Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments.
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1986-01-01
Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.
Shape control of large space structures
NASA Technical Reports Server (NTRS)
Hagan, M. T.
1982-01-01
A survey has been conducted to determine the types of control strategies which have been proposed for controlling the vibrations in large space structures. From this survey several representative control strategies were singled out for detailed analyses. The application of these strategies to a simplified model of a large space structure has been simulated. These simulations demonstrate the implementation of the control algorithms and provide a basis for a preliminary comparison of their suitability for large space structure control.
Microgravity Vibration Control and Civil Applications
NASA Technical Reports Server (NTRS)
Whorton, Mark Stephen; Alhorn, Dean Carl
1998-01-01
Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.
Structural Dynamics and Control of Large Space Structures, 1982
NASA Technical Reports Server (NTRS)
Brumfield, M. L. (Compiler)
1983-01-01
Basic research in the control of large space structures is discussed. Active damping and control of flexible beams, active stabilization of flexible antenna feed towers, spacecraft docking, and robust pointing control of large space platform payloads are among the topics discussed.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
Low-cost Active Structural Control Space Experiment (LASC)
NASA Technical Reports Server (NTRS)
Robinett, Rush; Bukley, Angelia P.
1992-01-01
The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1990-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.
NASA Technical Reports Server (NTRS)
Buchanan, H. J.
1983-01-01
Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.
LSS systems planning and performance program
NASA Technical Reports Server (NTRS)
Mckenna, Victoria Jones; Dendy, Michael J.; Naumann, Charles B.; Rice, Sally A.; Weathers, John M.
1993-01-01
This report describes, using viewgraphs, the Marshall Space Flight Center's Large Space Structures Ground Test Facilities located in building 4619. Major topics include the Active Control Evaluation of Systems (ACES) Laboratory; the Control-Structures Interaction/Controls, Astrophysics, and Structures Experiment in Space (CSI/CASES); Advanced Development Facility; and the ACES Guest Investigator Program.
NASA Technical Reports Server (NTRS)
Soosaar, K.
1982-01-01
Some performance requirements and development needs for the design of large space structures are described. Areas of study include: (1) dynamic response of large space structures; (2) structural control and systems integration; (3) attitude control; and (4) large optics and flexibility. Reference is made to a large space telescope.
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.
1991-01-01
Control-Structures Interaction (CSI) technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques, and tools, for enabling the interdisciplinary design of an integrated structure and control system, rather than the integration of a structural design and a control system design. The goal of this program is to develop validated CSI technology for integrated design/analysis and qualification of large flexible space systems and precision space structures. A description of the CSI technology program is presented.
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas; Hyland, David C.
1990-01-01
An experiment was conducted to design controllers that would provide substantial reduction of line-of-sight control errors. The satisfaction of this objective required the controllers to attenuate the beam vibration significantly. Particular emphasis was placed on controller simplicity (i.e., reduced-order and decentralized controller architectures). Complexity reduction in control law implementation is of paramount interest due to stringent limitations on throughput of even state-of-the-art space qualified processors. The results of this experiment successfully demonstrate active vibrator control for a flexible structure. The testbed is the ACES structure at the NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
NASA Technical Reports Server (NTRS)
1991-01-01
Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering.
NASA/Howard University Large Space Structures Institute
NASA Technical Reports Server (NTRS)
Broome, T. H., Jr.
1984-01-01
Basic research on the engineering behavior of large space structures is presented. Methods of structural analysis, control, and optimization of large flexible systems are examined. Topics of investigation include the Load Correction Method (LCM) modeling technique, stabilization of flexible bodies by feedback control, mathematical refinement of analysis equations, optimization of the design of structural components, deployment dynamics, and the use of microprocessors in attitude and shape control of large space structures. Information on key personnel, budgeting, support plans and conferences is included.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1992-01-01
A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.
An improved output feedback control of flexible large space structures
NASA Technical Reports Server (NTRS)
Lin, Y. H.; Lin, J. G.
1980-01-01
A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.
U.S. perspective on technology demonstration experiments for adaptive structures
NASA Technical Reports Server (NTRS)
Aswani, Mohan; Wada, Ben K.; Garba, John A.
1991-01-01
Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 3
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures are reported. This volume deals mainly with control theory and methodologies as they apply to space stations and large antennas. Integration and dynamics and control experimental findings are reported. Among the areas of control theory discussed were feedback, optimization, and parameter identification.
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.
Large space systems technology, 1981. [conferences
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1982-01-01
A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Flexibility of space structures makes design shaky
NASA Technical Reports Server (NTRS)
Hearth, D. P.; Boyer, W. J.
1985-01-01
An evaluation is made of the development status of high stiffness space structures suitable for orbital construction or deployment of large diameter reflector antennas, with attention to the control system capabilities required by prospective space structure system types. The very low structural frequencies typical of very large, radio frequency antenna structures would be especially difficult for a control system to counteract. Vibration control difficulties extend across the frequency spectrum, even to optical and IR reflector systems. Current research and development efforts are characterized with respect to goals and prospects for success.
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
Emulating a flexible space structure: Modeling
NASA Technical Reports Server (NTRS)
Waites, H. B.; Rice, S. C.; Jones, V. L.
1988-01-01
Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.
Ground test experiment for large space structures
NASA Technical Reports Server (NTRS)
Tollison, D. K.; Waites, H. B.
1985-01-01
In recent years a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual in orbit tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report.
Active Control of Flexible Space Structures Using the Nitinol Shape Memory Actuators
1987-10-01
number) FIELD !GROUP SUBGROUP I Active Control, Nitinol Actuators, Space Structures 9. ABSTRACT (Continue on reverse if necessary and identify by block...number) Summarizes research progress in the feasibility demonstration of active vibration control using Nitinol shape memory actuators. Tests on...FLEXIBLE SPACE STRUCTURES USING NITINOL SHAPE MEMORY ACTUATORS FINAL REPORT FOR PHASE I SDIO CONTRACT #F49620-87-C-0035 0 BY DR. AMR M. BAZ KARIM R
Optimal control of large space structures via generalized inverse matrix
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
Research on the control of large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1983-01-01
The research effort on the control of large space structures at the University of Houston has concentrated on the mathematical theory of finite-element models; identification of the mass, damping, and stiffness matrix; assignment of damping to structures; and decoupling of structure dynamics. The objective of the work has been and will continue to be the development of efficient numerical algorithms for analysis, control, and identification of large space structures. The major consideration in the development of the algorithms has been the large number of equations that must be handled by the algorithm as well as sensitivity of the algorithms to numerical errors.
Passive and Active Control of Space Structures (PACOSS)
NASA Astrophysics Data System (ADS)
Morosow, G.; Harcrow, H.; Rogers, L.
1985-04-01
Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1983-01-01
Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification.
Control technology development
NASA Astrophysics Data System (ADS)
Schaechter, D. B.
1982-03-01
The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.
Modified independent modal space control method for active control of flexible systems
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.
Active control of large space structures: An introduction and overview
NASA Technical Reports Server (NTRS)
Doane, G. B., III; Tollison, D. K.; Waites, H. B.
1985-01-01
An overview of the large space structure (LSS) control system design problem is presented. The LSS is defined as a class of system, and LSS modeling techniques are discussed. Model truncation, control system objectives, current control law design techniques, and particular problem areas are discussed.
Development of magnetostrictive active members for control of space structures
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-01-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Development of magnetostrictive active members for control of space structures
NASA Astrophysics Data System (ADS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-08-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Integration of mechanism and control for large-angle slew maneuvers of flexible structures
NASA Technical Reports Server (NTRS)
Chew, Meng-Sang
1991-01-01
A rolling contact noncircular gear system is applied to assist a desired controller in the slewing of a flexible space structure. The varying gear ratio in cooperation with the controller results in lower feedback gains at the controller, as well as considerably reducing flexural vibrations of the space structure. The noncircular gears consist of a pair of convex noncircular cylinders with specially designed profiles that are synthesized in conjunction with the optimal controller gains for minimizing the flexural vibrations of flexible structure during a slew maneuver. Convexity of the cylindrical profiles for this noncircular gear device must be ensured to maintain rolling contact between the two cylinders. Simulations of slewing control tasks for two kinds of flexible space structures, such as a planar flexible beam and the planar articulated flexible beams, are presented.
1990-11-01
control and including final recovery for a wide range of space vehicles from tethered satellite systems and flexible space structures to the space plane...flight mechanics, members from the Fluid Dynamics Panel, the Guidance and Control Panel, the Propulsion and Energetics Panel and the Structures and... Structures and Materials which should be overcome for a successful realization of a human Space Transportation System in the 21st century. He
Space construction system analysis. Part 2: Space construction experiments concepts
NASA Technical Reports Server (NTRS)
Boddy, J. A.; Wiley, L. F.; Gimlich, G. W.; Greenberg, H. S.; Hart, R. J.; Lefever, A. E.; Lillenas, A. N.; Totah, R. S.
1980-01-01
Technology areas in the orbital assembly of large space structures are addressed. The areas included structures, remotely operated assembly techniques, and control and stabilization. Various large space structure design concepts are reviewed and their construction procedures and requirements are identified.
NASA Technical Reports Server (NTRS)
Singh, Sudeep K.; Lindenmoyer, Alan J.
1989-01-01
Results are presented from a preliminary control/structure interaction study of the Space Station, the Assembly Work Platform, and the STS orbiter dynamics coupled with the orbiter and station control systems. The first three Space Station assembly flight configurations and their finite element representations are illustrated. These configurations are compared in terms of control authority in each axis and propellant usage. The control systems design parameters during assembly are computed. Although the rigid body response was acceptable with the orbiter Primary Reaction Control System, the flexible body response showed large structural deflections and loads. It was found that severe control/structure interaction occurred if the stiffness of the Assembly Work Platform was equal to that of the station truss. Also, the response of the orbiter Vernier Reaction Control System to small changes in inertia properties is examined.
Modeling, Analysis, and Optimization Issues for Large Space Structures
NASA Technical Reports Server (NTRS)
Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)
1983-01-01
Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.
Distributed active control of large flexible space structures
NASA Technical Reports Server (NTRS)
Nguyen, C. C.; Baz, A.
1986-01-01
This progress report summarizes the research work performed at the Catholic University of America on the research grant entitled Distributed Active Control of Large Flexible Space Structures, funded by NASA/Goddard Space Flight Center, under grant number NAG5-749, during the period of March 15, 1986 to September 15, 1986.
Space construction base control system
NASA Technical Reports Server (NTRS)
1978-01-01
Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.
Interactive computer graphics and its role in control system design of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers
NASA Astrophysics Data System (ADS)
Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.
1989-01-01
Several planned United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) space systems such as Space Based Radar (SBR), Space Based Laser (SBL), and Space Station, pose serious vibration and control issues. Their low system mass combined with their large size, precision pointing/shape control and rapid retargetting requirements, will result in an unprecedented degree of interaction between the system controller and the modes of vibration of the structure. The resulting structural vibrations and/or those caused by foreign objects impacting the space structure could seriously degrade system performance, making it virtually impossible for passive structural systems to perform their missions. Therefore an active vibration control system which will sense these natural and spurious vibrations, evaluate them and dampen them out is required. This active vibration control system must be impervious to the space environment and electromagnetic interference, have very low weight, and in essence become part of the structure itself. The concept of smart structures meets these criteria. Smart structures is defined as the embedment of sensors, actuators, and possibly microprocessors in the material which forms the structure, a concept that is particularly applicable to advanced composites. These sensors, actuators, and microprocessors will work interactively to sense, evaluate, and dampen those vibrations which pose a threat to large flexible space systems (LSS). The sensors will also be capable of sensing any degradation to the structure. The Air Force Astronautics Laboratory (AFAL) has been working in the area of dynamics and control of LSS for the past five years. Several programs involving both contractual and in-house efforts to develop sensors and actuators for controlling LSS have been initiated. Presently the AFAL is developing a large scale laboratory which will have the capacity of performing large angle retargetting manuevers and vibration analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.
Integrated controls-structures design methodology development for a class of flexible spacecraft
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Joshi, S. M.; Walz, J. E.; Armstrong, E. S.
1990-01-01
Future utilization of space will require large space structures in low-Earth and geostationary orbits. Example missions include: Earth observation systems, personal communication systems, space science missions, space processing facilities, etc., requiring large antennas, platforms, and solar arrays. The dimensions of such structures will range from a few meters to possibly hundreds of meters. For reducing the cost of construction, launching, and operating (e.g., energy required for reboosting and control), it will be necessary to make the structure as light as possible. However, reducing structural mass tends to increase the flexibility which would make it more difficult to control with the specified precision in attitude and shape. Therefore, there is a need to develop a methodology for designing space structures which are optimal with respect to both structural design and control design. In the current spacecraft design practice, it is customary to first perform the structural design and then the controller design. However, the structural design and the control design problems are substantially coupled and must be considered concurrently in order to obtain a truly optimal spacecraft design. For example, let C denote the set of the 'control' design variables (e.g., controller gains), and L the set of the 'structural' design variables (e.g., member sizes). If a structural member thickness is changed, the dynamics would change which would then change the control law and the actuator mass. That would, in turn, change the structural model. Thus, the sets C and L depend on each other. Future space structures can be roughly divided into four mission classes. Class 1 missions include flexible spacecraft with no articulated appendages which require fine attitude pointing and vibration suppression (e.g., large space antennas). Class 2 missions consist of flexible spacecraft with articulated multiple payloads, where the requirement is to fine-point the spacecraft and each individual payload while suppressing the elastic motion. Class 3 missions include rapid slewing of spacecraft without appendages, while Class 4 missions include general nonlinear motion of a flexible spacecraft with articulated appendages and robot arms. Class 1 and 2 missions represent linear mathematical modeling and control system design problems (except for actuator and sensor nonlinearities), while Class 3 and 4 missions represent nonlinear problems. The development of an integrated controls/structures design approach for Class 1 missions is addressed. The performance for these missions is usually specified in terms of (1) root mean square (RMS) pointing errors at different locations on the structure, and (2) the rate of decay of the transient response. Both of these performance measures include the contributions of rigid as well as elastic motion.
Experimental demonstration of active vibration control for flexible structures
NASA Technical Reports Server (NTRS)
Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.
1990-01-01
Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Adelman, H. M.
1984-01-01
Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.
Control-structure interaction study for the Space Station solar dynamic power module
NASA Technical Reports Server (NTRS)
Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.
1991-01-01
The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.
Modal-space reference-model-tracking fuzzy control of earthquake excited structures
NASA Astrophysics Data System (ADS)
Park, Kwan-Soon; Ok, Seung-Yong
2015-01-01
This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.
Optical interferometer testbed
NASA Technical Reports Server (NTRS)
Blackwood, Gary H.
1991-01-01
Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.
NASA Technical Reports Server (NTRS)
Hudson, Hugh S.; Davis, J. M.
1990-01-01
Space instruments for remote sensing, of the types used for astrophysics and solar-terrestrial physics among many disciplines, will grow to larger physical sizes in the future. The zero-g space environment does not inherently restrict such growth, because relatively lightweight structures can be used. Active servo control of the structures can greatly increase their size for a given mass. The Pinhole/Occulter Facility, a candidate Space Station attached payload, offers an example: it will achieve 0.2 arc s resolution by use of a 50-m baseline for coded-aperture telescopes for hard X-ray and gamma-ray imagers.
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.
Large Space Systems Technology, Part 2, 1981
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1982-01-01
Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.
1984-01-01
Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.
Streamlined design and self reliant hardware for active control of precision space structures
NASA Technical Reports Server (NTRS)
Hyland, David C.; King, James A.; Phillips, Douglas J.
1994-01-01
Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.
Experiments in thrusterless robot locomotion control for space applications. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jasper, Warren Joseph
1990-01-01
While performing complex assembly tasks or moving about in space, a space robot should minimize the amount of propellant consumed. A study is presented of space robot locomotion and orientation without the use of thrusters. The goal was to design a robot control paradigm that will perform thrusterless locomotion between two points on a structure, and to implement this paradigm on an experimental robot. A two arm free flying robot was constructed which floats on a cushion of air to simulate in 2-D the drag free, zero-g environment of space. The robot can impart momentum to itself by pushing off from an external structure in a coordinated two arm maneuver, and can then reorient itself by activating a momentum wheel. The controller design consists of two parts: a high level strategic controller and a low level dynamic controller. The control paradigm was verified experimentally by commanding the robot to push off from a structure with both arms, rotate 180 degs while translating freely, and then to catch itself on another structure. This method, based on the computed torque, provides a linear feedback law in momentum and its derivatives for a system of rigid bodies.
Decentralized control of large flexible structures by joint decoupling
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Juang, Jer-Nan
1992-01-01
A decentralized control design method is presented for large complex flexible structures by using the idea of joint decoupling. The derivation is based on a coupled substructure state-space model, which is obtained from enforcing conditions of interface compatibility and equilibrium to the substructure state-space models. It is shown that by restricting the control law to be localized state feedback and by setting the joint actuator input commands to decouple joint 'degrees of freedom' (dof) from interior dof, the global structure control design problem can be decomposed into several substructure control design problems. The substructure control gains and substructure observers are designed based on modified substructure state-space models. The controllers produced by the proposed method can operate successfully at the individual substructure level as well as at the global structure level. Therefore, not only control design but also control implementation is decentralized. Stability and performance requirement of the closed-loop system can be achieved by using any existing state feedback control design method. A two-component mass-spring damper system and a three-truss structure are used as examples to demonstrate the proposed method.
Activities of the Center for Space Construction
NASA Technical Reports Server (NTRS)
1993-01-01
The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)
2014-01-01
The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.
Fault-tolerant control of large space structures using the stable factorization approach
NASA Technical Reports Server (NTRS)
Razavi, H. C.; Mehra, R. K.; Vidyasagar, M.
1986-01-01
Large space structures are characterized by the following features: they are in general infinite-dimensional systems, and have large numbers of undamped or lightly damped poles. Any attempt to apply linear control theory to large space structures must therefore take into account these features. Phase I consisted of an attempt to apply the recently developed Stable Factorization (SF) design philosophy to problems of large space structures, with particular attention to the aspects of robustness and fault tolerance. The final report on the Phase I effort consists of four sections, each devoted to one task. The first three sections report theoretical results, while the last consists of a design example. Significant results were obtained in all four tasks of the project. More specifically, an innovative approach to order reduction was obtained, stabilizing controller structures for plants with an infinite number of unstable poles were determined under some conditions, conditions for simultaneous stabilizability of an infinite number of plants were explored, and a fault tolerance controller design that stabilizes a flexible structure model was obtained which is robust against one failure condition.
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
Unified control/structure design and modeling research
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.
1986-01-01
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.
Active vibration control techniques for flexible space structures
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.
NASA Technical Reports Server (NTRS)
Liu, A. F.
1974-01-01
A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.
A survey of experiments and experimental facilities for active control of flexible structures
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard
1989-01-01
A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.
NASA Technical Reports Server (NTRS)
1975-01-01
Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.
NASA Technical Reports Server (NTRS)
Cossey, Derek F.
1993-01-01
Future DOD, NASA, and SDI space systems will be larger than any spacecraft flown before. The economics of placing these Precision Space Systems (PSS) into orbit dictates that they be as low in mass as possible. This stringent weight reduction creates structural flexibility causing severe technical problems when combined with the precise shape and pointing requirements associated with many future PSS missions. Development of new Control Structure Interaction (CSI) technologies which can solve these problems and enable future space missions is being conducted at the Phillips Laboratory, On-Location Site, CA.
Sagalowicz, Laurent; Acquistapace, Simone; Watzke, Heribert J; Michel, Martin
2007-11-20
We developed a method that enables differentiation between liquid crystalline-phase particles corresponding to different space groups. It consists of controlled tilting of the specimen to observe different orientations of the same particle using cryogenic transmission electron microscopy. This leads to the visualization of lattice planes (or reflections) that are present for a given structure and absent for the other one(s) and that give information on liquid crystalline structures and their space groups. In particular, we show that we can unambiguously distinguish among particles having the inverted micellar cubic (space group Fd(3)m, 227), the inverted bicontinuous gyroid (space group Ia(3)d, 230), the inverted bicontinuous diamond (space group Pn(3)m, 224), and the inverted bicontinuous primitive cubic structure (space group Im(3)m, 229).
Large space structure damping design
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Haviland, J. K.
1983-01-01
Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.
Structural load control during construction
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.
1991-01-01
In the absence of gravitational pull, the major design considerations for large space structures are stiffness for controllability, and transient dynamic loadings (as opposed to the traditional static load associated with earth-based structures). Because of the absence of gravitational loading, space structures can be designed to be significantly lighter than their counterparts on Earth. For example, the Space Shuttle manipulator arm is capable of moving and positioning a 60,000 lb payload, yet weighs less than 1,000 lbs. A recent design for the Space Station which had a total weight of about 500,000 lbs. used a primary loadcarrying keel beam which weighed less than 10,000 lbs. For many large space structures designs it is quite common for the load-carrying structure to have a mass fraction on the order of one or two percent of the total spacecraft mass. This significant weight reduction for large space structures is commonly accompanied by very low natural frequencies. These low frequencies cause an unprecedented level of operational complexity for mission applications which require a high level of positioning and control accuracy. This control problem is currently the subject of considerable research directed towards reducing the flexibility problem. In addition, however, the small mass fraction typically results in structures which are quite unforgiving to inadvertent high loadings. In other words, the structures are 'fragile.' In order to deal with the fragility issue CSC developed a load-limiting concept for space truss structures. This concept is aimed at limiting the levels of load which can occur in a large space structure during the construction process as well as during subsequent operations. Currently, the approach for dealing with large loadings is to make the structure larger. The impact this has on construction is significant. The larger structures are more difficult to package in the launch vehicle, and in fact in some instances the concept must be changed from a deployable truss to an erectable truss to permit packaging. The new load-limiting concept is aimed at permitting the use in large space structures of smaller trusses with a high level of strength robustness, in order to simplify the construction process. To date several analyses conducted on the concept have demonstrated its feasibility, and an experiment is currently being designed to demonstrate its operation.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Integrated control-structure design
NASA Technical Reports Server (NTRS)
Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.
1991-01-01
A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1987-01-01
Papers presented at the CSI Technology Conference are given. The conference was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense. The conference is the beginning of a series of annual conferences whose purpose is to report to industry, academia, and government agencies the current status of Control/Structures Interaction technology. The conference program was divided into five sessions: (1) Future spacecraft requirements; Technology issues and impact; (2) DOD special topics; (3) Large space systems technology; (4) Control of flexible structures, and (5) Selected NASA research in control structures interaction.
Sensorimotor coordination and the structure of space.
McCollum, Gin
2003-01-01
Embedded in neural and behavioral organization is a structure of sensorimotor space. Both this embedded spatial structure and the structure of physical space inform sensorimotor control. This paper reviews studies in which the gravitational vertical and horizontal are crucial. The mathematical expressions of spatial geometry in these studies indicate methods for investigating sensorimotor control in freefall. In freefall, the spatial structure introduced by gravitation - the distinction between vertical and horizontal - does not exist. However, an astronaut arriving in space carries the physiologically-embedded distinction between horizontal and vertical learned on earth. The physiological organization based on this distinction collapses when the strong otolith activity and other gravitational cues for sensorimotor behavior become unavailable. The mathematical methods in this review are applicable in understanding the changes in physiological organization as an astronaut adapts to sensorimotor control in freefall. Many mathematical languages are available for characterizing the logical structures in physiological organization. Here, group theory is used to characterize basic structure of physical and physiological spaces. Dynamics and topology allow the grouping of trajectory ranges according to the outcomes or attractors. The mathematics of ordered structures express complex orderings, such as in multiphase movements in which different parts of the body are moving in different phase sequences. Conditional dynamics, which combines dynamics with the mathematics of ordered structures, accommodates the parsing of movement sequences into trajectories and transitions. Studies reviewed include those of the sit-to-stand movement and early locomotion, because of the salience of gravitation in those behaviors. Sensorimotor transitions and the conditions leading to them are characterized in conditional dynamic control structures that do not require thinking of an organism as an input-output device. Conditions leading to sensorimotor transitions on earth assume the presence of a gravitational vertical which is lacking in space. Thus, conditions used on earth for sensorimotor transitions may become ambiguous in space. A platform study in which sensorimotor transition conditions are ambiguous and are related to motion sickness is reviewed.
Controls Astrophysics and Structures Experiment in Space (CASES) advanced studies and planning
NASA Technical Reports Server (NTRS)
Wu, S. T.
1989-01-01
The CASES (Controls, Astrophysics, and Structures Experiment in Space) program consists of a flight demonstration of CSI (Controls-Structures Interactions) technology on the Space Shuttle. The basis structure consists of a 32 m deployable boom with actuators and sensors distributed along its length. Upon deployment from the Orbiter bay, the CASES structure will be characterized dynamically and its deformations controlled by a series of experimental control laws; and cold gas thrusters at its tip will be used to orient the Orbiter to a fixed celestial reference. The scientific observations will consist of hard x-ray imaging, at high resolution, of the Sun and the Galactic center. The hard x-ray observations require stable (few arc min) pointing at these targets for one or more position-sensitive proportional counters in the Orbiter bay, which view the object to be imaged through an aperture-encoding mask at the boom tip. This report gives the concensus developed at the second CASES Science Working Group meeting, which took place at NASA Marshall Space Flight Center May 16-17, 1990. An earlier paper and scientific summaries are available and form the basis for the present discussion.
Interset: A natural language interface for teleoperated robotic assembly of the EASE space structure
NASA Technical Reports Server (NTRS)
Boorsma, Daniel K.
1989-01-01
A teleoperated robot was used to assemble the Experimental Assembly of Structures in Extra-vehicular activity (EASE) space structure under neutral buoyancy conditions, simulating a telerobot performing structural assembly in the zero gravity of space. This previous work used a manually controlled teleoperator as a test bed for system performance evaluations. From these results several Artificial Intelligence options were proposed. One of these was further developed into a real time assembly planner. The interface for this system is effective in assembling EASE structures using windowed graphics and a set of networked menus. As the problem space becomes more complex and hence the set of control options increases, a natural language interface may prove to be beneficial to supplement the menu based control strategy. This strategy can be beneficial in situations such as: describing the local environment, maintaining a data base of task event histories, modifying a plan or a heuristic dynamically, summarizing a task in English, or operating in a novel situation.
A data driven control method for structure vibration suppression
NASA Astrophysics Data System (ADS)
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
Large space structures control algorithm characterization
NASA Technical Reports Server (NTRS)
Fogel, E.
1983-01-01
Feedback control algorithms are developed for sensor/actuator pairs on large space systems. These algorithms have been sized in terms of (1) floating point operation (FLOP) demands; (2) storage for variables; and (3) input/output data flow. FLOP sizing (per control cycle) was done as a function of the number of control states and the number of sensor/actuator pairs. Storage for variables and I/O sizing was done for specific structure examples.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
Control of flexible structures
NASA Technical Reports Server (NTRS)
Russell, R. A.
1985-01-01
The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.
Design of a Solar Sail Mission to Mars
NASA Technical Reports Server (NTRS)
Eastridge, Richard; Funston, Kerry; Okia, Aminat; Waldrop, Joan; Zimmerman, Christopher
1989-01-01
An evaluation of the design of the solar sail includes key areas such as structures, sail deployment, space environmental effects, materials, power systems, telemetry, communications, attitude control, thermal control, and trajectory analysis. Deployment and material constraints determine the basic structure of the sail, while the trajectory of the sail influences the choice of telemetry, communications, and attitude control systems. The thermal control system of the sail for the structures and electronics takes into account the effects of the space environment. Included also are a cost and weight estimate for the sail.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.
1994-01-01
This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
14 CFR 27.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and... Protection § 27.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, rotor mechanism, and other parts essential to a controlled landing that would be affected by...
14 CFR 27.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of structure, controls, and... Protection § 27.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, rotor mechanism, and other parts essential to a controlled landing that would be affected by...
14 CFR 29.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and... Protection § 29.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, and the rotor mechanism, and other parts essential to controlled landing and (for category A...
14 CFR 29.861 - Fire protection of structure, controls, and other parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of structure, controls, and... Protection § 29.861 Fire protection of structure, controls, and other parts. Each part of the structure, controls, and the rotor mechanism, and other parts essential to controlled landing and (for category A...
Control of Flexible Structures (COFS) Flight Experiment Background and Description
NASA Technical Reports Server (NTRS)
Hanks, B. R.
1985-01-01
A fundamental problem in designing and delivering large space structures to orbit is to provide sufficient structural stiffness and static configuration precision to meet performance requirements. These requirements are directly related to control requirements and the degree of control system sophistication available to supplement the as-built structure. Background and rationale are presented for a research study in structures, structural dynamics, and controls using a relatively large, flexible beam as a focus. This experiment would address fundamental problems applicable to large, flexible space structures in general and would involve a combination of ground tests, flight behavior prediction, and instrumented orbital tests. Intended to be multidisciplinary but basic within each discipline, the experiment should provide improved understanding and confidence in making design trades between structural conservatism and control system sophistication for meeting static shape and dynamic response/stability requirements. Quantitative results should be obtained for use in improving the validity of ground tests for verifying flight performance analyses.
An application of high authority/low authority control and positivity
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Irwin, D.; Tollison, D.; Waites, H. B.
1988-01-01
Control Dynamics Company (CDy), in conjunction with NASA Marshall Space Flight Center (MSFC), has supported the U.S. Air Force Wright Aeronautical Laboratory (AFWAL) in conducting an investigation of the implementation of several DOD controls techniques. These techniques are to provide vibration suppression and precise attitude control for flexible space structures. AFWAL issued a contract to Control Dynamics to perform this work under the Active Control Technique Evaluation for Spacecraft (ACES) Program. The High Authority Control/Low Authority Control (HAC/LAC) and Positivity controls techniques, which were cultivated under the DARPA Active Control of Space Structures (ACOSS) Program, were applied to a structural model of the NASA/MSFC Ground Test Facility ACES configuration. The control systems design were accomplished and linear post-analyses of the closed-loop systems are provided. The control system designs take into account effects of sampling and delay in the control computer. Nonlinear simulation runs were used to verify the control system designs and implementations in the facility control computers. Finally, test results are given to verify operations of the control systems in the test facility.
Information sciences and human factors overview
NASA Technical Reports Server (NTRS)
Holcomb, Lee B.
1988-01-01
An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.
Instrument and method for focusing X-rays, gamma rays and neutrons
Smither, Robert K.
1984-01-01
A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.
Active Control of NITINOL-Reinforced Structural Composites
1992-10-12
useful in many critical structures that are intended to operate autonomously for long durations in isolated environments such as defense vehicles , space...durations in isolated environment such as defense vehicles , space structures and satellites. ACKNOWLEDGEMENTS This work is funded by a grant from the US Army...are intended to operate autonomously for long durations in isolated environment such as defense vehicles , space structures and satellites. REFERENCES
Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts
NASA Technical Reports Server (NTRS)
Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk
1992-01-01
The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.
Spacecraft Dynamics and Control Program at AFRPL
NASA Technical Reports Server (NTRS)
Das, A.; Slimak, L. K. S.; Schloegel, W. T.
1986-01-01
A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.
Schools as Racial Spaces: Understanding and Resisting Structural Racism
ERIC Educational Resources Information Center
Blaisdell, Benjamin
2016-01-01
Analyzing schools as racial spaces can help researchers examine the role of teachers in the perpetuation of structural racism in schools. Based on ethnographic and autoethnographic work, this article offers examples of schools as racial spaces, spaces where whiteness controlled access. It also highlights four teachers who pursued racial equity in…
Low-authority control synthesis for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1982-01-01
The control of vibrations of large space structures by distributed sensors and actuators is studied. A procedure is developed for calculating the feedback loop gains required to achieve specified amounts of damping. For moderate damping (Low Authority Control) the procedure is purely algebraic, but it can be applied iteratively when larger amounts of damping are required and is generalized for arbitrary time invariant systems.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
Smart tunnel: Docking mechanism
NASA Technical Reports Server (NTRS)
Schliesing, John A. (Inventor); Edenborough, Kevin L. (Inventor)
1989-01-01
A docking mechanism is presented for the docking of a space vehicle to a space station comprising a flexible tunnel frame structure which is deployable from the space station. The tunnel structure comprises a plurality of series connected frame sections, one end section of which is attached to the space station and the other end attached to a docking module of a configuration adapted for docking in the payload bay of the space vehicle. The docking module is provided with trunnions, adapted for latching engagement with latches installed in the vehicle payload bay and with hatch means connectable to a hatch of the crew cabin of the space vehicle. Each frame section comprises a pair of spaced ring members, interconnected by actuator-attenuator devices which are individually controllable by an automatic control means to impart relative movement of one ring member to the other in six degrees of freedom of motion. The control means includes computer logic responsive to sensor signals of range and attitude information, capture latch condition, structural loads, and actuator stroke for generating commands to the onboard flight control system and the individual actuator-attenuators to deploy the tunnel to effect a coupling with the space vehicle and space station after coupling. A tubular fluid-impervious liner, preferably fabric, is disposed through the frame sections of a size sufficient to accommodate the passage of personnel and cargo.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
NASA Technical Reports Server (NTRS)
Thau, F. E.; Montgomery, R. C.
1980-01-01
Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.
Interdisciplinary analysis procedures in the modeling and control of large space-based structures
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Stockwell, Alan E.; Kim, Zeen C.
1987-01-01
The paper describes a computer software system called the Integrated Multidisciplinary Analysis Tool, IMAT, that has been developed at NASA Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven interactive executive program, IMAT links a relational database to commercial structural and controls analysis codes. The paper describes the procedures followed to analyze a complex satellite structure and control system. The codes used to accomplish the analysis are described, and an example is provided of an application of IMAT to the analysis of a reference space station subject to a rectangular pulse loading at its docking port.
A controller design approach for large flexible space structures
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1981-01-01
A controller design approach for large space structures is presented, which consists of a primary attitude controller and a secondary or damping enhancement controller. The secondary controller, which uses several Annular Momentum Control Device (AMCD's), is shown to make the closed loop system asymptotically stable under relatively simple conditions. The primary controller using torque actuators (or AMCD's) and colocated attitude and rate sensors is shown to be stable. It is shown that the same AMCD's can be used for simultaneous actuation of primary and secondary controllers. Numerical results are obtained for a large, thin, completely free plate model.
Active structural control for damping augmentation and compensation of thermal distortion
NASA Technical Reports Server (NTRS)
Sirlin, S. W.
1992-01-01
A large space-based Focus Mission Interferometer is used as a testbed for the NASA Controls and Structures Interaction Program. Impedance-based adaptive structural control and control of thermal disturbances are demonstrated using an end-to-end simulation of the system's optical performance. Attention is also given to integrated optical/structural modeling and a hierarchical, layered control strategy.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.
1993-01-01
An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).
Implementation of input command shaping to reduce vibration in flexible space structures
NASA Technical Reports Server (NTRS)
Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney
1992-01-01
Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.
LQG/LTR Optimal Attitude Control of Small Flexible Spacecraft Using Free-Free Boundary Conditions
2006-08-03
particular on attitude control of flex- ible space structures. Croopnick et al .[50] present a literature survey in the areas of attitude control...modeling and control of space structures is compiled by Nurre et al .[161]. One important thing to note from the surveys listed above is the 21 focus on the...papers surveyed by Croopnick et al . in 1979, by Meirovitch in 1979, Balas in 1982, and Nurre et al . in 1984. The focus of the papers included in all
Lunar habitat concept employing the space shuttle external tank.
King, C B; Butterfield, A J; Hypes, W D; Nealy, J E; Simonsen, L C
1990-01-01
The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.
Control of large space structures
NASA Technical Reports Server (NTRS)
Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.
1979-01-01
The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.
Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.
Instrument and method for focusing x rays, gamma rays, and neutrons
Smither, R.K.
1982-03-25
A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers.
Shape determination and control for large space structures
NASA Technical Reports Server (NTRS)
Weeks, C. J.
1981-01-01
An integral operator approach is used to derive solutions to static shape determination and control problems associated with large space structures. Problem assumptions include a linear self-adjoint system model, observations and control forces at discrete points, and performance criteria for the comparison of estimates or control forms. Results are illustrated by simulations in the one dimensional case with a flexible beam model, and in the multidimensional case with a finite model of a large space antenna. Modal expansions for terms in the solution algorithms are presented, using modes from the static or associated dynamic mode. These expansions provide approximated solutions in the event that a used form analytical solution to the system boundary value problem is not available.
NASA/MSFC ground experiment for large space structure control verification
NASA Technical Reports Server (NTRS)
Waites, H. B.; Seltzer, S. M.; Tollison, D. K.
1984-01-01
Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS.
The control and data acquisition structure for the GAMMA-400 space gamma-telescope
NASA Astrophysics Data System (ADS)
Arkhangelskiy, Andrey
2016-07-01
The GAMMA-400 space project is intended for precision investigation of the cosmic gamma-emission in the energy band from keV region up to several TeV, electrons and positrons fluxes from ˜~1~GeV up to ˜~10~TeV and high energy cosmic-ray nuclei fluxes. A description of the control and data acquisition structure for gamma-telescope involved in the GAMMA 400 space project is given. The technical capabilities of all specialized equipment providing the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands and program commands transmitted via onboard control system and scientific data acquisition system. Up to 100~GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified experimentally with the scientific complex prototype in the laboratory conditions.
Structural dynamics and control of large space structures. [conference
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1981-01-01
The focus of the workshop was the basic research program assembled by LaRC to address the fundamental technology deficiencies that were identified in several studies on large space systems (LSS) conducted by NASA in the last several years. The staffs of the respective participants were assembled at the workshop to review the current state of research in the control technology for large structural systems and to plan the efforts that would be pursued by their respective organizations.
Thermal expansion of composites: Methods and results. [large space structures
NASA Technical Reports Server (NTRS)
Bowles, D. E.; Tenney, D. R.
1981-01-01
The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.
Langley's CSI evolutionary model: Phase 2
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.
1995-01-01
Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.
Automation and Robotics for Space-Based Systems, 1991
NASA Technical Reports Server (NTRS)
Williams, Robert L., II (Editor)
1992-01-01
The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.
The Role of Structural Models in the Solar Sail Flight Validation Process
NASA Technical Reports Server (NTRS)
Johnston, John D.
2004-01-01
NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.
Adaptive structures for precision controlled large space systems
NASA Technical Reports Server (NTRS)
Garba, John A.; Wada, Ben K.; Fanson, James L.
1991-01-01
The stringent accuracy and ground test validation requirements of some of the future space missions will require new approaches in structural design. Adaptive structures, structural systems that can vary their geometric congiguration as well as their physical properties, are primary candidates for meeting the functional requirements for such missions. Research performed in the development of such adaptive structural systems is described.
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...
State-space self-tuner for on-line adaptive control
NASA Technical Reports Server (NTRS)
Shieh, L. S.
1994-01-01
Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.
Control of nonlinear flexible space structures
NASA Astrophysics Data System (ADS)
Shi, Jianjun
With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of parametric uncertainties and input disturbances. Finally, the conclusions are made with regard to the efficacy of these controllers and potential directions for future research.
System definition study of deployable, non-metallic space structures
NASA Technical Reports Server (NTRS)
Stimler, F. J.
1984-01-01
The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.
Definition of ground test for Large Space Structure (LSS) control verification
NASA Technical Reports Server (NTRS)
Waites, H. B.; Doane, G. B., III; Tollison, D. K.
1984-01-01
An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.
14 CFR 25.395 - Control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system. 25.395 Section 25.395... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures must...
14 CFR 25.395 - Control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system. 25.395 Section 25.395... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures must...
Okeyoshi, Kosuke; Okajima, Maiko K; Kaneko, Tatsuo
2017-07-21
Living organisms in drying environments build anisotropic structures and exhibit directionality through self-organization of biopolymers. However, the process of macro-scale assembly is still unknown. Here, we introduce a dissipative structure through a non-equilibrium process between hydration and deposition in the drying of a polysaccharide liquid crystalline solution. By controlling the geometries of the evaporation front in a limited space, multiple nuclei emerge to grow vertical membrane walls with macroscopic orientation. Notably, the membranes are formed through rational orientation of rod-like microassemblies along the dynamic three-phase contact line. Additionally, in the non-equilibrium state, a dissipative structure is ultimately immobilized as a macroscopically partitioned space by multiple vertical membranes. We foresee that such oriented membranes will be applicable to soft biomaterials with direction controllability, and the macroscopic space partitionings will aid in the understanding of the space recognition ability of natural products under drying environments.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
Gyrodampers for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1979-01-01
The problem of controlling the vibrations of a large space structures by the use of actively augmented damping devices distributed throughout the structure is addressed. The gyrodamper which consists of a set of single gimbal control moment gyros which are actively controlled to extract the structural vibratory energy through the local rotational deformations of the structure, is described and analyzed. Various linear and nonlinear dynamic simulations of gyrodamped beams are shown, including results on self-induced vibrations due to sensor noise and rotor imbalance. The complete nonlinear dynamic equations are included. The problem of designing and sizing a system of gyrodampers for a given structure, or extrapolating results for one gyrodamped structure to another is solved in terms of scaling laws. Novel scaling laws for gyro systems are derived, based upon fundamental physical principles, and various examples are given.
Fundamental concepts of structural loading and load relief techniques for the space shuttle
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Mowery, D. K.; Winder, S. W.
1972-01-01
The prediction of flight loads and their potential reduction, using various control system logics for the space shuttle vehicles, is discussed. Some factors not found on previous launch vehicles that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. These load-producing factors and load-reducing techniques are analyzed.
Recent experience in simultaneous control-structure optimization
NASA Technical Reports Server (NTRS)
Salama, M.; Ramaker, R.; Milman, M.
1989-01-01
To show the feasibility of simultaneous optimization as design procedure, low order problems were used in conjunction with simple control formulations. The numerical results indicate that simultaneous optimization is not only feasible, but also advantageous. Such advantages come at the expense of introducing complexities beyond those encountered in structure optimization alone, or control optimization alone. Examples include: larger design parameter space, optimization may combine continuous and combinatoric variables, and the combined objective function may be nonconvex. Future extensions to include large order problems, more complex objective functions and constraints, and more sophisticated control formulations will require further research to ensure that the additional complexities do not outweigh the advantages of simultaneous optimization. Some areas requiring more efficient tools than currently available include: multiobjective criteria and nonconvex optimization. Efficient techniques to deal with optimization over combinatoric and continuous variables, and with truncation issues for structure and control parameters of both the model space as well as the design space need to be developed.
Chen, Chen; Duru, Paul; Joseph, Pierre; Geoffroy, Sandrine; Prat, Marc
2017-11-08
Evaporation is a key phenomenon in the natural environment and in many technological systems involving capillary structures. Understanding the evaporation front dynamics enables the evaporation rate from microfluidic devices and porous media to be finely controlled. Of particular interest is the ability to control the position of the front through suitable design of the capillary structure. Here, we show how to design model capillary structures in microfluidic devices so as to control the drying kinetics. This is achieved by acting on the spatial organization of the constrictions that influence the invasion of the structure by the gas phase. Two types of control are demonstrated. The first is intended to control the sequence of primary invasions through the pore space, while the second aims to control the secondary liquid structures: films, bridges, etc., that can form in the region of pore space invaded by the gas phase. It is shown how the latter can be obtained from phyllotaxy-inspired geometry. Our study thus opens up a route toward the control of the evaporation kinetics by means of tailored capillary structures.
46 CFR 127.225 - Structural fire protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... wheelhouses, containing accommodation, service and control spaces, facing the cargo area must be constructed of steel and comply with §§ 32.56-20, 32.56-21, and 32.56-22 of this chapter. (d) Cargo pump rooms must be separated from accommodation spaces, service spaces, and control stations by A-60 divisions. (e...
In-space research, technology and engineering experiments and Space Station
NASA Technical Reports Server (NTRS)
Tyson, Richard; Gartrell, Charles F.
1988-01-01
The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
NASA Technical Reports Server (NTRS)
1992-01-01
The papers presented at the symposium cover aerodynamics, design applications, propulsion systems, high-speed flight, structures, controls, sensitivity analysis, optimization algorithms, and space structures applications. Other topics include helicopter rotor design, artificial intelligence/neural nets, and computational aspects of optimization. Papers are included on flutter calculations for a system with interacting nonlinearities, optimization in solid rocket booster application, improving the efficiency of aerodynamic shape optimization procedures, nonlinear control theory, and probabilistic structural analysis of space truss structures for nonuniform thermal environmental effects.
Structural Dynamics Experimental Activities in Ultra-Lightweight and Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Lassiter, John O.; Ross, Brian P.
2001-01-01
This paper reports recently completed structural dynamics experimental activities with new ultralightweight and inflatable space structures (a.k.a., "Gossamer" spacecraft) at NASA Langley Research Center, NASA Marshall Space Flight Center, and NASA Goddard Space Flight Center. Nine aspects of this work are covered, as follows: 1) inflated, rigidized tubes, 2) active control experiments, 3) photogrammetry, 4) laser vibrometry, 5) modal tests of inflatable structures, 6) in-vacuum modal tests, 7) tensioned membranes, 8) deployment tests, and 9) flight experiment support. Structural dynamics will play a major role in the design and eventual in-space deployment and performance of Gossamer spacecraft, and experimental R&D work such as this is required now to validate new analytical prediction methods. The activities discussed in the paper are pathfinder accomplishments, conducted on unique components and prototypes of future spacecraft systems.
ACOSS-16 (Active Control of Space Structures)
1982-10-01
RADC-TR-82-225 Final Technical Report October 1982 SACOSS- 16 (ACTIVE CONTROL OF SPACE ~ STRUCTURES) Honeywell Sponsored by Defense Advanced Research ...Defense Ad. vanced Research Projects Agency or the U.S. Government. ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, NY 13441...ELEMENT. PROJECT, TASK lo, .’ H _onevwell Systems & Research Center AREA & WORK UNIT NUMBERS 2600 Ridgway Parkway, P0 Box 312 62301E Minneapolis MN
Integrated structure/control design - Present methodology and future opportunities
NASA Technical Reports Server (NTRS)
Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.
1986-01-01
Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.
Space station rotational equations of motion
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Carroll, S. N.
1985-01-01
Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.
CSI computer system/remote interface unit acceptance test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.
1992-01-01
The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.
Burkholder, Thomas J; van Antwerp, Keith W
2013-02-01
Statistical decomposition, including non-negative matrix factorization (NMF), is a convenient tool for identifying patterns of structured variability within behavioral motor programs, but it is unclear how the resolved factors relate to actual neural structures. Factors can be extracted from a uniformly sampled, low-dimension command space. In practical application, the command space is limited, either to those activations that perform some task(s) successfully or to activations induced in response to specific perturbations. NMF was applied to muscle activation patterns synthesized from low dimensional, synergy-like control modules mimicking simple task performance or feedback activation from proprioceptive signals. In the task-constrained paradigm, the accuracy of control module recovery was highly dependent on the sampled volume of control space, such that sampling even 50% of control space produced a substantial degradation in factor accuracy. In the feedback paradigm, NMF was not capable of extracting more than four control modules, even in a mechanical model with seven internal degrees of freedom. Reduced access to the low-dimensional control space imposed by physical constraints may result in substantial distortion of an existing low dimensional controller, such that neither the dimensionality nor the composition of the recovered/extracted factors match the original controller.
Integrated structural control design of large space structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.J.; Lauffer, J.P.
1995-01-01
Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust controlmore » methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.« less
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.; Carignan, C. R.
1982-01-01
The degree of controllability of a large space structure is found by a four step procedure: (1) finding the minimum control energy for driving the system from a given initial state to the origin in the prescribed time; (2) finding the region of initial state which can be driven to the origin with constrained control energy and time using optimal control strategy; (3) scaling the axes so that a unit displacement in every direction is equally important to control; and (4) finding the linear measurement of the weighted "volume" of the ellipsoid in the equicontrol space. For observability, the error covariance must be reduced toward zero using measurements optimally, and the criterion must be standardized by the magnitude of tolerable errors. The results obtained using these methods are applied to the vibration modes of a free-free beam.
A variable structure approach to robust control of VTOL aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.; Kramer, F.
1982-01-01
This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the motion to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector velocity command defined in the body frame. For comparison purposes, a proportional controller was designed using optimal linear regulator theory. Both control designs were first evaluated for transient response performance using a linearized model, then a nonlinear simulation study of a hovering approach to landing was conducted. Wind turbulence was modeled using a 1052 destroyer class air wake model.
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
NASA Astrophysics Data System (ADS)
Colladay, R. S.; Carlisle, R. F.
1984-10-01
Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.
Large Space Antenna Systems Technology, part 1
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1983-01-01
A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.
Personnel occupied woven envelope robot
NASA Technical Reports Server (NTRS)
Wessling, F. C.
1986-01-01
The use of nonmetallic or fabric structures for space application is considered. The following structures are suggested: (1) unpressurized space hangars; (2) extendable tunnels for soft docking; and (3) manned habitat for space stations, storage facilities, and work structures. The uses of the tunnel as a passageway: for personnel and equipment, eliminating extravehicular activity, for access to a control cabin on a space crane and between free flyers and the space station are outlined. The personnal occupied woven envelope robot (POWER) device is shown. The woven envelope (tunnel) acts as part of the boom of a crane. Potential applications of POWER are outlined. Several possible deflection mechanisms and design criteria are determined.
On the nature of control algorithms for free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, Evangelos; Dubowsky, Steven
1991-01-01
It is suggested that nearly any control algorithm that can be used for fixed-based manipulators also can be employed in the control of free-floating space manipulator systems, with the additional conditions of estimating or measuring a spacecraft's orientation and of avoiding dynamic singularities. This result is based on the structural similarities between the kinematic and dynamic equations for the same manipulator but with a fixed base. Barycenters are used to formulate the kinematic and dynamic equations of free-floating space manipulators. A control algorithm for a space manipulator system is designed to demonstrate the value of the analysis.
A preliminary look at control augmented dynamic response of structures
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jewell, R. E.
1983-01-01
The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
Integrated analysis of large space systems
NASA Technical Reports Server (NTRS)
Young, J. P.
1980-01-01
Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.
Dynamic analysis of space structures including elastic, multibody, and control behavior
NASA Technical Reports Server (NTRS)
Pinson, Larry; Soosaar, Keto
1989-01-01
The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.
Structural control by the use of piezoelectric active members
NASA Technical Reports Server (NTRS)
Fanson, J. L.; Chen, J.-C.
1987-01-01
Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response.
Space station systems technology study (add-on task). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1985-01-01
System concepts were characterized in order to define cost versus benefits for autonomous functional control and for controls and displays for OMV, OTV, and spacecraft servicing and operation. The attitude control topic focused on characterizing the Space Station attitude control problem through simulation of control system responses to structural disturbances. The first two topics, mentioned above, focused on specific technology items that require advancement in order to support an early 1990s initial launch of a Space Station, while the attitude control study was an exploration of the capability of conventional controller techniques.
Four experimental demonstrations of active vibration control for flexible structures
NASA Technical Reports Server (NTRS)
Phillips, Doug; Collins, Emmanuel G., Jr.
1990-01-01
Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.
Retro-detective control structures for free-space optical communication links.
Jin, Xian; Barg, Jason E; Holzman, Jonathan F
2009-12-21
A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.
Formation metrology and control for large separated optics space telescopes
NASA Technical Reports Server (NTRS)
Mettler, E.; Quadrelli, M.; Breckenridge, W.
2002-01-01
In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.
Distributed control of large space antennas
NASA Technical Reports Server (NTRS)
Cameron, J. M.; Hamidi, M.; Lin, Y. H.; Wang, S. J.
1983-01-01
A systematic way to choose control design parameters and to evaluate performance for large space antennas is presented. The structural dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib Antenna are characterized. Some results of the effects of model parameter uncertainties to the stability, surface accuracy, and pointing errors are presented. Critical dynamics and control problems for these antenna configurations are identified and potential solutions are discussed. It was concluded that structural uncertainties and model error can cause serious performance deterioration and can even destabilize the controllers. For the hoop and column antenna, large hoop and long meat and the lack of stiffness between the two substructures result in low structural frequencies. Performance can be improved if this design can be strengthened. The two-site control system is more robust than either single-site control systems for the hoop and column antenna.
NASA Technical Reports Server (NTRS)
Whorton, M. S.
1998-01-01
Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.
Pointing and tracking control for freedom's Solar Dynamic modules and vibration control of freedom
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Chen, Jiunn-Liang
1992-01-01
A control strategy is presented for pointing particular modules of flexible multibody space structures while simultaneously attenuating structural vibrations. The application that is addressed is the planned Space Station Freedom in a growth configuration with Solar Dynamic (SD) module. A NASTRAN model of Freedom is used to demonstrate the control strategy. Two cases of SD concentrator fine-pointing controller bandwidths are studied with examples. The effect of limiting the controller motor torques to realistic baseline values is examined. SD pointing and station vibration control is accomplished during realistic disturbances due to aerodynamic drag, Shuttle docking, and Shuttle reaction control system plume impingement on SD. Gravity gradient induced torques on SD are relatively small and pseudo-steady.
Attitude control of the space construction base: A modular approach
NASA Technical Reports Server (NTRS)
Oconnor, D. A.
1982-01-01
A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.
1990-04-01
SURVEILLANCE & WARNING SYTEMS A2C COMMAND & CONTROL ACTIVITIES A2D SPACE ACTIVITIES (STRATEGIC CONTROL & SURV) A2E STRAT CONTROL & SURV: COMMUNICATIONS A2F...STRATEGIC AIR DEFENSE 0501802A NIKE-AJAX (ARNS) (H) AID STRATEGIC AIR DEFENSE AIC SPACE DEFENSE OI02115N F-6 Squadrons (H) AIC SPACE DEFENSE 0102215N ABM ...WARNING SYTEMS 0102310F NCHC - TW/AA Systems A2B SURVEILLANCE & WARNIIIG SYTEMS 0102311F NCMC - Space Defense Systems A21 SURVEILLANCE & WARNING SYTEMS
Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment
NASA Astrophysics Data System (ADS)
Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar
2016-10-01
Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.
NASA Technical Reports Server (NTRS)
1998-01-01
A Space Act Agreement between Kennedy Space Center and Surtreat Southeast, Inc., resulted in a new treatment that keeps buildings from corroding away over time. Structural corrosion is a multi-billion dollar problem in the United States. The agreement merged Kennedy Space Center's research into electrical treatments of structural corrosion with chemical processes developed by Surtreat. Combining NASA and Surtreat technologies has resulted in a unique process with broad corrosion-control applications.
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Kerslake, Thomas W.
1992-01-01
Dynamic simulations of Space Station Freedom (SSF) configured with solar dynamic (SD) power modules were performed. The structure was subjected to Space Shuttle docking disturbances, while being controlled with a 'natural' vibration and tracking control approach. Three control cases were investigated for the purpose of investigating the relationship between actuator effort, SD pointing, and thermal loading on the receiver aperture plate. Transient, one-dimensional heat transfer analyses were performed to conservatively predict temperatures of the multi-layered receiver aperture plate assembly and thermal stresses in its shield layer. Results indicate that the proposed aperture plate is tolerant of concentrated flux impingement during short-lived structural disturbances. Pointing requirements may be loosened and the requirement control torques lessened from that previously specified. Downsizing and simplifying the joint drive system should result in a considerable savings mass.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir
2011-01-01
Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
NASA Technical Reports Server (NTRS)
Mixon, Randolph W.; Hankins, Walter W., III; Wise, Marion A.
1988-01-01
Research at Langley AFB concerning automated space assembly is reviewed, including a Space Shuttle experiment to test astronaut ability to assemble a repetitive truss structure, testing the use of teleoperated manipulators to construct the Assembly Concept for Construction of Erectable Space Structures I truss, and assessment of the basic characteristics of manipulator assembly operations. Other research topics include the simultaneous coordinated control of dual-arm manipulators and the automated assembly of candidate Space Station trusses. Consideration is given to the construction of an Automated Space Assembly Laboratory to study and develop the algorithms, procedures, special purpose hardware, and processes needed for automated truss assembly.
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1992-01-01
Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.
Control of large flexible spacecraft by the independent modal-space control method
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Shenar, J.
1984-01-01
The problem of control of a large-order flexible structure in the form of a plate-like lattice by the Independent Modal-Space Control (IMSC) method is presented. The equations of motion are first transformed to the modal space, thus obtaining internal (plant) decoupling of the system. Then, the control laws are designed in the modal space for each mode separately, so that the modal equations of motion are rendered externally (controller) decoupled. This complete decoupling applies both to rigid-body modes and elastic modes. The application of linear optimal control, in conjunction with a quadratic performance index, is first reviewed. A solution for high-order systems is proposed here by the IMSC method, whereby the problem is reduced to a number of modal minimum-fuel problems for the controlled modes.
ACOSS FIVE (Active Control of Space Structures). Phase 1A
1982-03-01
The control design MKUCTUKAL MOOC L PtRFOHMANCl MÜDtL DISTURBANCE MODEL I ’ II Q|S£) XM=) STATE SPACE MODEL KEDUCED MODELS (HAC... library ) whose detailed numerical procedures, structural reduction, eigen-computations, etc., are implemented dif- ferently than in NASTRAN. SPAR was...i-i. rCappesser ..ctn. ..ir. A. .^llliars i /ui N. t-t. i.yer orlva ..rlin^ton, ^\\ 22209 o j i c e 7 11 \\ttn. iULO Library
Performance of active vibration control technology: the ACTEX flight experiments
NASA Astrophysics Data System (ADS)
Nye, T. W.; Manning, R. A.; Qassim, K.
1999-12-01
This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed spacecraft bus smart structures by developing over 20 new technologies. As pathfinders, experience was gained in the implications of space system analyses, verification tests, and for ways to leverage this technology to meet new satellite performance requirements.
NASA Technical Reports Server (NTRS)
Macconochie, Ian O. (Inventor); Mikulas, Martin M., Jr. (Inventor); Pennington, Jack E. (Inventor); Kinkead, Rebecca L. (Inventor); Bryan, Charles F., Jr. (Inventor)
1988-01-01
A space spider crane for the movement, placement, and or assembly of various components on or in the vicinity of a space structure is described. As permanent space structures are utilized by the space program, a means will be required to transport cargo and perform various repair tasks. A space spider crane comprising a small central body with attached manipulators and legs fulfills this requirement. The manipulators may be equipped with constant pressure gripping end effectors or tools to accomplish various repair tasks. The legs are also equipped with constant pressure gripping end effectors to grip the space structure. Control of the space spider crane may be achieved either by computer software or a remotely situated human operator, who maintains visual contact via television cameras mounted on the space spider crane. One possible walking program consists of a parallel motion walking program whereby the small central body alternatively leans forward and backward relative to end effectors.
Matrix Transfer Function Design for Flexible Structures: An Application
NASA Technical Reports Server (NTRS)
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.
Vibration suppression for large scale adaptive truss structures using direct output feedback control
NASA Technical Reports Server (NTRS)
Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.
1993-01-01
In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Structural Fire Protection § 72.05-5 Definitions. Note: The parenthetical number after each space refers to... considered as including the following spaces: (1) Control stations, i.e., spaces containing the emergency source of power, and those spaces in which a continuous watch is maintained and in which navigating...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Structural Fire Protection § 72.05-5 Definitions. Note: The parenthetical number after each space refers to... considered as including the following spaces: (1) Control stations, i.e., spaces containing the emergency source of power, and those spaces in which a continuous watch is maintained and in which navigating...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Structural Fire Protection § 72.05-5 Definitions. Note: The parenthetical number after each space refers to... considered as including the following spaces: (1) Control stations, i.e., spaces containing the emergency source of power, and those spaces in which a continuous watch is maintained and in which navigating...
Initial experiments in thrusterless locomotion control of a free-flying robot
NASA Technical Reports Server (NTRS)
Jasper, W. J.; Cannon, R. H., Jr.
1990-01-01
A two-arm free-flying robot has been constructed to study thrusterless locomotion in space. This is accomplished by pushing off or landing on a large structure in a coordinated two-arm maneuver. A new control method, called system momentum control, allows the robot to follow desired momentum trajectories and thus leap or crawl from one structure to another. The robot floats on an air-cushion, simulating in two dimensions the drag-free zero-g environment of space. The control paradigm has been verified experimentally by commanding the robot to push off a bar with both arms, rotate 180 degrees, and catch itself on another bar.
Demonstrations of LSS active vibration control technology on representative ground-based testbeds
NASA Technical Reports Server (NTRS)
Hyland, David C.; Phillips, Douglas J.; Collins, Emmanuel G., Jr.
1991-01-01
This paper describes two experiments which successfully demonstrate control of flexible structures. The first experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center, while the second experiment was conducted using the Multi-Hex Prototype structure. The paper concludes with some remarks on the lessons learned from conducting these experiments.
Exploration of RNA structure spaces
NASA Technical Reports Server (NTRS)
Fox, G. E.
1991-01-01
In order to understand the structure of real structure spaces, we are studying the 5S rRNA structure space experimentally. A plasmid containing a synthetic 5S rRNA gene, two rRNA promoters, and transcription terminators has been assembled. Assays are conducted to determine if the foreign 5S rRNA is expressed, and to see whether or not it is incorporated into ribosomes. Evolutionary competition is used to determine the relative fitness of strains containing the foreign 5S rRNA and a control 5S rRNA. By using site directed mutagenesis, a number of mutants can be made in order to study the boundaries of the structure space and how sharply defined they are. By making similar studies in the vicinity of structure space, it will be possible to determine how homogeneous the 5S rRNA structure space is. Useable experimental protocols have been developed, and a number of mutants have already been studied. Initial results suggest an explanation of why single stranded regions of the RNA are less subject to mutation than double stranded regions.
Unexpected Control Structure Interaction on International Space Station
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Platonov, Valery; Medina, Elizabeth A.; Borisenko, Alexander; Bogachev, Alexey
2017-01-01
On June 23, 2011, the International Space Station (ISS) was performing a routine 180 degree yaw maneuver in support of a Russian vehicle docking when the on board Russian Segment (RS) software unexpectedly declared two attitude thrusters failed and switched thruster configurations in response to unanticipated ISS dynamic motion. Flight data analysis after the maneuver indicated that higher than predicted structural loads had been induced at various locations on the United States (U.S.) segment of the ISS. Further analysis revealed that the attitude control system was firing thrusters in response to both structural flex and rigid body rates, which resonated the structure and caused high loads and fatigue cycles. It was later determined that the thruster themselves were healthy. The RS software logic, which was intended to react to thruster failures, had instead been heavily influenced by interaction between the control system and structural flex. This paper will discuss the technical aspects of the control structure interaction problem that led to the RS control system firing thrusters in response to structural flex, the factors that led to insufficient preflight analysis of the thruster firings, and the ramifications the event had on the ISS. An immediate consequence included limiting which thrusters could be used for attitude control. This complicated the planning of on-orbit thruster events and necessitated the use of suboptimal thruster configurations that increased propellant usage and caused thruster lifetime usage concerns. In addition to the technical aspects of the problem, the team dynamics and communication shortcomings that led to such an event happening in an environment where extensive analysis is performed in support of human space flight will also be examined. Finally, the technical solution will be presented, which required a multidisciplinary effort between the U.S. and Russian control system engineers and loads and dynamics structural engineers to develop and implement an extensive modification in the RS software logic for ISS attitude control thruster firings.
CARBON DIOXIDE REDUCTION CONTACTORS IN SPACE VEHICLES AND OTHER ENCLOSED STRUCTURES,
CONTROLLED ATMOSPHERES, CARBON DIOXIDE, REMOVAL, LIFE SUPPORT SYSTEMS, SPACE ENVIRONMENTS, CONFINED ENVIRONMENTS, OXYGEN CONSUMPTION, REGENERATION(ENGINEERING), CHEMISORPTION, MASS TRANSFER, FLUID MECHANICS, CENTRIFUGES .
NASA Technical Reports Server (NTRS)
Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.; Wilson, E.
1993-01-01
Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modeling and control of extremely flexible space structures.
Space Shuttle Technical Conference, part 1
NASA Technical Reports Server (NTRS)
Chaffee, N. (Compiler)
1985-01-01
Articles providing a retrospective presentation and documentation of the key scientific and engineering achievements of the Space Shuttle Program are compiled. Topics areas include: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support; environmental control; and crew station; and (6) ground operations.
Detail View looking at the protected structure and landing gear ...
Detail View looking at the protected structure and landing gear housing in the void created by the removal of the Forward Reaction Control System Module from the forward section of the Orbiter Discovery. This view was taken from the service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Control - Demands mushroom as station grows
NASA Technical Reports Server (NTRS)
Szirmay, S. Z.; Blair, J.
1983-01-01
The NASA space station, which is presently in the planning stage, is to be composed of both rigid and nonrigid modules, rotating elements, and flexible appendages subjected to environmental disturbances from the earth's atmospheric gravity gradient, and magnetic field, as well as solar radiation and self-generated disturbances. Control functions, which will originally include attitude control, docking and berthing control, and system monitoring and management, will with evolving mission objectives come to encompass such control functions as articulation control, autonomous navigation, space traffic control, and large space structure control. Attention is given to the advancements in modular, distributed, and adaptive control methods, as well as system identification and hardware fault tolerance techniques, which will be required.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- At the top of Launch Pad 39A, Space Shuttle Atlantis closes in on the Rotating Service Structure (left). On the RSS, the payload canister can be seen half way up the structure as it is lifted to the Payload Changeout Room. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
NASA Technical Reports Server (NTRS)
Joshi, S. M.; Groom, N. J.
1980-01-01
A finite element structural model of a 30.48 m x 30.48 m x 2.54 mm completely free aluminum plate is described and modal frequencies and mode shape data for the first 44 modes are presented. An explanation of the procedure for using the data is also presented. The model should prove useful for the investigation of controller design approaches for large flexible space structures.
Control of large flexible space structures
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.
1986-01-01
Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
Integrated modeling and analysis of a space-truss article
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Perez, Sharon E.; Pappa, Richard S.
1990-01-01
MSC/NASTRAN is being used in the Controls-Structures Interaction (CSI) program at NASA Langley Research Center as a key analytical tool for structural analysis as well as the basis for control law development, closed-loop performance evaluation, and system safety checks. Guest investigators from academia and industry are performing dynamics and control experiments on a flight-like deployable space truss called Mini-Mast to determine the effectiveness of various active-vibration control laws. MSC/NASTRAN was used to calculate natural frequencies and mode shapes below 100 Hz to describe the dynamics of the 20-meter-long lightweight Mini-Mast structure. Gravitational effects contribute significantly to structural stiffness and are accounted for through a two-phase solution in which the differential stiffness matrix is calculated and then used in the eigensolution. Reduced modal models are extracted for control law design and evaluation of closed-loop system performance. Predicted actuator forces from controls simulations are then applied to the extended model to predict member loads and stresses. These pre-test analyses reduce risks associated with the structural integrity of the test article, which is a major concern in closed-loop control experiments due to potential instabilities.
Space Launch System Integrated Structural Test b-roll
2017-04-19
Integrated Structural Test at test stand 4699 at Marshall Space Flight Center: 1. Launch Vehicle Stage Adapter (LVSA) install to 4699 - 00:05 2. Interim Cryogenic Propulsion stage (ICPS) install to 4699 00:20 3. Orion Stage Adapter (OSA) install to 4699 00:56 4. Integrated Structural Test control room 01:10 5. Animation of stacking LVSA, ICPS & OSA in test stand 02:46
Integrated digital flight-control system for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.
High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
High performance, accelerometer-based control of the Mini-MAST structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1992-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
NASA Technical Reports Server (NTRS)
1988-01-01
The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.
Solar dynamic power systems for space station
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.
1986-01-01
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.
Control system design for the large space systems technology reference platform
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1982-01-01
Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.
Large space telescope, phase A. Volume 5: Support systems module
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.
The 15th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1981-01-01
Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.
Modeling and control of flexible space structures
NASA Technical Reports Server (NTRS)
Wie, B.; Bryson, A. E., Jr.
1981-01-01
The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Glaese, John R.
1994-01-01
Under this contract, the Large Space Structure Ground Test Verification (LSSGTV) Facility at the George C. Marshall Space Flight Center (MSFC) was developed. Planning in coordination with NASA was finalized and implemented. The contract was modified and extended with several increments of funding to procure additional hardware and to continue support for the LSSGTV facility. Additional tasks were defined for the performance of studies in the dynamics, control and simulation of tethered satellites. When the LSSGTV facility development task was completed, support and enhancement activities were funded through a new competitive contract won by LCD. All work related to LSSGTV performed under NAS8-35835 has been completed and documented. No further discussion of these activities will appear in this report. This report summarizes the tether dynamics and control studies performed.
Semantic definitions of space flight control center languages using the hierarchical graph technique
NASA Technical Reports Server (NTRS)
Zaghloul, M. E.; Truszkowski, W.
1981-01-01
In this paper a method is described by which the semantic definitions of the Goddard Space Flight Control Center Command Languages can be specified. The semantic modeling facility used is an extension of the hierarchical graph technique, which has a major benefit of supporting a variety of data structures and a variety of control structures. It is particularly suited for the semantic descriptions of such types of languages where the detailed separation between the underlying operating system and the command language system is system dependent. These definitions were used in the definition of the Systems Test and Operation Language (STOL) of the Goddard Space Flight Center which is a command language that provides means for the user to communicate with payloads, application programs, and other ground system elements.
Design and control considerations for industrial and space manipulators
NASA Technical Reports Server (NTRS)
Whitney, D. E.; Book, W. J.; Lynch, P. M.
1974-01-01
This paper is a progress report summarizing theoretical and practical results concerning integration of design and control aspects of manipulator arms for industrial or space applications. The relationships between task specifications, gross motions, fine motions, actuator type and location, size and strength of structural members, control servos and strategies, and overall design evaluation are briefly discussed, with some technical examples.
Dynamic Analysis of a Two Member Manipulator Arm
NASA Technical Reports Server (NTRS)
McGinley, Mark; Shen, Ji Y.
1997-01-01
Attenuating start-up and stopping vibrations when maneuvering large payloads attached to flexible manipulator systems is a great concern for many space missions. To address this concern, it was proposed that the use of smart materials, and their applications in smart structures, may provide an effective method of control for aerospace structures. In this paper, a modified finite element model has been developed to simulate the performance of piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. Connected to a control voltage, the piezoelectric actuators produce control moments based on the optimal control theory. The computer simulation modeled the end-effector vibration suppression of the NASA manipulator testbed for berthing operations of the Space Shuttle to the Space Station. The results of the simulation show that the bonded piezoelectric actuators can effectively suppress follow-up vibrations of the end-effector, stimulated by some external disturbance.
Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Horta, L. G.; Cadogan, D. P.; Sapna, G. H.; Scarborough, S. E.
2002-01-01
Larger and more powerful space based instruments are needed to meet increasingly sophisticated scientific demand. To support this need, concepts for telescopes with apertures of 100 meters are being investigated, but the required technologies are not in hand today. Due to the capacity limits of launch vehicles, the idea of deploying, erecting, or inflating large structures in space is being considered. Recently, rigidization concepts of large inflatable structures have demonstrated the capability of weight reductions of up to 50% from current concepts with packaging efficiencies near 80%. One of the important aspects of inflatable structures is vibration mitigation and line-of-sight control. Such control tasks are possible only after actuators/sensors are properly integrated into a rigidizable concept. To study these issues, we have developed an inflatable/rigidizable hexapod structure testbed. The testbed integrates state of the art piezo-electric self-sensing actuators into an inflatable/rigidizable structure and a flat membrane reflector. Using this testbed, we plan to experimentally demonstrate achievable vibration and line-of-sight control. This paper contains a description of the testbed and an outline of the test plan.
Transform methods for precision continuum and control models of flexible space structures
NASA Technical Reports Server (NTRS)
Lupi, Victor D.; Turner, James D.; Chun, Hon M.
1991-01-01
An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Candidate proof mass actuator control laws for the vibration suppression of a frame
NASA Technical Reports Server (NTRS)
Umland, Jeffrey W.; Inman, Daniel J.
1991-01-01
The vibration of an experimental flexible space truss is controlled with internal control forces produced by several proof mass actuators. Four candidate control law strategies are evaluated in terms of performance and robustness. These control laws are experimentally implemented on a quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the final closed loop is self-equilibrated. The first two control laws considered are based on direct output feedback and consist of tuning the actuator feedback gains to the lowest mode intended to receive damping. The first method feeds back only the position and velocity of the proof mass relative to the structure; this results in a traditional vibration absorber. The second method includes the same feedback paths as the first plus feedback of the local structural velocity. The third law is designed with robust H infinity control theory. The fourth strategy is an active implementation of a viscous damper, where the actuator is configured to provide a bending moment at two points on the structure. The vibration control system is then evaluated in terms of how it would benefit the space structure's position control system.
Controllability of Surface Water Networks
NASA Astrophysics Data System (ADS)
Riasi, M. Sadegh; Yeghiazarian, Lilit
2017-12-01
To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.
NASA Technical Reports Server (NTRS)
Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb
2015-01-01
Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.
Structural design of a large deformable primary mirror for a space telescope
NASA Astrophysics Data System (ADS)
Hansen, J. G. R.
A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.
Piezoelectric devices for vibration suppression: Modeling and application to a truss structure
NASA Technical Reports Server (NTRS)
Won, Chin C.; Sparks, Dean W., Jr.; Belvin, W. Keith; Sulla, Jeff L.
1993-01-01
For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented.
NASA Astrophysics Data System (ADS)
Bosela, P. A.; Fertis, D. G.; Shaker, F. J.
1992-09-01
Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.
Space Spider - A concept for fabrication of large structures
NASA Technical Reports Server (NTRS)
Britton, W. R.; Johnston, J. D.
1978-01-01
The Space Spider concept for the automated fabrication of large space structures involves a specialized machine which roll-forms thin gauge material such as aluminum and develops continuous spiral structures with radial struts to sizes of 600-1,000 feet in diameter by 15 feet deep. This concept allows the machine and raw material to be integrated using the Orbiter capabilities, then boosting the rigid system to geosynchronous equatorial orbit (GEO) without high sensitivity to acceleration forces. As a teleoperator controlled device having repetitive operations, the fabrication process can be monitored and verified from a ground-based station without astronaut involvement in GEO. The resultant structure will be useful as an intermediate size platform or as a structural element to be used with other elements such as the space-fabricated beams or composite nested tubes.
NASA Technical Reports Server (NTRS)
1978-01-01
The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in space using the space shuttle as a launch vehicle and construction base were investigated. Additional construction/systems/operational techniques, processes, and equipment which can be developed/demonstrated in the same program to provide further risk reduction benefits to future large space systems were included. Results in the areas of structure/materials, fabrication systems (beam builder, assembly jig, and avionics/controls), mission integration, and programmatics are summarized. Conclusions and recommendations are given.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, R. W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1987-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Spillover stabilization and decentralized modal control of large space structures
NASA Technical Reports Server (NTRS)
Czajkowski, Eva A.; Preumont, Andre
1987-01-01
The stabilization of the neglected dynamics of the higher modes of vibration in large space structures is studied, and the influence of the structure of the plant noise intensity matrix of the Kalman-Bucy filter on the stability margin of the residual modes is shown. An optimization procedure uses information on the residual modes to minimize spillover of known residual modes while preserving robustness with respect to the unknown dynamics, and the optimum plant noise intensity matrix is selected to maximize the stability margins of the residual modes and to properly place the observer poles. Examples for both centralized and decentralized control are considered.
Experimental Validation of an Integrated Controls-Structures Design Methodology
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.
1996-01-01
The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.
Distributed control using linear momentum exchange devices
NASA Technical Reports Server (NTRS)
Sharkey, J. P.; Waites, Henry; Doane, G. B., III
1987-01-01
MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.
Workshop on Structural Dynamics and Control Interaction of Flexible Structures
NASA Technical Reports Server (NTRS)
Davis, L. P.; Wilson, J. F.; Jewell, R. E.
1987-01-01
The Hubble Space Telescope features the most exacting line of sight jitter requirement thus far imposed on a spacecraft pointing system. Consideration of the fine pointing requirements prompted an attempt to isolate the telescope from the low level vibration disturbances generated by the attitude control system reaction wheels. The primary goal was to provide isolation from axial component of wheel disturbance without compromising the control system bandwidth. A passive isolation system employing metal springs in parallel with viscous fluid dampers was designed, fabricated, and space qualified. Stiffness and damping characteristics are deterministic, controlled independently, and were demonstrated to remain constant over at least five orders of input disturbance magnitude. The damping remained purely viscous even at the data collection threshold of .16 x .000001 in input displacement, a level much lower than the anticipated Hubble Space Telescope disturbance amplitude. Vibration attenuation goals were obtained and ground test of the vehicle has demonstrated the isolators are transparent to the attitude control system.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis reaches its destination, Launch Pad 39A, for liftoff no earlier than Jan. 19 on mission STS-98. To its immediate left is the Fixed Service Structure, with its 80-foot-tall white lighting mast on top. Further to the left is the Rotating Service Structure, where the white payload canister is being lifted to the Payload Changeout Room. The payload for the mission is the U.S. Lab Destiny, a key element in the construction of the International Space Station. The lab has five system racks for experiments already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Dynamic analysis of Space Shuttle/RMS configuration using continuum approach
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.
1994-01-01
The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
Experimental demonstration of the control of flexible structures
NASA Technical Reports Server (NTRS)
Schaechter, D. B.; Eldred, D. B.
1984-01-01
The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.
NASA Technical Reports Server (NTRS)
Rhodes, Russel E.; Zapata, Edgar; Levack, Daniel J. H.; Robinson, John W.; Donahue, Benjamin B.
2009-01-01
Cost control must be implemented through the establishment of requirements and controlled continually by managing to these requirements. Cost control of the non-recurring side of life cycle cost has traditionally been implemented in both commercial and government programs. The government uses the budget process to implement this control. The commercial approach is to use a similar process of allocating the non-recurring cost to major elements of the program. This type of control generally manages through a work breakdown structure (WBS) by defining the major elements of the program. If the cost control is to be applied across the entire program life cycle cost (LCC), the approach must be addressed very differently. A functional breakdown structure (FBS) is defined and recommended. Use of a FBS provides the visibifity to allow the choice of an integrated solution reducing the cost of providing many different elements of like function. The different functional solutions that drive the hardware logistics, quantity of documentation, operational labor, reliability and maintainability balance, and total integration of the entire system from DDT&E through the life of the program must be fully defined, compared, and final decisions made among these competing solutions. The major drivers of recurring cost have been identified and are presented and discussed. The LCC requirements must be established and flowed down to provide control of LCC. This LCC control will require a structured rigid process similar to the one traditionally used to control weight/performance for space transportation systems throughout the entire program. It has been demonstrated over the last 30 years that without a firm requirement and methodically structured cost control, it is unlikely that affordable and sustainable space transportation system LCC will be achieved.
Method of providing a lunar habitat from an external tank
NASA Technical Reports Server (NTRS)
King, Charles B. (Inventor); Hypes, Warren D. (Inventor); Simonsen, Lisa C. (Inventor); Butterfield, Ansel J. (Inventor); Nealy, John E. (Inventor); Hall, Jr., John B. (Inventor)
1992-01-01
A lunar habitat is provided by placing an external tank of an orbiter in a low Earth orbit where the hydrogen tank is separated from the intertank and oxygen tank which form a base structure. The base structure is then outfitted with an air lock, living quarters, a thermal control system, an environmental control and life support system, and a propulsion system. After the mounting of an outer sheath about the base structure to act as a micrometeoroid shield, the base structure is propelled to a soft landing on the moon. The sheath is mounted at a distance from the base structure to provide a space therebetween which is filled with regolith after landing. Conveniently, a space station is used to outfit the base structure. Various elements of the oxygen tank and intertank are used in outfitting.
Space Construction Experiment Definition Study (SCEDS), part 3. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1983-01-01
The essential controls and dynamics community needs for a large space structures is addressed by the basic Space Construction Experiments (SCE)/MAST configuration and enhanced configurations for follow-on flights. The SCE/MAST can be integrated on a single structures technology experiments platform (STEP). The experiment objectives can be accomplished without the need for EVA and it is anticipated that further design refinements will eliminate the requirement to use the remote manipulator system.
NASA Technical Reports Server (NTRS)
1973-01-01
A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.
Optimal estimation of large structure model errors. [in Space Shuttle controller design
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1979-01-01
In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2015-01-01
NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.
Distributed control of large space structures
NASA Technical Reports Server (NTRS)
Schaechter, D. B.
1981-01-01
Theoretical developments and the results of laboratory experiments are treated as they apply to active attitude and vibration control, as well as static shape control. Modern control theory was employed throughout as the method for obtaining estimation and control laws.
NASA Technical Reports Server (NTRS)
1993-01-01
Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.
NASA Technical Reports Server (NTRS)
Thorwald, Gregory; Mikulas, Martin M., Jr.
1992-01-01
The concept of a large-stroke adaptive stiffness cable-device for damping control of space structures with large mass is introduced. The cable is used to provide damping in several examples, and its performance is shown through numerical simulation results. Displacement and velocity information of how the structure moves is used to determine when to modify the cable's stiffness in order to provide a damping force.
NASA Astrophysics Data System (ADS)
1993-03-01
Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.
On a useful functional representation of control system structure
NASA Technical Reports Server (NTRS)
Malchow, Harvey L.
1988-01-01
An alternative structure for control systems is proposed. The structure is represented by a three-element block diagram and three functional definitions. It is argued that the three functional elements form a canonical set. The set includes the functions description, estimation and control. General overlay of the structure on parallel state and nested-state control systems is discussed. Breakdown of two real nested-state control systems into the proposed functional format is displayed. Application of the process to the mapping of complex control systems R and D efforts is explained with the Mars Rover Sample and Return mission as an example. A previous application of this basic functional structure to Space Station performance requirements organization is discussed.
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis
1988-01-01
The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.
Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Ghaffarian, Reza
2006-01-01
A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.
NASA Technical Reports Server (NTRS)
Vadali, Srinivas R.; Carter, Michael T.
1994-01-01
The Phillips Laboratory at the Edwards Air Force Base has developed the Advanced Space Structures Technology Research Experiment (ASTREX) facility to serve as a testbed for demonstrating the applicability of proven theories to the challenges of spacecraft maneuvers and structural control. This report describes the work performed on the ASTREX test article by Texas A&M University under contract NAS119373 as a part of the Control-Structure Interaction (CSI) Guest Investigator Program. The focus of this work is on maneuvering the ASTREX test article with compressed air thrusters that can be throttled, while attenuating structural excitation. The theoretical foundation for designing the near minimum-time thrust commands is based on the generation of smooth, parameterized optimal open-loop control profiles, and the determination of control laws for final position regulation and tracking using Lyapunov stability theory. Details of the theory, mathematical modeling, model updating, and compensation for the presence of 'real world' effects are described and the experimental results are presented. The results show an excellent match between theory and experiments.
In-space fabrication of thin-film structures
NASA Technical Reports Server (NTRS)
Lippman, M. E.
1972-01-01
A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.
Advanced Smart Structures Flight Experiments for Precision Spacecraft
NASA Astrophysics Data System (ADS)
Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory
2000-07-01
This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.
SAMPIE Measurements of the Space Station Plasma Current Analyzed
NASA Technical Reports Server (NTRS)
1996-01-01
In March of 1994, STS-62 carried the NASA Lewis Research Center's Solar Array Module Plasma Interactions Experiment (SAMPIE) into orbit, where it investigated the plasma current collected and the arcs from solar arrays and other space power materials immersed in the low-Earth-orbit space plasma. One of the important experiments conducted was the plasma current collected by a four-cell coupon sample of solar array cells for the international space station. The importance of this experiment dates back to the 1990 and 1991 meetings of the Space Station Electrical Grounding Tiger Team. The Tiger Team determined that unless the electrical potentials on the space station structure were actively controlled via a plasma contactor, the space station structure would arc into the plasma at a rate that would destroy the thermal properties of its surface coatings in only a few years of operation. The space station plasma contactor will control its potentials by emitting electrons into the surrounding low-Earth-orbit plasma at the same rate that they are collected by the solar arrays. Thus, the level at which the space station solar arrays can collect current is very important in verifying that the plasma contactor design can do its job.
NASA Technical Reports Server (NTRS)
Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.
1987-01-01
The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.
Integrated Digital Flight Control System for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
Adaptive Structures Programs for the Strategic Defense Initiative Organization
1992-01-01
Advanced Control Technology Experiment ( ACTEX ) Modular Control Patch High Frequency Passive Damping Strut Development Optional PZT Passive...on this space test bed in FY95. The Advanced Control Technology Experiment ( ACTEX ) will demonstrate many of the adaptive structures technologies...Accelerometer Bi-ax Accelerometer Smart Strut Figure 7. Schematic of Advanced Control Technology Experiment ( ACTEX ) 6-28-91-2M 1-6-92-5M PZ Stack
[Characteristics of night sleep of monkeys on the ground and during space flight on "Kosmos-1667"].
Shlyk, G G; Rotenberg, V S; Shirvinskaia, M A; Koro'lkov, V I; Magedov, V S
1989-01-01
The data on the sleep structure of two rhesus monkeys, Vernyi and Gordyi, during their 7-day space flight on Cosmos-1667 and a control study staged a month after recovery are discussed. Sleep structure was changed to the greatest extent the night before launch when additional stress factors were involved. During the first night in space Vernyi showed the so-called recoil effect. Later his sleep structure became stabilized: the specific weight of fast sleep diminished and the fast sleep/delta/sleep index in the first two cycles decreased. In the ground-based control study, sleep parameters pointed to a deteriorated health status of the animal: his fast sleep patterns changed and delta-sleep often reached its maximum after a fast sleep episode. In this animal adaptation was associated with fast sleep restructuring. In the second primate, Gordyi, the process of adaptation was extended and took three nights. This animal consistently showed low parameters of delta-sleep during both fright and postflight control study; it exhibited no recoil phenomenon after its reduction in the prelaunch night. The structure of sleep indicated that it played a lesser role in the overall process of adaptation.
On the design and feasibility of a pneumatically supported actively guided space tower
NASA Astrophysics Data System (ADS)
Seth, Raj Kumar
2010-07-01
Space tethers have been investigated widely as a means to provide easy access to space. However, the design and construction of such a device presents significant unsolved technological challenges. An alternative approach is proposed to the construction of a space elevator that utilises a free-standing core structure to provide access to near space regions and to reduce the cost of space launch. The theoretical and experimental investigation of the bending of inflatable cylindrical cantilevered beams made of modem fabric materials provides the basis for the design of an inflatable space tower. Experimental model structures were deployed and tested in order to determine design guidelines for the core structure. The feasibility of the construction of a thin walled inflatable space tower of 20 km vertical extent comprised of pneumatically inflated sections that are actively controlled and stabilised to balance external disturbances and support the structure is discussed. The response of the structure under wind loads is analyzed and taken into account for determining design guidelines. Such an approach avoids problems associated with a space tether including material strength constraints, the need for in-space construction, the fabrication of a cable at least 50,000 km in length, and the ageing and meteorite damage effects associated with a thin tether or cable in Low Earth Orbit. A suborbital tower of 20 km height would provide an ideal mounting point where a geostationary orbital space tether could be attached without experiencing atmospheric turbulence and weathering in the lower atmosphere. The tower can be utilized as a platform for various scientific and space missions or as an elevator to carry payloads and tourists. In addition, space towers can significantly be utilized to generate electrical power by harvesting high altitude renewable energy sources. Keywords: Space Elevator, Inflatable Space Tower, Inflatable Structure, Inflatable Beam, Inflatable Multiple-beam Structure, Cantilevered Beam, Pneumatic Structures.
NASA Technical Reports Server (NTRS)
Boyle, R.; James, E.; Miller, P.; Arillo, V.; Sparr, L.; Castles, S.
1991-01-01
Integration of a Stirling cycle cryocooler into a flight system will require careful attention to the thermal, structural, and electrical interfaces between the cryocooler, the instrument and the spacecraft. These issues are currently under investigation by National Aeronautics and Space Administration/Goddard Space Flight Center personnel in laboratory tests of representative longlife cryocoolers. An 80 K cryocooler has been instrumented as a testbed for vibration control systems characterization. Initial vibration data using a new six-DOF force dynamometer is presented in this report.
Parametric Stiffness Control of Flexible Structures
NASA Technical Reports Server (NTRS)
Moon, F. C.; Rand, R. H.
1985-01-01
An unconventional method for control of flexible space structures using feedback control of certain elements of the stiffness matrix is discussed. The advantage of using this method of configuration control is that it can be accomplished in practical structures by changing the initial stress state in the structure. The initial stress state can be controlled hydraulically or by cables. The method leads, however, to nonlinear control equations. In particular, a long slender truss structure under cable induced initial compression is examined. both analytical and numerical analyses are presented. Nonlinear analysis using center manifold theory and normal form theory is used to determine criteria on the nonlinear control gains for stable or unstable operation. The analysis is made possible by the use of the exact computer algebra system MACSYMA.
Proceedings of the 14th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1980-01-01
Technological areas covered include aviation propulsion, aerodynamic devices, and crew safety; space vehicle propulsion, guidance and control; spacecraft deployment, positioning, and pointing; spacecraft bearings, gimbals, and lubricants; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activity on the space shuttle orbiter are also described.
Optimal decentralized feedback control for a truss structure
NASA Technical Reports Server (NTRS)
Cagle, A.; Ozguner, U.
1989-01-01
One approach to the decentralized control of large flexible space structures involves the design of controllers for the substructures of large systems and their subsequent application to the entire coupled system. This approach is presently developed for the case of active vibration damping on an experimental large struss structure. The isolated boundary loading method is used to define component models by FEM; component controllers are designed using an interlocking control concept which minimizes the motion of the boundary nodes, thereby reducing the exchange of mechanical disturbances among components.
Progress at Standard Space Platforms Corporation
NASA Astrophysics Data System (ADS)
Perkins, Frederick W.
1992-08-01
An account is given of a simple program structure with low costs and short schedules for the space R&D community operating outside mission-oriented, government-funded programs. In addition to furnishing launch services into orbit, the program structure furnishes engineering services through its ground station, control room, and 3-year duration 'MMSB' platform. Flights may begin as little as a year after contract signature.
New Millenium Inflatable Structures Technology
NASA Technical Reports Server (NTRS)
Mollerick, Ralph
1997-01-01
Specific applications where inflatable technology can enable or enhance future space missions are tabulated. The applicability of the inflatable technology to large aperture infra-red astronomy missions is discussed. Space flight validation and risk reduction are emphasized along with the importance of analytical tools in deriving structurally sound concepts and performing optimizations using compatible codes. Deployment dynamics control, fabrication techniques, and system testing are addressed.
Self-Deployable Membrane Structures
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.
2010-01-01
Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems that can use up the majority of the mass budget
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
NASA Technical Reports Server (NTRS)
Gilbrech, Richard J.; Kichak, Robert A.; Davis, Mitchell; Williams, Glenn; Thomas, Walter, III; Slenski, George A.; Hetzel, Mark
2005-01-01
The Space Shuttle Program (SSP) has a zero-fault-tolerant design related to an inadvertent firing of the primary reaction control jets on the Orbiter during mated operations with the International Space Station (ISS). Failure modes identified by the program as a wire-to-wire "smart" short or a Darlington transistor short resulting in a failed-on primary thruster during mated operations with ISS can drive forces that exceed the structural capabilities of the docked Shuttle/ISS structure. The assessment team delivered 17 observations, 6 findings and 15 recommendations to the Space Shuttle Program.
Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis
NASA Technical Reports Server (NTRS)
Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.
2004-01-01
This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.
Application of identification techniques to remote manipulator system flight data
NASA Technical Reports Server (NTRS)
Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.
1983-01-01
This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.
Precision pointing of scientific instruments on space station: The LFGGREC perspective
NASA Technical Reports Server (NTRS)
Blackwell, C. C.; Sirlin, S. W.; Laskin, R. A.
1988-01-01
An application of Lyapunov function-gradient-generated robustness-enhancing control (LFGGREC) is explored. The attention is directed to a reduced-complexity representation of the pointing problem presented by the system composed of the Space Infrared Telescope Facility gimbaled to a space station configuration. Uncertainties include disturbance forces applied in the crew compartment area and control moments applied to adjacent scientific payloads (modeled as disturbance moments). Also included are uncertainties in gimbal friction and in the structural component of the system, as reflected in the inertia matrix, the damping matrix, and the stiffness matrix, and the effect of the ignored vibrational dynamics of the structure. The emphasis is on the adaptation of LFGGREC to this particular configuration and on the robustness analysis.
Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks
NASA Astrophysics Data System (ADS)
Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan
2012-02-01
Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.
Control pole placement relationships
NASA Technical Reports Server (NTRS)
Ainsworth, O. R.
1982-01-01
Using a simplified Large Space Structure (LSS) model, a technique was developed which gives algebraic relationships for the unconstrained poles. The relationships, which were obtained by this technique, are functions of the structural characteristics and the control gains. Extremely interesting relationships evolve for the case when the structural damping is zero. If the damping is zero, the constrained poles are uncoupled from the structural mode shapes. These relationships, which are derived for structural damping and without structural damping, provide new insight into the migration of the unconstrained poles for the CFPPS.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay
1991-01-01
A framework for a decentralized hierarchical controller partitioning structure is developed. This structure allows for the design of separate airframe and propulsion controllers which, when assembled, will meet the overall design criterion for the integrated airframe/propulsion system. An algorithm based on parameter optimization of the state-space representation for the subsystem controllers is described. The algorithm is currently being applied to an integrated flight propulsion control design example.
NASA Technical Reports Server (NTRS)
Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2015-01-01
NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1985-01-01
Robustness properties are investigated for two types of controllers for large flexible space structures, which use collocated sensors and actuators. The first type is an attitude controller which uses negative definite feedback of measured attitude and rate, while the second type is a damping enhancement controller which uses only velocity (rate) feedback. It is proved that collocated attitude controllers preserve closed loop global asymptotic stability when linear actuator/sensor dynamics satisfying certain phase conditions are present, or monotonic increasing nonlinearities are present. For velocity feedback controllers, the global asymptotic stability is proved under much weaker conditions. In particular, they have 90 phase margin and can tolerate nonlinearities belonging to the (0,infinity) sector in the actuator/sensor characteristics. The results significantly enhance the viability of both types of collocated controllers, especially when the available information about the large space structure (LSS) parameters is inadequate or inaccurate.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work to develop a unified control/structures modeling and design capability for large space structures modeling are presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. Parallel research done by other researchers is reviewed. The development of a methodology for global design optimization is recommended as a long-term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization.
Selected topics in robotics for space exploration
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C. (Editor); Kaufman, Howard (Editor)
1993-01-01
Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
Structural control sensors for the CASES GTF
NASA Technical Reports Server (NTRS)
Davis, Hugh W.; Bukley, Angelia P.
1993-01-01
CASES (Controls, Astrophysics and Structures Experiment in Space) is a proposed space experiment to collect x-ray images of the galactic center and solar disk with unprecedented resolution. This requires precision pointing and suppression of vibrations in the long flexible structure that comprises the 32-m x-ray telescope optical bench. Two separate electro-optical sensor systems are provided for the ground test facility (GTF). The Boom Motion Tracker (BMT) measures eigenvector data for post-mission use in system identification. The Tip Displacement Sensor (TDS) measures boom tip position and is used as feedback for the closed-loop control system that stabilizes the boom. Both the BMT and the TDS have met acceptance specifications and were delivered to MSFC in February 1992. This paper describes the sensor concept, the sensor configuration as implemented in the GTF, and the results of characterization and performance testing.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, L.
1985-01-01
Work during the period January 1 to June 30, 1985 has concentrated on the completion of the derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) as well on the development of a control scheme for the maneuvering of the spacecraft. The report consists of a paper presented at the Fifth Symposium on Dynamics and Control of Large Structures, June 12 to 14, 1985 at Blacksburg, VA.
2008-02-15
KENNEDY SPACE CENTER, FLA. -- The payload canister containing the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre, nears the rotating service structure on Launch Pad 39A at NASA's Kennedy Space Center. The payload will be transferred to the payload changeout room on the service structure. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. The payload will be installed into Endeavour for launch on the STS-123 mission targeted for March 11. Photo credit: NASA/Kim Shiflett
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white morning clouds, Space Shuttle Atlantis nears the Rotating Service Structure on Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Telerobotics test bed for space structure assembly
NASA Technical Reports Server (NTRS)
Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.
1994-01-01
A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.
1997-01-01
An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.
Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale
NASA Astrophysics Data System (ADS)
Man, Xianfeng; Liu, Tingting; Xia, Baizhan; Luo, Zhen; Xie, Longxiang; Liu, Jian
2018-06-01
Acoustic metamaterials are remarkably different from conventional materials, as they can flexibly manipulate and control the propagation of sound waves. Unlike the locally resonant metamaterials introduced in earlier studies, we designed an ultraslow artificial structure with a sound speed much lower than that in air. In this paper, the space-coiling approach is proposed for achieving artificial metamaterial for extremely low-frequency airborne sound. In addition, the self-similar fractal technique is utilized for designing space-coiling Mie-resonance-based metamaterials (MRMMs) to obtain a band-dispersive spectrum. The band structures of two-dimensional (2D) acoustic metamaterials with different fractal levels are illustrated using the finite element method. The low-frequency bandgap can easily be formed, and multi-bandgap properties are observed in high-level fractals. Furthermore, the designed MRMMs with higher order fractal space coiling shows a good robustness against irregular arrangement. Besides, the proposed artificial structure was found to modify and control the radiation field arbitrarily. Thus, this work provides useful guidelines for the design of acoustic filtering devices and acoustic wavefront shaping applications on the subwavelength scale.
NASA Technical Reports Server (NTRS)
Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira
2008-01-01
This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.
Experimental evaluation of active-member control of precision structures
NASA Technical Reports Server (NTRS)
Fanson, James; Blackwood, Gary; Chu, Cheng-Chih
1989-01-01
The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.
Large space telescope, phase A. Volume 3: Optical telescope assembly
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
One Controller at a Time (1-CAT): A mimo design methodology
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Lucas, J. C.
1987-01-01
The One Controller at a Time (1-CAT) methodology for designing digital controllers for Large Space Structures (LSS's) is introduced and illustrated. The flexible mode problem is first discussed. Next, desirable features of a LSS control system design methodology are delineated. The 1-CAT approach is presented, along with an analytical technique for carrying out the 1-CAT process. Next, 1-CAT is used to design digital controllers for the proposed Space Based Laser (SBL). Finally, the SBL design is evaluated for dynamical performance, noise rejection, and robustness.
The Marshall Center: Its place in NASA
NASA Technical Reports Server (NTRS)
1981-01-01
The organizational structure and facilities available at the Marshall Space Flight Center are described and the role of the Center in NASA program management is demonstrated in a review of the Center's past history and current development projects. Particular attention is given to space shuttle and the space transportation system; the preparation of experiments and management of Spacelab missions; and the development of the space telescope. Energy related activities discussed include the automatic guidance and control of the longwall shearing machine for coal extraction, systems for the solar heating and cooling of buildings, and the design of the solar power satellite. Products developed by Center personnel highlighted include the power factor controller to reduce electrical consumption by motors and the image enhancement process being used to restore early historical photographs. A free flying solar power source to increase mission duration of the orbiter and its payloads; techniques for the orbital assembly of large space structures; facilities for materials processing in space; the orbit transfer vehicle, solar electric propulsion systems; and the preparation of science and applications payloads are also described.
NASA Astrophysics Data System (ADS)
Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai
2016-07-01
Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).
Large space structures and systems in the space station era: A bibliography with indexes
NASA Technical Reports Server (NTRS)
Ferrainolo, John J. (Compiler); Lawrence, George F. (Compiler)
1991-01-01
Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Large space structures and systems in the space station era: A bibliography with indexes
NASA Technical Reports Server (NTRS)
Ferrainolo, John J. (Editor)
1990-01-01
Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Fault-Tolerant Control For A Robotic Inspection System
NASA Technical Reports Server (NTRS)
Tso, Kam Sing
1995-01-01
Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.
Development of a model of space station solar array
NASA Technical Reports Server (NTRS)
Bosela, Paul A.
1990-01-01
Space structures, such as the space station solar arrays, must be extremely lightweight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a control system. The tension preload in the blanket of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomena known as grounding, or false stiffening, of the stiffness matrix occurs during rigid body rotation. The grounding phenomena is examined in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. Various techniques are used for developing new stiffness matrices from the rigorous solutions of the differential equations, including the solution of the directed force problem. A new directed force stiffness matrix developed by the author provides all the rigid body capabilities for the beam in space.
NASA Technical Reports Server (NTRS)
Hsia, Wei-Shen
1986-01-01
In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.
Frequency Domain Design of Robust Controllers for Space Structures
1989-08-01
A natural assumption for structural problems [1] is that A0 is self -adjoint with compact resolvent and discrete (real) spectrum which is bounded from...the same controller using only 256 points. The curves are very similiar, but in both cases, the low frequency end of the respose is under-sampled due
Method for Controlling Space Transportation System Life Cycle Costs
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Bartine, David E.
2006-01-01
A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.
A Biologically Inspired Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
Design and Control of Flapping Wing Micro Air Vehicles
2011-09-01
unsteady, low Re aerodynamics, micro-fabrication, and fluid - structure interaction. However, research into flapping wing control of such MAVs...and flown in confined spaces such as urban canyons, caves and indoors. MAVs will provide an organic ISR capability to small combat teams in the...Designing for highly coupled fluid -structure interactions Micro-fabrication Stability characterization and control Of these challenges, the most
NASA Technical Reports Server (NTRS)
Kaszubowski, M.; Raney, J. P.
1986-01-01
A study was conducted to determine the dynamic effects of firing the orbiter primary reaction control jets during assembly of protoflight space station structure. Maximum longeron compressive load was calculated as a function of jet pulse time length, number of jet pulses, and total torque imposed by the reaction control jets. The study shows that it is possible to fire selected jets to achieve a pitch maneuver without causing failure of the attached structure.
Structural Safety of a Hubble Space Telescope Science Instrument
NASA Technical Reports Server (NTRS)
Lou, M. C.; Brent, D. N.
1993-01-01
This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.
Structural analysis and design of multivariable control systems: An algebraic approach
NASA Technical Reports Server (NTRS)
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
Macroinformational analysis of conditions for controllability of space-vehicle orbit
NASA Astrophysics Data System (ADS)
Glazov, B. I.
2011-12-01
The general axiomatics of information measures for the macro analysis of relations of an information-cybernetic system in the control is introduced. The general structure of a semantically marked graph of open and closed relations of an information-cybernetic system between the participants in the environment, as well as thenecessary axiomatic and technological information-cybernetic system conditions of controllability and observability of objects, for the case of a space vehicle in orbit, are justified.
14 CFR 27.777 - Cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 27.777 Section 27.777... Cockpit controls. Cockpit controls must be— (a) Located to provide convenient operation and to prevent... there is full and unrestricted movement of each control without interference from the cockpit structure...
Dynamic test results for the CASES ground experiment
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Patterson, Alan F.; Jones, Victoria L.
1993-01-01
The Controls, Astrophysics, and Structures Experiment in Space (CASES) Ground Test Facility (GTF) has been developed at Marshall Space Flight Center (MSFC) to provide a facility for the investigation of Controls/Structures Interaction (CSI) phenomena, to support ground testing of a potential shuttle-based CASES flight experiment, and to perform limited boom deployment and retraction dynamics studies. The primary objectives of the ground experiment are to investigate CSI on a test article representative of a Large Space Structure (LSS); provide a platform for Guest Investigators (GI's) to conduct CSI studies; to test and evaluate LSS control methodologies, system identification (ID) techniques, failure mode analysis; and to compare ground test predictions and flight results. The proposed CASES flight experiment consists of a 32 meter deployable/retractable boom at the end of which is an occulting plate. The control objective of the experiment is to maintain alignment of the tip plate (occulter) with a detector located at the base of the boom in the orbiter bay. The tip plate is pointed towards a star, the sun, or the galactic center to collect high-energy X-rays emitted by these sources. The tip plate, boom, and detector comprise a Fourier telescope. The occulting holes in the tip plate are approximately one millimeter in diameter making the alignment requirements quite stringent. Control authority is provided by bidirectional linear thrusters located at the boom tip and Angular Momentum Exchange Devices (AMED's) located at mid-boom and at the tip. The experiment embodies a number of CSI control problems including vibration suppression, pointing a long flexible structure, and disturbance rejection. The CASES GTF is representative of the proposed flight experiment with identical control objectives.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas.
Geiger, Zachary A; Fujiwara, Kurt M; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V; Meier, Torsten; Weld, David M
2018-05-25
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas
NASA Astrophysics Data System (ADS)
Geiger, Zachary A.; Fujiwara, Kurt M.; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V.; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V.; Meier, Torsten; Weld, David M.
2018-05-01
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Design and implementation of active members for precision space structures
NASA Technical Reports Server (NTRS)
Webster, M. S.; Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.
1992-01-01
This paper describes the development and implementation of an active member in a precision truss structure. The active member utilizes a piezoelectric actuator motor imbedded in a steel case with built-in displacement sensor. This active member is used in structural quieting. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Results from application of these controllers and actuators to the JPL Phase B testbed are given.
Theory of the control of structures by low authority controllers
NASA Technical Reports Server (NTRS)
Aubrun, J. N.
1978-01-01
The novel idea presented is based on the observation that if a structure is controlled by distributed systems of sensors and actuators with limited authority, i.e., if the controller is allowed to modify only moderately the natural modes and frequencies of the structure, then it should be possible to apply root perturbation techniques to predict analytically the behavior of the total system. Attention is given to the root perturbation formula first derived by Jacobi for infinitesimal perturbations which neglect the induced eigenvector perturbation, a more general form of Jacobi's formula, first-order structural equations and modal state vectors, state-space equations for damper-augmented structures, and modal damping prediction formulas.
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
CJ Larkin; JD Edington; BJ Close
2006-02-21
Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components tomore » prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.« less
Optimization of the structural and control system for LSS with reduced-order model
NASA Technical Reports Server (NTRS)
Khot, N. S.
1989-01-01
The objective is the simultaneous design of the structural and control system for space structures. The minimum weight of the structure is the objective function, and the constraints are placed on the closed loop distribution of the frequencies and the damping parameters. The controls approach used is linear quadratic regulator with constant feedback. A reduced-order control system is used. The effect of uncontrolled modes is taken into consideration by the model error sensitivity suppression (MESS) technique which modified the weighting parameters for the control forces. For illustration, an ACOSS-FOUR structure is designed for a different number of controlled modes with specified values for the closed loop damping parameters and frequencies. The dynamic response of the optimum designs for an initial disturbance is compared.
Singularity and steering logic for control moment gyros on flexible space structures
NASA Astrophysics Data System (ADS)
Hu, Quan; Guo, Chuandong; Zhang, Jun
2017-08-01
Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.
Experiences with integral microelectronics on smart structures for space
NASA Astrophysics Data System (ADS)
Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob
1995-05-01
One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically noticeable within minutes of unstable operation.
1989-08-01
NASA Langley Research Center, Hampton, Virginia, and Wright Research Development Center, Wright-Patterson Air Force Base, Ohio, and held in San Diego...427 Shalom Fisher SPACE TRUSS ZERO GRAVITY DYNAMICS. ............................... 445 Captain Andy Swanson UNITED STATES AIR FORCE ACADEMY GET-AWAY...HOUSE EXPERIMENTS IN LARGE SPACE STRUCTURES AT THE AIR FORCE WRIGHT AERONAUTICAL LABORATORIES FLIGHT DYNAMICS LABORATORY
2014-03-27
2 1.3 NASA F/A-18 investigating high AOA vortex generation [1] . . . . . . . . . . 3 1.4 F-15 with vortex formations in front...AOA angle of attack HW hot wire NASA National Aeronautics and Space Administration LANTIRN Low Altitude Navigation and Targeting Infrared for Night...National Aeronautics and Space Administration ( NASA ) investigation into the interaction of vortices generated at high AOA and aircraft structure
ERIC Educational Resources Information Center
Kidwell, Jeannie S.
1981-01-01
Examined the effect of the sibling structures of number and spacing, sex composition, and birth order on adolescents' perceptions of the power and support dimensions of parental behavior. Results suggest that research focusing on birth order must control for number of siblings, spacing, and sex composition of siblings. (Author)
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
Flight control augmentation for AFT CG launch vehicles
NASA Technical Reports Server (NTRS)
Barret, Chris
1996-01-01
The Space Shuttle was only the first step in achieving routine access to space. Recently, the NASA Marshall Space Flight Center (MSFC) has been studying a whole spectrum of new launch vehicles (L/V's) for space transportation. Some of these could transport components of the Space Station to orbit, and some could take us to Mars and beyond to boldly expand our frontiers of knowledge. In all our future launch vehicle (L/V) designs, decreasing the structural weight will always be of great concern. This is tantamount to increased payload capability, which in turn means reduced cost-per-pound to orbit. One very significant increase in payload capability has been defined. In a L/V recently studied at MSFC it has been shown that a sizable weight savings can be realized by a rearrangement of the internal propellant tanks. Studies have been conducted both at MSFC and at Martin Marietta Corporation, maker of the Space Shuttle External Tank (ET) which show that a very substantial weight can be saved by inverting the relative positions of the liquid hydrogen (LH2) and the liquid oxygen (LOX) propellant tanks in a particular L/V studied. As the vehicle sits on the launch pad, in the conventional configuration the heavier LOX tank is located on top of the lighter LH2. This requires a heavy structural member between the two tanks to prevent the lighter LH2 tank from being crushed. This configuration also requires large, long, and even drag producing LOX feed lines running the length of the vehicle on the exterior fuselage. If the relative position of the propellant tanks is inverted, both the heavy structural separation member and the long LOX feed lines could be deleted. While the structures community at MSFC was elated with this finding, the LOX tank aft configuration gave the vehicle an aft center-of-gravity (cg) location which surfaced controllability concerns. In the conventional configuration the L/V is controlled in the ascent trajectory by the gimballing of its rocket engines. Studies have been conducted at MSFC which showed that the resulting aft cg configured L/V would not be adequately controllable with the engine gimballing alone.
Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics
NASA Technical Reports Server (NTRS)
Dobrinskaya, Tatiana
2008-01-01
Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect of vehicle structure vibration on CMGs. Additionally, the effect of external vibrations may also be decreased by increasing the gimbal bearing friction. With the suggested modifications there may be no need to lower the gimbal rates below the nominal design requirements as it is currently done on ISS. The conclusions of this work
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- At the top of the incline to Launch Pad 39A, Space Shuttle Atlantis nears the Rotating Service Structure (left). Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
Wang, Lin; Tao, Wuqing; Yuan, Liyong; Liu, Zhirong; Huang, Qing; Chai, Zhifang; Gibson, John K; Shi, Weiqun
2017-11-07
Though two-dimensional early transition metal carbides and carbonitrides (MXenes) have attracted extensive interest recently, their superb abilities in various scientific applications always suffer from the very narrow interlayer space inside the multilayered structure. Here we demonstrate an unprecedented large adsorption capacity enhancement of Ti 3 C 2 T x toward radionuclide removal via a hydrated intercalation strategy. By rational control of the interlayer space, the potential for imprisoning the representative actinide U(vi) inside multilayered Ti 3 C 2 T x was also confirmed.
NASA Technical Reports Server (NTRS)
Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.
1987-01-01
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2006-01-01
Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
NASA Technical Reports Server (NTRS)
Vander Velde, W. E.; Carignan, C. R.
1984-01-01
One of the first questions facing the designer of the control system for a large space structure is how many components actuators and sensors - to specify and where to place them on the structure. This paper presents a methodology which is intended to assist the designer in making these choices. A measure of controllability is defined which is a quantitative indication of how well the system can be controlled with a given set of actuators. Similarly, a measure of observability is defined which is a quantitative indication of how well the system can be observed with a given set of sensors. Then the effect of component unreliability is introduced by computing the average expected degree of controllability (observability) over the operating lifetime of the system accounting for the likelihood of various combinations of component failures. The problem of component location is resolved by optimizing this performance measure over the admissible set of locations. The variation of this optimized performance measure with number of actuators (sensors) is helpful in deciding how many components to use.
Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.
NASA Astrophysics Data System (ADS)
Marino, Riccardo
The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.
Fluid management in the optimization of space construction
NASA Technical Reports Server (NTRS)
Snyder, Howard
1990-01-01
Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.
A flexible telerobotic system for space operations
NASA Technical Reports Server (NTRS)
Sliwa, N. O.; Will, R. W.
1987-01-01
The objective and design of a proposed goal-oriented knowledge-based telerobotic system for space operations is described. This design effort encompasses the elements of the system executive and user interface and the distribution and general structure of the knowledge base, the displays, and the task sequencing. The objective of the design effort is to provide an expandable structure for a telerobotic system that provides cooperative interaction between the human operator and computer control. The initial phase of the implementation provides a rule-based, goal-oriented script generator to interface to the existing control modes of a telerobotic research system, in the Intelligent Systems Research Lab at NASA Research Center.
A new approach for vibration control in large space structures
NASA Technical Reports Server (NTRS)
Kumar, K.; Cochran, J. E., Jr.
1987-01-01
An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.
ACOSS Fourteen (Active Control of Space Structures)
1983-03-01
M ^^^——^^^^ ACOSS FOURTEEN (ACTIVE CONTROL OF SPACE STRUCTURES) Robert J . Benhabib Henry K. Flashner Frank C. Tung Contractor: TRW...PMJILUIJIJ.IIJIIIJI’I.I J I ! ’i-’-ummwmwMu», "»,-’■ m «mpiiw WJPWI» on UJ <_) O cc Q- (_1 a o a. oo I 5 < 3 in ai c 0 in LU c...1 S- s_ a: 1^3 >+- c ■ ^—v O) 0) OJ >—< ( J M - C r? s- s- T3 OO 0 E ■f— a. O S- +.) i i. 0) 0 OJ 03 c _a OJ cn =3 O e 3 01
Structural active cooling applications for the Space Shuttle.
NASA Technical Reports Server (NTRS)
Masek, R. V.; Niblock, G. A.; Huneidi, F.
1972-01-01
Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.
Crystal growth of GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.; Pawlowicz, L. M.; Dabkowski, F.; Li, C. J.
1984-01-01
It is shown that stoichiometry variations in the GaAs melt during growth constitute the most critical parameter regarding defect formations and their interactions; this defect structure determines all relevant characteristics of GaAs. Convection in the melt leads to stoichiometric variations. Growth in axial magnetic fields reduces convection and permits the study of defect structure. In order to control stoichiometry in space and to accommodate expansion during solidification, a partially confined configuration was developed. A triangular prism is employed to contain the growth melt. This configuration permits the presence of the desired vapor phase in contact with the melt for controlling the melt stoichiometry.
NASA Technical Reports Server (NTRS)
Riddlebaugh, Stephen M. (Editor)
2008-01-01
The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.
Deployable robotic woven wire structures and joints for space applications
NASA Technical Reports Server (NTRS)
Shahinpoor, MO; Smith, Bradford
1991-01-01
Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
Active vibration control activities at the LaRC - Present and future
NASA Technical Reports Server (NTRS)
Newsom, J. R.
1990-01-01
The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.
Evaluation of selected thermal control coatings for long-life space structures
NASA Technical Reports Server (NTRS)
Teichman, Louis A.; Slemp, Wayne S.; Witte, William G., Jr.
1992-01-01
Graphite-reinforced resin matrix composites are being considered for spacecraft structural applications because of their light weight, high stiffness, and lower thermal expansion. Thin protective coatings with stable optical properties and the proper ratio of solar absorption (alpha sub s) to thermal emittance (epsilon) minimize orbital thermal extremes and protect these materials against space environment degradation. Sputtered coatings applied directly to graphite/epoxy composite surfaces and anodized coatings applied to thin aluminum foil were studied for use both as an atomic oxygen barrier and as thermal control coatings. Additional effort was made to develop nickel-based coatings which could be applied directly to composites. These coating systems were selected because their inherent tenacity made them potentially more reliable than commercial white paints for long-life space missions. Results indicate that anodized aluminum foil coatings are suitable for tubular and flat composite structures on large platforms in low Earth orbit. Anodized foil provides protection against some elements of the natural space environment (atomic oxygen, ultraviolet, and particulate radiation) and offers a broad range of tailored alpha sub s/epsilon. The foil is readily available and can be produced in large quantities, while the anodizing process is a routine commercial technique.
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
A work breakdown structure for the Space Station Life Sciences Research Facility (LSRF) is presented up to level 5. The purpose is to provide the framework for task planning and control and to serve as a basis for budgeting, task assignment, cost collection and report, and contractual performance measurement and tracking of the Full Scale Development Phase tasks.
Technology for large space systems: A bibliography with indexes (supplement 20)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 694 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July, 1988 and December, 1988. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
The 1980 Large space systems technology. Volume 2: Base technology
NASA Technical Reports Server (NTRS)
Kopriver, F., III (Compiler)
1981-01-01
Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.
An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments
NASA Technical Reports Server (NTRS)
Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.
2014-01-01
Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.
Self-Adaptive Stepsize Search Applied to Optimal Structural Design
NASA Astrophysics Data System (ADS)
Nolle, L.; Bland, J. A.
Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.
Metrics of a Paradigm for Intelligent Control
NASA Technical Reports Server (NTRS)
Hexmoor, Henry
1999-01-01
We present metrics for quantifying organizational structures of complex control systems intended for controlling long-lived robotic or other autonomous applications commonly found in space applications. Such advanced control systems are often called integration platforms or agent architectures. Reported metrics span concerns about time, resources, software engineering, and complexities in the world.
14 CFR 25.373 - Speed control devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en route...
14 CFR 25.373 - Speed control devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Speed control devices. 25.373 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are installed for use in en route...
2008-09-21
CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is in place at the payload changeout room on the rotating service structure. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At right is Atlantis, atop the mobile launcher platform. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller
Biomorphic architectures for autonomous Nanosat designs
NASA Technical Reports Server (NTRS)
Hasslacher, Brosl; Tilden, Mark W.
1995-01-01
Modern space tool design is the science of making a machine both massively complex while at the same time extremely robust and dependable. We propose a novel nonlinear control technique that produces capable, self-organizing, micron-scale space machines at low cost and in large numbers by parallel silicon assembly. Experiments using biomorphic architectures (with ideal space attributes) have produced a wide spectrum of survival-oriented machines that are reliably domesticated for work applications in specific environments. In particular, several one-chip satellite prototypes show interesting control properties that can be turned into numerous application-specific machines for autonomous, disposable space tasks. We believe that the real power of these architectures lies in their potential to self-assemble into larger, robust, loosely coupled structures. Assembly takes place at hierarchical space scales, with different attendant properties, allowing for inexpensive solutions to many daunting work tasks. The nature of biomorphic control, design, engineering options, and applications are discussed.
The service telemetry and control device for space experiment “GRIS”
NASA Astrophysics Data System (ADS)
Glyanenko, A. S.
2016-02-01
Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
Robust control of multi-jointed arm with a decentralized autonomous control mechanism
NASA Technical Reports Server (NTRS)
Kimura, Shinichi; Miyazaki, Ken; Suzuki, Yoshiaki
1994-01-01
A decentralized autonomous control mechanism applied to the control of three dimensional manipulators and its robustness to partial damage was assessed by computer simulation. Decentralized control structures are believed to be quite robust to time delay between the operator and the target system. A 10-jointed manipulator based on our control mechanism was able to continue its positioning task in three-dimensional space without revision of the control program, even after some of its joints were damaged. These results suggest that this control mechanism can be effectively applied to space telerobots, which are associated with serious time delay between the operator and the target system, and which cannot be easily repaired after being partially damaged.
Technical accomplishments of the NASA Lewis Research Center, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.
NASA Astrophysics Data System (ADS)
Balas, Mark
1991-11-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control.
NASA Technical Reports Server (NTRS)
Balas, Mark
1991-01-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control. A theory for disturbance accommodating controllers based on reduced order models of structures was developed, and stability results for these controllers in closed-loop with large-scale finite element models of structures were obtained.
Embedded spacecraft thermal control using ultrasonic consolidation
NASA Astrophysics Data System (ADS)
Clements, Jared W.
Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.
Hardware math for the 6502 microprocessor
NASA Technical Reports Server (NTRS)
Kissel, R.; Currie, J.
1985-01-01
A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds.
Robot arm system for automatic satellite capture and berthing
NASA Technical Reports Server (NTRS)
Nishida, Shinichiro; Toriu, Hidetoshi; Hayashi, Masato; Kubo, Tomoaki; Miyata, Makoto
1994-01-01
Load control is one of the most important technologies for capturing and berthing free flying satellites by a space robot arm because free flying satellites have different motion rates. The performance of active compliance control techniques depend on the location of the force sensor and the arm's structural compliance. A compliance control technique for the robot arm's structural elasticity and a consideration for an end-effector appropriate for it are presented in this paper.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Telerobotic research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sliwa, Nancy E.
1987-01-01
An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zhengxu; Li, Lianwei; Lo, Wai-Yip
2016-07-05
A novel series of amphiphilic TC-PEG molecules were designed and synthesized based on the orthogonal cyclophane unit. These molecules were able to self-assemble from 1D nanofibers and nanobelts to 2D ultrathin nanosheets (3 nm thick) in a controlled way by tuning the length of PEG side chains. The special structure of the cyclophane moiety allowed control in construction of nanostructures through programmed noncovalent interactions (hydrophobic hydrophilic interaction and pi-pi interaction). The self-assembled nanostructures were characterized by combining real space imaging (TEM, SEM, and AFM) and reciprocal space scattering (GIWAXS) techniques. This unique supramolecular system may provide a new strategy formore » the design of materials with tunable nanomorphology and functionality.« less
Protective effects of Tualang honey on bone structure in experimental postmenopausal rats
Zaid, Siti Sarah Mohamad; Sulaiman, Siti Amrah; Othman, Nor Hayati; Soelaiman, Ima-Nirwana; Shuid, Ahmad Nazrun; Mohamad, Norazlina; Muhamad, Norliza
2012-01-01
OBJECTIVE: The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats. METHODS: Forty female, Sprague-Dawley rats were randomly divided into five groups (n = 8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment. RESULTS: All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group. CONCLUSION: In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium. PMID:22892923
Protective effects of Tualang honey on bone structure in experimental postmenopausal rats.
Zaid, Siti Sarah Mohamad; Sulaiman, Siti Amrah; Othman, Nor Hayati; Soelaiman, Ima-Nirwana; Shuid, Ahmad Nazrun; Mohamad, Norazlina; Muhamad, Norliza
2012-07-01
The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats. Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment. All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group. In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.
Dynamic tests on the NASA Langley CSI evolutionary model
NASA Technical Reports Server (NTRS)
Troidl, H.; Elliott, K. B.
1993-01-01
A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.
Adaptive momentum management for large space structures
NASA Technical Reports Server (NTRS)
Hahn, E.
1987-01-01
Momentum management is discussed for a Large Space Structure (LSS) with the structure selected configuration being the Initial Orbital Configuration (IOC) of the dual keel space station. The external forces considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principle moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight type computer and the method proposed is shown to be effective in the presence of attitude control bandwidths as low as .01 radian/sec.
Space Research and Technology Program: Program and specific objectives, document approval
NASA Technical Reports Server (NTRS)
1982-01-01
A detailed view of the Space Research and Technology program work breakdown structure is provided down to the specific objective level. Goals or objectives at each of these levels are set forth. The specific objective narratives are structured into several parts. First, a short paragraph statement of the specific objective is given. This is followed by a list of subobjectives. A list of targets is then provided for those areas of the specific objective that are amenable to a quantitative description of technical accomplishment and schedule. Fluid and thermal physics, materials and structures, computer science and electronics, space energy conversion, multidisciplinary research, controls and human factors, chemical propulsion, spacecraft systems, transportation systems, platform systems, and spacecraft systems technology comprise the principal research programs.
Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D
2009-06-01
Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
Space and time aliasing structure is monthly mean polar-orbiting satellite data
NASA Technical Reports Server (NTRS)
Zeng, Lixin; Levy, Gad
1995-01-01
Monthly mean wind fields from the European Remote Sensing Satellite (ERS1) scatterometer are presented. A banded structure which resembles the satellite subtrack is clearly and consistently apparent in the isotachs as well as the u and v components of the routinely produced fields. The structure also appears in the means of data from other polar-orbiting satellites and instruments. An experiment is designed to trace the cause of the banded structure. The European Centre for Medium-Range Weather Forecast (ECMWF) gridded surface wind analyses are used as a control set. These analyses are also sampled with the ERS1 temporal-spatial samplig pattern to form a simulated scatterometer wind set. Both sets are used to create monthly averages. The banded structures appear in the monthly mean simulated data but do not appear in the control set. It is concluded that the source of the banded structure lies in the spatial and temporal sampling of the polar-orbiting satellite which results in undersampling. The problem involves multiple timescales and space scales, oversampling and under-sampling in space, aliasing in the time and space domains, and preferentially sampled variability. It is shown that commonly used spatial smoothers (or filters), while producing visually pleasing results, also significantly bias the true mean. A three-dimensional spatial-temporal interpolator is designed and used to determine the mean field. It is found to produce satisfactory monthly means from both simulated and real ERS1 data. The implications to climate studies involving polar-orbiting satellite data are discussed.
Structured output-feedback controller synthesis with design specifications
NASA Astrophysics Data System (ADS)
Hao, Yuqing; Duan, Zhisheng
2017-03-01
This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.
Space Station Systems Analysis Study. Volume 2: Program review report
NASA Technical Reports Server (NTRS)
1977-01-01
Major growth options for tended and manned space stations in LEO and GEO are examined including increased orbiter augmentation and habitation requirements. Approaches for providing power supplies, construction aids needed to assemble support platforms, transportation system constraints, and the hardware required for various missions categories are defined. Subsystem requirements are analyzed for structure; flight control; power generation and storage; avionic; life support systems; personnel provisions; and environmental control. Tradeoffs are considered.
Overview of the NASA automation and robotics research program
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Larsen, Ron
1985-01-01
NASA studies over the last eight years have identified five opportunities for the application of automation and robotics technology: (1) satellite servicing; (2) system monitoring, control, sequencing and diagnosis; (3) space manufacturing; (4) space structure assembly; and (5) planetary rovers. The development of these opportunities entails two technology R&D thrusts: telerobotics and system autonomy; both encompass such concerns as operator interface, task planning and reasoning, control execution, sensing, and systems integration.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.
Technology for large space systems: A bibliography with indexes (supplement 08)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 414 reports, articles and other documents introduced into the NASA scientific and technical information system. It provides helpful information to the researcher, manager, and designer in technology development and mission design in the area of Large Space System Technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 09)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 414 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1983 and June 30, 1983. Information on technology development and mission design in the area of Large Space System Technology is provided. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics. advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 22)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.
NASA Astrophysics Data System (ADS)
1992-10-01
Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
NASA Technical Reports Server (NTRS)
1992-01-01
Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 10)
NASA Technical Reports Server (NTRS)
1984-01-01
The bibliography lists 408 reports, articles and other documents introduced into the NASA scientific and technical information system to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of large space system technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
A Stigmergic Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.
2004-01-01
In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, K. F.; Belvin, W. Keith
1991-01-01
A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.
Closeup view of the aft fuselage of the Orbiter Discovery ...
Close-up view of the aft fuselage of the Orbiter Discovery looking at the thrust structure that supports the Space Shuttle Main Engines (SSMEs). In this view, SSME number two position is on the left and SSME number three position is on the right. The thrust structure transfers the forces produce by the engines into and through the airframe of the orbiter. The thrust structure includes the SSMEs load reaction truss structure, engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the plugged and capped orifices within the engine bays. Note that SSME position two is rotated ninety degrees from position three and one. This was needed to enable enough clearance for the engines to fit and gimbal. Note in engine bay three is a clear view of the actuators that control the gambling of that engine. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Space Station Technology, 1983
NASA Technical Reports Server (NTRS)
Wright, R. L. (Editor); Mays, C. R. (Editor)
1984-01-01
This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Bullock, T.; Holland, W. B.; Kross, D. A.; Kiefling, L. A.
1981-01-01
The achievement of an optimized design from the system standpoint under the low cost, high risk constraints of the present day environment was analyzed. Space Shuttle illustrates the requirement for an analysis approach that considers all major disciplines (coupling between structures control, propulsion, thermal, aeroelastic, and performance), simultaneously. The Space Shuttle and certain payloads, Space Telescope and Spacelab, are examined. The requirements for system analysis approaches and criteria, including dynamic modeling requirements, test requirements, control requirements, and the resulting design verification approaches are illustrated. A survey of the problem, potential approaches available as solutions, implications for future systems, and projected technology development areas are addressed.
Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls
NASA Technical Reports Server (NTRS)
Reyhanoglu, Mahmut; Mcclamroch, N. Harris
1993-01-01
An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei
1991-01-01
A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.
2000-01-01
The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Influence of Constraint in Parameter Space on Quantum Games
NASA Astrophysics Data System (ADS)
Zhao, Hai-Jun; Fang, Xi-Ming
2004-04-01
We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1982-01-01
The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.
A TREETOPS simulation of the Hubble Space Telescope-High Gain Antenna interaction
NASA Technical Reports Server (NTRS)
Sharkey, John P.
1987-01-01
Virtually any project dealing with the control of a Large Space Structure (LSS) will involve some level of verification by digital computer simulation. While the Hubble Space Telescope might not normally be included in a discussion of LSS, it is presented to highlight a recently developed simulation and analysis program named TREETOPS. TREETOPS provides digital simulation, linearization, and control system interaction of flexible, multibody spacecraft which admit to a point-connected tree topology. The HST application of TREETOPS is intended to familiarize the LSS community with TREETOPS by presenting a user perspective of its key features.
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Structural model of control system for hydraulic stepper motor complex
NASA Astrophysics Data System (ADS)
Obukhov, A. D.; Dedov, D. L.; Kolodin, A. N.
2018-03-01
The article considers the problem of developing a structural model of the control system for a hydraulic stepper drive complex. A comparative analysis of stepper drives and assessment of the applicability of HSM for solving problems, requiring accurate displacement in space with subsequent positioning of the object, are carried out. The presented structural model of the automated control system of the multi-spindle complex of hydraulic stepper drives reflects the main components of the system, as well as the process of its control based on the control signals transfer to the solenoid valves by the controller. The models and methods described in the article can be used to formalize the control process in technical systems based on the application hydraulic stepper drives and allow switching from mechanical control to automated control.
Large space structures fabrication experiment. [on-orbit fabrication of graphite/thermoplastic beams
NASA Technical Reports Server (NTRS)
1978-01-01
The fabrication machine used for the rolltrusion and on-orbit forming of graphite thermoplastic (CTP) strip material into structural sections is described. The basic process was analytically developed parallel with, and integrated into the conceptual design of, a flight experiment machine for producing a continuous triangular cross section truss. The machine and its associated ancillary equipment are mounted on a Space Lab pallet. Power, thermal control, and instrumentation connections are made during ground installation. Observation, monitoring, caution and warning, and control panels and displays are installed at the payload specialist station in the orbiter. The machine is primed before flight by initiation of beam forming, to include attachment of the first set of cross members and anchoring of the diagonal cords. Control of the experiment will be from the orbiter mission specialist station. Normal operation is by automatic processing control software. Machine operating data are displayed and recorded on the ground. Data is processed and formatted to show progress of the major experiment parameters including stable operation, physical symmetry, joint integrity, and structural properties.
Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.
1991-01-01
The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white morning clouds, Space Shuttle Atlantis approaches Launch Pad 39A, which shows the Rotating Service Structure open (left) and the Fixed Service Structure (right). At the RSS, the payload canister is being lifted up to the Payload Changeout Room. This is the Shuttle’s second attempt at rollout. Jan. 2 a failed computer processor on the crawler transporter aborted the rollout and the Shuttle was returned to the Vehicle Assembly Building using a secondary computer processor on the vehicle. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.
Ben Zion, Yossi; Horwitz, Lawrence
2010-04-01
An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.
14 CFR 23.395 - Control system loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Loads § 23.395 Control system loads. (a) Each flight control system and its supporting structure must be... at the appropriate control grips or pads as they would in flight, and to react at the attachments of... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system loads. 23.395 Section 23.395...
Technology for large space systems: A special bibliography with indexes (supplement 03)
NASA Technical Reports Server (NTRS)
1980-01-01
A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.
2011-12-01
This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiplemore » single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
NASA Technical Reports Server (NTRS)
Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven
1989-01-01
The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.
AOCS Performance and Stability Validation for a 160-m Solar Sail with Control-Structure Interactions
NASA Technical Reports Server (NTRS)
Wie, Bong; Murphy, David
2005-01-01
Future solar sail missions, such as NASA's Solar Polar Imager Vision, will require sails with dimensions on the order of 50-500 m. We are examining a square sail design with moving mass (trim control mass, TCM) and quadrant rotation primary actuators plus pulsed plasma thrusters (PPTs) at the mast tips for backup attitude control. Quadrant rotation is achieved via roll stabilizer bars (RSB) at the mast tips. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system, especially as these actuators are located on the flexible structure itself and not on the rigid core. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from finite element models of the system. Torsion and bending of the masts during maneuvers could significantly affect the function of the actuators while activation of the membrane modes could adversely affect the thrust vector direction and magnitude. Analysis of the RSB and TCM dynamics for developing high-fidelity simulations is included. For control analysis of the flexible system, standard finite-element models of the flexible sail body are loaded and the modal data is used to create a modal coordinate state-space system. Key parameters include which modes to include, which nodes are of interest for force inputs and displacement outputs, connecting nodes through which external forces and torques are applied from the flex body to the core, any nominal momentum in the system, and any steady rates. The system is linearized about the nominal attitude and rate. The state-space plant can then be analyzed with a state-space controller, and Bode, Nyquist, step and impulse responses generated. The approach is general for any rigid core with a flexible appendage. This paper develops a compensator for a simple two-mass flex system and extrapolates the results to the solar sail. A finite element model of the 20 m solar sail by ATK Space Systems, recently validated in ground tests, is used to demonstrate the sail analysis approach.
Impact of Solar Array Position on ISS Vehicle Charging
NASA Technical Reports Server (NTRS)
Alred, John; Mikatarian, Ronald; Koontz, Steve
2006-01-01
The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA. Arcing from the EMU is classified as a catastrophic hazard, which requires two-failure tolerant controls, i.e., three hazard controls. Each PCU is capable of maintaining the ISS floating potential below the requirement during EVA. The two PCUs provide a single failure tolerant control of ISS floating potential. In the event of the failure of one or two PCUs, a combination of solar array shunting and turning the solar arrays into their own wakes will be used to supply control of the plasma hazard (Reference 3). The purpose of this paper is to present on-orbit information that shows that ISS solar array placement with respect to the ISS velocity vector can control solar array plasma charging, and hence, provide an operational control for the plasma hazard. Also, this paper will present on-orbit information that shows that shunting of the ISS solar arrays can control solar array plasma charging, and hence, provide an additional operational control for the plasma hazard.
ASI's space automation and robotics programs: The second step
NASA Technical Reports Server (NTRS)
Dipippo, Simonetta
1994-01-01
The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.
A space station Structures and Assembly Verification Experiment, SAVE
NASA Technical Reports Server (NTRS)
Russell, R. A.; Raney, J. P.; Deryder, L. J.
1986-01-01
The Space Station structure has been baselined to be a 5 M (16.4 ft) erectable truss. This structure will provide the overall framework to attach laboratory modules and other systems, subsystems and utilities. The assembly of this structure represents a formidable EVA challenge. To validate this capability the Space Station Structures/Dynamics Technical Integration Panel (TIP) met to develop the necessary data for an integrated STS structures flight experiment. As a result of this meeting, the Langley Research Center initiated a joint Langley/Boeing Aerospace Company study which supported the structures/dynamics TIP in developing the preliminary definition and design of a 5 M erectable space station truss and the resources required for a proposed flight experiment. The purpose of the study was to: (1) devise methods of truss assembly by astronauts; (2) define a specific test matrix for dynamic characterization; (3) identify instrumentation and data system requirements; (4) determine the power, propulsion and control requirements for the truss on-orbit for 3 years; (5) study the packaging of the experiment in the orbiter cargo bay; (6) prepare a preliminary cost estimate and schedule for the experiment; and (7) provide a list of potential follow-on experiments using the structure as a free flyer. The results of this three month study are presented.
NASA Technical Reports Server (NTRS)
Nein, M. E.; Davis, B. G.
1982-01-01
The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.
Space construction base support requirements for environmental control and life support systems
NASA Technical Reports Server (NTRS)
Thiele, R. J.; Secord, T. C.; Murphy, G. L.
1977-01-01
A Space Station analysis study is being performed for NASA which identifies cost-effective Space Station options that can provide a space facility capable of performing space construction, space manufacturing, cosmological research, earth services, and other functions. A space construction base concept for the construction of large structures, such as those needed to implement satellite solar power for earth usage, will be used as a basis for discussing requirements that impact the design selection, level of integration, and operation of environmental control and life support systems (ECLSS). The space construction base configuration also provides a basic Space Station facility that can accommodate biological manufacturing modules, ultrapure glasses manufacturing modules, and modules for other services in a building-block fashion. Examples of special problems that could dictate hardware required to augment the basic ECLSS for autonomous modules will be highlighted. Additionally, overall intravehicular (IVA) and extravehicular (EVA) activities and requirements that could impact the basic station ECLSS degree of closure are discussed.
Thermal control requirements for large space structures
NASA Technical Reports Server (NTRS)
Manoff, M.
1978-01-01
Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.
Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.
1979-01-01
Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.
Application of attachment modes in the control of large space structures
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1989-01-01
Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.
OASIS Observation and Analysis of Smectic Islands in Space
NASA Technical Reports Server (NTRS)
Tin, Padetha
2014-01-01
The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of freely suspended liquid crystal films in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of fluctuation and interface phenomena. The experiments seek to verify theories of coarsening dynamics, hydrodynamic flow, relaxation of hydrodynamic perturbations, and hydrodynamic interactions of a near two-dimensional structure. The effects of introducing islands or droplets on a very thin bubble will be studied, both as controllable inclusions that modify the flow and as markers of flow.
Cost effective development of a national test bed
NASA Technical Reports Server (NTRS)
Waites, H. B.; Jones, V. L.; Seltzer, S. M.
1988-01-01
For several years, the Marshall Space Flight Center has pursued the coordinated development of a Large Space Structures (LSS) National Test Bed for the investigation of numerous technical issues involved in the use of LSS in space. The origins of this development, the current status of the various test facilities and the plans laid down for the next five years' activities are described. Particular emphasis on the control and structural interaction issues has been paid so far; however, immediately emerging are user applications (such as the proposed pinhole occulter facility). In the immediate future, such emerging technologies as smart robots and multibody interactions will be studied. These areas are covered.
2008-02-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister containing the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre, is lifted up toward the payload changeout room in the rotating service structure. Umbilical lines are still attached. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. The payload will be installed into Endeavour for launch on the STS-123 mission targeted for March 11. Photo credit: NASA/Kim Shiflett
1992-04-01
the voltage applied to the it" patch, K ’ is a parameter which depends on the geometry and piezoceramic...in the state space II L 2(fQ) x L2 (F0 ). Here L2(Q) is the quotient space of L2 over the constant functions. The use of the quotient space results...form of the problem, we also define the Hilbert space V = fti(Q) x H(F 0 ) where h!(Q) is the quotient space of Il’ over the constant functions
Analysis and testing of a space crane articulating joint testbed
NASA Technical Reports Server (NTRS)
Sutter, Thomas R.; Wu, K. Chauncey
1992-01-01
The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.
Patent data mining method and apparatus
Boyack, Kevin W.; Grafe, V. Gerald; Johnson, David K.; Wylie, Brian N.
2002-01-01
A method of data mining represents related patents in a multidimensional space. Distance between patents in the multidimensional space corresponds to the extent of relationship between the patents. The relationship between pairings of patents can be expressed based on weighted combinations of several predicates. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the patents.
Meyers, Charles E.; Davidson, George S.; Johnson, David K.; Hendrickson, Bruce A.; Wylie, Brian N.
1999-01-01
A method of data mining represents related items in a multidimensional space. Distance between items in the multidimensional space corresponds to the extent of relationship between the items. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the items.
Son'kin, V D; Egorov, A D; Zaĭtseva, V V; Son'kin, V V; Stepantsov, V I
2003-01-01
The concept of in-flight expert system for controlling (ESC) the physical training program during extended, including Martian, space missions has been developed based on the literature dedicated to the microgravity countermeasures and a retrospective analysis of effectiveness of the known ESC methods. This concept and the principle of crew autonomy were used as prime assumptions for defining the structure of ESC-based training in long-duration and planetary missions.
Active stability augmentation of large space structures: A stochastic control problem
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1987-01-01
A problem in SCOLE is that of slewing an offset antenna on a long flexible beam-like truss attached to the space shuttle, with rather stringent pointing accuracy requirements. The relevant methodology aspects in robust feedback-control design for stability augmentation of the beam using on-board sensors is examined. It is framed as a stochastic control problem, boundary control of a distributed parameter system described by partial differential equations. While the framework is mathematical, the emphasis is still on an engineering solution. An abstract mathematical formulation is developed as a nonlinear wave equation in a Hilbert space. That the system is controllable is shown and a feedback control law that is robust in the sense that it does not require quantitative knowledge of system parameters is developed. The stochastic control problem that arises in instrumenting this law using appropriate sensors is treated. Using an engineering first approximation which is valid for small damping, formulas for optimal choice of the control gain are developed.
The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 2
NASA Technical Reports Server (NTRS)
Newsom, Jerry R. (Compiler)
1993-01-01
This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts.
The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 1
NASA Technical Reports Server (NTRS)
Newsom, Jerry R. (Compiler)
1993-01-01
This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2003-05-29
AUTOGEN computes collision-free sequences of robot motion instructions to permit traversal of three-dimensional space curves. Order and direction of curve traversal and orientation of end effector are constraided by a set of manufacturing rules. Input can be provided as a collection of solid models or in terms of wireframe objects and structural cross-section definitions. Entity juxtaposition can be inferred, with appropriate structural features automatically provided. Process control is asserted as a function of position and orientation along each space curve, and is currently implemented for welding processes.
Market-based control strategy for long-span structures considering the multi-time delay issue
NASA Astrophysics Data System (ADS)
Li, Hongnan; Song, Jianzhu; Li, Gang
2017-01-01
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
Sampling and Visualizing Creases with Scale-Space Particles
Kindlmann, Gordon L.; Estépar, Raúl San José; Smith, Stephen M.; Westin, Carl-Fredrik
2010-01-01
Particle systems have gained importance as a methodology for sampling implicit surfaces and segmented objects to improve mesh generation and shape analysis. We propose that particle systems have a significantly more general role in sampling structure from unsegmented data. We describe a particle system that computes samplings of crease features (i.e. ridges and valleys, as lines or surfaces) that effectively represent many anatomical structures in scanned medical data. Because structure naturally exists at a range of sizes relative to the image resolution, computer vision has developed the theory of scale-space, which considers an n-D image as an (n + 1)-D stack of images at different blurring levels. Our scale-space particles move through continuous four-dimensional scale-space according to spatial constraints imposed by the crease features, a particle-image energy that draws particles towards scales of maximal feature strength, and an inter-particle energy that controls sampling density in space and scale. To make scale-space practical for large three-dimensional data, we present a spline-based interpolation across scale from a small number of pre-computed blurrings at optimally selected scales. The configuration of the particle system is visualized with tensor glyphs that display information about the local Hessian of the image, and the scale of the particle. We use scale-space particles to sample the complex three-dimensional branching structure of airways in lung CT, and the major white matter structures in brain DTI. PMID:19834216
CSI Flight Computer System and experimental test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Peri, F., Jr.; Schuler, P.
1993-01-01
This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments.
NASA Technical Reports Server (NTRS)
1984-01-01
The work breakdown structure (WBS) for the Space Platform Expendables Resupply Concept Definition Study is described. The WBS consists of a list of WBS elements, a dictionary of element definitions, and an element logic diagram. The list and logic diagram identify the interrelationships of the elements. The dictionary defines the types of work that may be represented by or be classified under each specific element. The Space Platform Expendable Resupply WBS was selected mainly to support the program planning, scheduling, and costing performed in the programmatics task (task 3). The WBS is neither a statement-of-work nor a work authorization document. Rather, it is a framework around which to define requirements, plan effort, assign responsibilities, allocate and control resources, and report progress, expenditures, technical performance, and schedule performance. The WBS element definitions are independent of make-or-buy decisions, organizational structure, and activity locations unless exceptions are specifically stated.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
Voice loops as coordination aids in space shuttle mission control.
Patterson, E S; Watts-Perotti, J; Woods, D D
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Voice loops as coordination aids in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Zia, Omar
1989-01-01
The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.
OPUS: Optimal Projection for Uncertain Systems
1988-10-01
November 1986. £ 50. D. C. Hyland, "An Experimental Testbed for Validation of Control Methodologies in Large Space Optical Structures," in Structural...supponed by theDepar’nent of the Air Force and %*s perhorrod at Lincoln Lihoratry. M I TTeauthors are with thu Control % Anal)sis andJ Synthesis Group . Hams...assumption that (Ac, B,. Q~ is controllable and 0=(, CQ*Q (A+B Q-Q* +B ~ observable. Remark 2.3: Since CAis nonnegative semidsimple it has a group
An overview of recent advances in system identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1994-01-01
This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing.
Control of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.
2014-01-01
The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).
Quasicrystalline structures and uses thereof
Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining
2013-08-13
This invention relates generally to devices constructed from quasicrystalline heterostructures. In preferred embodiments, two or more dielectric materials are arranged in a two- or three-dimensional space in a lattice pattern having at least a five-fold symmetry axis and not a six-fold symmetry axis, such that the quasicrystalline heterostructure exhibits an energy band structure in the space, the band structure having corresponding symmetry, which symmetry is forbidden in crystals, and which band structure comprises a complete band gap. The constructed devices are adapted for manipulating, controlling, modulating, trapping, reflecting and otherwise directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating within or through the heterostructure in multiple directions.
Information management in an integrated space telerobot
NASA Technical Reports Server (NTRS)
Dipippo, S.; Pasquariello, G.; Labini, G. Sylos
1989-01-01
The in-orbit operations, like space structures inspection, servicing and repairing, is expected to be one of the most significant technological area for application and development of Robotics and Automation in Space Station environment. The Italian National Space Plan (PSN) has started up its strategic programme SPIDER (Space Inspection Device for Extravehicular Repairs), which is scheduled in three phases, with the final goal of performing docking and precision repairing in the Space Station environment. SPIDER system is an autonomous integrated space robot, using mature Artificial Intelligence tools and technics for its operational control. The preliminary results of a study on the information architecture of the spacecraft are described.
Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.
Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki
2005-11-08
By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.
Comparison of control structures for a bidirectional high-frequency dc-dc converter
NASA Astrophysics Data System (ADS)
Himmelstoss, Felix A.; Kolar, Johann W.; Zach, Franz C.
1989-08-01
A system for dc-dc power conversion based on a buck-boost converter topology is presented. It makes power flow in both directions possible. The possibility of bidirectional power flow is useful for certain applications, such as uninterruptable power supplies. Starting from a structural diagram the transfer function of the system is derived. The controller for the converter is then designed. It is made up of a simple voltage controller, a voltage controller with an inner loop current controller (cascade control) and with two kinds of state space control. The transfer functions of the different system parts are derived and dimensioning guidelines for the controller sections are presented. The closed loop behavior of the bidirectional converter for the different control structures is analyzed based on simulation using duty cycle averaging. Bodediagrams and step responses are shown.
1986-05-31
Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Xylem development and cell wall changes of soybean seedlings grown in space.
de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia
2008-04-01
Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.
Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space
de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia
2008-01-01
Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765
Application Number 3: Using Tethers for Attitude Control
NASA Technical Reports Server (NTRS)
Muller, R. M.
1985-01-01
Past application of the gravity gradient concept to satellite attitude control produced attitude stabilities of from 1 to 10 degrees. The satellite members were rigigly interconnected and any motion in one part of the satellite would cause motion in all members. This experience has restricted gravity gradient stabilization to applications that need attitude stability no better than 1 degree. A gravity gradient technique that combines the flexible tether with an active control that will allow control stability much better than 1 degree is proposed. This could give gravity gradient stabilization much broader application. In fact, for a large structure like a space station, it may become the preferred method. Two possible ways of demonstrating the techniques using the Tethered Satellite System (TSS) tether to control the attitude of the shuttle are proposed. Then a possible space station tether configuration is shown that could be used to control the initial station. It is then shown how the technique can be extended to the control of space stations of virtually any size.
Model reduction in integrated controls-structures design
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.
1993-01-01
It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.
NASA Technical Reports Server (NTRS)
1976-01-01
The six themes identified by the Workshop have many common navigation guidance and control needs. All the earth orbit themes have a strong requirement for attitude, figure and stabilization control of large space structures, a requirement not currently being supported. All but the space transportation theme have need for precision pointing of spacecraft and instruments. In addition all the themes have requirements for increasing autonomous operations for such activities as spacecraft and experiment operations, onboard mission modification, rendezvous and docking, spacecraft assembly and maintenance, navigation and guidance, and self-checkout, test and repair. Major new efforts are required to conceptualize new approaches to large space antennas and arrays that are lightweight, readily deployable, and capable of precise attitude and figure control. Conventional approaches offer little hope of meeting these requirements. Functions that can benefit from increasing automation or autonomous operations are listed.
Control law synthesis and optimization software for large order aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas
1989-01-01
A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.
Enhancement of surface durability of space materials and structures in LEO environment
NASA Astrophysics Data System (ADS)
Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.
2003-09-01
Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.
NASA Astrophysics Data System (ADS)
Biess, Armin
2013-01-01
The study of the kinematic and dynamic features of human arm movements provides insights into the computational strategies underlying human motor control. In this paper a differential geometric approach to movement control is taken by endowing arm configuration space with different non-Euclidean metric structures to study the predictions of the generalized minimum-jerk (MJ) model in the resulting Riemannian manifold for different types of human arm movements. For each metric space the solution of the generalized MJ model is given by reparametrized geodesic paths. This geodesic model is applied to a variety of motor tasks ranging from three-dimensional unconstrained movements of a four degree of freedom arm between pointlike targets to constrained movements where the hand location is confined to a surface (e.g., a sphere) or a curve (e.g., an ellipse). For the latter speed-curvature relations are derived depending on the boundary conditions imposed (periodic or nonperiodic) and the compatibility with the empirical one-third power law is shown. Based on these theoretical studies and recent experimental findings, I argue that geodesics may be an emergent property of the motor system and that the sensorimotor system may shape arm configuration space by learning metric structures through sensorimotor feedback.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Gates, Richard M.
1988-01-01
A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
STS-98 Atlantis rolls out to Pad 39A for the second time
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.
A study of the effects of micro-gravity on seed germination
NASA Technical Reports Server (NTRS)
Klein, Lynn Suzanne; Mckibben, Mark; Brain, David A.; Johnson, Theodore C.; Dannenberg, Konrad K.
1992-01-01
This study will identify characteristics of seed germination dependent upon gravity. To accomplish this objective, four different seed types will be germinated in space and then be compared to a control group germinated on Earth. Both the experimental and control groups will be analyzed on the cellular level for the size of cells, structural anomalies, and gravitational effects. The experiment will be conducted in a Get Away Special Canister (GAS Can no. 608) owned by the U.S. Space and Rocket Center and designed for students. The GAS Can will remain in the cargo bay of the Space Shuttle with minimal astronaut interaction.
Detail view of the starboard side of the aft fuselage ...
Detail view of the starboard side of the aft fuselage of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center with the Orbiter Maneuvering/Reaction Control Systems Pod removed and exposing the insulating foil used to protect the orbiter structure from the heat generated by the maneuvering and reaction control engines. Also note in the view that the aft fuselage access door has bee removed and also note the ground support equipment attached to the T-0 umbilical plate in the lower left of the view. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Tether Elevator Crawler Systems (TECS)
NASA Technical Reports Server (NTRS)
Swenson, Frank R.
1987-01-01
One of the needs of the experimenters on the space station is access to steady and controlled-variation microgravity environments. A method of providing these environments is to place the experiment on a tether attached to the space station. This provides a high degree of isolation from structural oscillations and vibrations. Crawlers can move these experiments along the tethers to preferred locations, much like an elevator. This report describes the motion control laws developed for these crawlers and the testing of laboratory models of these tether elevator crawlers.
LDR system concepts and technology
NASA Technical Reports Server (NTRS)
Pittman, B.
1985-01-01
The Large Deployable Reflector is a 20 meter diameter infrared/submillimeter telescope planned for the late 1990's. The Astronomy Survey Committee of the National Academy of Sciences (Field Committee) recommended LDR as one of the two space based observatories that should start development in the 80's. LDR's large aperture will give it unequaled resolution in the wavelength range from 30 to 1000 microns. To meet LDR performance goals will call for advances in several technology disciplines including: optics, controls, thermal control, detectors, cryogenic cooling, and large space structures.
Study-simulation of space station dynamics
NASA Technical Reports Server (NTRS)
Gaitens, M. J.
1971-01-01
Matrix algebra translator and executor /MATE/ takes equations describing structural control system environmental interaction problem for flexible spacecraft components and loads them into self programming computer.
Automatic Overset Grid Generation with Heuristic Feedback Control
NASA Technical Reports Server (NTRS)
Robinson, Peter I.
2001-01-01
An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.
Input-output oriented computation algorithms for the control of large flexible structures
NASA Technical Reports Server (NTRS)
Minto, K. D.
1989-01-01
An overview is given of work in progress aimed at developing computational algorithms addressing two important aspects in the control of large flexible space structures; namely, the selection and placement of sensors and actuators, and the resulting multivariable control law design problem. The issue of sensor/actuator set selection is particularly crucial to obtaining a satisfactory control design, as clearly a poor choice will inherently limit the degree to which good control can be achieved. With regard to control law design, the researchers are driven by concerns stemming from the practical issues associated with eventual implementation of multivariable control laws, such as reliability, limit protection, multimode operation, sampling rate selection, processor throughput, etc. Naturally, the burden imposed by dealing with these aspects of the problem can be reduced by ensuring that the complexity of the compensator is minimized. Our approach to these problems is based on extensions to input/output oriented techniques that have proven useful in the design of multivariable control systems for aircraft engines. In particular, researchers are exploring the use of relative gain analysis and the condition number as a means of quantifying the process of sensor/actuator selection and placement for shape control of a large space platform.
Phase-space dynamics of opposition control in wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Hwang, Yongyun; Ibrahim, Joseph; Yang, Qiang; Doohan, Patrick
2017-11-01
The phase-space dynamics of wall-bounded shear flow in the presence of opposition control is explored by examining the behaviours of a pair of nonlinear equilibrium solutions (exact coherent structures), edge state and life time of turbulence at low Reynolds numbers. While the control modifies statistics and phase-space location of the edge state and the lower-branch equilibrium solution very little, it is also found to regularise the periodic orbit on the edge state by reverting a period-doubling bifurcation. Only the upper-branch equilibrium solution and mean turbulent state are significantly modified by the control, and, in phase space, they gradually approach the edge state on increasing the control gain. It is found that this behaviour results in a significant reduction of the life time of turbulence, indicating that the opposition control significantly increases the probability that the turbulent solution trajectory passes through the edge state. Finally, it is shown that the opposition control increases the critical Reynolds number of the onset of the equilibrium solutions, indicating its capability of transition delay. This work is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) in the UK (EP/N019342/1).
Space Shuttle Corrosion Protection Performance
NASA Technical Reports Server (NTRS)
Curtis, Cris E.
2007-01-01
The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.
Smart reconfigurable parabolic space antenna for variable electromagnetic patterns
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh
2018-02-01
An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).
Analysis of Fluorinated Polyimides Flown on the Materials International Space Station Experiment
NASA Technical Reports Server (NTRS)
Finckenor, M. M.; Rodman, L.; Farmer, B.
2015-01-01
This Technical Memorandum documents the results from the Materials on International Space Station Experiment (MISSE) series involving fluorinated polyimide films analyzed at NASA Marshall Space Flight Center. These films may be used in thermal control, sunshield, solar sail, solar concentrator, and other lightweight polymer film applications. Results include postflight structural integrity, visual observations, determination of atomic oxygen erosion yield, and optical property changes as compared to preflight values.
Lévy processes on a generalized fractal comb
NASA Astrophysics Data System (ADS)
Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç
2016-09-01
Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.
The NASA controls-structures interaction technology program
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.
1990-01-01
The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.
Using leap motion to investigate the emergence of structure in speech and language.
Eryilmaz, Kerem; Little, Hannah
2017-10-01
In evolutionary linguistics, experiments using artificial signal spaces are being used to investigate the emergenceof speech structure. These signal spaces need to be continuous, non-discretized spaces from which discrete unitsand patterns can emerge. They need to be dissimilar from-but comparable with-the vocal tract, in order tominimize interference from pre-existing linguistic knowledge, while informing us about language. This is a hardbalance to strike. This article outlines a new approach that uses the Leap Motion, an infrared controller that canconvert manual movement in 3d space into sound. The signal space using this approach is more flexible than signalspaces in previous attempts. Further, output data using this approach is simpler to arrange and analyze. Theexperimental interface was built using free, and mostly open- source libraries in Python. We provide our sourcecode for other researchers as open source.
Joint nonlinearity effects in the design of a flexible truss structure control system
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1986-01-01
Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.
A two-level structure for advanced space power system automation
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.; Chankong, Vira
1990-01-01
The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.
Dynamic Deployment Simulations of Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Wang, John T.
2005-01-01
The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.
Robust decentralized control laws for the ACES structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Control system design for the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center is discussed. The primary objective of this experiment is to design controllers that provide substantial reduction of the line-of-sight pointing errors. Satisfaction of this objective requires the controllers to attenuate beam vibration significantly. The primary method chosen for control design is the optimal projection approach for uncertain systems (OPUS). The OPUS design process allows the simultaneous tradeoff of five fundamental issues in control design: actuator sizing, sensor accuracy, controller order, robustness, and system performance. A brief description of the basic ACES configuration is given. The development of the models used for control design and control design for eight system loops that were selected by analysis of test data collected from the structure are discussed. Experimental results showing that very significant performance improvement is achieved when all eight feedback loops are closed are presented.