will continue the construction of station with the installation of the arrays. The launch of Atlantis is targeted for March 16.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, the second of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
Astronaut James S. Voss Performs Tasks in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Payload specialist station study. Part 2: CEI specifications (part 1). [space shuttles
NASA Technical Reports Server (NTRS)
1976-01-01
The performance, design, and verification specifications are established for the multifunction display system (MFDS) to be located at the payload station in the shuttle orbiter aft flight deck. The system provides the display units (with video, alphanumerics, and graphics capabilities), associated with electronic units and the keyboards in support of the payload dedicated controls and the displays concept.
STS-110 payload S0 Truss is moved to payload canister in O&C
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The Integrated Truss Structure S0 arrives at the payload canister in the Operations and Checkout Building for transfer to the launch pad for mission STS-110. Part of the payload on Space Shuttle Atlantis, the S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.
International Space Station-Based Electromagnetic Launcher for Space Science Payloads
NASA Technical Reports Server (NTRS)
Jones, Ross M.
2013-01-01
A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper
STS-74 view of ODS from Payload Changout Room
NASA Technical Reports Server (NTRS)
1995-01-01
Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.
STS-79 SPACEHAB Double module in Payload Bay
NASA Technical Reports Server (NTRS)
1996-01-01
Workers in the Payload Changeout Room (PCR) at Launch Pad 39A are preparing to close the payload doors for flight on the Space Shuttle Atlantis, targeted for liftoff on Mission STS-79 around September 12. The payloads in Atlantis' cargo bay will play key roles during the upcoming spaceflight, which will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir. Located in the aft (lowermost) area of the payload bay is the SPACEHAB Double Module, filled with supplies and other items slated for transfer to the Russian Space Station Mir as well as research equipment. The SPACEHAB is connected by tunnel to the Orbiter Docking System (ODS). This view looks directly at the top of the ODS and shows clearly the Androgynous Peripheral Docking System (APDS) that interfaces with the Docking Module on Mir to achieve a linkup.
Payload Operations Integration Center Tour
2013-11-22
Step inside the International Space Station Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Ala. Listen to the people who work around-the-clock with scientists around the world and the crew in space to conduct experiments that improve life on Earth and enable deep space exploration. (NASA/MSFC)
Optimizing the Space Transportation System
1982-12-01
the entire gamut of inclinations and altitudes. The Shuttle payload mass and the total Station, OTV and Shuttle propellant mass required in orbit are...military satellites across the entire gamut of inclinations and altitudes. The total Station, OTV, Shuttle propellant and Shuttle payload mass required in
Canadian Space Agency Space Station Freedom utilization plans
NASA Technical Reports Server (NTRS)
Faulkner, James; Wilkinson, Ron
1992-01-01
Under the terms of the NASA/CSA Memorandum of Understanding, Canada will contribute the Mobile Servicing System and be entitled to use 3 percent of all Space Station utilization resources and user accommodations over the 30 year life of the Station. Equally importantly Canada, like NASA, can begin to exploit these benefits as soon as the Man-Tended Capability (MTC) phase begins, in early 1997. Canada has been preparing its scientific community to fully utilize the Space Station for the past five years; most specifically by encouraging, and providing funding, in the area of Materials Science and Applications, and in the area of Space Life Sciences. The goal has been to develop potential applications and an experienced and proficient Canadian community able to effectively utilize microgravity environment facilities such as Space Station Freedom. In addition, CSA is currently supporting four facilities; a Laser Test System, a Large Motion Isolation Mount, a Canadian Float Zone Furnace, and a Canadian Protein Crystallization Apparatus. In late April of this year CSA sent out a Solicitation of Interest (SOI) to potential Canadian user from universities, industry, and government. The intent of the SOI was to determine who was interested, and the type of payloads which the community at large intended to propose. The SOI will be followed by the release of an Announcement of Opportunity (AO) following governmental approval of the Long Term Space plan later this year, or early next year. Responses to the AO will be evaluated and prioritized in a fair and impartial payload selection process, within the guidelines set by our international partners and the Canadian Government. Payload selection is relatively simple compared to the development and qualification process. An end-to-end user support program is therefore also being defined. Much of this support will be provided at the new headquarters currently being built in St. Hubert, Quebec. It is recognized that utilizing the Space Station could be expensive for users; costing in many cases millions of dollars to get a payload from conception to retrieval. It is also recognized that some of the potential users cannot or will not invest a lot of money or effort into Space Station utilization, unless there is a perceived significant commercial potential. How best to fund Space Station payloads is under study. Space Station Freedom will provide the first opportunity for Canada to conduct experiments in a long-duration microgravity environment. CSA have been developing and funding potential users for some time, and considerable interest has been shown by the response to our SOI earlier this year. Canada can be one of the two earliest users for the Space Station, along with NASA. We hope to take full advantage of this opportunity.
Canadian Space Agency Space Station Freedom utilization plans
NASA Astrophysics Data System (ADS)
Faulkner, James; Wilkinson, Ron
Under the terms of the NASA/CSA Memorandum of Understanding, Canada will contribute the Mobile Servicing System and be entitled to use 3 percent of all Space Station utilization resources and user accommodations over the 30 year life of the Station. Equally importantly Canada, like NASA, can begin to exploit these benefits as soon as the Man-Tended Capability (MTC) phase begins, in early 1997. Canada has been preparing its scientific community to fully utilize the Space Station for the past five years; most specifically by encouraging, and providing funding, in the area of Materials Science and Applications, and in the area of Space Life Sciences. The goal has been to develop potential applications and an experienced and proficient Canadian community able to effectively utilize microgravity environment facilities such as Space Station Freedom. In addition, CSA is currently supporting four facilities; a Laser Test System, a Large Motion Isolation Mount, a Canadian Float Zone Furnace, and a Canadian Protein Crystallization Apparatus. In late April of this year CSA sent out a Solicitation of Interest (SOI) to potential Canadian user from universities, industry, and government. The intent of the SOI was to determine who was interested, and the type of payloads which the community at large intended to propose. The SOI will be followed by the release of an Announcement of Opportunity (AO) following governmental approval of the Long Term Space plan later this year, or early next year. Responses to the AO will be evaluated and prioritized in a fair and impartial payload selection process, within the guidelines set by our international partners and the Canadian Government. Payload selection is relatively simple compared to the development and qualification process. An end-to-end user support program is therefore also being defined. Much of this support will be provided at the new headquarters currently being built in St. Hubert, Quebec. It is recognized that utilizing the Space Station could be expensive for users; costing in many cases millions of dollars to get a payload from conception to retrieval. It is also recognized that some of the potential users cannot or will not invest a lot of money or effort into Space Station utilization, unless there is a perceived significant commercial potential. How best to fund Space Station payloads is under study. Space Station Freedom will provide the first opportunity for Canada to conduct experiments in a long-duration microgravity environment. CSA have been developing and funding potential users for some time, and considerable interest has been shown by the response to our SOI earlier this year.
International Space Station Payload Operations Integration
NASA Technical Reports Server (NTRS)
Fanske, Elizabeth Anne
2011-01-01
The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).
STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialists Thomas Jones (left) and Robert Curbeam (right) talk about their mission, attaching the U.S. Lab Destiny (in the background) to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-102 MPLM Leonardo moves into PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the payload changeout room on the Rotating Service Structure, Launch Pad 39B, workers move the Multi-Purpose Logistics Module Leonardo out of the payload canister. From the PCR Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.
2001-07-25
KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discovery’s payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Special Purpose Dexterous Manipulator, known as Dextre, to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves nearer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves closer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.
Microgravity Research Results and Experiences from the NASA Mir Space Station Program
NASA Technical Reports Server (NTRS)
Schagheck, R. A.; Trach, B.
2000-01-01
The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.
2000-04-11
KENNEDY SPACE CENTER, FLA. -- Two GetAway Special (GAS) experiments SEM-06 (left) and MARS (right), part of the payload on mission STS-101, are seen here in the payload bay of Space Shuttle Atlantis prior to door closure. The SEM program is student-developed, focusing on the science of zero-gravity and microgravity. Selected student experiments on this sixth venture are testing the effects of space on Idaho tubers, seeds, paint, yeast, film, liquids, electronics and magnetic chips. MARS is the name for part of the KSC Space Life Sciences Outreach Program. It includes 20 participating schools (ranging from elementary to high school) from all over the nation and one in Canada who have been involved in KSC Space Life Sciences projects over the past seven years. The MARS payload has 20 tubes filled with materials for various classroom investigations designed by the MARS schools. The primary mission of STS-101 is to deliver logistics and supplies to the International Space Station, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
2000-04-11
KENNEDY SPACE CENTER, FLA. -- Two GetAway Special (GAS) experiments SEM-06 (left) and MARS (right), part of the payload on mission STS-101, are seen here in the payload bay of Space Shuttle Atlantis prior to door closure. The SEM program is student-developed, focusing on the science of zero-gravity and microgravity. Selected student experiments on this sixth venture are testing the effects of space on Idaho tubers, seeds, paint, yeast, film, liquids, electronics and magnetic chips. MARS is the name for part of the KSC Space Life Sciences Outreach Program. It includes 20 participating schools (ranging from elementary to high school) from all over the nation and one in Canada who have been involved in KSC Space Life Sciences projects over the past seven years. The MARS payload has 20 tubes filled with materials for various classroom investigations designed by the MARS schools. The primary mission of STS-101 is to deliver logistics and supplies to the International Space Station, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
Medical operations and life sciences activities on space station
NASA Technical Reports Server (NTRS)
Johnson, P. C. (Editor); Mason, J. A. (Editor)
1982-01-01
Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.
NASA Technical Reports Server (NTRS)
Keyes, Gilbert
1991-01-01
Information is given in viewgraph form on Space Station Freedom. Topics covered include future evolution, man-tended capability, permanently manned capability, standard payload rack dimensions, the Crystals by Vapor Transport Experiment (CVTE), commercial space projects interfaces, and pricing policy.
Lessons learned from evaluating launch-site processing problems of Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Flores, Carlos A.; Heuser, Robert E.; Sales, Johnny R.; Smith, Anthony M.
1992-01-01
The authors discuss a trend analysis program that is being conducted on the problem reports written during the processing of Space Shuttle payloads at Kennedy Space Center. The program is aimed at developing lessons learned that can both improve the effectiveness of the current payload processing cycles as well as help to guide the processing strategies for Space Station Freedom. The payload processing reports from STS 26R and STS 41 are used. A two-tier evaluation activity is described, and some typical results from the tier one analyses are presented.
Thermal Control Subsystem Design for the Avionics of a Space Station Payload
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
1996-01-01
A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
2007-02-12
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
2007-02-12
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
STS-91 AMS-01 payload moved from MPPF to SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The alpha-magnetic spectrometer (AMS-1) is lifted in KSC's MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to the selection of crew for the Space Station Freedom. It is recognized that the Space Station has... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope. 1214.300 Section 1214.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space...
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the selection of crew for the Space Station Freedom. It is recognized that the Space Station has... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope. 1214.300 Section 1214.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the selection of crew for the Space Station Freedom. It is recognized that the Space Station has... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Scope. 1214.300 Section 1214.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to the selection of crew for the Space Station Freedom. It is recognized that the Space Station has... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scope. 1214.300 Section 1214.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space...
NASA Technical Reports Server (NTRS)
Wells, H. B.
1972-01-01
A preliminary study of the environmental control and life support subsystems (EC/LSS) necessary for an earth orbital spacecraft to conduct biological experiments is presented. The primary spacecraft models available for conducting these biological experiments are the space shuttle and modular space station. The experiments would be housed in a separate module that would be contained in either the shuttle payload bay or attached to the modular space station. This module would be manned only for experiment-related tasks, and would contain a separate EC/LSS for the crew and animals. Metabolic data were tabulated on various animals that are considered useful for a typical experiment program. The minimum payload for the 30-day space shuttle module was found to require about the equivalent of a one-man EC/LSS; however, the selected two-man shuttle assemblies will give a growth and contingency factor of about 50 percent. The maximum payloads for the space station mission will require at least a seven-man EC/LSS for the laboratory colony and a nine-man EC/LSS for the centrifuge colony. There is practically no room for growth or contingencies in these areas.
Shuttle to space station transfer of the materials exposure facility
NASA Technical Reports Server (NTRS)
Shannon, David T., Jr.; Klich, Phillip J.
1995-01-01
The Materials Exposure Facility (MEF) is being proposed by LaRC as the first long-term space materials exposure facility with real-time interaction with materials experiments in actual conditions of orbital space flight. The MEF is proposed as a Space Station external payload dedicated to technology advancement in spacecraft materials and coatings research. This paper will define a set of potential logistics for removing the MEF from the Shuttle cargo bay and the process required for transferring the MEF to a specific external payload site on Space Station Freedom (SSF). The SSF UF-2 configuration is used for this study. The kinematics and ability to successfully perform the appropriate MEF maneuvers required were verified. During completion of this work, the Space Station was redesigned and the International Space Station Alpha (ISSA) configuration evolved. The transfer procedure for SSF was valid for ISSA; however, a verification of kinematics and clearances was essential. Also, SSF and ISSA robotic interfaces with the Orbiter were different.
2000-11-10
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
Penny Pettigrew in the Payload Operations Integration Center
2017-11-09
Penny Pettigrew chats in real time with a space station crew member conducting an experiment in microgravity some 250 miles overhead. The Payload Operations Integration Center cadre monitor science communications on station 24 hours a day, seven days a week, 365 days per year.
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo in its overhead passage down the Space Station Processing Facility. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
2007-09-10
KENNEDY SPACE CENTER, FLA. -- In bay 3 of the Orbiter Processing Facility, a tool storage assembly unit is being moved for storage in Discovery's payload bay. The tools may be used on a spacewalk, yet to be determined, during mission STS-120. In an unusual operation, the payload bay doors had to be reopened after closure to accommodate the storage. Space shuttle Discovery is targeted to launch Oct. 23 to the International Space Station. It will carry the U.S. Node 2, a connecting module, named Harmony, for assembly on the space station. Photo credit: NASA/Amanda Diller
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Technical Reports Server (NTRS)
Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso
2005-01-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer; Gordon, Randy
2010-01-01
This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001
The payload canister leaves the O&C with the Joint Airlock Module inside
NASA Technical Reports Server (NTRS)
2000-01-01
The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
1998-10-22
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
Conducting Research on the International Space Station Using the EXPRESS Rack Facilities
NASA Technical Reports Server (NTRS)
Thompson, Sean W.; Lake, Robert E.
2013-01-01
Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
Conducting Research on the International Space Station using the EXPRESS Rack Facilities
NASA Technical Reports Server (NTRS)
Thompson, Sean W.; Lake, Robert E.
2016-01-01
Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
Payload vibration isolation in a microgravity environment
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.
2002-10-10
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, technicians in the Payload Changout Room supervise the opening of the payload canister doors for transfer of the P1 truss. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the doors of the canister are opened to reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the doors of the canister are opened to reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2007-02-12
KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, a worker prepares the mechanism to open the doors of the canister containing the S3/S4 integrated truss. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., makes its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., makes its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., arrives at Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians help lift the first of the Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove another Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove one of two Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is moved across facility toward space shuttle Endeavour. The MISSE is part of the payload onboard Endeavour for mission STS-123 and will be installed in the payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Daelemans, Gerard; Goldsmith, Theodore
1999-01-01
The NASA/GSFC Shuttle Small Payloads Projects Office (SSPPO) has been studying the feasibility of migrating Hitchhiker customers past present and future to the International Space Station via a "Hitchhiker like" carrier system. SSPPO has been tasked to make the most use of existing hardware and software systems and infrastructure in its study of an ISS based carrier system. This paper summarizes the results of the SSPPO Hitchhiker on International Space Station (ISS) study. Included are a number of "Hitchhiker like" carrier system concepts that take advantage of the various ISS attached payload accommodation sites. Emphasis will be given to a HH concept that attaches to the Japanese Experiment Module - Exposed Facility (JEM-EF).
STS-114 Discovery Return to Flight: International Space Station Processing Overview
NASA Technical Reports Server (NTRS)
2005-01-01
Bruce Buckingham, NASA Public Affairs, introduces Scott Higgenbotham, STS-114 Payload Manager. Higgenbotham gives a power point presentation on the hardware that is going to fly in the Discovery Mission to the International Space Station. He presents a layout of the hardware which includes The Logistics Flight 1 (LF1) launch package configuration Multipurpose Logistics Module (MPLM), External Stowage Platform-2 (ESP-2) and the Lightweight Mission Peculiar Equipment Support Structure Carrier (LMC). He explains these payloads in detail. The LF-1 team is also shown in the International Space Station Processing Facility. This presentation ends with a brief question and answer period.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny is ready to move into the orbiter'''s payload bay from the Payload Changeout Room. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Technicians in the Payload Changeout Room oversee the transfer of the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
Coupled loads analysis for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Eldridge, J.
1992-01-01
Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.
2008-10-21
CAPE CANAVERAL, Fla. - The payload canister containing the payload for space shuttle Endeavour's STS-126 mission rolls out of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Inside the canister are the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. The canister next will be transported to the Canister Rotation Facility to raise it to vertical and then will be taken to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in Endeavour's payload bay. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
Space station operations task force. Panel 3 report: User development and integration
NASA Technical Reports Server (NTRS)
1987-01-01
The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
STS-102 MPLM Leonardo moves into PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Inside the payload changeout room on the Rotating Service Structure, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready for the payload ground-handling mechanism (PGHM) to remove it from the canister. A worker beneath the MPLM checks equipment. Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.
STS-97 P6 truss moves to a payload transport canister
NASA Technical Reports Server (NTRS)
2000-01-01
As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister at right for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-123 crew get ready to inspect part of the payload for the mission, the Special Purpose Dexterous Manipulator, known as Dextre. Seen in front are Pilot Gregory Johnson and Mission Specialist Takao Doi, who represents the Japanese Aerospace and Exploration Agency. Dextre will work with the mobile base and Canadarm2 on the International Space Station to perform critical construction and maintenance tasks. The crew is at Kennedy for crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2013-01-01
NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.
GSFC contamination monitors for Space Station
NASA Technical Reports Server (NTRS)
Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.
1988-01-01
This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.
STS-105 ICC is moved to the payload canister for transport to pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- A crane is attached to the Integrated Cargo Carrier in the Space Station Processing Facility in order to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9
STS-105 ICC is moved to the payload canister for transport to pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Space Station Processing Facility lifts the Integrated Cargo Carrier from its workstand to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9
STS-105 ICC is moved to the payload canister for transport to pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Space Station Processing Facility moves the Integrated Cargo Carrier toward the payload canister (right). The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo already in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9
Lewis Wooten in the MSFC Payload Operations Integration facility.
2015-04-13
LEWIS WOOTEN, NEW DIRECTOR OF THE MISSION OPERATIONS LABORATORY AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, MANAGES OPERATIONS IN THE PAYLOAD OPERATIONS INTEGRATION CENTER-THE COMMAND POST FOR ALL SCIENCE AND RESEARCH ACTIVITIES ON THE INTERNATIONAL SPACE STATION
2012-04-06
ISS030-E-200591 (6 April 2012) --- In the International Space Station?s Destiny laboratory, NASA astronaut Dan Burbank (left), Expedition 30 commander, uses the Health Maintenance System Tonometry payload to perform an intraocular pressure test on NASA astronaut Don Pettit, flight engineer. The activity was supervised via live Ku-band video by medical ground personnel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the selection of crew for the Space Station Freedom. It is recognized that the Space Station has... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Scope. § 1214.300 Section § 1214.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space...
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph J.; Jordan, Lee P.
2008-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.
Education Payload Operation - Kit D
NASA Technical Reports Server (NTRS)
Keil, Matthew
2009-01-01
Education Payload Operation - Kit D (EPO-Kit D) includes education items that will be used to support the live International Space Station (ISS) education downlinks and Education Payload Operation (EPO) demonstrations onboard the ISS. The main objective of EPO-Kit D supports the National Aeronautics and Space Administration (NASA) goal of attracting students to study and seek careers in science, technology, engineering, and mathematics.
On-orbit spacecraft/stage servicing during STS life cycle
NASA Technical Reports Server (NTRS)
1984-01-01
A comprehensive and repesentative set of shuttle payloads was identified for shuttle and space station servicing missions. The classes of servicing functions were determined and the general servicing support required for the set of referenced spacecraft was allocated. A candidtate strawman space station was depicted from a synthesis of space station concepts derived from NASA space station architecture studies done by eight contractors. The shuttle servicing hardware and kits were identified and their applicability in transitioning servicing capability to the space station was evaluated.
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister waits at the base of the Rotating Service Structure (RSS) with the P6 integrated truss segment inside. The canister will be lifted up to the payload changeout room (PCR) where the P6 will be removed for transfer to Space Shuttle Endeavour’s payload bay. The PCR is the enclosed, environmentally controlled portion of the RSS that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister waits at the base of the Rotating Service Structure (RSS) with the P6 integrated truss segment inside. The canister will be lifted up to the payload changeout room (PCR) where the P6 will be removed for transfer to Space Shuttle Endeavour’s payload bay. The PCR is the enclosed, environmentally controlled portion of the RSS that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
HOST payload for STS-95 being moved into SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The HOST (the Hubble Space Telescope Orbital Systems Test) payload is uncrated in the Space Station Processing Facility (SSPF). HOST is scheduled to fly on the STS-95 mission, planned for launch on Oct. 29, 1998. The mission includes other research payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
2014-07-24
The Optical PAyload for Lasercomm Science OPALS undergoes final inspection prior to shipment to NASA Kennedy Space Center. OPALS was launched to the International Space Station from Cape Canaveral Air Force Station in Florida on April 18, 2014.
Unity connecting module placed in new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Space Station Mission Planning System (MPS) development study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Klus, W. J.
1987-01-01
The basic objective of the Space Station (SS) Mission Planning System (MPS) Development Study was to define a baseline Space Station mission plan and the associated hardware and software requirements for the system. A detailed definition of the Spacelab (SL) payload mission planning process and SL Mission Integration Planning System (MIPS) software was derived. A baseline concept was developed for performing SS manned base payload mission planning, and it was consistent with current Space Station design/operations concepts and philosophies. The SS MPS software requirements were defined. Also, requirements for new software include candidate programs for the application of artificial intelligence techniques to capture and make more effective use of mission planning expertise. A SS MPS Software Development Plan was developed which phases efforts for the development software to implement the SS mission planning concept.
NASA Technical Reports Server (NTRS)
2002-01-01
The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the International Space Station (ISS). EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle. The Racks stay on orbit continually, while experiments are exchanged in and out of the EXPRESS Racks as needed, remaining on the ISS for three months to several years, depending on the experiment's time requirements. A refrigerator-sized Rack can be divided into segments, as large as half of an entire rack or as small as a bread box. Payloads within EXPRESS Racks can operate independently of each other, allowing for differences in temperature, power levels, and schedules. Experiments contained within EXPRESS Racks may be controlled by the ISS crew or remotely by the Payload Rack Officer at the Payload Operations Center at the Marshall Space Flight Center (MSFC). The EXPRESS Rack system was developed by MSFC and built by the Boeing Co. in Huntsville, Alabama. Eight EXPRESS Racks are being built for use on the ISS.
2000-04-11
KENNEDY SPACE CENTER, FLA. -- Seen here in a closeup is a GetAway Special (GAS) known as SEM, part of the payload on mission STS-101, in the payload bay on Space Shuttle Atlantis prior to door closure. The SEM program is student-developed, focusing on the science of zero-gravity and microgravity. Selected student experiments on this sixth venture are testing the effects of space on Idaho tubers, seeds, paint, yeast, film, liquids, electronics and magnetic chips. SEM-06 is one of two GAS experiments. The other is MARS, part of the KSC Space Life Sciences Outreach Program. It includes 20 participating schools (ranging from elementary to high school) from all over the nation and one in Canada who have been involved in KSC Space Life Sciences projects over the past seven years. The MARS payload has 20 tubes filled with materials for various classroom investigations designed by the MARS schools. The primary mission of STS-101 is to deliver logistics and supplies to the International Space Station, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
2000-04-11
KENNEDY SPACE CENTER, FLA. -- Seen here in a closeup is a GetAway Special (GAS) known as SEM, part of the payload on mission STS-101, in the payload bay on Space Shuttle Atlantis prior to door closure. The SEM program is student-developed, focusing on the science of zero-gravity and microgravity. Selected student experiments on this sixth venture are testing the effects of space on Idaho tubers, seeds, paint, yeast, film, liquids, electronics and magnetic chips. SEM-06 is one of two GAS experiments. The other is MARS, part of the KSC Space Life Sciences Outreach Program. It includes 20 participating schools (ranging from elementary to high school) from all over the nation and one in Canada who have been involved in KSC Space Life Sciences projects over the past seven years. The MARS payload has 20 tubes filled with materials for various classroom investigations designed by the MARS schools. The primary mission of STS-101 is to deliver logistics and supplies to the International Space Station, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
STS-110 payload S0 Truss is moved to payload canister in O&C
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building watch as the Integrated Truss Structure S0 is lowered into the payload canister. The S0 truss will soon be on its way to the launch pad for mission STS-110. Part of the payload on Space Shuttle Atlantis, the S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.
2001-07-23
KENNEDY SPACE CENTER, Fla. -- A crane is attached to the Integrated Cargo Carrier in the Space Station Processing Facility in order to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9
2001-07-23
KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Space Station Processing Facility lifts the Integrated Cargo Carrier from its workstand to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
NASA Technical Reports Server (NTRS)
Malarik, Diane C.
2005-01-01
NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.
1994-10-08
Designed by the crew members, the STS-63 crew patch depicts the orbiter maneuvering to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission.
OA-7 CYGNUS Unbagging, Move from Airlock to Highbay, Lift to Stand at PHSF
2017-02-24
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians remove the protective covering from Orbital ATK's CYGNUS pressurized cargo module on a KAMAG transporter. CYGNUS is then moved from the airlock to the highbay inside the PHSF, followed by the payload being lifted and positioned on a work stand for final propellant loading and late cargo stowage. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
Software for Remote Monitoring of Space-Station Payloads
NASA Technical Reports Server (NTRS)
Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James
2003-01-01
Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.
MPLM Donatello is offloaded at the SLF
NASA Technical Reports Server (NTRS)
2001-01-01
At the Shuttle Landing Facility, cranes help offload the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane. The third of three for the International Space Station, the module will be moved on a transporter to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
The Joint Airlock Module is moved to a payload canister in the O&C
NASA Technical Reports Server (NTRS)
2000-01-01
The Joint Airlock Module is suspended by an overhead crane in the Operations and Checkout Building before being moved and placed into the payload canister for transfer to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham and Chuong Nguyen, payload manager and deputy payload manager respectively for the International Space Station, stand in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.
1998-10-22
In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
1998-10-22
In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time
STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - The Multi-Purpose Logistics Module Leonardo is moved into Space Shuttle Discovery'''s payload bay. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station.
The lid of the container for the Mobile Base System, part of the Canadian arm, is prepared for remov
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Space Station Processing Facility, workers prepare to remove the lid of a container holding the Mobile Base System (MBS). The MBS is part of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS), which is part of the payload on mission STS-100 to the International Space Station.
Modal Testing of Seven Shuttle Cargo Elements for Space Station
NASA Technical Reports Server (NTRS)
Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)
2001-01-01
From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.
STS-79 payload SPACEHAB in PCR at LC39A
NASA Technical Reports Server (NTRS)
1996-01-01
Workers in the Payload Changeout Room (PCR) at Launch Pad 39A are preparing to close the payload doors for flight on the Space Shuttle Atlantis, targeted for liftoff on Mission STS-79 around September 12. The SPACEHAB Double Module located in the aft area of the payload bay is filled with supplies that will be transferred to the Russian Space Station Mir. STS-79 marks the second flight of a SPACEHAB in support of the Shuttle-Mir dockings, and the first flight of the double-module configuration. The SPACEHAB is connected by tunnel to the Orbiter Docking System (ODS), with the Androgynous Peripheral Docking System (APDS) clearly visible on top of the ODS. The APDS provides the docking interface for the linkup with Mir, while the ODS provides a passageway from the orbiter to the Russian space station and the SPACEHAB.
STS-74 view of MIR Docking module at Pad 39A
NASA Technical Reports Server (NTRS)
1995-01-01
Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the movement of the U.S. Lab Destiny, which is being transferred to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., passes the Astronaut Hall of Fame on its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
Space station attached payload program support
NASA Technical Reports Server (NTRS)
Estes, Maurice G., Jr.; Brown, Bardle D.
1989-01-01
The USRA is providing management and technical support for the peer review of the Space Station Freedom Attached Payload proposals. USRA is arranging for consultants to evaluate proposals, arranging meeting facilities for the reviewers to meet in Huntsville, Alabama and management of the actual review meetings. Assistance in developing an Experiment Requirements Data Base and Engineering/Technical Assessment support for the MSFC Technical Evaluation Team is also being provided. The results of the project will be coordinated into a consistent set of reviews and reports by USRA. The strengths and weaknesses analysis provided by the peer panel reviewers will by used NASA personnel in the selection of experiments for implementation on the Space Station Freedom.
The SPACEHAB payload is installed in the PCR at LC 39A awaiting further STS-89 processing
NASA Technical Reports Server (NTRS)
1997-01-01
The SPACEHAB payload arrived at Launch Pad 39A this morning and was installed in the Payload Changeout Room. Final preparations for liftoff of the STS-89 mission are under way. Endeavour and its crew of seven are targeted for a Jan. 22 launch. STS-89 will be the eighth Shuttle docking with the Russian Space Station Mir as part of Phase 1 of the International Space Station program. Mission Specialist Andy Thomas, Ph.D., will succeed Mission Specialist David Wolf, M.D., as the last NASA astronaut scheduled for a long-duration stay aboard Mir.
2000-11-10
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is lowered into the payload transport canister under the watchful eyes of the worker inside the canister as well as the workers on the sides. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is lowered into the payload transport canister under the watchful eyes of the worker inside the canister as well as the workers on the sides. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
Space Station Freedom resource allocation accommodation of technology payload requirements
NASA Technical Reports Server (NTRS)
Avery, Don E.; Collier, Lisa D.; Gartrell, Charles F.
1990-01-01
An overview of the Office of Aeronautics, Exploration, and Technology (OAET) Space Station Freedom Technology Payload Development Program is provided, and the OAET Station resource requirements are reviewed. The requirements are contrasted with current proposed resource allocations. A discussion of the issues and conclusions are provided. It is concluded that an overall 20 percent resource allocation is appropriate to support OAET's technology development program, that some resources are inadequate even at the 20 percent level, and that bartering resources among U.S. users and international partners and increasing the level of automation may be viable solutions to the resource constraint problem.
NASA Astrophysics Data System (ADS)
1993-03-01
The symposium includes topics on the Columbus Programme and Precursor missions, the user support and ground infrastructure, the scientific requirements for the Columbus payloads, the payload operations, and the Mir missions. Papers are presented on Columbus Precursor Spacelab missions, the role of the APM Centre in the support of Columbus Precursor flights, the refined decentralized concept and development support, the Microgravity Advanced Research and Support (MARS) Center update, and the Columbus payload requirements in human physiology. Attention is also given to the fluid science users requirements, European space science and Space Station Freedom, payload operations for the Precursor Mission E1, and the strategic role of automation and robotics for Columbus utilization. Other papers are on a joint Austro-Soviet space project AUSTROMIR-91; a study of cognitive functions in microgravity, COGIMIR; the influence of microgravity on immune system and genetic information; and the Mir'92 project. (For individual items see A93-26552 to A93-26573)
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
2007-09-27
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister containing the Italian-built U.S. Node 2 module, called Harmony, is lifted up toward the payload changeout room on Launch Pad 39A. The canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton
A Plasma Rocket Demonstration on the International Space Station
NASA Astrophysics Data System (ADS)
Petro, A.
2002-01-01
in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One feature of this concept is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. For this reason the system is called the Variable Specific Impulse Magneto-plasma Rocket or VASIMR. This ability to vary specific impulse and thrust will allow for optimum low thrust interplanetary trajectories and results in shorter trip times than is possible with fixed specific impulse systems while preserving adequate payload margins. demonstrations are envisioned. A ground-based experiment of a low-power VASIMR prototype rocket is currently underway at the Advanced Space Propulsion Laboratory. The next step is a proposal to build and fly a 25-kilowatt VASIMR rocket as an external payload on the International Space Station. This experiment will provide an opportunity to demonstrate the performance of the rocket in space and measure the induced environment. The experiment will also utilize the space station for its intended purpose as a laboratory with vacuum conditions that cannot be matched by any laboratory on Earth. propulsion on the space station. An electric propulsion system like VASIMR, if provided with sufficient electrical power, could provide continuous drag force compensation for the space station. Drag compensation would eliminate the need for reboosting the station, an operation that will consume about 60 metric tons of propellant in a ten-year period. In contrast, an electric propulsion system would require very little propellant. In fact, a system like VASIMR can use waste hydrogen from the station's life support system as its propellant. This waste hydrogen is otherwise dumped overboard. Continuous drag compensation would also improve the microgravity conditions on the station. So electric propulsion can reduce propellant delivery requirements and thereby increase available payload capacity and at the same time improve the conditions for scientific research. and the space environment. This is a beneficial effect that prevents a charge buildup on the station. The station already operates two dedicated non-propulsive plasma contactor devices for this purpose. A VASIMR rocket would function as an additional plasma contactor. would be delivered to orbit in the Space Shuttle payload bay. It would be mounted on a standard payload attachment structure. After removal from the payload bay by the shuttle robotic arm, it would be handed to the space station robotic arm which would place it at an external payload attach site on the station truss. A mating device for power and data connections exists at the payload site. The experiment would receive one to three kilowatts of power from the station. About 600 watts would be used for cryogenic cooling and control devices. Additional power would be stored in a set of batteries. The VASIMR experiment would be operated for short periods when the batteries can provide power to the amplifiers that feed radio-frequency power to the thruster assembly. The thruster assembly is composed of an inner tube in which the neutral propellant is injected and ionized and a larger tube, which supports the radio frequency antennas, which ionize the gas and heat the plasma. Electromagnet coils that provide the magnetic field to constrain the flow of the plasma and form the magnetic exit nozzle surround these tubes. to this supply are planned for the experiment. The experiment will carry two dedicated propellant tanks which each have the capacity to store all the propellant needed for an experimental program lasting several months. With two propellant tanks, the opportunity exists to perform experiments with more than one type of propellant. Hydrogen is the primary choice for propellant but deuterium and helium are also of interest and might also be included. All the propellant is stored and used in gaseous form at ambient temperature. rocket. There is a superconducting electromagnet that will need to be maintained at cryogenic temperatures in order to operate properly. The magnet is in close proximity to the plasma so a combination of compact insulation and passive and active heat transport techniques will be employed. activity requirements. However, provisions will be included to capitalize on the presence of humans in case repairs or servicing is required. The batteries, propellant tanks, and electronic components will be designed for on-orbit removal and replacement, if necessary. could be located on the station to provide useful thrust for drag compensation. In order to provide power for continuous thrusting, it may be necessary to augment the power generation system for the station. Another attractive possibility is to develop an electric propulsion testbed for the space station. This testbed could be used for testing and certifying a variety of propulsion systems at various stages of maturity while providing thrust for the space station. This station facility would be a valuable asset for commercial and government space transportation programs. more powerful and capable propulsion systems that will be demonstrated on free-flying spacecraft in near-Earth space and eventually on missions to the planets.
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads is lifted toward the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1983-01-01
The economic benefits, cost analysis, and industrial uses of the manned space station are investigated. Mission payload costs are examined in relation to alternative architectures and projected technological evolution. Various approaches to industrial involvement for financing, development, and marketing of space station resources are described.
HOST payload for STS-95 being moved into SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The HOST (the Hubble Space Telescope Orbital Systems Test) payload is moved into the high bay of the Space Station Processing Facility (SSPF). HOST is scheduled to fly on the STS- 95 mission, planned for launch on Oct. 29, 1998. The mission includes other research payloads such as the Spartan solar- observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.
1997-02-13
KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.
1998-03-18
KENNEDY SPACE CENTER, FLA. -- The alpha-magnetic spectrometer (AMS-1) is lifted in KSC’s MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery
1998-03-18
KENNEDY SPACE CENTER, FLA. -- The alpha-magnetic spectrometer (AMS-1) is lifted in KSC’s MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery
ECOSTRESS and LEE - SpaceX CRS-15 Mission
2018-06-02
The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), pictured at the bottom, and the Latching End Effector (LEE), pictured at the top, are integrated into the unpressurized SpaceX Dragon truck June 2, 2018, at the SpaceX facility on Cape Canaveral Air Force Station in Florida. The payloads will be carried to the International Space Station on SpaceX's 15th Commercial Resupply Services mission. ECOSTRESS will measure the temperature of plants and use that information to better understand how much water plants need and how they respond to stress. The Canadian Space Agency is supplying LEE for the Canadarm2 as a spare to replace a failed unit removed by astronauts during a spacewalk in 2017. Each end of the Canadarm2 robotic arm has an identical LEE, which acts like a "hand" to grapple payloads and visiting cargo spaceships.
2003-08-20
KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Interactions between the Space Station and the environment: A preliminary assessment of EMI
NASA Technical Reports Server (NTRS)
Murphy, G. B.; Garrett, Henry B.
1990-01-01
A review of the interactions between proposed Space Station systems/payloads and the environment that contribute to electromagnetic interference was performed. Seven prime sources of interference have been identified. These are: The Space Station power system; active experiments such as beam injection; ASTROMAG; ram and wake density gradients; pick up ions produced by vented or offgassed clouds; waves produced by current loops that include the plasma and structure; arcing from high voltage solar arrays (or possible ESD in polar orbit). This review indicates that: minimizing leakage current from the 20 kHz power system to the structure; keeping the surfaces of the Space Station structure, arrays, and radiators nonconducting; minimizing venting of payloads or systems to non-operational periods; careful placement of payloads sensitive to magnetic field perturbations or wake noise; and designing an operational timeline compatible with experiment requirement are the most effective means of minimizing the effects of this interference. High degrees of uncertainty exist in the estimates of magnitudes of gas emission induced EMI, radiation of 20 kHz and harmonics, ASTROMAG induced interference, and arc threshold/frequency of the solar array. These processes demand further attention so that mitigation efforts are properly calibrated.
Space Shuttle payload accommodation and trends in customer demands
NASA Technical Reports Server (NTRS)
Hedin, Daniel L.; Wilson, James R.
1992-01-01
This paper will review payload demands for Shuttle resources and services in the pre-Space Station Freedom time frame. Requests for flight in both the Orbiter cargo bay and middeck will be considered. Factors limiting more efficient use of the Shuttle will also be discussed.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
The U.S. Laboratory Destiny, a component of the International Space Station, glides above two Multi-Purpose Logistics Modules (MPLMs), Raffaello (far left) and Leonardo, in the Space Station Processing Facility. Destiny is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
- The U.S. Laboratory Destiny, a component of the International Space Station, is lifted off a weigh stand (below) in the Space Station Processing Facility. The module is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2013-01-01
A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.
Payload Planning for the International Space Station
NASA Technical Reports Server (NTRS)
Johnson, Tameka J.
1995-01-01
A review of the evolution of the International Space Station (ISS) was performed for the purpose of understanding the project objectives. It was requested than an analysis of the current Office of Space Access and Technology (OSAT) Partnership Utilization Plan (PUP) traffic model be completed to monitor the process through which the scientific experiments called payloads are manifested for flight to the ISS. A viewing analysis of the ISS was also proposed to identify the capability to observe the United States Laboratory (US LAB) during the assembly sequence. Observations of the Drop-Tower experiment and nondestructive testing procedures were also performed to maximize the intern's technical experience. Contributions were made to the meeting in which the 1996 OSAT or Code X PUP traffic model was generated using the software tool, Filemaker Pro. The current OSAT traffic model satisfies the requirement for manifesting and delivering the proposed payloads to station. The current viewing capability of station provides the ability to view the US LAB during station assembly sequence. The Drop Tower experiment successfully simulates the effect of microgravity and conveniently documents the results for later use. The non-destructive test proved effective in determining stress in various components tested.
Space station mobile transporter
NASA Technical Reports Server (NTRS)
Renshall, James; Marks, Geoff W.; Young, Grant L.
1988-01-01
The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.
SOT: A rapid prototype using TAE windows
NASA Technical Reports Server (NTRS)
Stephens, Mark; Eike, David; Harris, Elfrieda; Miller, Dana
1986-01-01
The development of the window interface extension feature of the Transportable Applications Executive (TAE) is discussed. This feature is being used to prototype a space station payload interface in order to demonstrate and assess the benefits of using windows on a bit mapped display and also to convey the concept of telescience, the control and operation of space station payloads from remote sites. The prototype version of the TAE with windows operates on a DEC VAXstation 100. This workstation has a high resolution 19 inch bit mapped display, a keyboard and a three-button mouse. The VAXstation 100 is not a stand-alone workstation, but is controlled by software executing on a VAX/8600. A short scenario was developed utilizing the Solar Optical Telescope (SOT) as an example payload. In the scenario the end-user station includes the VAXstation 100 plus an image analysis terminal used to display the CCD images. The layout and use of the prototype elements, i.e., the root menu, payload status window, and target acquisition menu is described.
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
2007-02-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, members of the STS-118 crew learn important information from technicians about the control moment gyro (CMG) in front of them that is part of the payload on their mission. Second from left is Mission Specialist Tracy Caldwell; at right are Mission Specialists Richard Mastracchio (pointing) and Clayton Anderson, who will be flying on STS-118 to join the Expedition 15 crew as flight engineer on the International Space Station. The CMG will replace a faulty one on the International Space Station. The payload also includes the SPACEHAB single cargo module, the third starboard truss segment (ITS S5) and the external stowage platform 3 (ESP3). STS-118 is targeted to launch June 28 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
2000-09-13
KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT
2000-09-13
KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT
2001-01-03
KENNEDY SPACE CENTER, FLA. -- In the Payload Changeout Room at Launch Pad 39A, a technician works switches on the Payload Ground-Handling Mechanism hook instrumentation unit that will move the U.S. Lab Destiny out of the payload canister and into the PCR. Destiny will then be transferred to the payload bay of Atlantis for mission STS-98. Destiny, a key element in the construction of the International Space Station is designed for space science experiments. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST
2007-09-27
KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, begins taking its cargo to Launch Pad 39A. At the pad, the canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton
2007-09-27
KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, arrives on Launch Pad 39A. The canister will be lifted to the payload changeout room, seen at the top center, and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Behind the workers at left is the Joint Airlock Module. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
NASA Technical Reports Server (NTRS)
1994-01-01
Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.
2001-07-20
KENNEDY SPACE CENTER, Fla. -- STS-105 Pilot Rick Sturckow waits for his helmet during suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, left, of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
Total & Spectral Solar Irradiance Sensor (TSIS) EVA Tool Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
2000-10-02
KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Discovery’s payload bay, STS-92 Mission Specialist William S. McArthur Jr. explains something about the Pressurized Mating Adapter in front of him to other Mission Specialists Michael E. Lopez-Alegria and Peter J.K. Wisoff. The STS-92 crew has been inspecting the payload in preparation for launch Oct. 5, 2000. The mission is the fifth flight for the construction of the International Space Station. The payload also includes the Integrated Truss Structure Z-1. During the 11-day mission, four extravehicular activities (EVAs), or space walks, are planned
2000-10-02
KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Discovery’s payload bay, STS-92 Mission Specialist William S. McArthur Jr. explains something about the Pressurized Mating Adapter in front of him to other Mission Specialists Michael E. Lopez-Alegria and Peter J.K. Wisoff. The STS-92 crew has been inspecting the payload in preparation for launch Oct. 5, 2000. The mission is the fifth flight for the construction of the International Space Station. The payload also includes the Integrated Truss Structure Z-1. During the 11-day mission, four extravehicular activities (EVAs), or space walks, are planned
2004-03-18
KENNEDY SPACE CENTER, FLA. - All of the workers involved in the arrival of the Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., gather for a photo. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., arrives at the hangar at the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
The Unity connecting module rests inside the payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module rests inside the open payload bay of the orbiter Endeavour at Launch Pad 39A. At the top of bay is the docking mechanism first used with launches to Mir, the Russian space station. Unity is the first U.S. element of the International Space Station (ISS) and is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.
2007-06-04
KENNEDY SPACE CENTER, FLA. -- After their arrival at KSC, STS-117 crew members take part in a payload bay walkdown on Launch Pad 39A to look at the cargo in Space Shuttle Atlantis. In the bucket are Mission Specialists Patrick Forrester (with camera) and Steven Swanson (far right). The payload includes the S3/S4 integrated truss structure for the International Space Station. STS-117 is scheduled to launch at 7:38 p.m. June 8. During the 11-day mission and three spacewalks, the crew will work with flight controllers at NASA's Johnson Space Center in Houston to install the 17-ton segment on the station's girder-like truss and deploy the set of solar arrays, S3/S4. The mission will increase the space station's power capability in preparation for the arrival of new science modules from the European and Japanese space agencies. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Benavides, Jose; Provencher, Chris; Bualat, Maria; Smith, Marion F.; Mora Vargas, Andres
2017-01-01
At the end of 2017, Astrobee will launch three free-flying robots that will navigate the entire US segment of the ISS (International Space Station) and serve as a payload facility. These robots will provide guest science payloads with processor resources, space within the robot for physical attachment, power, communication, propulsion, and human interfaces.
Stephanie Shelton, a payload communications manager at NASA's Ma
2018-04-19
Stephanie Shelton, a payload communications manager at NASA's Marshall Space Flight Center, joins NASA astronauts Joe Acaba and Mark Vande Hei for a call to the onboard crew of the International Space Station. Vande Hei and Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team..
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
2000-11-14
KENNEDY SPACE CENTER, FLA. -- The payload transport canister, with the P6 integrated truss segment inside, is close to the payload changeout room on the Rotating Service Structure (RSS) at left. The PCR is the enclosed, environmentally controlled portion of the RSS that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and one solid rocket booster showing behind it. When the RSS is closed around Endeavour, the P6 truss will be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- The payload transport canister, with the P6 integrated truss segment inside, is close to the payload changeout room on the Rotating Service Structure (RSS) at left. The PCR is the enclosed, environmentally controlled portion of the RSS that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and one solid rocket booster showing behind it. When the RSS is closed around Endeavour, the P6 truss will be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
SPACEHAB is lowered by crane in the SSPF into the payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
The SPACEHAB Single Module is lowered into the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.
The Light Microscopy Module Design and Performance Demonstrations
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Snead, John H.; Griffin, DeVon W.; Hovenac, Edward A.
2003-01-01
The Light Microscopy Module (LMM) is a state-of-the-art space station payload to provide investigations in the fields of fluids, condensed matter physics, and biological sciences. The LMM hardware will reside inside the Fluids Integrated Rack (FIR), a multi-user facility class payload that will provide fundamental services for the LMM and future payloads. LMM and FIR will be launched in 2005 and both will reside in the Destiny module of the International Space Station (ISS). There are five experiments to be performed within the LMM. This paper will provide a description of the initial five experiments: the supporting FIR subsystems; LMM design; capabilities and key features; and a summary of performance demonstrations.
NASA Technical Reports Server (NTRS)
Cohen, M. M.
1985-01-01
The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.
OPALS on the ISS Artist Concept
2014-07-24
This artist rendition shows the Optical PAyload for Lasercomm Science OPALS operating from the International Space Station. OPALS was launched to the station from Cape Canaveral Air Force Station in Florida on April 18, 2014.
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians oversee the lifting of the control moment gyro, or CMG, from its container. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians help guide the control moment gyroscope, or CMG, onto the small adapter plate assembly. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the control moment gyroscope, or CMG, is placed on the small adapter plate assembly. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the control moment gyroscope, or CMG, is placed on the small adapter plate assembly. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
ISS External Payload Platform - a new opportunity for research in the space environment
NASA Astrophysics Data System (ADS)
Steimle, Christian; Pape, Uwe
The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a 4U CubeSat, which demands miniaturised hardware solutions. But every payload can extensively use all ISS resources required: mass is not limited, power only limited by the payload heat radiation capability, the datalink is a USB 2.0 standard bus enabling a real-time and private data link. The new EPP transforms the station into a true laboratory in space with the capability to support research in various fields: exposure of biologic or material samples, experiments related to the radiation environment in low Earth orbit, and more.
2011-06-17
CAPE CANAVERAL, Fla. -- Workers attach umbilical hoses that maintain a controlled environment inside the canister carrying the Raffaello multi-purpose logistics module (MPLM). The payload was delivered to Launch Pad 39A at NASA's Kennedy Space Center in Florida for space shuttle Atlantis' STS-135 mission to the International Space Station. The canister is being lifted into the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Dimitri Gerondidakis
External Contamination Control of Attached Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Olsen, Randy L.; Huang, Alvin Y.; Steagall, Courtney A.; Schmidl, William D.; Wright, Bruce D.; Koontz, Steven
2012-01-01
The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51263 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51264 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51265 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
2009-09-24
ISS020-E-041981 (24 Sept. 2009) --- The exterior of the Japanese Kibo complex of the International Space Station and the station's Canadarm2 (bottom) are featured in this image photographed by an Expedition 20 crew member on the station. European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, used the controls of the Japanese Experiment Module Robotic Manipulator System (JEM-RMS) in Kibo to grapple and transfer two Japanese payloads from the Exposed Pallet to their Exposed Facility locations -- first HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric and Ionospheric Detection System (HREP), then Superconducting Submillimeter-wave Limb-emission Sounder (SMILES).
2007-07-08
KENNEDY SPACE CENTER, FLA. -- The payload canister is lifted off its transporter up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
2007-07-08
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
Tether System for Exchanging Payloads Between the International Space Station and the Lunar Surface
NASA Technical Reports Server (NTRS)
Hoyt, Robert P.
1998-01-01
Systems composed of several rotating and/or hanging tethers may provide a means of exchanging supplies between low Earth orbit facilities and lunar bases without requiring the use of propellant. This work develops methods for designing a tether system capable of repeatedly exchanging payloads between a LEO facility such as the International Space Station or a Space Business Park and a base on the lunar surface. In this system, a hanging tether extended upwards from the LEO facility, places a payload into a slightly elliptical orbit, where it is caught by a rotating tether in a higher elliptical orbit. This rotating tether then tosses the payload to the moon. At the moon, a long rotating "Lunavator" tether catches the payload and deposits it on the surface of the moon. By transporting an equal mass of lunar materials such as oxygen back down to the LEO facility through the tether transport system, the momentum and energy of the system is conserved, allowing frequent traffic between LEO and the lunar surface with minimal propellant requirements.
NASA Technical Reports Server (NTRS)
2003-01-01
Dennis Grounds recently finished a one-year assignment at NASA Headquarters in the Office of Bioastronautics as the Acting Flight Program Manager He has returned to Johnson Space Center (JSC), where he is Director of the International Space Station Bioastronautics Research Program Office with the NASA Life Sciences Projects Division. Under his management, the Human Research Facility (HRF) was developed to support a broad range of scientific investigations pertaining to human adaptation to the spaceflight environment and issues of human space exploration. The HRF rack was developed to international standards in order to be compatible with payloads developed anywhere in the world, thereby streamlining the process of getting payloads on the Space Station. Grounds has worked with NASA for more than 15 years. Prior to joining ISS, he worked with General Electric as a manager of payloads and analysis in support of the NASA Life Science Projects Division at JSC. ASK spoke with Grounds in Washington, D.C., during his Headquarters assignment.
Office of Commercial Programs' research activities for Space Station Freedom utilization
NASA Technical Reports Server (NTRS)
Fountain, James A.
1992-01-01
One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will investigate industrial research topics which range from biotechnology to electronic materials to metallurgy. Some will be designed to make maximum use of the quiescent microgravity conditions in the 'ground-tended' phases during the early years of Space Station Freedom operations.
Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay
NASA Technical Reports Server (NTRS)
2001-01-01
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
NASA Technical Reports Server (NTRS)
Shell, Michael T.; McElyea, Richard M. (Technical Monitor)
2002-01-01
All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.
2010-09-16
ISS024-E-014952 (16 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014934 (16 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014956 (16 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014930 (16 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014981 (17 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014973 (17 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014979 (17 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
Space Station Freedom user's guide
NASA Technical Reports Server (NTRS)
1992-01-01
This guide is intended to inform prospective users of the accommodations and resources provided by the Space Station Freedom program. Using this information, they can determine if Space Station Freedom is an appropriate laboratory or facility for their research objectives. The steps that users must follow to fly a payload on Freedom are described. This guide covers the accommodations and resources available on the Space Station during the Man-Tended Capability (MTC) period, scheduled to begin the end of 1996, and a Permanently Manned Capability (PMC) beginning in late 1999.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1998-11-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, taxis onto the parking apron at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
MPLM Donatello is offloaded at the SLF
NASA Technical Reports Server (NTRS)
2001-01-01
At the Shuttle Landing Facility, workers in cherry pickers (right) help guide offloading of the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
Russian RSC Energia employees inspect DM in SSPF
NASA Technical Reports Server (NTRS)
1995-01-01
Employees of the Russian aerospace company RSC Energia prepare to conduct final inspections of the Russian-built Docking Module in the Space Station Processing Facility at KSC. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.
2001-02-01
An Airbus “Beluga” air cargo plane, The Super Transporter, taxis onto the parking apron at KSC’s Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency’s Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo
STS-100 MPLM Raffaello is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - Suspended by the overhead crane, the Multi-Purpose Logistics Module Raffaello approaches the end of the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.
2007-02-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, members of the STS-118 crew learn important information from technicians about the control moment gyro (CMG) in front of them that is part of the payload on their mission. Second from left is Mission Specialist Tracy Caldwell; at center, behind the CMG, is Mission Specialist Richard Mastracchio; second from right is Mission Specialist Clayton Anderson, who will be flying on STS-118 to join the Expedition 15 crew as flight engineer on the International Space Station. The CMG will replace a faulty one on the International Space Station. The payload also includes the SPACEHAB single cargo module, the third starboard truss segment (ITS S5) and the external stowage platform 3 (ESP3). STS-118 is targeted to launch June 28 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Palguta, T.; Bradley, W.; Stockton, T.
1988-01-01
The purpose is to describe the logistics study background and approach to providing estimates of of logistics support requirements for Office of Space Science and Applications' payloads in the Space Station era. A concise summary is given of the study results. Future logistics support analysis tasks are identified.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room begin moving the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and- control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
2002-08-10
Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.
2001-08-19
Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.
1989-01-01
In June 1989 the Marshall Space Flight Center initiated studies of Space Transfer Vehicle (STV) concepts. A successor to the Orbital Transfer Vehicle (OTV) concept, the STV would be a high-performance space vehicle capable of transferring automated payloads from a Space Station to geosynchronous orbits, the Moon, or planets. Illustrated in this artist's concept are two STV's undergoing aerobraking maneuvers as they approach a Space Station.
The Z1 truss is ready to be moved into Discovery's payload bay
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Payload Changeout Room (PCR), a worker makes sure the Integrated Truss Structure Z1 is ready to be moved into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
Increasing the usefulness of Shuttle with SPACEHAB
NASA Astrophysics Data System (ADS)
Stone, Barbara A.; Rossi, David A.
1992-08-01
SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.
NASA Technical Reports Server (NTRS)
1983-01-01
Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.
STS-110 payload S0 Truss is moved to payload canister in O&C
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, an overhead crane carries the Integrated Truss Structure S0 to the payload canister which will transport it to the launch pad for mission STS-110. Seen below the truss is the Multi-Purpose Logistics Module Donatello, currently not in use. The S0 truss will be part of the payload on Space Shuttle Atlantis. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.
2007-09-27
KENNEDY SPACE CENTER, FLA. -- In full light of day, the payload canister containing the Italian-built U.S. Node 2 module, called Harmony, is in place next to the payload changeout room on Launch Pad 39A. The canister will be opened and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the control moment gyroscope, or CMG, is moved toward the small adapter plate assembly in the foreground. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians help guide the control moment gyroscope, or CMG, toward the small adapter plate assembly below. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
Payload isolation and stabilization by a Suspended Experiment Mount (SEM)
NASA Technical Reports Server (NTRS)
Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.
1992-01-01
Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.
STS-98 Destiny in Atlantis's payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, Atlantis'''s payload bay doors are ready to be closed over the U.S. Laboratory Destiny (lower left). Next to it is the Canadian robotic arm, which will play a major role in moving Destiny to its place on the International Space Station. Destiny, a key element in the construction of the Space Station, is 28 feet long and weighs 16 tons. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will be launched Feb. 7 on STS-98, the seventh construction flight to the ISS.
STS-105 Mission Specialists in slidewire basket during TCDT at pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
2006-08-25
KENNEDY SPACE CENTER, FLA. - At SPACEHAB in Cape Canaveral, Fla., STS-116 Pilot William Oefelein and Commander Mark Polansky relax during equipment familiarization to talk to astronaut Marsha Ivins, who is currently assigned to the Astronaut Office, Space Station/Shuttle Branches for crew equipment, habitability and stowage. Mission crews make frequent trips to the Space Coast to become familiar with the equipment and payloads they will be using. STS-116 will be mission number 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/George Shelton
2001-07-20
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- Expedition Three cosmonaut Mikhail Tyurin (left), Commander Frank Culbertson (center) and cosmonaut Vladimir Nikolaevich Dezhurov (right) pose for a photo inside the slidewire basket that is part of the emergency egress system. They and the STS-105 crew are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., drives past the Vehicle Assembly Building (background, left) and Operations Support Building (background, right) on its way to the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
2000-11-07
Workers in the Space Station Processing Facility gather with the crew of mission STS-97, who are holding the symbolic key representing the turnover of the P6 Integrated Truss Structure, part of the payload on their mission. During the ceremony the P6 truss segment was transferred from International Space Station ground operations to the NASA shuttle integration team. Commander Brent Jett (second from right) received the key in the ceremony. Standing with him are (left to right) Mission Specialists Marc Garneau, Joe Tanner and Carlos Noriega, at left; and Pilot Mike Bloomfield, at right. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST
1995-09-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Russian-built Docking Module is lowered for installation into the payload bay of the space shuttle Atlantis while it is in bay 2 of the Orbiter Processing Facility. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two spacecraft. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission. Photo Credit: NASA
Russian Docking Module is lowered
NASA Technical Reports Server (NTRS)
1995-01-01
The Russian-built Docking Module (DM) is lowered for installation into the payload bay of the Space Shuttle Orbiter Atlantis while the spaceplane is in Orbiter Processing Facility bay 2. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission.
STS-98 Destiny in Atlantis's payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, the U.S. Laboratory Destiny waits in Atlantis'''s payload bay for closure of the payload bay doors. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will be launched Feb. 7 on STS-98, the seventh construction flight to the ISS.
NASA Technical Reports Server (NTRS)
Olsen, Randy; Huang, Alvin; Steagall, Courtney; Kohl, Nathaniel; Koontz, Steve; Worthy, Erica
2017-01-01
The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.
International Space Station (ISS)
2001-02-16
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1986-01-01
Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.
The Mobile Base System, part of the Canadian arm, is revealed inside the container
NASA Technical Reports Server (NTRS)
2000-01-01
With the lid removed, the wrapped Mobile Base System (MBS) is revealed inside its transport container. The MBS is part of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS), which is part of the payload on mission STS-100 to the International Space Station.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-26
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.
STS-96 crew takes part in payload Interface Verification Test
NASA Technical Reports Server (NTRS)
1999-01-01
In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.
2010-05-18
ISS023-E-046806 (18 May 2010) --- Backdropped by Earth?s horizon and the blackness of space, the docked space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1) is visible in the payload bay as the shuttle robotic arm prepares to unberth the module from Atlantis and position it for handoff to the station robotic arm (visible at right). Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station.
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Orbiter Processing Facility bay 3, a crane lowers the main bus switching unit into Discovery's payload bay. The unit is part of the payload on mission STS-120.A main bus switching unit is used for power distribution, circuit protection and fault isolation on the space station's power system. The units route power to proper locations in the space station, such as from solar arrays through umbilicals into the U.S. Lab. The unit will be installed on the external stowage platform 2 attached to the Quest airlock for temporary storage. Discovery is targeted to launch mission STS-120 no earlier than Oct. 20. Photo credit: NASA/Jim Grossmann
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin, a cosmonaut with the Russian Aviation and Space Agency, checks out the slidewire basket at Launch Pad 39A. At right is STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
NASA Technical Reports Server (NTRS)
Hale, Joseph P., II
1994-01-01
Human Factors Engineering support was provided for the 30% design review of the late Space Station Freedom Payload Control Area (PCA). The PCA was to be the payload operations control room, analogous to the Spacelab Payload Operations Control Center (POCC). This effort began with a systematic collection and refinement of the relevant requirements driving the spatial layout of the consoles and PCA. This information was used as input for specialized human factors analytical tools and techniques in the design and design analysis activities. Design concepts and configuration options were developed and reviewed using sketches, 2-D Computer-Aided Design (CAD) drawings, and immersive Virtual Reality (VR) mockups.
SPACEHAB is moved by crane in the SSPF before installation in the payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
The SPACEHAB Single Module is moved by crane over the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.
NASA Technical Reports Server (NTRS)
Lu, George C.
2003-01-01
The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall reduction in software life cycle cost. Due to the limited number of crew hours available on ISS for science research, operational efficiency is a critical customer concern. The current method of upgrading RIC software is a time consuming process; thus, an improved methodology for uploading RIC software is currently under evaluation.
2017-01-31
iss050e037283 (01/31/2017) --- NASA astronaut Peggy Whitson removes the Multi-Purpose Experiment Platform (MPEP) from inside the Kibo airlock aboard the International Space Station. The airlock is used to deploy a number of scientific payloads from inside the station out into the vacuum of space.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.
2000-11-10
In the Space Station Processing Facility, the P6 integrated truss segment travels across the building to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. At left is the airlock module, another component of the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
2000-11-10
The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST
Commerce Lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers prepare the Remote Manipulator System, or robotic arm, for installation on the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51269 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth. Discovery's vertical stabilizer is at left.
The Z1 truss is moved into the Payload Changeout Room
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
The Z1 truss is prepped in the PCR for transfer to Discovery's payload bay
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Payload Changeout Room (PCR), workers prepare to move the Integrated Truss Structure Z1 out of the payload canister. Once inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.
2000-07-31
The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998
2000-07-31
The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998
Space Operations in the Eighties.
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
Highlights activities/accomplishments and future endeavors related to space operations. Topics discussed include the Space Shuttle, recovery/refurbishment operations, payload manipulator, upper stages operations, tracking and data relay, spacelab, space power systems, space exposure facility, space construction, and space station. (JN)
2004-02-13
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2000-12-21
Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector’s performance under actual space flight conditions. The detector’s second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth’s atmosphere necessary to collect sufficient data required to accomplish the science objectives
2000-12-21
Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector’s performance under actual space flight conditions. The detector’s second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth’s atmosphere necessary to collect sufficient data required to accomplish the science objectives
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, moves higher toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure (RSS) (at left) that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and solid rocket boosters showing behind it. When the RSS is closed around Endeavour, the P6 truss will be able to be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, moves higher toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure (RSS) (at left) that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and solid rocket boosters showing behind it. When the RSS is closed around Endeavour, the P6 truss will be able to be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted higher toward the payload changeout room (PCR) above it. The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure (RSS) (at left) that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and one solid rocket booster showing behind it. When the RSS is closed around Endeavour, the P6 truss will be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure (RSS) (on the left) that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and one solid rocket booster showing behind it. When the RSS is closed around Endeavour, the P6 truss will be able to be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure (RSS) (on the left) that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and one solid rocket booster showing behind it. When the RSS is closed around Endeavour, the P6 truss will be able to be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted higher toward the payload changeout room (PCR) above it. The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure (RSS) (at left) that supports payload delivery at the pad. At right is Space Shuttle Endeavour with its orange external tank and one solid rocket booster showing behind it. When the RSS is closed around Endeavour, the P6 truss will be moved into the orbiter’s payload bay. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
Unity connecting module before being moved to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), workers guide the suspended Unity connecting module, part of the International Space Station, as they move it to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module lifted from workstand before move to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility (SSPF) oversee the lifting of the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF) the Unity connecting module, part of the International Space Station, hangs suspended during its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module prepared for move to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility (SSPF) attach a frame to lift the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
NASA Technical Reports Server (NTRS)
Newswander, Daniel; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.
2014-01-01
The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, was introduced last August (2013) during Technical Session V: From Earth to Orbit of the 27th Annual AIAA/USU Conference on Small Satellites. Cyclops is a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense (DoD) Space Test Program (STP) communities to develop a dedicated 50-100 kg class ISS small satellite deployment system. This paper will address the progress of Cyclops through its fabrication, assembly, flight certification, and on-orbit demonstration phases. It will also go into more detail regarding its anatomy, its satellite deployment concept of operations, and its satellite interfaces and requirements. Cyclops is manifested to fly on Space-X 4 which is currently scheduled in July 2014 with its initial satellite deployment demonstration of DoD STP's SpinSat and UT/TAMU's Lonestar satellites being late summer or fall of 2014.
Using Distributed Operations to Enable Science Research on the International Space Station
NASA Technical Reports Server (NTRS)
Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna
2011-01-01
In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload operations and discusses the benefits and drawbacks.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Technicians in the Payload Changeout Room work to secure the U.S. Lab Destiny in the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and- control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
Space station payload operations scheduling with ESP2
NASA Technical Reports Server (NTRS)
Stacy, Kenneth L.; Jaap, John P.
1988-01-01
The Mission Analysis Division of the Systems Analysis and Integration Laboratory at the Marshall Space Flight Center is developing a system of programs to handle all aspects of scheduling payload operations for Space Station. The Expert Scheduling Program (ESP2) is the heart of this system. The task of payload operations scheduling can be simply stated as positioning the payload activities in a mission so that they collect their desired data without interfering with other activities or violating mission constraints. ESP2 is an advanced version of the Experiment Scheduling Program (ESP) which was developed by the Mission Integration Branch beginning in 1979 to schedule Spacelab payload activities. The automatic scheduler in ESP2 is an expert system that embodies the rules that expert planners would use to schedule payload operations by hand. This scheduler uses depth-first searching, backtracking, and forward chaining techniques to place an activity so that constraints (such as crew, resources, and orbit opportunities) are not violated. It has an explanation facility to show why an activity was or was not scheduled at a certain time. The ESP2 user can also place the activities in the schedule manually. The program offers graphical assistance to the user and will advise when constraints are being violated. ESP2 also has an option to identify conflict introduced into an existing schedule by changes to payload requirements, mission constraints, and orbit opportunities.
Research progress and accomplishments on International Space Station
NASA Technical Reports Server (NTRS)
Roe, Lesa B.; Uri, John J.
2003-01-01
The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Research progress and accomplishments on International Space Station.
Roe, Lesa B; Uri, John J
2003-01-01
The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
The Unity connecting module rests inside the payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
This fish-eye view of the Unity connecting module reveals its immense size relative to the workers (below right). Unity rests inside the open payload bay of the orbiter Endeavour on Launch Pad 39A. At the top of bay is the docking mechanism first used with launches to Mir, the Russian space station. Unity is the first U.S. element of the International Space Station (ISS) and is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2011-06-17
CAPE CANAVERAL, Fla. -- Sunrise at NASA's Kennedy Space Center in Florida finds space shuttle Atlantis on Launch Pad 39A after the payload canister carrying the Raffaello multi-purpose logistics module (MPLM) was lifted into the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on space shuttle Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1983-01-01
Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members get a close look inside space shuttle Endeavour's payload bay. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Troy Cryder
2006-05-17
KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/George Shelton
2000-09-13
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT
2000-09-13
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1992-01-01
Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Allison Caron, a QinetiQ mechanical engineer, checks out part of the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
De La Cruz, Melinda; Henderson, Steve
2016-01-01
The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.
Expedition Three crew poses for photo on Fixed Service structure
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses on the Fixed Service Structure at Launch Pad 39A. From left are cosmonaut Mikhail Tyurin, commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
Expedition Three crew clasp hands for photo at pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
Expedition Three crew poses for photo at pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
Space Transportation System (STS) propellant scavenging system study. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
1985-01-01
The objectives are to define the most efficient and cost effective methods for scavenging cryogenic and storable propellants and then define the requirements for these scavenging systems. For cryogenic propellants, scavenging is the transfer of propellants from the Shuttle orbiter external tank (ET) and/or main propulsion subsystems (MPS) propellant lines into storage tanks located in the orbiter payload bay for delivery to the user station by a space based transfer stage or the Space Transportation System (STS) by direct insertion. For storable propellants, scavenging is the direct transfer from the orbital maneuvering subsystem (OMS) and/or tankage in the payload bay to users in LEO as well as users in the vicinity of the Space Station.