NASA space station automation: AI-based technology review
NASA Technical Reports Server (NTRS)
Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.
1985-01-01
Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.
Sensitivity study of Space Station Freedom operations cost and selected user resources
NASA Technical Reports Server (NTRS)
Accola, Anne; Fincannon, H. J.; Williams, Gregory J.; Meier, R. Timothy
1990-01-01
The results of sensitivity studies performed to estimate probable ranges for four key Space Station parameters using the Space Station Freedom's Model for Estimating Space Station Operations Cost (MESSOC) are discussed. The variables examined are grouped into five main categories: logistics, crew, design, space transportation system, and training. The modification of these variables implies programmatic decisions in areas such as orbital replacement unit (ORU) design, investment in repair capabilities, and crew operations policies. The model utilizes a wide range of algorithms and an extensive trial logistics data base to represent Space Station operations. The trial logistics data base consists largely of a collection of the ORUs that comprise the mature station, and their characteristics based on current engineering understanding of the Space Station. A nondimensional approach is used to examine the relative importance of variables on parameters.
NASA space station automation: AI-based technology review. Executive summary
NASA Technical Reports Server (NTRS)
Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.
1985-01-01
Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.
NASA Technical Reports Server (NTRS)
1983-01-01
Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.
Adaption of space station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1992-01-01
Space Station Freedom technology will have the potential for numerous applications in an early lunar base program. The benefits of utilizing station technology in such a fashion include reduced development and facility costs for lunar base systems, shorter schedules, and verification of such technology through space station experience. This paper presents an assessment of opportunities for using station technology in a lunar base program, particularly in the lander/ascent vehicles and surface modules.
33-Foot-Diameter Space Station Leading to Space Base
NASA Technical Reports Server (NTRS)
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Development of a preprototype trace contaminant control system. [for space stations
NASA Technical Reports Server (NTRS)
1977-01-01
The steady state contaminant load model based on shuttle equipment and material test programs, and on the current space station studies was revised. An emergency upset contaminant load model based on anticipated emergency upsets that could occur in an operational space station was defined. Control methods for the contaminants generated by the emergency upsets were established by test. Preliminary designs of both steady state and emergency contaminant control systems for the space station application are presented.
The lid of the container for the Mobile Base System, part of the Canadian arm, is prepared for remov
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Space Station Processing Facility, workers prepare to remove the lid of a container holding the Mobile Base System (MBS). The MBS is part of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS), which is part of the payload on mission STS-100 to the International Space Station.
NASA Technical Reports Server (NTRS)
1990-01-01
Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.
Assembling, maintaining and servicing Space Station
NASA Technical Reports Server (NTRS)
Doetsch, K. H.; Werstiuk, H.; Creasy, W.; Browning, R.
1987-01-01
The assembly, maintenance, and servicing of the Space Station and its facilities are discussed. The tools and facilities required for the assembly, maintenance, and servicing of the Station are described; the ground and transportation infrastructures needed for the Space Station are examined. The roles of automation and robotics in reducing the EVAs of the crew, minimizing disturbances to the Space Station environment, and enhancing user friendliness are investigated. Servicing/maintenance tasks are categorized based on: (1) urgency, (2) location of servicing/maintenance, (3) environmental control, (4) dexterity, (5) transportation, (6) crew interactions, (7) equipment interactions, and (8) Space Station servicing architecture. An example of a servicing mission by the Space Station for the Hubble Space Telescope is presented.
Space station operations task force. Panel 3 report: User development and integration
NASA Technical Reports Server (NTRS)
1987-01-01
The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.
TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system
NASA Technical Reports Server (NTRS)
Manner, David B.
1990-01-01
Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.
Small space station electrical power system design concepts
NASA Technical Reports Server (NTRS)
Jones, G. M.; Mercer, L. N.
1976-01-01
A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.
47 CFR 25.273 - Duties regarding space communications transmissions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space stations...
47 CFR 25.273 - Duties regarding space communications transmissions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space stations...
47 CFR 25.273 - Duties regarding space communications transmissions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space stations...
47 CFR 25.273 - Duties regarding space communications transmissions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... angles for proper illumination of a given transponder. (c) Space station licensees are responsible for.... Based on this information, space station licensees shall exchange among themselves general technical... any potential cases of unacceptable interference between their satellite systems. (d) Space stations...
Space station accommodations for lunar base elements: A study
NASA Technical Reports Server (NTRS)
Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.
1987-01-01
The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.
The US space station: Potential base for a spaceborne microwave facility
NASA Technical Reports Server (NTRS)
Mcconnell, D.
1983-01-01
Concepts for a U.S. space station were studied to achieve the full potential of the Space Shuttle and to provide a more permanent presence in space. The space station study is summarized in the following questions: Given a space station in orbit in the 1990's, how should it best be used to achieve science and applications objectives important at that time? To achieve those objectives, of what elements should the station be comprised and how should the elements be configured and equipped. These questions are addressed.
NASA Technical Reports Server (NTRS)
1987-01-01
The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.
JPL-20180620-ECOSTRf-0001-NASAs ECOSTRESS on Space Station video file
2018-06-25
NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is a new instrument that will provide a unique, space-based measurement of how plants respond to changes in water availability. ECOSTRESS will launch from Cape Canveral Air Force Station in Florida no earlier than June 29, 2018 and will be installed on the International Space Station.
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
NASA Technical Reports Server (NTRS)
1971-01-01
The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1985-01-01
The history of the concept of a space station is briefly considered, taking into account a story written by Hale (1869), quantitative work provided by Oberth and Tsiolkovsky, von Braun, and the U.S. decision regarding the establishment of a space station. Arguments in favor of constructing a space station are related to the utility of a laboratory in earth orbit, the importance of a repair and maintenance base for satellites, the provision of capabilities for the commercial utilization of space, and the employment of a space station as a staging base for missions to the moon, Mars, and, possibly, the asteroids. Plans for the implementation of the Space Station concept are discussed, taking into account also legal issues involved in such an implementation. Attention is given to questions regarding the applicability of the Liability convention, U.S. domestic law, the domestic law of other countries, and four treaties.
Space station interior noise analysis program
NASA Technical Reports Server (NTRS)
Stusnick, E.; Burn, M.
1987-01-01
Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
NASA Technical Reports Server (NTRS)
Cohen, M. M.
1985-01-01
The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.
Turnaround operations analysis for OTV. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1988-01-01
Anaylses performed for ground processing, both expendable and reusable ground-based Orbital Transfer Vehicles (OTVs) launched on the Space Transportation System (STS), a reusable space-based OTV (SBOTV) launched on the STS, and a reusable ground-based OTV (GBOTV) launched on an unmanned cargo vehicle and recovered by the Orbiter are summarized. Also summarized are the analyses performed for space processing the reusable SBOTV at the Space Station in low Earth orbit (LEO) as well as the maintenance and servicing of the SBOTV accommodations at the Space Station. In addition, the candidate OTV concepts, design and interface requirements, and the Space Station design, support, and interface requirements are summarized. A development schedule and associated costs for the required SBOTV accommodations at the Space Station are presented. Finallly, the technology development plan to develop the capability to process both GBOTVs and SBOTVs are summarized.
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Space construction base support requirements for environmental control and life support systems
NASA Technical Reports Server (NTRS)
Thiele, R. J.; Secord, T. C.; Murphy, G. L.
1977-01-01
A Space Station analysis study is being performed for NASA which identifies cost-effective Space Station options that can provide a space facility capable of performing space construction, space manufacturing, cosmological research, earth services, and other functions. A space construction base concept for the construction of large structures, such as those needed to implement satellite solar power for earth usage, will be used as a basis for discussing requirements that impact the design selection, level of integration, and operation of environmental control and life support systems (ECLSS). The space construction base configuration also provides a basic Space Station facility that can accommodate biological manufacturing modules, ultrapure glasses manufacturing modules, and modules for other services in a building-block fashion. Examples of special problems that could dictate hardware required to augment the basic ECLSS for autonomous modules will be highlighted. Additionally, overall intravehicular (IVA) and extravehicular (EVA) activities and requirements that could impact the basic station ECLSS degree of closure are discussed.
Lunar base mission technology issues and orbital demonstration requirements on space station
NASA Technical Reports Server (NTRS)
Llewellyn, Charles P.; Weidman, Deene J.
1992-01-01
The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.
Space station needs, attributes, and architectural options: Technology development
NASA Technical Reports Server (NTRS)
Robert, A. C.
1983-01-01
The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.
1991-01-01
This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth, illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station featured a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.
1991-01-01
This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth; illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station features a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.
Space Station - An integrated approach to operational logistics support
NASA Technical Reports Server (NTRS)
Hosmer, G. J.
1986-01-01
Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.
NASA Technical Reports Server (NTRS)
1970-01-01
This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepared the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Eclipse of the Floating Orbs: Controlling Robots on the International Space Station
NASA Technical Reports Server (NTRS)
Wheeler, D. W.
2017-01-01
I will describe the Control Station for a free-flying robot called Astrobee. Astrobee will serve as a mobile camera, sensor platform, and research testbed when it is launched to the International Space Station (ISS)in 2017. Astronauts on the ISS as well as ground-based users will control Astrobee using the Eclipse-based Astrobee Control Station. Designing theControl Station for use in space presented unique challenges, such as allowing the intuitive input of 3D information without a mouse or trackpad. Come to this talk to learn how Eclipse is used in an environment few humans have the chance to visit.
A distributed planning concept for Space Station payload operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey
1994-01-01
The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.
Summary of astronaut inputs on automation and robotics for Space Station Freedom
NASA Technical Reports Server (NTRS)
Weeks, David J.
1990-01-01
Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.
International cooperation in the Space Station programme - Assessing the experience to date
NASA Technical Reports Server (NTRS)
Logsdon, John M.
1991-01-01
The origins and framework for cooperation in the Space Station program are outlined. Particular attention is paid to issues and commitments between the countries and to the political context of the Station partnership. A number of conclusions concerning international cooperation in space are drawn based on the Space Station experience. Among these conclusions is the assertion that an international partnership requires realistic assesments, mutual trust, and strong commitments in order to work.
Proposal for a remotely manned space station
NASA Technical Reports Server (NTRS)
Minsky, Marvin
1990-01-01
The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.
NASA Technical Reports Server (NTRS)
Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.
1986-01-01
A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.
2012-02-17
International Space Station: The International Space Station, or ISS, was built by sixteen nations, including the United States, Canada, Russia, Japan, Brazil, and 11 European nations. Each participating country contributed its expertise. This project was based on cooperative agreements on the design, development, operation, and utilization of the space station. The ISS marked its 10th anniversary of continuous human occupation on Nov. 2, 2010. Since Expedition 1, which launched Oct. 31, 2000, and docked Nov. 2, the space station has been visited by 202 individuals. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
Selected tether applications in space: Phase 2. Executive summary
NASA Technical Reports Server (NTRS)
Thorson, M. H.; Lippy, L. J.
1985-01-01
The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.
Computer-assisted engineering data base
NASA Technical Reports Server (NTRS)
Dube, R. P.; Johnson, H. R.
1983-01-01
General capabilities of data base management technology are described. Information requirements posed by the space station life cycle are discussed, and it is asserted that data base management technology supporting engineering/manufacturing in a heterogeneous hardware/data base management system environment should be applied to meeting these requirements. Today's commercial systems do not satisfy all of these requirements. The features of an R&D data base management system being developed to investigate data base management in the engineering/manufacturing environment are discussed. Features of this system represent only a partial solution to space station requirements. Areas where this system should be extended to meet full space station information management requirements are discussed.
NASA Astrophysics Data System (ADS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-04-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-01-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
NASA Technical Reports Server (NTRS)
Price, K. M.; Russell, P.; Weyandt, C.
1988-01-01
The NASA space station has the potential to provide significant economic benefits to commercial communications satellite operators. The initial reports qunatified the benefits of space-based activities and assessed the impacts on the satellite design and the space station. Results are given for the following additional tasks: quantify the value of satellite retrievability operations and define its operational aspects; evaluate the use of expendable launch vehicles for transportation of satellites from the Earth to the space station; and quantify the economic value of modular satellites that are assembled and serviced in space.
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the front right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the left right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the left right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the front right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
The return of "Gasoline station-park" status into green-open space in DKI Jakarta Province
NASA Astrophysics Data System (ADS)
Kautsar, L. H. R.; Waryono, T.; Sobirin
2017-07-01
The development of gasoline stations in 1970 increased drastically due to the Government support through DKT Jaya Official Note (DKT Jakarta), resulting in a great number of the parks (green open space or RTH - Ruang Terbuka Hijau) converted into a gasoline station. Currently, to meet the RTH target (13.94 % RTH based RTRW [(Rencana Tata Ruang Wilayah) DKT Jakarta 2010], the policy was changed by Decree No.728 year 2009 and Governor Tnstruction No.75 year 2009. Land function of 27 gasoline stations unit must be returned. This study is to determine the appropriateness of gasoline Station-Park conversion into RTH based site and situation approach. The scope of this study was limited only to gasoline stations not converted into RTH. The methodology was the combination of AHP (Analytical Hierarchy Process) and ranking method. Site variables were meant for prone to flooding, the width of land for gasoline station, land status. Situation variables were meant for other public space, availability of other gasoline stations, gasoline stations service, road segments, and the proportions of built space. Analysis study used quantitative descriptive analysis. The results were three of the five gasoline stations were congruence to be converted into a green open space (RTH).
1970-01-01
This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a scientist inserts Apogee wheat seeds into the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists are preparing the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite has been packed down in the base and coverings are being secured to seal the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
OSSA Space Station Freedom science utilization plans
NASA Astrophysics Data System (ADS)
Cressy, Philip J.
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
OSSA Space Station Freedom science utilization plans
NASA Technical Reports Server (NTRS)
Cressy, Philip J.
1992-01-01
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
Space Station - Government and industry launch joint venture
NASA Astrophysics Data System (ADS)
Nichols, R. G.
1985-04-01
After the development of the space transportation system over the last decade, the decision to launch a permanently manned space station was announced by President Reagan in his 1984 State of the Union Address. As a result of work performed by the Space Station Task Force created in 1982, NASA was able to present Congress with a plan for achieving the President's objective. The plan envisions a space station which would cost about $8 billion and be operational as early as 1992. The functions of the Space Station would include the servicing of satellites. In addition, the station would serve as a base for the construction of large space structures, and provide facilities for research and development. The Space Station design selected by NASA is the 'Power Tower', a 450-foot-long truss structure which will travel in orbit with its main axis perpendicular to the earth's surface. Attention is given to the living and working quarters for the crew, the location of earth observation equipment and astronomical instruments, and details regarding the employment of the Station.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
The Mobile Base System, part of the Canadian arm, is revealed inside the container
NASA Technical Reports Server (NTRS)
2000-01-01
With the lid removed, the wrapped Mobile Base System (MBS) is revealed inside its transport container. The MBS is part of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS), which is part of the payload on mission STS-100 to the International Space Station.
Adaption of Space Station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1988-01-01
The possible use of Space Station technology in a lunar base program is discussed, focusing on the lunar lander/ascent vehicles and surface modules. The application of the Space Station data management system, software, and communications, tracking, guidance, navigation, control, and power technologies is examined. The benefits of utilizing this technology for lunar operations are considered.
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
The partnership: Space shuttle, space science, and space station
NASA Technical Reports Server (NTRS)
Culbertson, Philip E.; Freitag, Robert F.
1989-01-01
An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.
Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility
NASA Technical Reports Server (NTRS)
2003-01-01
Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.
Vapor Compression Distillation Flight Experiment
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.
2002-01-01
One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.
International Space Station (ISS)
2001-04-23
The STS-100 mission launched for the International Space Station (ISS) on April 19, 2001 as the sixth station assembly flight. Main objectives included the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2, the installation of a UHF anterna for space-to-space communications for U.S. based space walks, and the delivery of supplies via the Italian Multipurpose Logistics Module (MPLM) "Raffaello". This is an STS-110 onboard photo of Astronaut James S. Voss, Expedition Two flight engineer, peering into the pressurized Mating Adapter (PMA-2) prior hatch opening. The picture was taken by one of the STS-100 crew members inside the PMA.
NASA Technical Reports Server (NTRS)
Freitag, R. F.
1976-01-01
Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.
Analog FM/FM versus digital color TV transmission aboard space station
NASA Technical Reports Server (NTRS)
Hart, M. M.
1985-01-01
Langley Research Center is developing an integrated fault tolerant network to support data, voice, and video communications aboard Space Station. The question of transmitting the video data via dedicated analog channels or converting it to the digital domain for consistancy with the test of the data is addressed. The recommendations in this paper are based on a comparison in the signal-to-noise ratio (SNR), the type of video processing required aboard Space Station, the applicability to Space Station, and how they integrate into the network.
Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hoberecht, M. A.; Le, M.
1986-01-01
The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.
MERI: an ultra-long-baseline Moon-Earth radio interferometer.
NASA Astrophysics Data System (ADS)
Burns, J. O.
Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.
2017-02-15
Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite is packed down in the base and coverings are secured to seal the base. The Apogee wheat seeds are then inserted into the carrier. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Conceptual design and evaluation of selected Space Station concepts, volume 1
NASA Technical Reports Server (NTRS)
1983-01-01
Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process.
Gravitational biology on the space station
NASA Technical Reports Server (NTRS)
Keefe, J. R.; Krikorian, A. D.
1983-01-01
The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.
Space Station UCS antenna pattern computation and measurement. [UHF Communication Subsystem
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Lu, Ba P.; Johnson, Larry A.; Fournet, Jon S.; Panneton, Robert J.; Ngo, John D.; Eggers, Donald S.; Arndt, G. D.
1993-01-01
The purpose of this paper is to analyze the interference to the Space Station Ultrahigh Frequency (UHF) Communication Subsystem (UCS) antenna radiation pattern due to its environment - Space Station. A hybrid Computational Electromagnetics (CEM) technique was applied in this study. The antenna was modeled using the Method of Moments (MOM) and the radiation patterns were computed using the Uniform Geometrical Theory of Diffraction (GTD) in which the effects of the reflected and diffracted fields from surfaces, edges, and vertices of the Space Station structures were included. In order to validate the CEM techniques, and to provide confidence in the computer-generated results, a comparison with experimental measurements was made for a 1/15 scale Space Station mockup. Based on the results accomplished, good agreement on experimental and computed results was obtained. The computed results using the CEM techniques for the Space Station UCS antenna pattern predictions have been validated.
An evaluation of oxygen-hydrogen propulsion systems for the Space Station
NASA Technical Reports Server (NTRS)
Klemetson, R. W.; Garrison, P. W.; Hannum, N. P.
1985-01-01
Conceptual designs for O2/H2 chemical and resistojet propulsion systems for the space station was developed and evaluated. The evolution of propulsion requirements was considered as the space station configuration and its utilization as a space transportation node change over the first decade of operation. The characteristics of candidate O2/H2 auxiliary propulsion systems are determined, and opportunities for integration with the OTV tank farm and the space station life support, power and thermal control subsystems are investigated. OTV tank farm boiloff can provide a major portion of the growth station impulse requirements and CO2 from the life support system can be a significant propellant resource, provided it is not denied by closure of that subsystem. Waste heat from the thermal control system is sufficient for many propellant conditioning requirements. It is concluded that the optimum level of subsystem integration must be based on higher level space station studies.
An AI approach for scheduling space-station payloads at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Castillo, D.; Ihrie, D.; Mcdaniel, M.; Tilley, R.
1987-01-01
The Payload Processing for Space-Station Operations (PHITS) is a prototype modeling tool capable of addressing many Space Station related concerns. The system's object oriented design approach coupled with a powerful user interface provide the user with capabilities to easily define and model many applications. PHITS differs from many artificial intelligence based systems in that it couples scheduling and goal-directed simulation to ensure that on-orbit requirement dates are satisfied.
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is moved toward the base, in the background. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians aid with the lowering of the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, toward the base. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2002-06-19
The Space Shuttle Endeavour's drag chute deploys to slow the orbiter as it rolls out on Runway 22 at Edwards Air Force Base at the conclusion of its 14-day STS-111 mission to the International Space Station.
Alternative strategies for space station financing
NASA Technical Reports Server (NTRS)
Walklet, D. C.; Heenan, A. T.
1983-01-01
The attributes of the proposed space station program are oriented toward research activities and technologies which generate long term benefits for mankind. Unless such technologies are deemed of national interest and thus are government funded, they must stand on their own in the market place. Therefore, the objectives of a United States space station should be based on commercial criteria; otherwise, such a project attracts no long term funding. There is encouraging evidence that some potential space station activities should generate revenues from shuttle related projects within the decade. Materials processing concepts as well as remote sensing indicate substantial potential. Futhermore, the economics and thus the commercial feasibility of such projects will be improved by the operating efficiencies available with an ongoing space station program.
NASA Technical Reports Server (NTRS)
Lundebjerg, Kristen
2016-01-01
The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is lowered toward the base for installation. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
State-of-the art of dc components for secondary power distribution of Space Station Freedom
NASA Technical Reports Server (NTRS)
Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.
1991-01-01
120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.
MS Wisoff in the Mir space station Base Block
1997-02-20
STS081-347-031 (12-22 Jan. 1997) --- Astronaut Peter J. K. (Jeff) Wisoff, is pictured with a small sampling of supplies moved from the Spacehab Double Module (DM) aboard the Space Shuttle Atlantis to Russia's Mir Space Station.
NASA Technical Reports Server (NTRS)
Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.
1986-01-01
The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.
Knowledge-based machine vision systems for space station automation
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1989-01-01
Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.
Habitability in long-term space missions
NASA Technical Reports Server (NTRS)
Mount, Frances E.
1987-01-01
The research (both in progress and completed) conducted for the U.S. Space Station in relation to the crew habitability and crew productivity is discussed. Methods and tasks designed to increase the data base of the man/system information are described. The particular research areas discussed in this paper include human productivity, on-orbit maintenance, vewing requirements, fastener types, and crew quarters. This information (along with data obtained on human interaction with command/control work station, anthropometic factors, crew equipment, galley/wardroom, restraint systems, etc) will be integrated into the common data base for the purpose of assisting the design of the Space Station and other future manned space missions.
Space station automation study-satellite servicing, volume 2
NASA Technical Reports Server (NTRS)
Meissinger, H. F.
1984-01-01
Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.
Space station needs, attributes, and architectural options study
NASA Technical Reports Server (NTRS)
1983-01-01
The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
Space Station technology testbed: 2010 deep space transport
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1993-01-01
A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).
Infrared monitoring of the Space Station environment
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.
1988-01-01
The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Communications satellite systems operations with the space station, volume 2
NASA Technical Reports Server (NTRS)
Price, K.; Dixon, J.; Weyandt, C.
1987-01-01
A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.
Space Station power system autonomy demonstration
NASA Technical Reports Server (NTRS)
Kish, James A.; Dolce, James L.; Weeks, David J.
1988-01-01
The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians help guide the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, into place for installation on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is ready to be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians help guide the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, into place for installation on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is moved across the facility. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
Methodology for designing psychological habitability for the space station.
Komastubara, A
2000-09-01
Psychological habitability is a critical quality issue for the International Space Station because poor habitability degrades performance shaping factors (PSFs) and increases human errors. However, habitability often receives rather limited design attention based on someone's superficial tastes because systematic design procedures lack habitability quality. To improve design treatment of psychological habitability, this paper proposes and discusses a design methodology for designing psychological habitability for the International Space Station.
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Pickett, S. J.; Sage, K. H.
1984-01-01
A computer program for assessing manned space station environmental control and life support systems technology is described. The methodology, mission model parameters, evaluation criteria, and data base for 17 candidate technologies for providing metabolic oxygen and water to the crew are discussed. Examples are presented which demonstrate the capability of the program to evaluate candidate technology options for evolving space station requirements.
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers prepare the Remote Manipulator System, or robotic arm, for installation on the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Adaptive control applied to Space Station attitude control system
NASA Technical Reports Server (NTRS)
Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John
1992-01-01
This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.
Coherent lidar wind measurements from the Space Station base using 1.5 m all-reflective optics
NASA Technical Reports Server (NTRS)
Bilbro, J. W.; Beranek, R. G.
1987-01-01
This paper discusses the space-based measurement of atmospheric winds from the point of view of the requirements of the optical system of a coherent CO2 lidar. A brief description of the measurement technique is given and a discussion of previous study results provided. The telescope requirements for a Space Station based lidar are arrived at through discussions of the desired system sensitivity and the need for lag angle compensation.
A Collection of Technical Papers
NASA Technical Reports Server (NTRS)
1995-01-01
Papers presented at the 6th Space Logistics Symposium covered such areas as: The International Space Station; The Hubble Space Telescope; Launch site computer simulation; Integrated logistics support; The Baikonur Cosmodrome; Probabalistic tools for high confidence repair; A simple space station rescue vehicle; Integrated Traffic Model for the International Space Station; Packaging the maintenance shop; Leading edge software support; Storage information management system; Consolidated maintenance inventory logistics planning; Operation concepts for a single stage to orbit vehicle; Mission architecture for human lunar exploration; Logistics of a lunar based solar power satellite scenario; Just in time in space; NASA acquisitions/logistics; Effective transition management; Shuttle logistics; and Revitalized space operations through total quality control management.
Cooperating Expert Systems For Space Station Power Distribution Management
NASA Astrophysics Data System (ADS)
Nguyen, T. A.; Chiou, W. C.
1987-02-01
In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.
A design optimization process for Space Station Freedom
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Fox, George; Duquette, William H.
1990-01-01
The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.
NASA Technical Reports Server (NTRS)
Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam
1989-01-01
A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.
Early use of Space Station Freedom for NASA's Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
Rhome, Robert C.; O'Malley, Terence F.
1992-01-01
The paper describes microgravity science opportunities inherent to the restructured Space Station and presents a synopsis of the scientific utilization plan for the first two years of ground-tended operations. In the ground-tended utilization mode the Space Station is a large free-flyer providing a continuous microgravity environment unmatched by any other platform within any existing U.S. program. It is pointed out that the importance of this period of early Space Station mixed-mode utilization between crew-tended and ground-tended approaches is of such magnitude that Station-based microgravity science experiments many become benchmarks to the disciplines involved. The traffic model that is currently being pursued is designed to maximize this opportunity for the U.S. microgravity science community.
NASA Technical Reports Server (NTRS)
1985-01-01
An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.
NASA Astrophysics Data System (ADS)
Titov, V. A.
2018-03-01
The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, a worker helps to attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Crewmember activity in the middeck and Mir Space Station Base Block
2016-08-24
STS091-361-034 (2-12 June 1998) --- Andrew S.W. Thomas signs a plaque containing the names of all the visitors to Russia's Mir space station. Thomas is the final of seven NASA astronauts to serve as a guest cosmonaut researcher aboard Mir as part of International Space Station (ISS) Phase I. Looking on in the background are astronauts Franklin R. Chang-Diaz, payload commander; and Janet L. Kavandi, mission specialist.
Space station systems analysis study. Part 3: Documentation. Volume 5: Cost and schedule data
NASA Technical Reports Server (NTRS)
1977-01-01
Cost estimates for the space station systems analysis were recorded. Space construction base costs and characteristics were cited as well as mission hardware costs and characteristics. Also delineated were cost ground rules, the program schedule, and a detail cost estimate and funding distribution.
Engineering graphics data entry for space station data base
NASA Technical Reports Server (NTRS)
Lacovara, R. C.
1986-01-01
The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.
2009-09-15
EDWARDS AIR FORCE BASE, Calif. – Disney’s space ranger Buzz Lightyear returned from space on Sept. 11 aboard space shuttle Discovery’s STS-128 mission after 15 months aboard the International Space Station. His time on the orbiting laboratory will be celebrated in a ticker-tape parade together with his space station crewmates and former Apollo 11 moonwalker Buzz Aldrin on Oct. 2 at Walt Disney World in Florida.
Space Station-based deep-space optical communication experiments
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Schwartz, Jon A.
1988-01-01
A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.
2017-12-19
Being able to identify microbes in real time aboard the International Space Station, without having to send them back to Earth for identification first, would be revolutionary for the world of microbiology and space exploration, and the Genes in Space-3 team turned that possibility into a reality this year when it completed the first-ever sample-to-sequence process entirely aboard the space station. This advance could aid in the ability to diagnose and treat astronaut ailments in real time, as well as assisting in the identification of DNA-based life on other planets. It could also benefit other experiments aboard the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001160_Sequencing_the_Unknown _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians adjust the cables of an overhead crane on the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre. The arm will be moved to and installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians begin raising the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, for its move across the facility. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
JPRS report: Science and technology. Central Eurasia: Space
NASA Astrophysics Data System (ADS)
1994-12-01
Translated articles cover the following topics: plasma instabilities and space vehicles, need discussed for protection against space catastrophes, Russians offer new energy concept for space stations, Russian space projects: Martian research, multi-impulse rendezvous trajectory for two spacecraft in circular orbit, placement of spacecraft into orbit around Mars with aerobraking, model of the shielding for the inhabited compartments of the base module of the Mir station, and measurement of the background electrostatic and variable electric fields on the outer surface of the Kvant module of the Mir orbital station. There are 25 translated articles in this 28 December 1994 edition.
Knowledge-based vision for space station object motion detection, recognition, and tracking
NASA Technical Reports Server (NTRS)
Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III
1987-01-01
Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.
Space Station tethered refueling facility operations
NASA Technical Reports Server (NTRS)
Kiefel, E. R.; Rudolph, L. K.; Fester, D. A.
1986-01-01
The space-based orbital transfer vehicle will require a large cryogenic fuel storage facility at the Space Station. An alternative to fuel storage onboard the Space Station, is on a tethered orbital refueling facility (TORF) which is separated from the Space Station by a sufficient distance to induce a gravity gradient to settle the propellants. Facility operations are a major concern associated with a tethered LO2/LH2 storage depot. A study was carried out to analyze these operations so as to identify the preferred TORF deployment direction (up or down) and whether the TORF should be permanently or intermittently deployed. The analyses considered safety, contamination, rendezvous, servicing, transportation rate, communication, and viewing. An upwardly, intermittently deployed facility is the preferred configuration for a tethered cryogenic fuel storage.
Large Deployable Reflector (LDR) Requirements for Space Station Accommodations
NASA Technical Reports Server (NTRS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-01-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
Large Deployable Reflector (LDR) requirements for space station accommodations
NASA Astrophysics Data System (ADS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-04-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Sunkel, John W.
1990-01-01
An attitude-control and momentum-management (ACMM) system for the Space Station in a large-angle torque-equilibrium-attitude (TEA) configuration is developed analytically and demonstrated by means of numerical simulations. The equations of motion for a rigid-body Space Station model are outlined; linearized equations for an arbitrary TEA (resulting from misalignment of control and body axes) are derived; the general requirements for an ACMM are summarized; and a pole-placement linear-quadratic regulator solution based on scheduled gains is proposed. Results are presented in graphs for (1) simulations based on configuration MB3 (showing the importance of accounting for the cross-inertia terms in the TEA estimate) and (2) simulations of a stepwise change from configuration MB3 to the 'assembly complete' stage over 130 orbits (indicating that the present ACCM scheme maintains sufficient control over slowly varying Space Station dynamics).
2007-08-20
KENNEDY SPACE CENTER, FLA. -- A poster in the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center illustrates the assembled Dextre, the third and final component of the mobile servicing system on the International Space Station. The Special Purpose Dexterous Manipulator will work with the mobile base and Canadarm2 on the station to perform critical construction and maintenance tasks. The poster sits in front of the draped sections in the SSPF. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14, 2008. Photo credit: NASA/George Shelton
2007-08-20
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center, sections of the Special Purpose Dexterous Manipulator, known as Dextre, are lined up under cover. In front of them is a poster that illustrates the assembled third and final component of the mobile servicing system on the International Space Station. Dextre will work with the mobile base and Canadarm2 on the station to perform critical construction and maintenance tasks. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14, 2008. Photo credit: NASA/George Shelton
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Impact of lunar and planetary missions on the space station: Preliminary STS logistics report
NASA Technical Reports Server (NTRS)
1984-01-01
Space station requirements for lunar and planetary missions are discussed. Specific reference is made to projected Ceres and Kopff missions; Titan probes; Saturn and Mercury orbiters; and a Mars sample return mission. Such requirements as base design; station function; program definition; mission scenarios; uncertainties impact; launch manifest and mission schedule; and shuttle loads are considered. It is concluded that: (1) the impact of the planetary missions on the space station is not large when compared to the lunar base; (2) a quarantine module may be desirable for sample returns; (3) the Ceres and Kopff missions require the ability to stack and checkout two-stage OTVs; and (4) two to seven manweeks of on-orbit work are required of the station crew to launch a mission and, with the exception of the quarantine module, dedicated crew will not be required.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to a hoisting device to prepare for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers use a hoisting device to move the Remote Manipulator System, or robotic arm, toward the Japanese Experiment Module for installation and testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008.The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to a hoisting device to prepare for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers use a hoisting device to move the Remote Manipulator System, or robotic arm, toward the Japanese Experiment Module for installation and testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008.The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to a hoisting device to prepare for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Perspectives on energy storage wheels for space station application
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1984-01-01
Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.
Component Data Base for Space Station Resistojet Auxiliary Propulsion
NASA Technical Reports Server (NTRS)
Bader, Clayton H.
1988-01-01
The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.
The Space Station as a Construction Base for Large Space Structures
NASA Technical Reports Server (NTRS)
Gates, R. M.
1985-01-01
The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.
NASA Astrophysics Data System (ADS)
Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.
2003-01-01
Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.
U.S. Space Station platform - Configuration technology for customer servicing
NASA Technical Reports Server (NTRS)
Dezio, Joseph A.; Walton, Barbara A.
1987-01-01
Features of the Space Station coorbiting and polar orbiting platforms (COP and POP, respectively) are described that will allow them to be configured optimally to meet mission requirements and to be assembled, serviced, and modified on-orbit. Both of these platforms were designed to permit servicing at the Shuttle using the remote manipulator system with teleoperated end effectors; EVA was planned as a backup and for unplanned payload failure modes. Station-based servicing is discussed as well as expendable launch vehicle-based servicing concepts.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, several varieties of Arabidopsis seeds, commonly known as thale cress, are being prepared for securing in the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, research scientists prepare the science carrier, or base, of the Advanced Plant Habitat (APH) for planting of Arabidopsis seeds, commonly known as thale cress, on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
International Space Station (ISS)
2002-06-07
Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Application of a space station to communications satellites
NASA Technical Reports Server (NTRS)
Ramler, J. R.
1983-01-01
The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.
STS-111 Onboard Photo of the International Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.
Space Station Software Recommendations
NASA Technical Reports Server (NTRS)
Voigt, S. (Editor)
1985-01-01
Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.
International Space Station (ISS)
2002-06-07
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
NASA Technical Reports Server (NTRS)
Webster, W., Jr.; Frawley, J. J.; Stefanik, M.
1984-01-01
Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.
Space station evolution: Planning for the future
NASA Technical Reports Server (NTRS)
Diaz, Alphonso V.; Askins, Barbara S.
1987-01-01
The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.
Space station evolution: Planning for the future
NASA Astrophysics Data System (ADS)
Diaz, Alphonso V.; Askins, Barbara S.
1987-06-01
The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.
Evolution of the Space Station Robotic Manipulator
NASA Technical Reports Server (NTRS)
Razvi, Shakeel; Burns, Susan H.
2007-01-01
The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that this evolution can be accomplished while conducting critical on-orbit operations with minimal hardware changes.
Deep Space Station (DSS-13) automation demonstration
NASA Technical Reports Server (NTRS)
Remer, D. S.; Lorden, G.
1980-01-01
The data base collected during a six month demonstration of an automated Deep Space Station (DSS 13) run unattended and remotely controlled is summarized. During this period, DSS 13 received spacecraft telemetry data from Voyager, Pioneers 10 and 11, and Helios projects. Corrective and preventive maintenance are reported by subsystem including the traditional subsystems and those subsystems added for the automation demonstration. Operations and maintenance data for a comparable manned Deep Space Station (DSS 11) are also presented for comparison. The data suggests that unattended operations may reduce maintenance manhours in addition to reducing operator manhours. Corrective maintenance for the unmanned station was about one third of the manned station, and preventive maintenance was about one half.
Orbiting Deep Space Relay Station (ODSRS). Volume 1: Requirement determination
NASA Technical Reports Server (NTRS)
Hunter, J. A.
1979-01-01
The deep space communications requirements of the post-1985 time frame are described and the orbiting deep space relay station (ODSRS) is presented as an option for meeting these requirements. Under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance, but has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include: the ability to track a spacecraft 24 hours per day with ground stations located only in the USA; the ability to operate at higher frequencies that would be attenuated by Earth's atmosphere; and the potential for building very large structures without the constraints of Earth's gravity.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
Nunamaker, Robert
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Expandable pallet for space station interface attachments
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor)
1988-01-01
Described is a foldable expandable pallet for Space Station interface attachments with a basic square configuration. Each pallet consists of a series of struts joined together by node point fittings to make a rigid structure. The struts have hinge fittings which are spring loaded to permit collapse of the module for stowage transport to a Space Station in the payload bay of the Space Shuttle, and development on orbit. Dimensions of the pallet are selected to provide convenient, closely spaced attachment points between the node points of the relatively widely spaced trusses of a Space Station platform. A pallet is attached to a strut at four points: one close fitting hole, two oversize holes, and a slot to allow for thermal expansion/contraction and for manufacturing tolerances. Applications of the pallet include its use in rotary or angular joints; servicing of splints; with gridded plates; as instrument mounting bases; and as a roadbed for a Mobile Service Center (MSC).
1985-12-01
Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.
Neutral Buoyancy Simulator - Space Station
NASA Technical Reports Server (NTRS)
1985-01-01
Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.
NASA Technical Reports Server (NTRS)
Randall, Roger M.
1987-01-01
Orbit Transfer Vehicle (OTV) processing at the space station is divided into two major categories: OTV processing and assembly operations, and support operations. These categories are further subdivided into major functional areas to allow development of detailed OTV processing procedures and timelines. These procedures and timelines are used to derive the specific space station accommodations necessary to support OTV activities. The overall objective is to limit impact on OTV processing requirements on space station operations, involvement of crew, and associated crew training and skill requirements. The operational concept maximizes use of automated and robotic systems to perform all required OTV servicing and maintenance tasks. Only potentially critical activities would require direct crew involvement or supervision. EVA operations are considered to be strictly contingency back-up to failure of the automated and robotic systems, with the exception of the initial assembly of Space-Based OTV accommodations at the space station, which will require manned involvement.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...
STS-110 Crew Photographs Soyuz and Atlantis Docked to International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2002-01-01
Docked to the International Space Station (ISS), a Soyuz vehicle (foreground) and the Space Shuttle Atlantis were photographed by a crew member in the Pirs docking compartment on the orbital outpost. Atlantis launched on April 8, 2002, carrying the the STS-110 mission which prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's scapulas were based out of the Station's Quest Airlock.
Space-based augmentation for global navigation satellite systems.
Grewal, Mohinder S
2012-03-01
This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.
Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mo...
Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mol...
Experiments to ensure Space Station fire safety - A challenge
NASA Technical Reports Server (NTRS)
Youngblood, W. W.; Seiser, K. M.
1988-01-01
Three experiments have been formulated in order to address prominent fire safety requirements aboard the NASA Space Shuttle; these experiments are to be conducted as part of a Space Station-based Technology Development Mission for the growth phase of Space Station construction and operation. The experiments are: (1) an investigation of the flame-spread rate and combustion-product evolution in the burning of typical spacecraft materials in low gravity; (2) an evaluation of the interaction of fires and candidate fire extinguishers in low gravity; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion in low gravity.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Jeffrey Richards, at left, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Jeffrey Richards, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a research scientist prepares a fixative which will be used to secure Arabidopsis seeds, commonly known as thale cress, inside the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
Advanced Plant Habitat (APH) Seed Planting
2018-05-09
Jeffrey Richards, a project science coordinator with URS Federal Services, uses a fixative to secure Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.
High data rate modem simulation for the space station multiple-access communications system
NASA Technical Reports Server (NTRS)
Horan, Stephen
1987-01-01
The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.
Building intelligent systems: Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, P.; Lum, H.
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
Building intelligent systems - Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, Peter; Lum, Henry
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed
NASA Technical Reports Server (NTRS)
Bull, John
1990-01-01
The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.
Predictive momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Hatis, P. D.
1986-01-01
Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.
NASA Technical Reports Server (NTRS)
Kennedy, J. R.; Fitzpatrick, W. S.
1971-01-01
The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.
A Voice Enabled Procedure Browser for the International Space Station
NASA Technical Reports Server (NTRS)
Rayner, Manny; Chatzichrisafis, Nikos; Hockey, Beth Ann; Farrell, Kim; Renders, Jean-Michel
2005-01-01
Clarissa, an experimental voice enabled procedure browser that has recently been deployed on the International Space Station (ISS), is to the best of our knowledge the first spoken dialog system in space. This paper gives background on the system and the ISS procedures, then discusses the research developed to address three key problems: grammar-based speech recognition using the Regulus toolkit; SVM based methods for open microphone speech recognition; and robust side-effect free dialogue management for handling undos, corrections and confirmations.
NASA Technical Reports Server (NTRS)
Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce
1989-01-01
A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.
Transceiver for Space Station Freedom
NASA Technical Reports Server (NTRS)
Fitzmaurice, M.; Bruno, R.
1990-01-01
This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.
Transceiver for Space Station Freedom
NASA Astrophysics Data System (ADS)
Fitzmaurice, M.; Bruno, R.
1990-07-01
This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.
A space station onboard scheduling assistant
NASA Technical Reports Server (NTRS)
Brindle, A. F.; Anderson, B. H.
1988-01-01
One of the goals for the Space Station is to achieve greater autonomy, and have less reliance on ground commanding than previous space missions. This means that the crew will have to take an active role in scheduling and rescheduling their activities onboard, perhaps working from preliminary schedules generated on the ground. Scheduling is a time intensive task, whether performed manually or automatically, so the best approach to solving onboard scheduling problems may involve crew members working with an interactive software scheduling package. A project is described which investigates a system that uses knowledge based techniques for the rescheduling of experiments within the Materials Technology Laboratory of the Space Station. Particular attention is paid to: (1) methods for rapid response rescheduling to accommodate unplanned changes in resource availability, (2) the nature of the interface to the crew, (3) the representation of the many types of data within the knowledge base, and (4) the possibility of applying rule-based and constraint-based reasoning methods to onboard activity scheduling.
The quantitative modelling of human spatial habitability
NASA Technical Reports Server (NTRS)
Wise, James A.
1988-01-01
A theoretical model for evaluating human spatial habitability (HuSH) in the proposed U.S. Space Station is developed. Optimizing the fitness of the space station environment for human occupancy will help reduce environmental stress due to long-term isolation and confinement in its small habitable volume. The development of tools that operationalize the behavioral bases of spatial volume for visual kinesthetic, and social logic considerations is suggested. This report further calls for systematic scientific investigations of how much real and how much perceived volume people need in order to function normally and with minimal stress in space-based settings. The theoretical model presented in this report can be applied to any size or shape interior, at any scale of consideration, for the Space Station as a whole to an individual enclosure or work station. Using as a point of departure the Isovist model developed by Dr. Michael Benedikt of the U. of Texas, the report suggests that spatial habitability can become as amenable to careful assessment as engineering and life support concerns.
NASA Technical Reports Server (NTRS)
Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.
2000-01-01
The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.
Informatics-based medical procedure assistance during space missions.
Iyengar, M S; Carruth, T N; Florez-Arango, J; Dunn, K
2008-08-01
Currently, paper-based and/or electronic together with telecommunications links to Earth-based physicians are used to assist astronaut crews perform diagnosis and treatment of medical conditions during space travel. However, these have limitations, especially during long duration missions in which telecommunications to earth-based physicians can be delayed. We describe an experimental technology called GuideView in which clinical guidelines are presented in a structured, interactive, multi-modal format and, in each step, clinical instructions are provided simultaneously in voice, text, pictures video or animations. An example application of the system to diagnosis and treatment of space Decompression Sickness is presented. Astronauts performing space walks from the International Space Station are at risk for decompression sickness because the atmospheric pressure of the Extra-vehicular Activity space- suit is significantly less that that of the interior of the Station.
Informatics-based Medical Procedure Assistance during Space Missions
Iyengar, M S; Carruth, T N; Florez-Arango, J; Dunn, K
2008-01-01
Currently, paper-based and/or electronic together with telecommunications links to Earth-based physicians are used to assist astronaut crews perform diagnosis and treatment of medical conditions during space travel. However, these have limitations, especially during long duration missions in which telecommunications to earth-based physicians can be delayed. We describe an experimental technology called GuideView in which clinical guidelines are presented in a structured, interactive, multi-modal format and, in each step, clinical instructions are provided simultaneously in voice, text, pictures video or animations. An example application of the system to diagnosis and treatment of space Decompression Sickness is presented. Astronauts performing space walks from the International Space Station are at risk for decompression sickness because the atmospheric pressure of the Extra-vehicular Activity space- suit is significantly less that that of the interior of the Station. PMID:19048089
The space station assembly phase: Flight telerobotic servicer feasibility, volume 1
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.
1987-01-01
The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
Artificial intelligence and space power systems automation
NASA Technical Reports Server (NTRS)
Weeks, David J.
1987-01-01
Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Special Purpose Dexterous Manipulator, known as Dextre, to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves nearer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves closer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
A framework for building real-time expert systems
NASA Technical Reports Server (NTRS)
Lee, S. Daniel
1991-01-01
The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.
International Space Station (ISS)
2002-06-01
Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Astronaut Voss Peers Into Pressurized Mating Adapter (PMA)
NASA Technical Reports Server (NTRS)
2001-01-01
The STS-100 mission launched for the International Space Station (ISS) on April 19, 2001 as the sixth station assembly flight. Main objectives included the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2, the installation of a UHF anterna for space-to-space communications for U.S. based space walks, and the delivery of supplies via the Italian Multipurpose Logistics Module (MPLM) 'Raffaello'. This is an STS-110 onboard photo of Astronaut James S. Voss, Expedition Two flight engineer, peering into the pressurized Mating Adapter (PMA-2) prior hatch opening. The picture was taken by one of the STS-100 crew members inside the PMA.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
The Space Station: From concept to evolving reality
NASA Technical Reports Server (NTRS)
Fries, Sylvia Doughty; Ordway, Frederick I., III
1987-01-01
This review surveys the origin and conceptual evolution of the space station. It opens with U.S. President Ronald W. Reagan's announcement that one would be developed during the coming decade, continues with an assessment by the Space Science Board of the U.S. National Academy of Sciences of requirements for and potential benefits of a space station, and offers NASA's rationale for its development, construction, and utilization. The review examines early space station concepts, beginning with Edward Everell Hale's Brick Moon of 1869-1870 and going on to proposals by space pioneers Tsiolkovskii of Russia, Oberth of Germany, Noordung and von Pirquet of Austria, and others. Considerable attention is focused on designs put forward during the 1950's, 1960's, and 1970's by individuals, by NASA investigators, and by industrial and other contractors. Langley's rotating hexagon, the space base configurations, and other designs are reviewed and strategies are considered for resolving the problem of integrating a multidisciplinary research program with varying and sometimes incompatible engineering and design requirements. The article describes the power tower and dual keel configurations of the 1980's. The interdisciplinary nature of the space station is evident throughout.
Turnaround operations analysis for OTV. Volume 2: Detailed technical report
NASA Technical Reports Server (NTRS)
1988-01-01
The objectives and accomplishments were to adapt and apply the newly created database of Shuttle/Centaur ground operations. Previously defined turnaround operations analyses were to be updated for ground-based OTVs (GBOTVs) and space-based OTVs (SBOTVs), design requirements identified for both OTV and Space Station accommodations hardware, turnaround operations costs estimated, and a technology development plan generated to develop the required capabilities. Technical and programmatic data were provided for NASA pertinent to OTV round and space operations requirements, turnaround operations, task descriptions, timelines and manpower requirements, OTV modular design and booster and Space Station interface requirements. SBOTV accommodations development schedule, cost and turnaround operations requirements, and a technology development plan for ground and space operations and space-based accommodations facilities and support equipment. Significant conclusion are discussed.
Aiming Instruments On The Space Station
NASA Technical Reports Server (NTRS)
Estus, Jay M.; Laskin, Robert; Lin, Yu-Hwan
1989-01-01
Report discusses capabilities and requirements for aiming scientific instruments carried aboard proposed Space Station. Addresses two issues: whether system envisioned for pointing instruments at celestial targets offers sufficiently low jitter, high accuracy, and high stability to meet scientific requirements; whether it can do so even in presence of many vibrations and other disturbances on Space Station. Salient conclusion of study, recommendation to develop pointing-actuator system including mechanical/fluid base isolator underneath reactionaless gimbal subsystem. This kind of system offers greatest promise of high performance, cost-effectiveness, and modularity for job at hand.
Space station needs, attributes and architectural options: Architectural options and selection
NASA Technical Reports Server (NTRS)
Nelson, W. G.
1983-01-01
The approach, study results, and recommendations for defining and selecting space station architectural options are described. Space station system architecture is defined as the arrangement of elements (manned and unmanned on-orbit facilities, shuttle vehicles, orbital transfer vehicles, etc.), the number of these elements, their location (orbital inclination and altitude, and their functional performance capability, power, volume, crew, etc.). Architectural options are evaluated based on the degree of mission capture versus cost and required funding rate. Mission capture refers to the number of missions accommodated by the particular architecture.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers from the Japan Aerospace Exploration Agency watch from a control area as the Remote Manipulator System, or robotic arm, is attached to a hoisting device to prepare it for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
International Space Station Sports a New Truss
NASA Technical Reports Server (NTRS)
2002-01-01
This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
International Space Station Sports a New Truss
NASA Technical Reports Server (NTRS)
2002-01-01
This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
A space transportation system operations model
NASA Technical Reports Server (NTRS)
Morris, W. Douglas; White, Nancy H.
1987-01-01
Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.
2003-01-01
Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more a.ected by weather than is RF communication, it requires groundstation site diversity to mitigate the adverse e.ects of inclement weather on the link. An optical relay satellite is not a.ected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10- m optical ground stations. This makes the relay link an attractive option vis- a-vis a ground-station network.
Logistics resupply and emergency crew return system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.
1989-01-01
Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.
NASA Technical Reports Server (NTRS)
2002-01-01
The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.
NASA Technical Reports Server (NTRS)
2002-01-01
The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.
NASA Technical Reports Server (NTRS)
Brown, Robert B.
1994-01-01
A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.
Potential converter for laser-power beaming
NASA Technical Reports Server (NTRS)
Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.
1991-01-01
Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.
Space Station Freedom Utilization Conference
NASA Technical Reports Server (NTRS)
1992-01-01
The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.
2001-12-04
KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani is happy to be suiting up for launch before heading to Launch Pad 39B and Space Shuttle Endeavour. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition 3 and Expedition 4 crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and the crew's completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Launch is scheduled for 5:45 p.m. EST Dec. 4, 2001, from Launch Pad 39B
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Seated at right is Susan Manning-Roach, a quality assurance specialist on the Engineering Services Contract. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
2009-09-20
EDWARDS AIR FORCE BASE, Calif. – ED09-0253-103) Space shuttle Discovery and its modified 747 carrier aircraft lift off from Edwards Air Force Base early in the morning on Sept. 20, 2009 on the first leg of its ferry flight back to the Kennedy Space Center in Florida. Discovery had landed at Edwards Sept. 11 after the STS-128 mission to the International Space Station. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. NASA photo /Tom Tschida
NASA Astrophysics Data System (ADS)
Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran
2017-02-01
Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Tethered orbital refueling study
NASA Technical Reports Server (NTRS)
Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat
1986-01-01
One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.
Scattering Effects of Solar Panels on Space Station Antenna Performance
NASA Technical Reports Server (NTRS)
Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.
1994-01-01
Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.
Space Station Systems Analysis Study. Volume 1: Executive summary, part 1 and 2
NASA Technical Reports Server (NTRS)
1977-01-01
The elements of space station programs required to support an operational base theme, a space laboratory theme, and advanced missions relatable to public needs/national interests are defined. Missions satisfying the foregoing requirements are identified, program scenarios/options are established. System options are evaluated for a selected number of program options. Subsystem analysis and programmatic comparisons are performed for selected primary concepts.
Manned spacecraft automation and robotics
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1987-01-01
The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.
2003-07-15
Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.
2008-09-03
Force Base ( AFB ), and Pillar Point Air Force Station (AFS), California. The 30th Space Wing at Vandenberg AFB operates the Western Launch and Test...Range (Western Range). The Western Range begins at the coastal boundaries of Vandenberg AFB and extends westward to the Marshall Islands, including...Vandenberg AFB . Vandenberg AFB is headquarters to the 30th Space Wing, the Air Force Space Command unit that operates Vandenberg AFB and the Western
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister at right for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-123 crew get ready to inspect part of the payload for the mission, the Special Purpose Dexterous Manipulator, known as Dextre. Seen in front are Pilot Gregory Johnson and Mission Specialist Takao Doi, who represents the Japanese Aerospace and Exploration Agency. Dextre will work with the mobile base and Canadarm2 on the International Space Station to perform critical construction and maintenance tasks. The crew is at Kennedy for crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Kondyurin, A; Lauke, B; Kondyurina, I; Orba, E
2004-01-01
The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)
1987-01-01
Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.
Large size space construction for space exploitation
NASA Astrophysics Data System (ADS)
Kondyurin, Alexey
2016-07-01
Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.
International Space Station Sports a New Truss
NASA Technical Reports Server (NTRS)
2002-01-01
This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
International Space Station Sports a New Truss
NASA Technical Reports Server (NTRS)
2002-01-01
This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
International Space Station Sports a New Truss
NASA Technical Reports Server (NTRS)
2002-01-01
This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
Space station mobile transporter
NASA Technical Reports Server (NTRS)
Renshall, James; Marks, Geoff W.; Young, Grant L.
1988-01-01
The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.
Impact of lunar and planetary missions on the space station
NASA Technical Reports Server (NTRS)
1984-01-01
The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.
Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.
2005-01-01
This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.
Space Station Mission Planning System (MPS) development study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Klus, W. J.
1987-01-01
The basic objective of the Space Station (SS) Mission Planning System (MPS) Development Study was to define a baseline Space Station mission plan and the associated hardware and software requirements for the system. A detailed definition of the Spacelab (SL) payload mission planning process and SL Mission Integration Planning System (MIPS) software was derived. A baseline concept was developed for performing SS manned base payload mission planning, and it was consistent with current Space Station design/operations concepts and philosophies. The SS MPS software requirements were defined. Also, requirements for new software include candidate programs for the application of artificial intelligence techniques to capture and make more effective use of mission planning expertise. A SS MPS Software Development Plan was developed which phases efforts for the development software to implement the SS mission planning concept.
NASA Technical Reports Server (NTRS)
1985-01-01
Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.
Solar Concentrator Advanced Development Program, Task 1
NASA Technical Reports Server (NTRS)
1986-01-01
Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.
Space station data system analysis/architecture study. Task 5: Program plan
NASA Technical Reports Server (NTRS)
1985-01-01
Cost estimates for both the on-board and ground segments of the Space Station Data System (SSDS) are presented along with summary program schedules. Advanced technology development recommendations are provided in the areas of distributed data base management, end-to-end protocols, command/resource management, and flight qualified artificial intelligence machines.
Hadfield works robotic controls in the Cupola Module
2013-01-10
ISS034-E-027317 (10 Jan. 2013) --- In the Cupola aboard the Earth-orbiting International Space Station, Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, works the controls at the Robotic workstation to maneuver the Space Station Remote Manipulator System (SSRMS) or CanadArm2 from its parked position to grapple the Mobile Remote Servicer (MRS) Base System (MBS) Power and Data Grapple Fixture 4 (PDGF-4).
Space station automation: the role of robotics and artificial intelligence (Invited Paper)
NASA Astrophysics Data System (ADS)
Park, W. T.; Firschein, O.
1985-12-01
Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.
Space Station Freedom Toxic and Reactive Materials Handling
NASA Technical Reports Server (NTRS)
Baugher, Charles R. (Editor)
1990-01-01
Viable research in materials processing in space requires the utilization of a wide variety of chemicals and materials, many of which are considered toxic and/or highly reactive with other substances. A realistic view of the experiments which are most likely to be accomplished in the early Space Station phases are examined and design issues addressed which are related to their safe implementation. Included are discussions of materials research on Skylab, Spacelab, and the Shuttle mid-deck; overviews of early concepts for specialized Space Station systems designed to help contain potential problems; descriptions of industrial experience with ground-based research; and an overview of the state-of-the-art in contamination detection systems.
The placement of equipment in the Space Station Freedom using constraint based reasoning
NASA Technical Reports Server (NTRS)
Tanner, Steve; Fennel, Randy
1991-01-01
This paper describes the Rack Equipment Placement and Optimization System. The primary objective of this system is to assist engineers with the placement of equipment into the racks of the modules of Space Station Freedom. It accomplishes this by showing a user where equipment placement is possible and by generating potential layouts. The system uses an explicit representation of integration constraints to search for potential solutions for individual rack equipment items. A simulated annealing process is being evaluated for total solution generation as well. Versions of this system are in use now and are assisting with the development of the Space Station Freedom at the Marshall Space Flight Center in Huntsville, Alabama.
Space_Station_Crew_Members_Walk_in_Space_to_Complete_Robotics_Upgrades
2018-02-16
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) conducted a spacewalk to move a Latching End Effector, or hand, for the Canadarm2 robotic arm into the Quest airlock that was removed during another excursion last October and to move a degraded end effector replaced during a Jan. 23 spacewalk onto a payload attachment device on the station’s Mobile Base System railcar. The spacewalk was the 208th in station history for assembly, maintenance and upgrades, the fourth in Vande Hei’s career and the first for Kanai, who became only the fourth Japanese astronaut to walk in space.
Practical Applications of a Space Station
NASA Technical Reports Server (NTRS)
1984-01-01
The potential uses of a special station for civil and commercial applications is examined. Five panels of experts representing user-oriented communities, and a sixth panel which dealth with system design considerations, based their studies on the assumption that the station would be a large platform, capable of housing a wide array of diverse instruments, and could be either manned or unmanned. The Earth's Resources Panel dealt with applications of remote sensing for resource assessment. The Earth's Environment Panel dealt with the Earth's atmosphere and its impact on society. The Ocean Operations Panel looked at both science and applications. The Satellite Communications Panel assessed the potential role of a space station in the evolution of commercial telecommunication services up to the year 2000. The Materials Science and Engineering panel focused on the utility of a space station environment for materials processing.
Controlling Real-Time Processes On The Space Station With Expert Systems
NASA Astrophysics Data System (ADS)
Leinweber, David; Perry, John
1987-02-01
Many aspects of space station operations involve continuous control of real-time processes. These processes include electrical power system monitoring, propulsion system health and maintenance, environmental and life support systems, space suit checkout, on-board manufacturing, and servicing of attached vehicles such as satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real-time processes has been done by trained human experts monitoring telemetry data. However, the long duration of space station missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge-based expert control procedures for these space stations. In addition to controlling the normal operations of these processes, the expert systems must also be able to quickly respond to anomalous events, determine their cause and initiate corrective actions in a safe and timely manner. This must be accomplished without excessive diversion of system resources from ongoing control activities and any events beyond the scope of the expert control and diagnosis functions must be recognized and brought to the attention of human operators. Real-time sensor based expert systems (as opposed to off-line, consulting or planning systems receiving data via the keyboard) pose particular problems associated with sensor failures, sensor degradation and data consistency, which must be explicitly handled in an efficient manner. A set of these systems must also be able to work together in a cooperative manner. This paper describes the requirements for real-time expert systems in space station control, and presents prototype implementations of space station expert control procedures in PICON (process intelligent control). PICON is a real-time expert system shell which operates in parallel with distributed data acquisition systems. It incorporates a specialized inference engine with a specialized scheduling portion specifically designed to match the allocation of system resources with the operational requirements of real-time control systems. Innovative knowledge engineering techniques used in PICON to facilitate the development of real-time sensor-based expert systems which use the special features of the inference engine are illustrated in the prototype examples.
NASA Technical Reports Server (NTRS)
Tamayo, Tak Chai
1987-01-01
Quality of software not only is vital to the successful operation of the space station, it is also an important factor in establishing testing requirements, time needed for software verification and integration as well as launching schedules for the space station. Defense of management decisions can be greatly strengthened by combining engineering judgments with statistical analysis. Unlike hardware, software has the characteristics of no wearout and costly redundancies, thus making traditional statistical analysis not suitable in evaluating reliability of software. A statistical model was developed to provide a representation of the number as well as types of failures occur during software testing and verification. From this model, quantitative measure of software reliability based on failure history during testing are derived. Criteria to terminate testing based on reliability objectives and methods to estimate the expected number of fixings required are also presented.
A continuum model for dynamic analysis of the Space Station
NASA Technical Reports Server (NTRS)
Thomas, Segun
1989-01-01
Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary
NASA Technical Reports Server (NTRS)
1989-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.
International Space Station (ISS)
2002-06-01
Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Space Station - The base for tomorrow's electronic industry
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1985-01-01
The potential value of space material processing on the Space Station for the electronics industry is examined. The primary advantages of the space environment for producing high-purity semiconductors and electrooptical materials are identified as the virtual absence of gravity (suppressing buoyancy-driven convection in melts and density segregation of alloys) and the availabilty of high vacuum (with high pumping speed and heat rejection). The recent history of material development and processing technology in the electronics industry is reviewed, and the principal features of early space experiments are outlined.
NASA Technical Reports Server (NTRS)
Appleby, M. H.; Golightly, M. J.; Hardy, A. C.
1993-01-01
Major improvements have been completed in the approach to analyses and simulation of spacecraft radiation shielding and exposure. A computer-aided design (CAD)-based system has been developed for determining the amount of shielding provided by a spacecraft and simulating transmission of an incident radiation environment to any point within or external to the vehicle. Shielding analysis is performed using a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design programs such as a Mars transfer habitat, pressurized lunar rover, and the redesigned international Space Station. Results of analysis performed for the Space Station astronaut exposure assessment are provided to demonastrate the applicability and versatility of the system.
Phase change water processing for Space Station
NASA Technical Reports Server (NTRS)
Zdankiewicz, E. M.; Price, D. F.
1985-01-01
The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.
STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
2002-01-01
Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.
Dexterous Orbital Servicing System (DOSS)
NASA Technical Reports Server (NTRS)
Price, Charles R.; Berka, Reginald B.; Chladek, John T.
1994-01-01
The Dexterous Orbiter Servicing System (DOSS) is a dexterous robotic spaceflight system that is based on the manipulator designed as part of the Flight Telerobotics Servicer program for the Space Station Freedom and built during a 'technology capture' effort that was commissioned when the FTS was cancelled from the Space Station Freedom program. The FTS technology capture effort yielded one flight manipulator and the 1 g hydraulic simulator that had been designed as an integrated test tool and crew trainer. The DOSS concept was developed to satisfy needs of the telerobotics research community, the space shuttle, and the space station. As a flight testbed, DOSS would serve as a baseline reference for testing the performance of advanced telerobotics and intelligent robotics components. For shuttle, the DOSS, configured as a movable dexterous tool, would be used to provide operational flexibility for payload operations and contingency operations. As a risk mitigation flight demonstration, the DOSS would serve the International Space Station to characterize the end to end system performance of the Special Purpose Dexterous Manipulator performing assembly and maintenance tasks with actual ISSA orbital replacement units. Currently, the most likely entrance of the DOSS into spaceflight is a risk mitigation flight experiment for the International Space Station.
International Space Station (ISS)
2001-02-16
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
14 CFR 1214.402 - International Space Station crewmember responsibilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...
14 CFR 1214.402 - International Space Station crewmember responsibilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...
Space Station Freedom (SSF) Data Management System (DMS) performance model data base
NASA Technical Reports Server (NTRS)
Stovall, John R.
1993-01-01
The purpose of this document was originally to be a working document summarizing Space Station Freedom (SSF) Data Management System (DMS) hardware and software design, configuration, performance and estimated loading data from a myriad of source documents such that the parameters provided could be used to build a dynamic performance model of the DMS. The document is published at this time as a close-out of the DMS performance modeling effort resulting from the Clinton Administration mandated Space Station Redesign. The DMS as documented in this report is no longer a part of the redesigned Space Station. The performance modeling effort was a joint undertaking between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Flight Data Systems Division (FDSD) and the NASA Ames Research Center (ARC) Spacecraft Data Systems Research Branch. The scope of this document is limited to the DMS core network through the Man Tended Configuration (MTC) as it existed prior to the 1993 Clinton Administration mandated Space Station Redesign. Data is provided for the Standard Data Processors (SDP's), Multiplexer/Demultiplexers (MDM's) and Mass Storage Units (MSU's). Planned future releases would have added the additional hardware and software descriptions needed to describe the complete DMS. Performance and loading data through the Permanent Manned Configuration (PMC) was to have been included as it became available. No future releases of this document are presently planned pending completion of the present Space Station Redesign activities and task reassessment.
Shuttle mission simulator baseline definition report, volume 2
NASA Technical Reports Server (NTRS)
Dahlberg, A. W.; Small, D. E.
1973-01-01
The baseline definition report for the space shuttle mission simulator is presented. The subjects discussed are: (1) the general configurations, (2) motion base crew station, (3) instructor operator station complex, (4) display devices, (5) electromagnetic compatibility, (6) external interface equipment, (7) data conversion equipment, (8) fixed base crew station equipment, and (9) computer complex. Block diagrams of the supporting subsystems are provided.
2005-08-09
The sun rises on the Space Shuttle Discovery as it rests on the runway at Edwards Air Force Base, California, after a safe landing August 9, 2005 to complete the STS-114 mission. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
Food systems for space travel.
Bourland, C T
1999-01-01
Space food systems have evolved from tubes and cubes to Earth-like food being planned for the International Space Station. The weight, volume, and oxygen-enriched atmosphere constraints of earlier spacecraft severely limited the type of food that could be used. Food systems improved as spacecraft conditions became more habitable. Space food systems have traditionally been based upon the water supply. This presentation summarizes the food development activities from Mercury through Shuttle, Shuttle/Mir, and plans for the International Space Station. Food development lessons learned from the long-duration missions with astronauts on the Mir station are also discussed. Nutritional requirements for long-duration missions in microgravity and problems associated with meeting these requirements for Mir will be elucidated. The psychological importance of food and the implications for food development activities are summarized.
A diagnostic prototype of the potable water subsystem of the Space Station Freedom ECLSS
NASA Technical Reports Server (NTRS)
Lukefahr, Brenda D.; Rochowiak, Daniel M.; Benson, Brian L.; Rogers, John S.; Mckee, James W.
1989-01-01
In analyzing the baseline Environmental Control and Life Support System (ECLSS) command and control architecture, various processes are found which would be enhanced by the use of knowledge based system methods of implementation. The most suitable process for prototyping using rule based methods are documented, while domain knowledge resources and other practical considerations are examined. Requirements for a prototype rule based software system are documented. These requirements reflect Space Station Freedom ECLSS software and hardware development efforts, and knowledge based system requirements. A quick prototype knowledge based system environment is researched and developed.
Command and Control of Space Assets Through Internet-Based Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Foltz, David A.
2002-01-01
The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
Goal driven kinematic simulation of flexible arm robot for space station missions
NASA Technical Reports Server (NTRS)
Janssen, P.; Choudry, A.
1987-01-01
Flexible arms offer a great degree of flexibility in maneuvering in the space environment. The problem of transporting an astronaut for extra-vehicular activity using a space station based flexible arm robot was studied. Inverse kinematic solutions of the multilink structure were developed. The technique is goal driven and can support decision making for configuration selection as required for stability and obstacle avoidance. Details of this technique and results are given.
Shuttle on-orbit rendezvous targeting: Circular orbits
NASA Technical Reports Server (NTRS)
Bentley, E. L.
1972-01-01
The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.
Economic benefits of the Space Station to commercial communication satellite operators
NASA Technical Reports Server (NTRS)
Price, Kent M.; Dixson, John E.; Weyandt, Charles J.
1987-01-01
The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.
NASA Technical Reports Server (NTRS)
1977-01-01
Topics discussed include: (1) design considerations for a MARS sample return laboratory module for space station investigations; (2) crew productivity as a function of work shift arrangement; (3) preliminary analysis of the local logistics problem on the space construction base; (4) mission hardware construction operational flows and timelines; (5) orbit transfer vehicle concept definition; (6) summary of results and findings of space processing working review; (7) crew and habitability subsystem (option L); (8) habitability subsystem considerations for shuttle tended option L; (9) orbiter utilization in manned sortie missions; (10) considerations in definition of space construction base standard module configuration (option L); (11) guidance, control, and navigation subsystems; and (12) system and design tradeoffs.
A state-based approach to trend recognition and failure prediction for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Nelson, Kyle S.; Hadden, George D.
1992-01-01
A state-based reasoning approach to trend recognition and failure prediction for the Altitude Determination, and Control System (ADCS) of the Space Station Freedom (SSF) is described. The problem domain is characterized by features (e.g., trends and impending failures) that develop over a variety of time spans, anywhere from several minutes to several years. Our state-based reasoning approach, coupled with intelligent data screening, allows features to be tracked as they develop in a time-dependent manner. That is, each state machine has the ability to encode a time frame for the feature it detects. As features are detected, they are recorded and can be used as input to other state machines, creating a hierarchical feature recognition scheme. Furthermore, each machine can operate independently of the others, allowing simultaneous tracking of features. State-based reasoning was implemented in the trend recognition and the prognostic modules of a prototype Space Station Freedom Maintenance and Diagnostic System (SSFMDS) developed at Honeywell's Systems and Research Center.
STS-110 S0 Truss Removed From Cargo Bay
NASA Technical Reports Server (NTRS)
2002-01-01
Backdropped against the blackness of space and the Earth's horizon, the S0 (S-zero) truss is removed from Atlantis' cargo bay and onto the Destiny laboratory of the International Space Station (ISS) by Astronauts Ellen Ochoa, STS-110 mission specialist, and Daniel W. Bursch, Expedition Four flight engineer, using the ISS' Canadarm2. Space Shuttle Orbiter Atlantis, STS-110 mission, prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first use of the Station's robotic arm to maneuver spacewalkers around the Station and it was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
STS-110 Extravehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
Space Station Freedom Data Assessment Study
NASA Technical Reports Server (NTRS)
Johnson, Anngienetta R.; Deskevich, Joseph
1990-01-01
The SSF Data Assessment Study was initiated to identify payload and operations data requirements to be supported in the Space Station era. To initiate the study payload requirements from the projected SSF user community were obtained utilizing an electronic questionnaire. The results of the questionnaire were incorporated in a personal computer compatible database used for mission scheduling and end-to-end communications analyses. This paper discusses data flow paths and associated latencies, communications bottlenecks, resource needs versus availability, payload scheduling 'warning flags' and payload data loading requirements for each major milestone in the Space Station buildup sequence. This paper also presents the statistical and analytical assessments produced using the data base, an experiment scheduling program, and a Space Station unique end-to-end simulation model. The modeling concepts and simulation methodologies presented in this paper provide a foundation for forecasting communication requirements and identifying modeling tools to be used in the SSF Tactical Operations Planning (TOP) process.
Space Station Crew Walks in Space to Conduct Robotics Upgrades
2018-01-23
Outside the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA conducted the first spacewalk this year Jan. 23 to replace a degraded latching end effector (LEE) on one end of the Canadarm2 robotic arm. There are two redundant end effectors on each end of the arm used to grapple visiting vehicles and components during a variety of operational activities. The spacewalk was the 206th in support of space station assembly and maintenance, the third in Vande Hei’s career and the first for Tingle. Vande Hei will venture outside the station again Jan. 29 with Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) to stow a spare latching end effector removed from the robotic arm last October on to the station’s mobile base system rail car for future use.
Space station high gain antenna concept definition and technology development
NASA Technical Reports Server (NTRS)
Wade, W. D.
1972-01-01
The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.
Communications and Tracking Distributed Systems Evolution Study
NASA Technical Reports Server (NTRS)
Culpepper, William
1990-01-01
The Communications and Tracking (C & T) techniques and equipment to support evolutionary space station concepts are being analyzed. Evolutionary space station configurations and operational concepts are used to derive the results to date. A description of the C & T system based on future capability needs is presented. Included are the hooks and scars currently identified to support future growth.
Image-based systems for space surveillance: from images to collision avoidance
NASA Astrophysics Data System (ADS)
Pyanet, Marine; Martin, Bernard; Fau, Nicolas; Vial, Sophie; Chalte, Chantal; Beraud, Pascal; Fuss, Philippe; Le Goff, Roland
2011-11-01
In many spatial systems, image is a core technology to fulfil the mission requirements. Depending on the application, the needs and the constraints are different and imaging systems can offer a large variety of configurations in terms of wavelength, resolution, field-of-view, focal length or sensitivity. Adequate image processing algorithms allow the extraction of the needed information and the interpretation of images. As a prime contractor for many major civil or military projects, Astrium ST is very involved in the proposition, development and realization of new image-based techniques and systems for space-related purposes. Among the different applications, space surveillance is a major stake for the future of space transportation. Indeed, studies show that the number of debris in orbit is exponentially growing and the already existing population of small and medium debris is a concrete threat to operational satellites. This paper presents Astrium ST activities regarding space surveillance for space situational awareness (SSA) and space traffic management (STM). Among other possible SSA architectures, the relevance of a ground-based optical station network is investigated. The objective is to detect and track space debris and maintain an exhaustive and accurate catalogue up-to-date in order to assess collision risk for satellites and space vehicles. The system is composed of different type of optical stations dedicated to specific functions (survey, passive tracking, active tracking), distributed around the globe. To support these investigations, two in-house operational breadboards were implemented and are operated for survey and tracking purposes. This paper focuses on Astrium ST end-to-end optical-based survey concept. For the detection of new debris, a network of wide field of view survey stations is considered: those stations are able to detect small objects and associated image processing (detection and tracking) allow a preliminary restitution of their orbit.
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
2011-09-09
CAPE CANAVERAL, Fla. – Panelists conduct a question and answer session with news media after NASA awards a cooperative agreement with the Center for the Advancement of Science in Space (CASIS) to manage the portion of the International Space Station that operates as a U.S. national laboratory. From left are: Waleed Abdalati, NASA chief scientist; Mark Uhran, NASA assistant associate administrator for the International Space Station; and Jeanne Becker, CASIS executive director. CASIS will be located at the Space Life Sciences Laboratory at NASA’s Kennedy Space Center in Florida. The organization will increase station use to maximize the public’s return on its investment by managing its diversified research and development portfolio based on needs for basic and applied research in a variety of fields. CASIS will identify opportunities for non-NASA uses linking scientific review and economic value, and will match potential research and development opportunities with funding sources. The organization also will increase awareness among schools and students about using the station as a learning platform. Photo credit: NASA/Kim Shiflett
Key technology issues for space robotic systems
NASA Technical Reports Server (NTRS)
Schappell, Roger T.
1987-01-01
Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.
47 CFR 97.211 - Space telecommand station.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...
47 CFR 97.211 - Space telecommand station.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...
47 CFR 97.211 - Space telecommand station.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...
47 CFR 97.211 - Space telecommand station.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...
47 CFR 97.211 - Space telecommand station.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...
The Capabilities of Space Stations
NASA Technical Reports Server (NTRS)
1995-01-01
Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.
A study of space station needs, attributes and architectural options
NASA Technical Reports Server (NTRS)
1983-01-01
The mission requirements, economic benefits, and time table of deployment of the space station are discussed. It is concluded that: (1) mission requirements overwhelmingly support the need for a space station; (2) a single space station is the way to begin; (3) the space station must evolve its capability; (4) the orbit transfer vehicle aspect of the space station will provide significant economic benefit; and (5) an early, affordable, effective way to start the space station program is needed.
The architecture of a video image processor for the space station
NASA Technical Reports Server (NTRS)
Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.
1987-01-01
The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.
NASA Technical Reports Server (NTRS)
Daelemans, Gerard; Goldsmith, Theodore
1999-01-01
The NASA/GSFC Shuttle Small Payloads Projects Office (SSPPO) has been studying the feasibility of migrating Hitchhiker customers past present and future to the International Space Station via a "Hitchhiker like" carrier system. SSPPO has been tasked to make the most use of existing hardware and software systems and infrastructure in its study of an ISS based carrier system. This paper summarizes the results of the SSPPO Hitchhiker on International Space Station (ISS) study. Included are a number of "Hitchhiker like" carrier system concepts that take advantage of the various ISS attached payload accommodation sites. Emphasis will be given to a HH concept that attaches to the Japanese Experiment Module - Exposed Facility (JEM-EF).
NASA Astrophysics Data System (ADS)
Fradkin, M. I.; Gorchakov, E. V.; Kaplin, V. A.; Kaplin, D. V.; Kurnosova, L. V.; Labenskij, A. G.; Runtso, M. F.; Topchiev, N. P.
The conditions required for gamma-ray astronomy measurements at energies of 10 - 1000 GeV by a gamma-ray telescope on the International Space Station are discussed. It is shown that the properties of the detected gamma rays can be determined accurately at 30 - 1000 GeV, even if the space station solar arrays fall in the aperture of the gamma-ray telescope. Measurements of the secondary gamma-ray spectrum using a ground-based model of the gamma-ray telescope have been carried out, and the resulting spectrum at energies of 1 - 100 GeV is presented.
Autonomous power management and distribution
NASA Technical Reports Server (NTRS)
Dolce, Jim; Kish, Jim
1990-01-01
The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, (far right) a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Assisting him is Jeffrey Richards, project science coordinator with SGT on the Engineering Services Contract (ESC). Seated in the foreground is Susan Manning-Roach, a quality assurance specialist, also with ESC. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
A health maintenance facility for space station freedom
NASA Technical Reports Server (NTRS)
Billica, R. D.; Doarn, C. R.
1991-01-01
We describe a health care facility to be built and used on an orbiting space station in low Earth orbit. This facility, called the health maintenance facility, is based on and modeled after isolated terrestrial medical facilities. It will provide a phased approach to health care for the crews of Space Station Freedom. This paper presents the capabilities of the health maintenance facility. As Freedom is constructed over the next decade there will be an increase in activities, both construction and scientific. The health maintenance facility will evolve with this process until it is a mature, complete, stand-alone health care facility that establishes a foundation to support interplanetary travel. As our experience in space continues to grow so will the commitment to providing health care.
NASA Technical Reports Server (NTRS)
Mcallister, J. G.
1984-01-01
Space based servicing of an orbit transfer vehicle (OTV) was previously outlined in sufficient detail to arrive at OTV and support system servicing requirements. Needed space station facilities and their functional requirements were identified. The impact of logistics and space serviceable design on the OTV design is detailed herein. RL10 derivative rocket engine inspection task times are enumerated.
Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion
NASA Technical Reports Server (NTRS)
Richter, G. P.; Price, H. G.
1986-01-01
The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program with Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.
A Space Station tethered orbital refueling facility
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
Crew quarters for Space Station
NASA Technical Reports Server (NTRS)
Mount, F. E.
1989-01-01
The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.
International Space Station (ISS)
2002-06-11
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).
History of Artificial Gravity. Chapter 3
NASA Technical Reports Server (NTRS)
Clement, Gilles; Bukley, Angie; Paloski, William
2006-01-01
This chapter reviews the past and current projects on artificial gravity during space missions. The idea of a rotating wheel-like space station providing artificial gravity goes back in the writings of Tsiolkovsky, Noordung, and Wernher von Braun. Its most famous fictional representation is in the film 2001: A Space Odyssey, which also depicts spin-generated artificial gravity aboard a space station and a spaceship bound for Jupiter. The O Neill-type space colony provides another classic illustration of this technique. A more realistic approach to rotating the space station is to provide astronauts with a smaller centrifuge contained within a spacecraft. The astronauts would go into it for a workout, and get their gravity therapeutic dose for a certain period of time, daily or a few times a week. This simpler concept is current being tested during ground-based studies in several laboratories around the world.
NASA Technical Reports Server (NTRS)
1985-01-01
The primary purpose of the Aerospace Computer Security Conference was to bring together people and organizations which have a common interest in protecting intellectual property generated in space. Operational concerns are discussed, taking into account security implications of the space station information system, Space Shuttle security policies and programs, potential uses of probabilistic risk assessment techniques for space station development, key considerations in contingency planning for secure space flight ground control centers, a systematic method for evaluating security requirements compliance, and security engineering of secure ground stations. Subjects related to security technologies are also explored, giving attention to processing requirements of secure C3/I and battle management systems and the development of the Gemini trusted multiple microcomputer base, the Restricted Access Processor system as a security guard designed to protect classified information, and observations on local area network security.
14 CFR 1214.402 - International Space Station crewmember responsibilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...
14 CFR 1214.402 - International Space Station crewmember responsibilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...
Human Factors Research Under Ground-Based and Space Conditions. Part 2
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP2, the discussion focuses on the following topics: Training Astronauts Using Three-Dimensional Visualizations of the International Space Station; Measurement and Validation of Bidirectional Reflectance of Shuttle and Space Station Materials for Computerized Lighting Models; Effects of Environmental Color on Mood and Performance of Astronauts in ISS; Psychophysical Measures of Motion and Orientation, Implications for Human Interface Design; and the Sopite Syndrome Revisited, Drowsiness and Mood Changes in Student Aviators.
Specimen Sample Preservation for Cell and Tissue Cultures
NASA Technical Reports Server (NTRS)
Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert
1996-01-01
The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order... International Space Station, the January 29, 1998, Agreement Among the Government of Canada, Governments of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order... International Space Station, the January 29, 1998, Agreement Among the Government of Canada, Governments of...
1991-01-01
In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.
Continuation of research into language concepts for the mission support environment
NASA Technical Reports Server (NTRS)
1991-01-01
A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.
2002-05-30
KENNEDY SPACE CENTER, FLA. -- In the Press Site auditorium, space agency officials participate in a media briefing following the launch scrub of Space Shuttle mission STS-111. From left are NASA Administrator Sean O'Keefe, French Space Agency President Dr. Alain Bensoussan, and Canadian Space Agency President Dr. Marc Garneau. STS-111 is the second Utilization Flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo, the Mobile Base System (MBS), and a replacement wrist/roll joint for the Canadarm 2. Also on board will be the Expedition Five crew who will replace Expedition Four on the Station. Launch is rescheduled for May 31 at 7:22 p.m. EDT
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order... International Space Station, the January 29, 1998, Agreement Among the Government of Canada, Governments of...
Knowledge-based system verification and validation
NASA Technical Reports Server (NTRS)
Johnson, Sally C.
1990-01-01
The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.
JSC flight experiment recommendation in support of Space Station robotic operations
NASA Astrophysics Data System (ADS)
Berka, Reginald B.
1993-02-01
The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.
Advancing automation and robotics technology for the space station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Creedon, Jeremiah F.
1989-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
14 CFR § 1214.402 - International Space Station crewmember responsibilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false International Space Station crewmember responsibilities. § 1214.402 Section § 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...
jsc2018m000321_Destination_Station-MP4
2018-05-11
Destination Station---- When you can’t come to the International Space Station, the essence of the space station can come to you! Beginning May 15, Destination Station arrives in Salt Lake City, UT to share the impacts of the station on our daily lives. Here’s a peek at some of the ways you can learn more about what the International Space Station is doing right now. ___________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
47 CFR 25.140 - Qualifications of Fixed-Satellite space station licensees.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Qualifications of Fixed-Satellite space station... CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications of Fixed-Satellite space station licensees. (a) [Reserved] (b) Each applicant for a space station...
2005-08-09
The crew of Space Shuttle mission STS-114 gathered in front of the shuttle Discovery following landing at Edwards Air Force Base, California, August 9, 2005. From left to right: Mission Specialist Stephen Robinson, Commander Eileen Collins, Mission Specialists Andrew Thomas, Wendy Lawrence, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
Using Spacelab as a precursor of science operations for the Space Station
NASA Technical Reports Server (NTRS)
Marmann, R. A.
1997-01-01
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.
47 CFR 25.276 - Points of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... authorization, an earth station is authorized to transmit to any space station in the same radio service provided that permission has been received from the space station operator to access that space station. (b) Space stations licensed under this part are authorized to provide service to earth stations located...
47 CFR 25.276 - Points of communication.
Code of Federal Regulations, 2011 CFR
2011-10-01
... authorization, an earth station is authorized to transmit to any space station in the same radio service provided that permission has been received from the space station operator to access that space station. (b) Space stations licensed under this part are authorized to provide service to earth stations located...
47 CFR 25.276 - Points of communication.
Code of Federal Regulations, 2012 CFR
2012-10-01
... authorization, an earth station is authorized to transmit to any space station in the same radio service provided that permission has been received from the space station operator to access that space station. (b) Space stations licensed under this part are authorized to provide service to earth stations located...
Advanced Regenerative Environmental Control and Life Support Systems: Air and Water Regeneration
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.
1985-01-01
Extended manned space missions will require regenerative life support techniques. Past manned missions used nonregenerative expendables, except for a molecular sieve based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The Space Station scheduled to be operational in the 1990's is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The techniques to be used in the requirements for the space station are addressed.
Advanced regenerative environmental control and life support systems - Air and water regeneration
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.
1984-01-01
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expandables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.
NASA Technical Reports Server (NTRS)
Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.
1990-01-01
This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.
STS-110 Extravehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
Cygnus Orbital ATK OA-6 Liftoff
2016-03-22
At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.
Cygnus Orbital ATK OA-6 Rollout
2016-03-21
At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.
Space Station Workshop Commercial Missions and User Requirements: Issues and Recommendations
NASA Technical Reports Server (NTRS)
1988-01-01
The issues and recommendations of a conference on the Space Station are presented. The subjects are organized under three headings of: materials and processing in space, earth and ocean observations, and industrial services. One hundred and two issues and recommendations which resulted from the workskop are categorized for each discipline subpanel. Responses to these issues and recommendations are based on more than twenty interviews with highly qualified NASA personnel and represent the best answers available at this time.
Problems in water recycling for Space Station Freedom and long duration life support
NASA Technical Reports Server (NTRS)
Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.
1989-01-01
A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.
2016-11-17
A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The base of the APH is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.
Issues in the design of an executive controller shell for Space Station automation
NASA Technical Reports Server (NTRS)
Erickson, William K.; Cheeseman, Peter C.
1986-01-01
A major goal of NASA's Systems Autonomy Demonstration Project is to focus research in artificial intelligence, human factors, and dynamic control systems in support of Space Station automation. Another goal is to demonstrate the use of these technologies in real space systems, for both round-based mission support and on-board operations. The design, construction, and evaluation of an intelligent autonomous system shell is recognized as an important part of the Systems Autonomy research program. His paper describes autonomous systems and executive controllers, outlines how these intelligent systems can be utilized within the Space Station, and discusses a number of key design issues that have been raised during some preliminary work to develop an autonomous executive controller shell at NASA Ames Research Center.
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
STS-108 Mission Specialist Daniel M. Tani final suit checkout
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Daniel M. Tani final suit checkout KSC-01PD-1717 KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani waves as he undergoes final suit check before launch on Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.
STS-108 Mission Specialist Linda A. Godwin final suit checkout
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Linda A. Godwin final suit checkout KSC-01PD-1720 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin undergoes final suit check before launch on mission STS-108 Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.
Metrication report to the Congress
NASA Technical Reports Server (NTRS)
1989-01-01
The major NASA metrication activity of 1988 concerned the Space Station. Although the metric system was the baseline measurement system for preliminary design studies, solicitations for final design and development of the Space Station Freedom requested use of the inch-pound system because of concerns with cost impact and potential safety hazards. Under that policy, however use of the metric system would be permitted through waivers where its use was appropriate. Late in 1987, several Department of Defense decisions were made to increase commitment to the metric system, thereby broadening the potential base of metric involvement in the U.S. industry. A re-evaluation of Space Station Freedom units of measure policy was, therefore, initiated in January 1988.
Space station attached payload program support
NASA Technical Reports Server (NTRS)
Estes, Maurice G., Jr.; Brown, Bardle D.
1989-01-01
The USRA is providing management and technical support for the peer review of the Space Station Freedom Attached Payload proposals. USRA is arranging for consultants to evaluate proposals, arranging meeting facilities for the reviewers to meet in Huntsville, Alabama and management of the actual review meetings. Assistance in developing an Experiment Requirements Data Base and Engineering/Technical Assessment support for the MSFC Technical Evaluation Team is also being provided. The results of the project will be coordinated into a consistent set of reviews and reports by USRA. The strengths and weaknesses analysis provided by the peer panel reviewers will by used NASA personnel in the selection of experiments for implementation on the Space Station Freedom.
Utilization of Space Station Freedom for technology research
NASA Technical Reports Server (NTRS)
Avery, Don E.
1992-01-01
Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.
NASA Technical Reports Server (NTRS)
Rabenberg, Ellen; Kaukler, William; Grugel, Richard
2015-01-01
Two sets of epoxy mixtures, both containing the same ionic liquid (IL) based resin but utilizing two different curing agents, were evaluated after spending more than two years of continual space exposure outside of the International Space Station on the MISSE-8 sample rack. During this period the samples, positioned on nadir side, also experienced some 12,500 thermal cycles between approximately -40?C and +40 C. Initial examination showed some color change, a miniscule weight variance, and no cracks or de-bonding from the sample substrate. Microscopic examination of the surface reveled some slight deformities and pitting. These observations, and others, are discussed in view of the ground-based control samples. Finally, the impetus of this study in terms of space applications is presented.
NASA Technical Reports Server (NTRS)
Biernacki, John; Juhasz, John; Sadler, Gerald
1991-01-01
A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
34. VIEW FROM STATION 78 OF STRETCH SLING HYDRAULIC CYLINDER, ...
34. VIEW FROM STATION 78 OF STRETCH SLING HYDRAULIC CYLINDER, PULLEY, AND LANYARDS LOCATED ON EAST SIDE OF SLC-3W MST STATION 85.5. LANYARDS (STOWED BEHIND SOME TUBING ON STATION 78 IN THIS PHOTO) PASS THROUGH OPENINGS IN STATION 78 TO BE ATTACHED NEAR TOP OF ATLAS AIRFRAME. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
Siamidis, John; Yuko, Jim
2014-01-01
The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).
Aerodynamics of Reentry Vehicle Clipper at Descent Phase
NASA Astrophysics Data System (ADS)
Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.
2005-02-01
From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.
NASA Technical Reports Server (NTRS)
1983-01-01
Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.
Space Station transition through Spacelab
NASA Technical Reports Server (NTRS)
Craft, Harry G., Jr.; Wicks, Thomas G.
1990-01-01
It is appropriate that NASA's Office of Space Science and Application's science management structures and processes that have proven successful on Spacelab be applied and extrapolated to Space Station utilization, wherever practical. Spacelab has many similarities and complementary aspects to Space Station Freedom. An understanding of the similarities and differences between Spacelab and Space Station is necessary in order to understand how to transition from Spacelab to Space Station. These relationships are discussed herein as well as issues which must be dealt with and approaches for transition and evolution from Spacelab to Space Station.
NASA Technical Reports Server (NTRS)
1985-01-01
Appendix A contains data that characterize the system functions in sufficient depth as to determine the requirements for the Space Station Data System (SSDS). This data is in the form of: (1) top down traceability report; (2) bottom up traceability report; (3) requirements data sheets; and (4) cross index of requirements paragraphs of the source documents and the requirements numbers. A data base users guide is included that interested parties can use to access the requirements data base and get up to date information about the functions.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
37. GENERAL VIEW OF SLC3W MST STATION 85.5 FROM NORTHEAST ...
37. GENERAL VIEW OF SLC-3W MST STATION 85.5 FROM NORTHEAST CORNER SHOWING PLATFORM CONTROLS IN SOUTHWEST CORNER, COMMUNICATION STATION AND ELEVATOR ON WEST SIDE. STRETCH SLING CYLINDER PRESSURE GAUGE IN SOUTHWEST CORNER OF STATION 78 VISIBLE THROUGH CENTRAL OPENING. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
The development status of candidate life support technology for a space station
NASA Technical Reports Server (NTRS)
Samonski, F. H., Jr.
1984-01-01
The establishment of a permanently-manned Space Station has recently been selected as the next major step in the U.S. space program. The requirements of a manned operations base in space appear to be best satisfied by on-board Environmental Control/Life Support Systems (ECLSS) which are free from, or have minimum dependence on, use of expendables and the frequent earth resupply missions which are part of systems using expendables. The present investigation is concerned with the range of regenerative life support system options which NASA is developing to be available for the Space Station designer. An air revitalization system is discussed, taking into account devices concerned with the carbon dioxide concentration, approaches of CO2 reduction, oxygen generation, trace contaminant control, and atmospheric quality monitoring. Attention is also given to an independent air revitalization system, nitrogen generation, a water reclamation system, a waste management system, applications of the technology, and future development requirements.
Space Station Freedom avionics technology
NASA Technical Reports Server (NTRS)
Edwards, A.
1990-01-01
The Space Station Freedom Program (SSFP) encompasses the design, development, test, evaluation, verification, launch, assembly, and operation and utilization of a set of spacecraft in low earth orbit (LEO) and their supporting facilities. The spacecraft set includes: the Space Station Manned Base (SSMB), a European Space Agency (ESA) provided Man-Tended Free Flyer (MTFF) at an inclination of 28.5 degrees and nominal attitude of 410 km, a USA provided Polar Orbiting Platform (POP), and an ESA provided POP in sun-synchronous, near polar orbits at a nominal altitude of 822 km. The SSMB will be assembled using the National Space Transportation System (NSTS). The POPs and the MTFF will be launched by Expendable Launch Vehicles (ELVs): a Titan 4 for the US POP and an Ariane for the ESA POP and MTFF. The US POP will for the most part use derivatives of systems flown on unmanned LEO spacecraft. The SSMB portion of the overall program is presented.
STS-111 crew breakfast before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
Accommodation requirements for microgravity science and applications research on space station
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Holland, L. R.; Wear, W. O.
1985-01-01
Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.
2002-05-15
KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 member Peggy Whitson poses for the camera before climbing inside the M-113 armored personnel carrier, used for emergency egress training at the pad. Behind her (right) is astronaut Tracy Caldwell, a mission specialist candidate currently assigned to the Astronaut Office Space Station Operations Branch. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1990-01-01
An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.
2005-08-19
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective of the University of Colorado Advanced Mission Design Program is to define the characteristics and evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, an L1 space station, and a transportation system that anchors these elements to a low Earth orbit (LEO) station. The motivation of this project was based on the idea that a near-Earth space infrastructure is not an end but an important step in a larger plan to expand man's capabilities in space science and technology. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as facilitating the full exploration of the potential for science and industry on the lunar surface. This paper will provide a sound rationale and a detailed scenario in support of the cislunar infrastructure design.
Space teleoperations technology for Space Station evolution
NASA Technical Reports Server (NTRS)
Reuter, Gerald J.
1990-01-01
Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.
An expert systems application to space base data processing
NASA Technical Reports Server (NTRS)
Babb, Stephen M.
1988-01-01
The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.
Astrophysical payload accommodation on the space station
NASA Technical Reports Server (NTRS)
Woods, B. P.
1985-01-01
Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.
2002-05-30
KENNEDY SPACE CENTER, FLA. -- In the Press Site auditorium, space agency officials participate in a media briefing following the launch scrub of Space Shuttle mission STS-111. From left are NASA/JSC Public Affairs Officer Kyle Herring, NASA Administrator Sean O'Keefe, French Space Agency President Dr. Alain Bensoussan, and Canadian Space Agency President Dr. Marc Garneau. STS-111 is the second Utilization Flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo, the Mobile Base System (MBS), and a replacement wrist/roll joint for the Canadarm 2. Also on board will be the Expedition Five crew who will replace Expedition Four on the Station. Launch is rescheduled for May 31 at 7:22 p.m. EDT
Gravitational Biology Facility on Space Station: Meeting the needs of space biology
NASA Technical Reports Server (NTRS)
Allen, Katherine; Wade, Charles
1992-01-01
The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.
STS-110 Astronaut Morin Totes S0 Keel Pins During EVA
NASA Technical Reports Server (NTRS)
2002-01-01
Hovering in space some 240 miles above the blue and white Earth, STS-110 astronaut M.E. Morin participates in his first ever and second of four scheduled space walks for the STS-110 mission. He is seen toting one of the S0 (S-Zero) keel pins which were removed from their functional position on the truss and attached on the truss' exterior for long term stowage. The 43-foot-long, 27,000 pound S0 truss was the first of 9 segments that will make up the International Space Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The mission completed the installations and preparations of the S0 truss and the Mobile Transporter within four space walks. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission was launched April 8, 2002 and returned to Earth April 19, 2002.
The evolution of automation and robotics in manned spaceflight
NASA Technical Reports Server (NTRS)
Moser, T. L.; Erickson, J. D.
1986-01-01
The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.
International Space Station (ISS)
2002-03-08
Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.
Modular space station phase B extension integrated ground operations
NASA Technical Reports Server (NTRS)
Selegue, D. F.
1971-01-01
Requirements for development test, manufacturing, facilities, GSE, training, logistics support, and launch operations are described. The prime integrating requirement is the early establishment of a common data base and its use throughout the design, development, and operational life of the station. The common data base is defined, and the concept of its use is presented. Development requirements for the station modules and subsystems are outlined along with a master development phasing chart.
Modular space station mass properties
NASA Technical Reports Server (NTRS)
1972-01-01
An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.
NASA Technical Reports Server (NTRS)
Anderton, D. A.
1985-01-01
The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.
NASA Astrophysics Data System (ADS)
Kozlovskaya, Inessa B.; Grigoriev, Anatoly I.
2004-08-01
The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in-and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.
The challenge of the US Space Station
NASA Technical Reports Server (NTRS)
Beggs, J. M.
1985-01-01
The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2009-09-11
EDWARDS AIR FORCE BASE, Calif. -- (ED09-0253-02) Space Shuttle Discovery rolls out on Runway 22L after landing at Edwards Air Force Base in Southern California’s high desert to conclude mission STS-128 to the International Space Station. (NASA photo /Tom Tschida)
NASA Technical Reports Server (NTRS)
Ryan, Margaret A.; Shevade, A. V.; Taylor, C. J.; Homer, M. L.; Jewell, A. D.; Kisor, A.; Manatt, K. S .; Yen, S. P. S.; Blanco, M.; Goddard, W. A., III
2006-01-01
An array-based sensing system based on polymer/carbon composite conductometric sensors is under development at JPL for use as an environmental monitor in the International Space Station. Sulfur dioxide has been added to the analyte set for this phase of development. Using molecular modeling techniques, the interaction energy between SO2 and polymer functional groups has been calculated, and polymers selected as potential SO2 sensors. Experiment has validated the model and two selected polymers have been shown to be promising materials for SO2 detection.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
System impacts of solar dynamic and growth power systems on space station
NASA Technical Reports Server (NTRS)
Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.
1986-01-01
Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.
NASA Technical Reports Server (NTRS)
Loomis, Audrey; Kellner, Albrecht
1988-01-01
The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.
Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1996-01-01
In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.
Space Station Freedom. A Foothold on the Future.
ERIC Educational Resources Information Center
David, Leonard
This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space"; (4) "Dreams Fulfilled" (summarizing the history of the space station development, including the…
Opportunities for research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Phillips, Robert W.
1992-01-01
NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.
Space Station Environmental Control/Life Support System engineering
NASA Technical Reports Server (NTRS)
Miller, C. W.; Heppner, D. B.
1985-01-01
The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.
Personnel occupied woven envelope robot power
NASA Technical Reports Server (NTRS)
1987-01-01
The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.
STS-111 crew exits O&C building on way to LC-39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
STS-111 crew exits the O&C Building before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
A PC based time domain reflectometer for space station cable fault isolation
NASA Technical Reports Server (NTRS)
Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken
1994-01-01
Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).
International Space Station (ISS)
2002-06-09
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.
International Space Station (ISS)
2002-06-09
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.
NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.;
2016-01-01
Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.
Simulated annealing in orbital flight planning
NASA Technical Reports Server (NTRS)
Soller, Jeffrey
1990-01-01
Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.
Definition of technology development missions for early space stations: Large space structures
NASA Technical Reports Server (NTRS)
1983-01-01
The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C>
2006-01-01
Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.
A ten-meter optical telescope for deep-space communications
NASA Technical Reports Server (NTRS)
Shaik, Kamran; Kerr, Edwin L.
1990-01-01
Optical communications using laser light in the visible spectral range is being considered for future deep-space missions. Such a system will require a large telescope in earth vicinity to be used as a receiving station for data return from the spacecraft. A preliminary discussion for a ground-based receiving station consisting of a 10-meter hexagonally segmented primary with high surface tolerance and a unique sunshade is presented.
Space station commonality analysis
NASA Technical Reports Server (NTRS)
1988-01-01
This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.
Science in space with the Space Station
NASA Technical Reports Server (NTRS)
Banks, Peter M.
1987-01-01
The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.
47 CFR 25.172 - Requirements for reporting space station control arrangements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... case of a non-U.S.-licensed space station, prior to commencing operation with U.S. earth stations. (1... earth station(s) communicating with the space station from any site in the United States. (3) The location, by city and country, of any telemetry, tracking, and command earth station that communicates with...
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
Spacecraft crew procedures from paper to computers
NASA Technical Reports Server (NTRS)
Oneal, Michael; Manahan, Meera
1993-01-01
Large volumes of paper are launched with each Space Shuttle Mission that contain step-by-step instructions for various activities that are to be performed by the crew during the mission. These instructions include normal operational procedures and malfunction or contingency procedures and are collectively known as the Flight Data File (FDF). An example of nominal procedures would be those used in the deployment of a satellite from the Space Shuttle; a malfunction procedure would describe actions to be taken if a specific problem developed during the deployment. A new FDF and associated system is being created for Space Station Freedom. The system will be called the Space Station Flight Data File (SFDF). NASA has determined that the SFDF will be computer-based rather than paper-based. Various aspects of the SFDF are discussed.
Function, form, and technology - The evolution of Space Station in NASA
NASA Technical Reports Server (NTRS)
Fries, S. D.
1985-01-01
The history of major Space Station designs over the last twenty-five years is reviewed. The evolution of design concepts is analyzed with respect to the changing functions of Space Stations; and available or anticipated technology capabilities. Emphasis is given to the current NASA Space Station reference configuration, the 'power tower'. Detailed schematic drawings of the different Space Station designs are provided.
NASA Technical Reports Server (NTRS)
1983-01-01
The space station mission requirements data base consists of 149 attached and free-flying missions each of which is documented by a set of three interrelated documents: (1) NASA LaRC Data Sheets - with three sheets comprising a set for each payload element described. These sheets contain user payload element data necessary to drive Space Station architectural options. (2) GDC-derived operations descriptions that supplement the LaRC payload element data in the operations areas such as further descriptions of crew involvement, EVA, etc. (3) Payload elements synthesis sheets used by GDC to provide requirements traceability to data sources and to provide a narrative describing the basis for formulating the payload element requirements.
Crew activity and motion effects on the space station
NASA Technical Reports Server (NTRS)
Rochon, Brian V.; Scheer, Steven A.
1987-01-01
Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.
Defining contamination control requirements for non-human research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Corbin, Barbara J.; Funk, Glenn A.
1992-01-01
The use of non-human biological specimens for life sciences research on Space Station Freedom has generated concerns about spacecraft internal contamination, crew safety and hardware utility. Various NASA organizations convened to discuss the concerns and determine how they should be addressed. This paper will present the issues raised at this meeting, the process by which safety concerns were identified, and the means by which contamination control requirements for all biological payloads were recommended for incorporation into Space Station Freedom safety requirements. The microbiological, toxicological and particulate contamination criteria for long-term spaceflight will be based on realistic assessment of risk and hardware will be designed to meet established contamination criteria while facilitating crew operations, thereby meeting the needs of the investigator.
Space station protective coating development
NASA Technical Reports Server (NTRS)
Pippin, H. G.; Hill, S. G.
1989-01-01
A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
2001-07-10
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.
Video requirements for materials processing experiments in the space station US laboratory
NASA Technical Reports Server (NTRS)
Baugher, Charles R.
1989-01-01
Full utilization of the potential of the materials research on the Space Station can be achieved only if adequate means are available for interactive experimentation between the science facilities and ground-based investigators. Extensive video interfaces linking these three elements are the only alternative for establishing a viable relation. Because of the limit in the downlink capability, a comprehensive complement of on-board video processing, and video compression is needed. The application of video compression will be an absolute necessity since it's effectiveness will directly impact the quantity of data which will be available to ground investigator teams, and their ability to review the effects of process changes and the experiment progress. Video data compression utilization on the Space Station is discussed.
The space station integrated refuse management system
NASA Technical Reports Server (NTRS)
Anderson, Loren A.
1988-01-01
The design and development of an Integrated Refuse Management System for the proposed International Space Station was performed. The primary goal was to make use of any existing potential energy or material properties that refuse may possess. The secondary goal was based on the complete removal or disposal of those products that could not, in any way, benefit astronauts' needs aboard the Space Station. The design of a continuous living and experimental habitat in space has spawned the need for a highly efficient and effective refuse management system capable of managing nearly forty-thousand pounds of refuse annually. To satisfy this need, the following four integrable systems were researched and developed: collection and transfer; recycle and reuse; advance disposal; and propulsion assist in disposal. The design of a Space Station subsystem capable of collecting and transporting refuse from its generation site to its disposal and/or recycling site was accomplished. Several methods of recycling or reusing refuse in the space environment were researched. The optimal solution was determined to be the method of pyrolysis. The objective of removing refuse from the Space Station environment, subsequent to recycling, was fulfilled with the design of a jettison vehicle. A number of jettison vehicle launch scenarios were analyzed. Selection of a proper disposal site and the development of a system to propel the vehicle to that site were completed. Reentry into the earth atmosphere for the purpose of refuse incineration was determined to be the most attractive solution.
International Space Station (ISS)
2001-02-01
These 10 astronauts and cosmonauts represent the base STS-102 space travelers, as well as the crew members for the station crews switching out turns aboard the outpost. Those astronauts wearing orange represent the STS-102 crew members. In the top photo, from left to right are: James M. Kelly, pilot; Andrew S.W. Thomas, mission specialist; James D. Wetherbee, commander; and Paul W. Richards, mission specialist. The group pictured in the lower right portion of the portrait are STS-members as well as Expedition Two crew members (from left): mission specialist and flight engineer James S. Voss; cosmonaut Yury V. Usachev, Expedition Two Commander; and mission specialist and flight engineer Susan Helms. The lower left inset are the 3 man crew of Expedition One (pictured from left): Cosmonaut Sergei K. Krikalev, flight engineer; astronaut William M. (Bill) Shepherd, commander; and cosmonaut Yuri P. Gidzenko, Soyuz commander. The main objective of the STS-102 mission was the first Expedition Crew rotation and the primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission launched on March 8, 2001 aboard the Space Shuttle Orbiter Discovery.
The international space station as a free flyer servicing node
NASA Astrophysics Data System (ADS)
Antol, Jeffrey; Headley, David E.
1999-01-01
The International Space Station will provide a multitude of opportunities for an expanding customer base to make use of this international resource. One such opportunity is servicing of various visiting vehicles that are in a similar orbit to the station. Servicing may include change-out of payloads, replenishment of consumables, repair, and refurbishment operations. Previous studies have been conducted in which ``paper'' free flyers have been assessed against the station's ability to accommodate them. Over the last several months though, an already flown free flyer, EURECA, was assessed as a real-life visiting free flyer design reference mission. Issues such as capture/berthing, servicing, logistics support, and stowage were assessed for station design and operational approaches. This paper will highlight critical visiting vehicle design considerations, identify station issues, and provide recommendations for accommodation of a wide range of visiting vehicle requirements of the future.
The International Space Station As a Free Flyer Servicing Node
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Headley, David E.
1999-01-01
The International Space Station will provide a multitude of opportunities for an expanding customer base to make use of this international resource. One such opportunity is servicing of various visiting vehicles that are in a similar orbit to the station. Servicing may include change-out of payloads, replenishment of consumables, repair, and refurbishment operations. Previous studies have been conducted in which "paper" free flyers have been assessed against the station s ability to accommodate them. Over the last several months though, an already flown free flyer, EURECA, was assessed as a real-life visiting free flyer design reference mission. Issues such as capture/berthing, servicing, logistics support, and stowage were assessed for station design and operational approaches. This paper will highlight critical visiting vehicle design considerations, identify station issues, and provide recommendations for accommodation of a wide range of visiting vehicle requirements of the future.
Operations management system advanced automation: Fault detection isolation and recovery prototyping
NASA Technical Reports Server (NTRS)
Hanson, Matt
1990-01-01
The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.
Portrait view of Whitson in Orlan suit
2002-08-14
ISS005-E-09716 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.
Portrait view of Whitson in Orlan suit
2002-08-14
ISS005-E-09713 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.
2002-08-14
ISS005-E-09719 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, photographed in her thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.
Space station as a vital focus for advancing the technologies of automation and robotics
NASA Technical Reports Server (NTRS)
Varsi, Giulio; Herman, Daniel H.
1988-01-01
A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.
The challenge of assembling a space station in orbit
NASA Technical Reports Server (NTRS)
Brand, Vance D.
1990-01-01
Assembly of a space station in orbit is a challenging and complicated task. If mankind is to exploit the knowledge already gained from space flight and continue to advance the frontiers of space exploration, then space stations in orbit must be part of the overall space infrastructure. Space stations, like the Freedom, having relatively large mass which greatly exceeds the lifting capability of their transportation system, are candidates for on-orbit assembly. However, when a large wide-body booster is available, there are significant advantages to having a deployable space station assembled on Earth and transported into orbit intact or in a few large pieces. The United States will build the Space Station Freedom by the assembly method. Freedom's assembly is feasible, but a significant challenge, and it will absorb much of NASA's effort in the next 8 years. The Space Station Freedom is an international program which will be the centerpiece of the free world's space activities in the late 1990's. Scientific information and products from the Space Station Freedom and its use as a transportation depot will advance technology and facilitate the anticipated manned space exploration surge to the Moon and Mars early in the 21st century.
Tether applications for space station
NASA Technical Reports Server (NTRS)
Nobles, W.
1986-01-01
A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.
Space station: Cost and benefits
NASA Technical Reports Server (NTRS)
1983-01-01
Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.
Pre-Launch Risk Reduction Activities Conducted at KSC for the International Space Station
NASA Technical Reports Server (NTRS)
Kirkpatrick, Paul
2011-01-01
In the development of any large scale space-based multi-piece assembly effort, planning must include provisions for testing and verification; not only of the individual pieces but also of the pieces together. Without such testing on the ground, the risk to cost, schedule and technical performance increases substantially. This paper will review the efforts undertaken by the International Space Station (ISS), including the International Partners, during the pre-launch phase, primarily at KSC, to reduce the risks associated with the on-orbit assembly and operation of the ISS.
Development and testing of the rack insertion device
NASA Technical Reports Server (NTRS)
Strickland, G. Scott
1995-01-01
Installing and removing experiment racks in a Space Station Logistics Module will become a repetitive operation at Kennedy Space Center (KSC) in the near future. A Rack Insertion Device (RID) consisting of an Extendible Boom, End Effector, and Positioning Base is being developed for the task. This paper discusses the key elements of the RlD's function and design. Prototype test results for the RlD's Extendible Boom and End Effector are presented. Also discussed are future end effectors that will further enhance the RlD's Space Station processing capability.
NASA's Student Glovebox: An Inquiry-Based Technology Educator's Guide
NASA Technical Reports Server (NTRS)
Rosenberg, Carla B.; Rogers, Melissa J. B.
2000-01-01
A glovebox is a sealed container with built-in gloves. Astronauts perform small experiments and test hardware inside of them. Gloveboxes have flown on NASA's space shuttles and on the Russian space station Mir. The International Space Station (ISS) will have a permanent glovebox on the U.S. laboratory, Destiny. This document contains cursory technical information on gloveboxes and glovebox experiments and is intended for use by middle school educators and students. Information is provided on constructing a model glovebox as well as realistic cut-outs to be pasted on the model.
2016-11-17
A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. Oscar Monje, a scientist on the Engineering Services Contract, prepares the base of the APH for engineering development tests to see how the science will integrate with the various systems of the plant habitat. The APH will have about 180 sensors and fourt times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.
2000-05-30
Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Mission Specialist Jeffrey N. Williams is joined by his wife, Anna-Marie, and two sons. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
2000-05-30
Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Mission Specialist Mary Ellen Weber is joined by her husband, Dr. Jerome Elkind. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
2000-05-30
Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Mission Specialist Jeffrey N. Williams is joined by his wife, Anna-Marie, and two sons. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
2000-05-30
Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Mission Specialist Mary Ellen Weber is joined by her husband, Dr. Jerome Elkind. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station
Space station advanced automation
NASA Technical Reports Server (NTRS)
Woods, Donald
1990-01-01
In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.
NASA Technical Reports Server (NTRS)
1993-01-01
This report is the result of the Space Station Redesign Team's activity. Its purpose is to present without bias, and in appropriate detail, the characteristics and cost of three design and management approaches for the Space Station Freedom. It was presented to the Advisory Committee on the Redesign of the Space Station on 7 Jun. 1993, in Washington, D.C.
NASA Astrophysics Data System (ADS)
Butler, G. V.
1981-04-01
Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.
1972-01-01
This is an artist's concept of a modular space station. In 1970 the Marshall Space Flight Center arnounced the completion of a study concerning a modular space station that could be launched by the planned-for reusable Space Shuttle. The study envisioned a space station composed of cylindrical sections 14 feet in diameter and of varying lengths joined to form any one of a number of possible shapes. The sections were restricted to 14 feet in diameter and 58 feet in length to be consistent with a shuttle cargo bay size of 15 by 60 feet. Center officials said that the first elements of the space station could be in orbit by about 1978 and could be manned by three or six men. This would be an interim space station with sections that could be added later to form a full 12-man station by the early 1980s.
Wireless Headset Communication System
NASA Technical Reports Server (NTRS)
Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.
1995-01-01
System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.
46 CFR 154.320 - Cargo control stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Arrangements § 154.320 Cargo control stations. (a) Cargo control stations must be above the weather deck. (b) If a cargo control station is in accommodation, service, or control spaces or has access to such a space, the station must: (1) Be a gas safe space; (2) Have an access to the space that meets § 154.330...
46 CFR 154.320 - Cargo control stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Arrangements § 154.320 Cargo control stations. (a) Cargo control stations must be above the weather deck. (b) If a cargo control station is in accommodation, service, or control spaces or has access to such a space, the station must: (1) Be a gas safe space; (2) Have an access to the space that meets § 154.330...
46 CFR 154.320 - Cargo control stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Arrangements § 154.320 Cargo control stations. (a) Cargo control stations must be above the weather deck. (b) If a cargo control station is in accommodation, service, or control spaces or has access to such a space, the station must: (1) Be a gas safe space; (2) Have an access to the space that meets § 154.330...
Logical steps to moon, Mars and beyond
NASA Astrophysics Data System (ADS)
Kuriki, Kyoichi
1993-10-01
A scenario of the space activities aimed at exploration of moon, Mars, and other planets is proposed. The scenario uses motivations based on the fundamental human instinct, i.e. intellectual curiosity and survival of the humankind. It is shown how these key drivers are threading through the known programs including Space Shuttle and Space Station, Space Energy Exploitation and Space Factory, Lunar Base, and Mars Base. It is concluded that an eventual goal of the mission from planet earth is to set Noah's Arc off into space in the next millenium.
2005-08-19
The space shuttle Discovery atop NASA's modified 747 is captured over the Mojave Desert while being ferried from NASA Dryden to the Kennedy Space Center. NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.
2002-01-01
This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)
2002-01-01
The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.
Advanced Power System Analysis Capabilities
NASA Technical Reports Server (NTRS)
1997-01-01
As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.
[Bone metabolism in human space flight and bed rest study].
Ohshima, Hiroshi; Mukai, Chiaki
2008-09-01
Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.
NBL experimental photographic support: STS-111-UF2
2008-12-05
JSC2001-02996 (December 2001) --- Astronauts Philippe Perrin and Franklin R. Chang-Diaz practice procedures to be used during space walks scheduled to perform work on the International Space Station (ISS). The two STS-111 mission specialists, wearing training versions of the Extravehicular Mobility Unit (EMU) space suit, make use of the Neutral Buoyancy Laboratory (NBL) giant pool to rehearse their assigned chores. While the Space Shuttle Endeavour is docked to the orbital outpost, two space walks are scheduled to hook up the mobile base system, the second part of the mobile platform for the stations Canadarm2 robotic arm and other assembly tasks. Perrin represents CNES, the French Space Agency. STS-111 will be the 14th shuttle mission to visit the orbital outpost.
NBL experimental photographic support: STS-111-UF2
2008-12-05
JSC2001-02995 (December 2001) --- Astronauts Philippe Perrin and Franklin R. Chang-Diaz practice procedures to be used during space walks scheduled to perform work on the International Space Station (ISS). The two STS-111 mission specialists, wearing training versions of the Extravehicular Mobility Unit (EMU) space suit, make use of the Neutral Buoyancy Laboratory (NBL) giant pool to rehearse their assigned chores. While the Space Shuttle Endeavour is docked to the orbital outpost, two space walks are scheduled to hook up the mobile base system, the second part of the mobile platform for the stations Canadarm2 robotic arm and other assembly tasks. Perrin represents CNES, the French Space Agency. STS-111 will be the 14th shuttle mission to visit the orbital outpost.
Space Station Freedom - A resource for aerospace education
NASA Technical Reports Server (NTRS)
Brown, Robert W.
1988-01-01
The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
NASA Technical Reports Server (NTRS)
Bolinger, Allison
2016-01-01
This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.
NASA Technical Reports Server (NTRS)
1984-01-01
The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.
NASA Technical Reports Server (NTRS)
1989-01-01
Project Argo is the design of a manned Space Transportation Vehicle (STV) that would transport payloads between LEO (altitude lying between 278 to 500 km above the Earth) and GEO (altitude is approximately 35,800 km above the Earth) and would be refueled and refurbished at the Space Station Freedom. Argo would be man's first space-based manned vehicle and would provide a crucial link to geosynchronous orbit where the vast majority of satellites are located. The vehicle could be built and launched shortly after the space station and give invaluable space experience while serving as a workhorse to deliver and repair satellites. Eventually, if a manned space station is established in GEO, then Argo could serve as the transport between the Space Station Freedom and a Geostation. If necessary, modifications could be made to allow the vehicle to reach the moon or possibly Mars. Project Argo is unique in that it consists of the design and comparison of two different concepts to accomplish the same mission. The first is an all-propulsive vehicle which uses chemical propulsion for all of its major maneuvers between LEO and GEO. The second is a vehicle that uses aeroassisted braking during its return from GEO to LEO by passing through the upper portions of the atmosphere.
Conceptual design of a lunar base thermal control system
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.
1992-01-01
Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
Identifying atmospheric monitoring needs for Space Station Freedom
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.
MBS grappled to the Canadarm2 SSRMS during STS-111 UF-2 installation OPS on the ISS truss structure
2002-06-10
STS111-E-5139 (10 June 2002) --- Backdropped by the blackness of space and Earths horizon, the Mobile Remote Servicer Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Astronauts Peggy A. Whitson, Expedition Five flight engineer, and Carl E. Walz, Expedition Four flight engineer, attached the MBS to the Mobile Transporter on the S0 (S-zero) Truss at 8:03 a.m. (CDT) on June 10, 2002. The MBS is an important part of the stations Mobile Servicing System, which will allow the stations robotic arm to travel the length of the station to perform construction tasks.
MBS grappled to the Canadarm2 SSRMS during STS-111 UF-2 installation OPS on the ISS truss structure
2002-06-10
STS111-E-5142 (10 June 2002) --- Backdropped by the blackness of space and Earths horizon, the Mobile Remote Servicer Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Astronauts Peggy A. Whitson, Expedition Five flight engineer, and Carl E. Walz, Expedition Four flight engineer, attached the MBS to the Mobile Transporter on the S0 (S-zero) Truss at 8:03 a.m. (CDT) on June 10, 2002. The MBS is an important part of the stations Mobile Servicing System, which will allow the stations robotic arm to travel the length of the station to perform construction tasks.
Space station: A step into the future
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1989-01-01
The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.
A customer-friendly Space Station
NASA Technical Reports Server (NTRS)
Pivirotto, D. S.
1984-01-01
This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope. 1214.400 Section 1214.400 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station... Space Station crewmembers provided by NASA for flight to the International Space Station. (b) In order...
Space station propulsion requirements study
NASA Technical Reports Server (NTRS)
Wilkinson, C. L.; Brennan, S. M.
1985-01-01
Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.
NASDA knowledge-based network planning system
NASA Technical Reports Server (NTRS)
Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.
1993-01-01
One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.
NASA Astrophysics Data System (ADS)
Janzhura, Alexander
A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is demonstrated that the PC index can be successfully used to monitor the state of the magnetosphere (space weather monitoring) and the readiness of the magnetosphere to producing substorm or storm (space weather nowcasting).
2018-05-18
This week in space news, college students converge on the Kennedy Space Center Visitor Complex for the 9th annual Robotic Mining Competition, and the Advanced Plant Habitat base is readied for its flight to the International Space Station aboard the Orbital ATK Cygnus spacecraft.
Tests of Lorentz and CPT Invariance in Space
NASA Technical Reports Server (NTRS)
Mewes, Matthew
2003-01-01
I give a brief overview of recent work concerning possible signals of Lorentz violation in sensitive clock-based experiments in space. The systems under consideration include atomic clocks and electromagnetic resonators of the type planned for flight on the International Space Station.
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.
2016-01-01
Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.
STS-108 Mission Specialist Linda A. Godwin arrives at KSC
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Linda A. Godwin arrives at KSC KSC-01PD-1710 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin pauses after her arrival at KSC. She and the rest of the crew will be preparing for launch Nov. 29 on Space Shuttle Endeavour. Liftoff is scheduled for 7:41 p.m. EST. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of spacewalk and robotics tasks. Mission Specialists Daniel M. Tani and Godwin will take part in the spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Other crew members are Commander Dominic L. Gorie and Pilot Mark E. Kelly.
STS-108 Mission Specialist Daniel M. Tani arrives at KSC
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Daniel M. Tani arrives at KSC KSC-01PD-1707 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani arrives at KSC in a T-38 jet trainer. He and the rest of the crew will be preparing for launch Nov. 29 on Space Shuttle Endeavour. Liftoff is scheduled for 7:41 p.m. EST. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of spacewalk and robotics tasks. Mission Specialists Linda A. Godwin and Tani will take part in the spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Other crew members are Commander Dominic L. Gorie and Pilot Mark E. Kelly.
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-01-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
Technician checks the mirrors of the Starshine-2 experiment
NASA Technical Reports Server (NTRS)
2001-01-01
Technician checks the mirrors of the Starshine-2 experiment KSC-01PD-1715 KENNEDY SPACE CENTER, Fla. -- A technician checks the mirrors on the Starshine-2 experiment inside a canister in the payload bay of Space Shuttle Endeavour. The deployable experiment is being carried on mission STS-108. Starshine-2's 800 aluminum mirrors were polished by more than 25,000 students from 26 countries. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff of Endeavour on mission STS-108 is scheduled for 7:41 p.m. EST.
User manual of the CATSS system (version 1.0) communication analysis tool for space station
NASA Technical Reports Server (NTRS)
Tsang, C. S.; Su, Y. T.; Lindsey, W. C.
1983-01-01
The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.