Sample records for space technology transfer

  1. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  2. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  3. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  4. The ESA TTP and Recent Spin-off Successes

    NASA Astrophysics Data System (ADS)

    Raitt, D.; Brisson, P.

    2002-01-01

    In the framework of its research and development activities, the European Space Agency (ESA) spends some 250m each year and, recognizing the enormous potential of the know-how developed within its R&D activities, set up a Technology Transfer Programme (TTP) some twelve years ago. Over the years, the Programme has achieved some remarkable results with 120 successful transfers of space technologies to the non-space sector; over 120m received by companies making the technologies available; some 15 new companies established as a direct result of exploiting technologies; nearly 2500 jobs created or saved in Europe; and a portfolio of some 300 (out of over 600) active space technologies available for transfer and licencing. Some of the more recent technologies which have been successfully transferred to the non-space sector include the Mamagoose baby safety pyjamas; a spectrographic system being used to compare colours in fabrics and textiles; Earth observation technology employed to assess remotely how much agrochemicals are being used by farmers; and the Dutch solar car, Nuna, which, using European space technologies, finished first in the 2001 World Solar Challenge breaking all records. The paper will give a brief overview of the ESA Technology Transfer Programme and describe some of its recent successful technology transfers.

  5. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  6. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  7. KSC-2013-3575

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Lewis Parrish, senior Technology Transfer specialist for Qinetiq at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  8. Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.

  9. Space technology: A study of the significance of recognition for innovators of spinoff technologies. 1993 activities/1994, 1995 plans

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.

  10. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  11. Technology transfer from the viewpoint of a NASA prime contractor

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon

    1992-01-01

    Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.

  12. Tech Transfer News. Volume 9, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E. (Compiler)

    2017-01-01

    Kennedy Tech Transfer News is the magazine of the Technology Transfer Office at NASA's Kennedy Space Center, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy Space Center about actively participating in achieving NASA's technology transfer and partnership goals.

  13. Space spin-offs: is technology transfer worth it?

    NASA Astrophysics Data System (ADS)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  14. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  15. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  16. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  17. KSC-2013-3577

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Percy Luney of Space Florida discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  18. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  19. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  20. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  1. KSC-2013-3572

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Mike Lester, Research and Technology Partnership manager at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  2. KSC-2013-3573

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Joni Richards, Technology Infusion specialist at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  3. Industrial benefits and future expectations in materials and processes resulting from space technology

    NASA Technical Reports Server (NTRS)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  4. 14 CFR § 1274.933 - Summary of recipient reporting responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Summary of recipient reporting responsibilities. § 1274.933 Section § 1274.933 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... Transfer of Technology Prior to transferring technology to foreign firm or institution 1274.915...

  5. KSC-2013-3576

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Bob Cabana, director of NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  6. KSC-2013-3571

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Bob Cabana, director of NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  7. KSC-2013-3568

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Karen Thompson, chief technologist at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  8. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  9. Space technology transfer to developing countries: opportunities and difficulties

    NASA Astrophysics Data System (ADS)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  10. Technology transfer: The key to successful space engineering education

    NASA Astrophysics Data System (ADS)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  11. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  12. KSC-2013-3574

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Mike Galluzzi, lead business strategist for the Swamp Works at NASA's Kennedy Space Center in Florida, discusses robotics and technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  13. NASA's Technology Transfer Program for the Early Detection of Breast Cancer

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.

  14. Technology transfer to the broader economy

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon; Clark, Robert

    1992-01-01

    Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.

  15. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  16. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  17. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 1: Data processing and transfer panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The data processing and transfer technology areas that need to be developed and that could benefit from space flight experiments are identified. Factors considered include: user requirements, concepts in 'Outlook for Space', and cost reduction. Major program thrusts formulated are an increase in end-to-end information handling and a reduction in life cycle costs.

  18. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Technology Transfer Program Executive Daniel Lockney moderates the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  19. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  20. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology to foreign firms or institutions. 1274.915 Section 1274.915 Aeronautics and Space NATIONAL... Conditions § 1274.915 Restrictions on sale or transfer of technology to foreign firms or institutions. Restrictions on Sale or Transfer of Technology to Foreign Firms or Institutions July 2002 (a) The parties agree...

  1. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  2. Operability driven space system concept with high leverage technologies

    NASA Astrophysics Data System (ADS)

    Woo, Henry H.

    1997-01-01

    One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts.

  3. Analysis of technical spin-off effects of space-related R&D by means of patent indicators

    NASA Astrophysics Data System (ADS)

    Schmoch, U.; Kirsch, N.; Ley, W.; Plescher, E.; Jung, K. O.

    In view of increasing European activity in the field of manned space travel, intense discussion has arisen on the significance of associated spin-off effects. Alongside this predominantly political debate, however, there is also a purely pragmatic interest in transferring wherever possible the successful results from space research to other branches of industry, in order to achieve optimum exploitation of all the resources available. Until now, spin-offs from space technology have been analyzed by means of interviews conducted in the firms involved, a process harbouring a whole series of uncertainty factors. Potential spin-off fields are frequently ignored, and alleged transfers from space research often in reality stem from other sources. This survey develops an objective method of describing technology transfer based on patent indicators. The first step was to establish on line a total of some 3000 space patents filed since 1975 with destination to the European and American markets. This record is sufficient to permit an analysis of the R&D activities undertaken by the leading industrial nations in the space sector. With further assistance provided by the method of analyzing patent citations, however, it is then possible to discover spin-off effects in areas outside space technology, which are nevertheless closely related in technical terms to the basic space patents with which they are associated. In this way, it is possible to define areas which are particularly suited to adopt space technologies in earthbound applications. This method of analyzing citations, which in principle is familiar for describing technology transfer within any one technical field, has thus been successfully employed for the first time for analyzing spin-offs.

  4. In-Space Cryogenic Propellant Depot Stepping Stone

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Fikes, John C.

    2005-01-01

    An In-Space Cryogenic Propellant Depot (ISCPD) is an important stepping stone to provide the capability to preposition, store, manufacture, and later use the propellants for Earth-Neighborhood campaigns and beyond. An in-space propellant depot will provide affordable propellants and other similar consumables to support the development of sustainable and affordable exploration strategies as well as commercial space activities. An in-space propellant depot not only requires technology development in key areas such as zero boil-off storage and fluid transfer, but in other areas such as lightweight structures, highly reliable connectors, and autonomous operations. These technologies can be applicable to a broad range of propellant depot concepts or specific to a certain design. In addition, these technologies are required for spacecraft and orbit transfer vehicle propulsion and power systems, and space life support. Generally, applications of this technology require long-term storage, on-orbit fluid transfer and supply, cryogenic propellant production from water, unique instrumentation and autonomous operations. This paper discusses the reasons why such advances are important to future affordable and sustainable operations in space. This paper also discusses briefly R&D objectives comprising a promising approach to the systems planning and evolution into a meaningful stepping stone design, development, and implementation of an In-Space Cryogenic Propellant Depot. The success of a well-planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  5. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  6. A forecast of space technology, 1980 - 2000

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The future of space technology in the United States during the period 1980-2000 was presented, in relation to its overall role within the space program. Conclusions were drawn and certain critical areas were identified. Three different methods to support this work were discussed: (1) by industry, largely without NASA or other government support, (2) partially by industry, but requiring a fraction of NASA or similar government support, (3) currently unique to space requirements and therefore relying almost totally on NASA support. The proposed work was divided into the following areas: (1) management of information (acquisition, transfer, processing, storing) (2) management of energy (earth-to-orbit operations, space power and propulsion), (3) management of matter (animate, inanimate, transfer, storage), (4) basic scientific resources for technological advancement (cryogenics, superconductivity, microstructures, coherent radiation and integrated optics technology).

  7. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  8. Stress Measurements on Blair High School Gymnasium: A Demonstration of Space Technology Transfer

    NASA Technical Reports Server (NTRS)

    Kastel, Dean

    1966-01-01

    This Report describes an actual demonstration of transfer to non-space use of technologies developed for space programs applications. Techniques used in assessing static and dynamic characteristics of the Blair High School gymnasium involved data acquisition by continuous scanning of strain gauge data acquired over a time of wide-temperature range, and analysis by a computer routine developed by Jet Propulsion Laboratory five years ago. The advantage of this method over conventional structural testing of uniquely designed structures was proved. More importantly, the process of demonstration was shown to be of great assistance to, and extension of, normal methods of disseminating information of new technologies. It is felt that significant benefit will derive from this improved mode oi concept transfer.

  9. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  10. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  11. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.

  12. Commercial technologies from the SP-100 program

    NASA Astrophysics Data System (ADS)

    Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.

    1995-01-01

    For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.

  13. Midcourse Space Experiment Data Certification and Technology Transfer. Supplement 1

    NASA Technical Reports Server (NTRS)

    Pollock, David B.

    1998-01-01

    The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectro-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University, of Alabama Huntsville' contribution specifically supports the Principal Investigator's Executive Committee, the Deputy Principal Investigator for Data Certification and Technology Transfer team, the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime. The cryogenically cooled IR sensor, SPIRIT III, performed through February, 1997 when its cryogen expired. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instrument's Level 2 data base was extended to the in-orbit environment.

  14. Mississippi Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  15. Bringing space technology down to earth

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1974-01-01

    The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.

  16. Space applicable DOE photovoltaic technology: An update

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.; Stella, P.; Berman, P.

    1981-01-01

    Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated.

  17. KSC-2013-3578

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Carol Craig, founder and CEO of Craig Technologies, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  18. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  19. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  20. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  1. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.

  2. Technology utilization and American competitiveness

    NASA Astrophysics Data System (ADS)

    Penaranda, Frank; Arnold, Ray; Fetterolf, Fred

    This session of discussions reports on two sides of the technology transfer issue. The speakers are representatives of the aluminum industry (Alcoa Aluminum) and the National Aeronautics and Space Administration, Office of Commercial Programs. They discuss what technology transfer means, what NASA does for industry, and how information is disseminated.

  3. Technology utilization and American competitiveness

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank; Arnold, Ray; Fetterolf, Fred

    1992-01-01

    This session of discussions reports on two sides of the technology transfer issue. The speakers are representatives of the aluminum industry (Alcoa Aluminum) and the National Aeronautics and Space Administration, Office of Commercial Programs. They discuss what technology transfer means, what NASA does for industry, and how information is disseminated.

  4. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  5. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  6. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  7. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  8. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  9. Applications of aerospace technology in industry, a technology transfer profile: Plastics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    New plastics technology bred out of the space program has moved steadily into the U.S. economy in a variety of organized and deliberate ways. Examples are presented of the transfer of plastics know-how into the plants and eventually the products of American business.

  10. NASP technology transfer

    NASA Technical Reports Server (NTRS)

    Morris, Charles

    1992-01-01

    It is the stated goal of this program, the National AeroSpace Plane (NASP) program, to develop and then demonstrate the technologies for single-stage-to-orbit flight and hypersonic cruise with airbreathing primary propulsion and horizontal takeoff and landing. This presentation is concerned with technology transfer in the context of the NASP program.

  11. Commercial application of thermal protection system technology

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  12. Applications of Tethers in Space: Workshop Proceedings, Volume 2

    NASA Technical Reports Server (NTRS)

    Baracat, W. A. (Compiler)

    1986-01-01

    Topics addressed include: tethered orbital transfer vehicle operations, Centaur and Shuttle tether technology; tethered constellations, gravitational effects; Shuttle continuous open wind tunnel; optimal control laws, electrodynamic tether technology; and space station facilities.

  13. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.; Winfield, Daniel L.; Canada, S. Catherine

    1989-01-01

    The societal and economic benefits derived from the application of aerospace technology to improved health care are examined, and examples of the space-technology spinoffs are presented. Special attention is given to the applications of aerospace technology from digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging. The role of the NASA Technology Application Team in helping the potential technology users to identify and evaluate the technology transfer opportunities and to apply space technology in the field of medicine is discussed.

  14. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  15. 76 FR 19793 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Innovation Committee of the NASA Advisory Council. The meeting will be held for the purpose of reviewing the Space Technology programs and review knowledge management and technology transfer activities within the...

  16. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  17. The NASA technology push towards future space mission systems

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert

    1988-01-01

    As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.

  18. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  19. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  20. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  1. Supporting Data for Fiscal Year 1994. Budget Estimate Submission

    DTIC Science & Technology

    1993-04-01

    0603401F 405 36 Space Systems Environmental Interactions Technology 0603410F 416 38 Conventional Weapons Technology 0603601F 423 39 Advanced Radiation...Transfer Pilot Program (SBIR/STTR) 0603302F Space and Missile Rocket Propulsion 31 392 060341OF Space Systems Environmental Interactions Technology 36...Deliver Interactive Decode (Rapid Message Processing) capability in Communications Element. - (U) Conduct maintainability demonstration. - (U) Begin Initial

  2. Transfer of space technology to industry

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  3. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  4. Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.

  5. Study of Federal technology transfer activities in areas of interest to NASA Office of Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    Forty-three ongoing technology transfer programs in Federal agencies other than NASA were selected from over 200 current Federal technology transfer activities. Selection was made and specific technology transfer mechanisms utilized. Detailed information was obtained on the selected programs by reviewing published literature, and conducting telephone interviews with each program manager. Specific information collected on each program includes technology areas; user groups, mechanisms employed, duration of program, and level of effort. Twenty-four distinct mechanisms are currently employed in Federal technology transfer activities totaling $260 million per year. Typical applications of each mechanism were reviewed, and caveats on evaluating program effectiveness were discussed. A review of recent federally funded research in technology transfer to state and local governments was made utilizing the Smithsonian Science Information Exchange, and abstracts of interest to NASA were selected for further reference.

  6. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  7. Space Biosensor Systems: Implications for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  8. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  9. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  10. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  11. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  12. OTV propulsion tecnology programmatic overview

    NASA Astrophysics Data System (ADS)

    Cooper, L. P.

    1984-04-01

    An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.

  13. OTV propulsion tecnology programmatic overview

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1984-01-01

    An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.

  14. Spinoff 2001: Special Millennium Feature

    NASA Technical Reports Server (NTRS)

    2001-01-01

    For the past 43 years, NASA has devoted its facilities, labor force, and expertise to sharing the abundance of technology developments used for its missions with the nation's industries. These countless technologies have not only successfully contributed to the growth of the U.S. economy, but also to the quality of life on Earth. For the past 25 years, NASA's Spinoff publication has brought attention to thousands of technologies, products, and services that were developed as a direct result of commercial partnerships between NASA and the private business sector. Many of these exciting technologies included advances in ceramics, computer technology, fiber optics, and remote sensing. New and ongoing research at the NASA field centers covers a full spectrum of technologies that will provide numerous advantages for the future, many of which have made significant strides in the commercial market. The NASA Commercial Technology Network plays a large role in transferring this progress. By applying NASA technologies such as data communication, aircraft de-icing technologies, and innovative materials to everyday functions, American consumers and the national economy benefit. Moving forward into the new millennium, these new technologies will further advance our country's position as the world leader in scientific and technical innovation. These cutting-edge innovations represent the investment of the U.S. citizen in the Space Program. Some of these technologies are highlighted in Spinoff 2001, an example of NASA's commitment to technology transfer and commercialization assistance. This year's issue spotlights the commercial technology efforts of NASA's John F. Kennedy Space Center. Kennedy's extensive network of commercial technology opportunities has enabled them to become a leader in technology transfer outreach. This kind of leadership is exemplified through Kennedy's recent partnership with the State of Florida, working toward the development of the Space Experiment Research and Processing Laboratory. The new laboratory is the first step toward the development of a proposed 400-acre Space Commerce Park, located at Kennedy Space Center. Spinoff, once again, successfully showcases the variety of commercial successes and benefits resulting from the transfer of NASA technology to private industry. It is with great pride and pleasure that we present Spinoff 2001 with a Special Millennium Feature. With help from U.S. industry and commercial technology programs, NASA will continue to assist in the presentation of innovative new products to our nation.

  15. A timely rationale for space exploration

    NASA Technical Reports Server (NTRS)

    Peterson, Douglas D.; Walters, Larry D.

    1992-01-01

    Space exploration is shown to be useful for enhancing a country's education, technology, and economic competitiveness. Technologies required for the Space Exploration Initiative are compared to emerging technologies identified by the U.S. Department of Commerce. The impact of previous space ventures on specific technologies are illustrated with examples such as miniaturized electronics, computers and software, and high-strength materials. The case for educational advancement as a by-product of space exploration is made by discussing the high-level requirements of the programs and describing the inspirational effect of space exploration on young students. Invigorating space exploration is argued to generate near- and long-term economic opportunities for key sectors of the national economy by means of technology transfer, space-resource utilization, and the commercialization of space.

  16. Low Gravity Issues of Deep Space Refueling

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.

  17. Technology transfer between the government and the aerospace industry

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  18. In-Space Propellant Production Using Water

    NASA Technical Reports Server (NTRS)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  19. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    NASA Technical Reports Server (NTRS)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  20. A Status of the Advanced Space Transportation Program from Planning to Action

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.

  1. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  2. A compilation of technology spinoffs from the US Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Jackson, David Jeff

    1993-01-01

    As the successful transfer of NASA-developed technology is a stated mission of NASA, the documentation of such transfer is vital in support of the program. The purpose of this report is to document technology transfer, i.e. 'spinoffs', from the U.S. Space Shuttle Program to the commercial sector. These spinoffs have their origin in the many scientific and engineering fields associated with the shuttle program and, as such, span many diverse commercial applications. These applications include, but are not limited to, consumer products, medicine, industrial productivity, manufacturing technology, public safety, resources management, materials processing, transportation, energy, computer technology, construction, and environmental applications. To aide to the generation of this technology spinoff list, significant effort was made to establish numerous and complementary sources of information. The primary sources of information used in compiling this list include: the NASA 'Spinoff' publication, NASA Tech Briefs, the Marshall Space Flight Center (MSFC) Technology Utilization (TU) Office, the NASA Center for Aerospace Information (CASI), the NASA COSMIC Software Center, and MSFC laboratory and contractor personnel. A complete listing of resources may be found in the bibliography of this report. Additionally, effort was made to insure that the obtained information was placed in electronic database form to insure that the subsequent updating would be feasible with minimal effort.

  3. The General Discussion on Thermal Technologies in Advanced Space Transfer Vehicles

    NASA Astrophysics Data System (ADS)

    Qi, Feng; Wang, Guo-hui

    2016-07-01

    In recent years, the boundary of space exploration has been wider and wider. So the demand of new-generation spacecrafts, carriers and transfer vehicles becomes urged. In this article, thermal questions and first-stage counter-measure technical methods and the relative important recent improvements in these methods are discussed about two important types of new conceptive Space Transfer Vehicles (STVs), the nuclear-thermal propelling STV and laser propelled STV, especially on the heat generation, heat collection, heat transfer and heat control. At the end of this article, pieces of advice and several predictions are put forward, generally and principally.

  4. Commercialization of Kennedy Space Center Instrumentation Developed to Improve Safety, Reliability, Cost Effectiveness of Space Shuttle Processing, Launch, and Landing

    NASA Technical Reports Server (NTRS)

    Helms, William R.; Starr, Stanley O.

    1997-01-01

    Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.

  5. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 3: Cost estimates and work breakdown structure/dictionary, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.

  6. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  7. Social Benefits of Space Spin-Offs: An Introduction

    NASA Technical Reports Server (NTRS)

    Cheeks, Nona

    2005-01-01

    This PowerPoint presentation defines technology transfer and discusses spin-out/off pros/cons involving whether to include a project within NASA or to contract outside NASA. The author discusses what would making the technology transfer happen by suggesting to evaluate NASA technologies/needs and find partners with ability to do business with NASA. The presentation concludes with recent Goddard successes.

  8. Applications of space technology to water resources management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  9. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  10. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 'Benefit Briefing Notebook' was prepared for the NASA Technology Utilization Office to provide accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The contents are divided into three sections: (1) transfer overview, (2) benefit cases, and (3) indexes. The transfer overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented. The benefits section is subdivided into nineteen subject areas. Each subsection presents one or more key issues of current interest, with discrete transfer cases related to each key issue. Additional transfer examples relevant to each subject area are then presented. Pertinent transfer data are given at the end of each example.

  11. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  12. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  13. Third NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad (Compiler); Stavnes, Mark (Compiler)

    1995-01-01

    This workshop addressed key technology issues in the field of electrical power wiring for space applications, and transferred information and technology related to space wiring for use in government and commercial applications. Speakers from space agencies, U.S. Federal labs, industry, and academia presented program overviews and discussed topics on arc tracking phenomena, advancements in insulation materials and constructions, and new wiring system topologies.

  14. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Carlos Grodsinsky, Vice Presiden of Technology, Zin Technologies, talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  15. Autonomous docking system for space structures and satellites

    NASA Astrophysics Data System (ADS)

    Prasad, Guru; Tajudeen, Eddie; Spenser, James

    2005-05-01

    Aximetric proposes Distributed Command and Control (C2) architecture for autonomous on-orbit assembly in space with our unique vision and sensor driven docking mechanism. Aximetric is currently working on ip based distributed control strategies, docking/mating plate, alignment and latching mechanism, umbilical structure/cord designs, and hardware/software in a closed loop architecture for smart autonomous demonstration utilizing proven developments in sensor and docking technology. These technologies can be effectively applied to many transferring/conveying and on-orbit servicing applications to include the capturing and coupling of space bound vehicles and components. The autonomous system will be a "smart" system that will incorporate a vision system used for identifying, tracking, locating and mating the transferring device to the receiving device. A robustly designed coupler for the transfer of the fuel will be integrated. Advanced sealing technology will be utilized for isolation and purging of resulting cavities from the mating process and/or from the incorporation of other electrical and data acquisition devices used as part of the overall smart system.

  16. Future orbital transfer vehicle technology study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  17. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A benefits briefing notebook is presented for the NASA Technology Utilization Office in which 515 applications of NASA aerospace technology to other sections of the economy are described. An overview of technology transfer is given. Benefit cases are cited in 19 categories along with pertinent information, such as communication link, DRI transfer example file, and individual case number. General, organization, geographic, and field center indexes are provided.

  18. The aerobraking space transfer vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, Glen; Carpenter, Brian; Corns, Steve; Harris, Robert; Jun, Brian; Munro, Bruce; Pulling, Eric; Sekhon, Amrit; Welton, Walt; Jakubowski, A.

    1990-01-01

    With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed.

  19. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  20. Crew Transfer Options for Servicing of Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2012-01-01

    In 2011, NASA and DARPA undertook a study to examine capabilities and system architecture options which could be used to provide manned servicing of satellites in Geostationary Earth Orbit (GEO). The study focused on understanding the generic nature of the problem and examining technology requirements, it was not for the purpose of proposing or justifying particular solutions. A portion of this study focused on assessing possible capabilities to efficiently transfer crew between Earth, Low Earth Orbit (LEO), and GEO satellite servicing locations. This report summarizes the crew transfer aspects of manned GEO satellite servicing. Direct placement of crew via capsule vehicles was compared to concepts of operation which divided crew transfer into multiple legs, first between earth and LEO and second between LEO and GEO. In space maneuvering via purely propulsive means was compared to in-space maneuvering which utilized aerobraking maneuvers for return to LEO from GEO. LEO waypoint locations such as equatorial, Kennedy Space Center, and International Space Station inclinations were compared. A discussion of operational concepts is followed by a discussion of appropriate areas for technology development.

  1. Structural technology challenges for evolutionary growth of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Doiron, Harold H.

    1990-01-01

    A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.

  2. Midcourse Space Experiment Data Certification and Technology Transfer

    NASA Technical Reports Server (NTRS)

    Pollock, David B.

    1997-01-01

    The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectra-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time, 5 years after its 1996 launch. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University of Alabama Huntsville' contribution specifically supports the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime with a 12 month lifetime for the cryogenically cooled IR sensor. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instruments' Level 2 data base is being extended to the in-orbit environment.

  3. Research and Technology 1996: Innovation in Time and Space

    NASA Technical Reports Server (NTRS)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  4. Dual Space Technology Transfer

    NASA Astrophysics Data System (ADS)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  5. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 2: Supporting research and technology report, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio (L/D) aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. The methodology employed to generate technology payoffs, the major payoffs identified, the urgency of the technology effort required, and the technology plans suggested are summarized for both study phases. Technology issues concerning aerodynamics, aerothermodynamics, thermal protection, propulsion, and guidance, navigation and control are addressed.

  6. Protocol Architecture Model Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.

  7. Space Shuttle security policies and programs

    NASA Astrophysics Data System (ADS)

    Keith, E. L.

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  8. Space Shuttle security policies and programs

    NASA Technical Reports Server (NTRS)

    Keith, E. L.

    1985-01-01

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  9. Fermilab Today

    Science.gov Websites

    this column. As a technology transfer professional, I have to admit that I suffer from NASA-envy. For more than 50 years, NASA has been committed to technology transfer as an integral part of its primary space mission. The results NASA has achieved are impressive. It has recorded more than 1,800 examples of

  10. Space Industrialization: Manufacturing and Construction Activities. Part 2.

    ERIC Educational Resources Information Center

    Story, Charles H.

    1983-01-01

    Discusses how space industrialization will provide direct benefits for our nation and will transfer technology to the many diverse areas of human activity. Examples are the development of the Space Shuttle, the Space Studies Institute, and the LS Society (advocates for colonizing space). (NRJ)

  11. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  12. Technology Utilization Conference Series, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Proceedings of a series of technology utilization conferences are presented. Commercial applications of space technology, machine tool and metal fabrication, energy and pollution, and mechanical design are among the topics discussed. Emphasis is placed on technology transfer and the minority businessman.

  13. Refocusing Space Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video presents two examples of NASA Technology Transfer. The first is a Downhole Video Logger, which uses remote sensing technology to help in mining. The second example is the use of satellite image processing technology to enhance ultrasound images taken during pregnancy.

  14. KSC-2013-3570

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Tracey Kickbusch, chief of computational sciences at NASA's Kennedy Space Center in Florida, discusses modeling and simulations with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  15. Conditions and constraints of food processing in space

    NASA Technical Reports Server (NTRS)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  16. Research in space commercialization, technology transfer, and communications, volume 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  17. Research and Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As the NASA Center responsible for preparing and launching space missions, the John F. Kennedy Space Center (KSC) is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. This edition of the KSC Research and Technology 1997 Annual Report covers the efforts of these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  18. Economic effects and spin-offs in a small space economy: the case of Canada.

    PubMed

    Amesse, Fernand; Cohendet, Patrick; Poirier, Alain; Chouinard, Jean-Marc

    2002-12-01

    Canada, through a well-focused space program (telecommunications, earth observation, robotics), has succeeded in developing a space industry largely based on SMEs. The result has been significant economic benefits and technological spin-offs. In this article, the results of two programs, the ESA (European Space Agency) and the STEAR (Strategic Technologies in Automation and Robotics), are compared. The ESA program has generated significant indirect effects and spin-offs for Canadian exports. ESA's reputation and network have enabled SMEs to increase export sales of both space products and other commercial products derived from space technologies. The STEAR program has been highly successful in promoting a new generation of SMEs for space robotics, encouraging both spin-in and spin-offs of technologies. The analysis highlights the complementarity of mission- and diffusion-oriented programs in the technology transfer process.

  19. OAST space research and technology applications: Technology transfer successes

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1992-01-01

    The ultimate measure of success in the Space Research and Technology Program is the incorporation of a technology into an operational mission. Charts are presented that describe technology products which OAST has helped support that (1) have been used in a space mission, (2) have been incorporated into the baseline design of a flight system in the development phase, or (3) have been picked up by a commercial or other non-NASA user. We hope that these examples will demonstrate the value of investment in technology. Pictured on the charts are illustrations of the technology product, the mission or user which has incorporated the technology, and where appropriate, results from the mission itself.

  20. NASA spinoffs to public service

    NASA Technical Reports Server (NTRS)

    Ault, L. A.; Cleland, J. G.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Division of the Office of Commercial Programs has been quite successful in directing the transfer to technology into the public sector. NASA developments of particular interest have been those in the areas of aerodynamics and aviation transport, safety, sensors, electronics and computing, and satellites and remote sensing. NASA technology has helped law enforcement, firefighting, public transportation, education, search and rescue, and practically every other sector of activity serving the U.S. public. NASA works closely with public service agencies and associations, especially those serving local needs of citizens, to expedite technology transfer benefits. A number of examples exist to demonstrate the technology transfer method and opportunities of NASA spinoffs to public service.

  1. The Commercial Application of Missile/Space Technology, Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Welles, John G.; Marts, Lloyd G.; Waterman, Robert H., Jr.; Gilmore, John S.; Venuti, Robert

    1963-01-01

    This report is concerned with the transfer of technology from missile and space programs to non-missile/space applications in the United States. It presents the findings of a University of Denver Research Institute study sponsored by a National Aeronautics and Space Administration (NASA) grant awarded in November 1961. Initial stimulation for the unsolicited proposal leading to this study came from a 1960 Brookings Institution report to NASA, Proposed Studies on the Implications of Peaceful Space Activities for Human Affairs.

  2. The Long Duration Exposure Facility (LDEF) annotated bibliography

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    1995-01-01

    A major objective of the Space Act of 1958 which led to the establishment of the National Aeronautics and Space Administration (NASA) was the dissemination of science and technology. Today, under NASA administrator Daniel Goldin and the White House, there is a reemphasis on the dissemination and transfer of NASA science and technology to U.S. industry: both aerospace and non aerospace. The goal of this transfer of science and technology is to aid U.S. industries, making them more competitive in the global economy. After 69 months in space, LDEF provided new and important information on the space environment and how this hostile environment impacts spacecraft materials and systems. The space environment investigated by the LDEF researchers included: ionizing radiation, ultraviolet radiation, meteoroid and debris, atomic oxygen, thermal cycling, vacuum, microgravity, induced contamination and various synergistic effects. The materials used as part of LDEF and its experiments include polymers, metals, glass, paints and coatings. Fiber optic, mechanical, electrical, and optical systems were also used on LDEF. As part of the effort to disseminate and transfer LDEF science and technology, an annotated bibliographic database is being developed. This bibliography will be available electronically, as well as in hard copy. All LDEF domestic and foreign publications in the open literature, including scientific journals, the NASA LDEF Symposia volumes, books, technical reports and unrestricted contractor reports will be included in this database. The hard copy, as well as the electronic database, will be categorized by section in the scientific and technical discipline.

  3. Overview of Research Transition Products

    NASA Technical Reports Server (NTRS)

    Robinson, John

    2014-01-01

    Demonstrate increased, more consistent use of Performance- Based Navigation (PBN). Accelerate transfer of NASA scheduling and spacing technologies for inclusion in late mid-term NAS. During high-fidelity human-in-the-loop simulations of Terminal Sequencing and Spacing, air traffic controllers have significantly improved their use of PBN procedures during busy traffic periods without increased workload. Executed an aggressive, short timeframe development schedule. Developed TSS prototype based upon FAA operational systems. Conducted multiple joint FAA/NASA human-in-the-loop simulations. Performed repeated incremental deliveries of tech transfer material to non-traditional RTT stakeholders. Will continue to participate in later phases of FAA acquisition process. ATD-1 transferred Terminal Sequencing and Spacing (TSS) technologies to the FAA. TSS enables routine use of underutilized advanced avionics and PBN procedures. Potential benefits to airlines operating at initial TSS sites estimated to be $300-400M/year. FAA is planning for an initial capability in the NAS in 2018.

  4. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 2: Technical results

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.

    1980-01-01

    Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.

  5. Liquid Rocket Propulsion Technology: An evaluation of NASA's program. [for space transportation systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.

  6. Technologies for Refueling Spacecraft On-Orbit

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2000-01-01

    This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.

  7. KSC Tech Transfer News, Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    Nichols, James D.

    2013-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals

  8. Technology transfer and the NASA Technology Utilization Program - An overview

    NASA Technical Reports Server (NTRS)

    Clarks, Henry J.; Rose, James T.; Mangum, Stephen D.

    1989-01-01

    The goal of the NASA Technology Utilization (TU) Program is to broaden and accelerate the transfer of aerospace technology and to develop new commercial products and processes that represent additional return on the national investment in the U.S. space programs. The mechanisms established by the TU Program includes TU offices, publications, the information retrieval, software dissemination, and the NASA Applications Engineering Program. These mechanisms are implemented through a nationwide NASA TU Network, working closely with industry and public sector organizations to encourage and facilitate their access and utilization of the results of the U.S space programs. Examples of TU are described, including a method for the reduction of metal fatigue in textile equipment and a method for the management of wandering behavior in Alzheimer's patients.

  9. Transferring technology to the public sector.

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  10. Advancements in medicine from aerospace research

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1971-01-01

    A program designed to find ways of transferring space technology to non-space medicine is discussed. The methodology used to attack the problem and several illustrative examples of the results are given.

  11. Water Innovations and Lessons Learned From Water Recycling in Space

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2013-01-01

    This Presentation will cover technology and knowledge transfers from space exploration to earth and the tourism industry, for example, water and air preservation, green buildings and sustainable cities.

  12. NASA technology investments: building America's future

    NASA Astrophysics Data System (ADS)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  13. NASA-JPL overview, space technology and relevance to medicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van Zyl, Jakob

    2017-05-01

    There is special synergy between NASA space instruments and medical devices, especially those that may be implanted in the human body. For example, in both cases instruments have to be small, typically have to consume little power and often have to operate in harsh environments. JPL has a long history in using this synergy to leverage from the technology developed for space missions for application in medical fields. In this talk, we discuss the general overlap of technological requirements in the medical field and space science. We will highlight some examples where JPL instrumentation and engineering has been transferred successfully.

  14. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  15. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  16. Spinoff, 1976

    NASA Technical Reports Server (NTRS)

    Ruzic, N. P.

    1976-01-01

    This report is divided into three sections: 1. The Research Payoff, 2. Technology Twice Used, and 3. Technology Utilization at Work. The first describes a wide variety of current space spinoffs of use in business or personal life, as well as the space explorations from which they have been derived. The second provides information on specific examples of technology transfer that are typical of the spinoffs resulting from NASA's Technology Utilization Program. The third briefly describes the different activities of the Technology Utilization Office, all of which have as their purpose the profitable utilization of aerospace technology.

  17. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  18. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  19. Tech Transfer Magazine - KSC News Volume I, Number 2, Fall/Winter 2008

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2008-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals:

  20. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  1. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  2. Benefit from NASA

    NASA Image and Video Library

    1993-01-01

    The development of the electric space actuator represents an unusual case of space technology transfer wherein the product was commercialized before it was used for the intended space purpose. MOOG, which supplies the thrust vector control hydraulic actuators for the Space Shuttle and brake actuators for the Space Orbiter, initiated development of electric actuators for aerospace and industrial use in the early 1980s. NASA used the technology to develop an electric replacement for the Space Shuttle main engine TVC actuator. An electric actuator is used to take passengers on a realistic flight to Jupiter at the US Space and Rocket Center, Huntsville, Alabama.

  3. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  4. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  5. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    NASA Technical Reports Server (NTRS)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  6. Technology transfer: Transportation

    NASA Technical Reports Server (NTRS)

    Anyos, T.; Brown, I.; Lizak, R.; Loomis, A.; Wilhelm, J.

    1977-01-01

    The application of NASA derived technology in solving problems related to highways, railroads, and other rapid systems is described. Additional areas/are identified where space technology may be utilized to meet requirements related to waterways, law enforcement agencies, and the trucking and recreational vehicle industries.

  7. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  8. Government Information Quarterly. Volume 7, no. 2: National Aeronautics and Space Administration Scientific and Technical Information Programs. Special issue

    NASA Technical Reports Server (NTRS)

    Hernon, Peter (Editor); Mcclure, Charles R. (Editor); Pinelli, Thomas E. (Editor)

    1990-01-01

    NASA scientific and technical information (STI) programs are discussed. Topics include management of information in a research and development agency, the new space and Earth science information systems at NASA's archive, scientific and technical information management, and technology transfer of NASA aerospace technology to other industries.

  9. 14 CFR 1274.936 - Breach of safety or security.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Breach of safety or security. 1274.936 Section 1274.936 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE... following: compromise of classified information; illegal technology transfer; workplace violence resulting...

  10. 14 CFR 1274.102 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope. 1274.102 Section 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... development; (2) Provide technology transfer from the Government to the recipient; or (3) Develop a capability...

  11. 14 CFR 1274.102 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Scope. 1274.102 Section 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... development; (2) Provide technology transfer from the Government to the recipient; or (3) Develop a capability...

  12. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  13. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  14. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Yael Vodovotz, Associate Professor, Department of Food Science and Technology, Ohio State University, talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  15. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Over 580 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included.

  16. Space Benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Some 585 examples of the beneficial use of NASA aerospace technology by public and private organizations are described to demonstrate the effects of mission-oriented programs on technological progress in the United States. General observations regarding technology transfer activity are presented. Benefit cases are listed in 20 categories along with pertinent information such as communication link with NASA; the DRI transfer example file number; and individual case numbers associated with the technology and examples used; and the date of the latest contract with user organizations. Subject, organization, geographic, and field center indexes are included.

  17. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  18. 14 CFR 1274.102 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scope. 1274.102 Section 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS...) Provide technology transfer from the Government to the recipient; or (3) Develop a capability among U.S...

  19. Next Generation Launch Technology Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  20. The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity

    NASA Technical Reports Server (NTRS)

    Smith, Marc K.; Glezer, Ari

    1996-01-01

    In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.

  1. Terrestrial applications from space technology

    NASA Technical Reports Server (NTRS)

    Clarks, H.

    1985-01-01

    NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.

  2. Advanced space program studies. Overall executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1977-01-01

    NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.

  3. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  4. Solar pumped laser technology options for space power transmission

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  5. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  6. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  7. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  8. 14 CFR 1274.933 - Summary of recipient reporting responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Summary of recipient reporting responsibilities. 1274.933 Section 1274.933 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...—Retention by the Recipient (Small Business)(Paragraph (h)) Notice of Proposed Transfer of Technology Prior...

  9. 14 CFR 1274.933 - Summary of recipient reporting responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Summary of recipient reporting responsibilities. 1274.933 Section 1274.933 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...—Retention by the Recipient (Small Business)(Paragraph (h)) Notice of Proposed Transfer of Technology Prior...

  10. 14 CFR 1274.933 - Summary of recipient reporting responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Summary of recipient reporting responsibilities. 1274.933 Section 1274.933 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...—Retention by the Recipient (Small Business)(Paragraph (h)) Notice of Proposed Transfer of Technology Prior...

  11. Space Transfer Concepts and Analyses for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

  12. Cryogenic Fluid Management: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes cooling technologies for precision astronomical sensors and advanced spacecraft, as well as propellant storage and transfer in space. This area of focus is one of the enabling technologies as defined by NASA's Report of the President's Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  13. The Role of Venezuelan Space Technology in Promoting Development in Latin America

    NASA Astrophysics Data System (ADS)

    Pena, J. A.; Yumin, T.

    2017-09-01

    Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  14. A perspective on space exploration technology catalysis: A rationale for initiating 21st Century expansion of human civilization into outer space

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1988-01-01

    The rationale for human exploration of space is examined. Observations of the technocatalytic potential are presented. Transferability to the terrestrial environment of 21st Century Earth is discussed. The many threats to future survival of this planet's sensitive ecosystem are also discussed in relation to the technoecological harmony that might be achievable due to the extreme demands that are naturally imposed on the development of (civilian/human) space technology. The human attempt to inhabit the inner solar system (the Moon, Mars, etc.) is proposed as the ultimate and most appropriate technology driver for the myriad of socioeconomic, ecological, and technological needs that will accompany 21st Century Earth societies.

  15. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  16. Orbital transfer vehicle launch operations study. Processing flows. Volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Orbit Transfer Vehicle (OTV) processing flow and Resource Identification Sheets (RISs) for the ground based orbit transfer vehicle and for the space based orbit transfer vehicle are the primary source of information for the rest of the Kennedy Space Center (KSC) OTV Launch Operations Study. Work is presented which identifies KSC facility requirements for the OTV Program, simplifies or automates either flow though the application technology, revises test practices and identifies crew sizes or skills used. These flows were used as the primary point of departure from current operations and practices. Analyses results were documented by revising the appropriate RIS page.

  17. Polyethylene Glycol Polymers in Low Volume Resuscitation

    DTIC Science & Technology

    2017-10-01

    peripheral vascular disease and chronic heart failure, and space medicine. What as the impact on technology transfer? Technology transfer is a very...patterns were almost identical in volunteers and trauma patients. The significantly lower clot strength in blood diluted with 10% PEG-20k could be...lost in the US, compared to cancer (16%), heart disease (12%), and HIV (2%) (1). For all traumatic injuries, hemorrhagic shock is responsible for

  18. Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1991-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.

  19. 14 CFR § 1274.102 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Scope. § 1274.102 Section § 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... development; (2) Provide technology transfer from the Government to the recipient; or (3) Develop a capability...

  20. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  1. Orbital storage and supply of subcritical liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  2. Technology advancements for the U.S. manned Space Station - An overview

    NASA Technical Reports Server (NTRS)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  3. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  4. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  5. Global trade in satellites and launch services

    NASA Astrophysics Data System (ADS)

    Hearing before the Subcommittee on Space of the Committee on Science, Space, and Technology of the House of Representatives is presented. Written testimony, submittals for the record, and responses to written questions are included. Topics concerning the global trade in satellites and launch services include foreign competition, the China and Russia trade agreements, Commerce licensing on international sales and export, trade control, technology transfer, satellite communications and the economy, satellites and the global information infrastructure, commercial space revenues, and enforcement of trade policies.

  6. Stennis Space Center, State of Louisiana Extend Partnerships

    NASA Image and Video Library

    2003-10-07

    NASA Stennis Space Center (SSC) Interim Center Director Michael Rudolphi (second from right) presents Louisiana Gov. Mike Foster (second from left) an image from space of the area that comprised the Louisiana Purchase. Gov. Foster and Rudolphi signed a Memorandum of Understanding (MOU) between SSC and the state of Louisiana to promote technology transfer partnerships. Also pictured are Charles D'Agostino (left), executive director of the Louisiana Business and Technology Center, and Don Hutchison, secretary of the Louisiana Department of Economic Development.

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Neal Seater, President, Greenfield Solar, holds up a small solar chip during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Fayette Collier, Aeronautics Research Mission Directorate, NASA Headquarters talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  9. Stennis Space Center, State of Louisiana Extend Partnerships

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Stennis Space Center (SSC) Interim Center Director Michael Rudolphi (second from right) presents Louisiana Gov. Mike Foster (second from left) an image from space of the area that comprised the Louisiana Purchase. Gov. Foster and Rudolphi signed a Memorandum of Understanding (MOU) between SSC and the state of Louisiana to promote technology transfer partnerships. Also pictured are Charles D'Agostino (left), executive director of the Louisiana Business and Technology Center, and Don Hutchison, secretary of the Louisiana Department of Economic Development.

  10. Integrated Technology Plan for the Civil Space Program, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of the Integrated Technology Plan (ITP) is to serve as a strategic plan for the OAST space research and technology (R&T) program, and as a strategic planning framework for other NASA and national participants in advocating and conducting technology developments that support future U.S. civil space missions. The ITP begins with a discussion of the national policy and NASA organization which establishes the overall framework for civil space R&T planning. The second chapter provides a top-level review of the potential users of civil space R&T, their strategic mission plans, and the technologies they have identified as needed to achieve those plans. The overall methodology used to develop a civil space technology strategy is discussed. The technical details of the 1991 strategic plan are described, ending with a review of civil space R&T priorities. The fourth chapter describes how the strategic plan is annually translated into the OAST Space R&T Program, with a summary of the fiscal year 1992 program. The ITP concludes with a discussion of requirements for technology development coordination and strategies for facilitating the transfer of civil space technology to the private sector. Several appendices also are attached that provide further information regarding budget implications of the strategic plan, organizational roles, and other topics.

  11. Exploitation of rights from the US space program by NASA: Review of the process

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Gimeno, Benjamin

    1995-01-01

    The legal environment, and some observations on the policies, procedures, and practices developed and instituted by NASA with regard to the treatment of intellectual property rights arising out of NASA support, are presented. The allocation, protection, and exercise (or exploitation) of such rights are considered. Focus is on the exercise (or exploitation) of intellectual property rights in a manner that provides an incentive to achieve beneficial or commercial use by the private sector of technology resulting from the U.S. space program. While some emphasis is on matters unique to the U.S. space program, many of the policies, procedures, and practices supported research and development activities. The process of making the results of U.S. government supported research and development activities available to the private sector for beneficial or commercial use, whether or not subject to intellectual property rights protection, is commonly known as technology transfer. Consequently, the consideration of intellectual property rights is in the context of the broader technology transfer objectives of NASA.

  12. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; hide

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  13. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  14. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  15. Applications of aerospace technology in industry, a technology transfer profile: Fire safety

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    The fire safety field is considered as being composed of three parts: an industry, a technology base, and a user base. An overview of the field is presented, including a perspective on the magnitude of the national fire safety problem. Selected NASA contributions to the technology of fire safety are considered. Communication mechanisms, particularly conferences and publications, used by NASA to alert the community to new developments in the fire safety field, are reviewed. Several examples of nonaerospace applications of NASA-generated fire safety technology are also presented. Issues associated with attempts to transfer this technology from the space program to other sectors of the American economy are outlined.

  16. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  17. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  18. Introduction to Space Resource Mining

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2013-01-01

    There are vast amounts of resources in the solar system that will be useful to humans in space and possibly on Earth. None of these resources can be exploited without the first necessary step of extra-terrestrial mining. The necessary technologies for tele-robotic and autonomous mining have not matured sufficiently yet. The current state of technology was assessed for terrestrial and extraterrestrial mining and a taxonomy of robotic space mining mechanisms was presented which was based on current existing prototypes. Terrestrial and extra-terrestrial mining methods and technologies are on the cusp of massive changes towards automation and autonomy for economic and safety reasons. It is highly likely that these industries will benefit from mutual cooperation and technology transfer.

  19. Capacity building in emerging space nations: Experiences, challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  20. Shuttle to space station transfer of the materials exposure facility

    NASA Technical Reports Server (NTRS)

    Shannon, David T., Jr.; Klich, Phillip J.

    1995-01-01

    The Materials Exposure Facility (MEF) is being proposed by LaRC as the first long-term space materials exposure facility with real-time interaction with materials experiments in actual conditions of orbital space flight. The MEF is proposed as a Space Station external payload dedicated to technology advancement in spacecraft materials and coatings research. This paper will define a set of potential logistics for removing the MEF from the Shuttle cargo bay and the process required for transferring the MEF to a specific external payload site on Space Station Freedom (SSF). The SSF UF-2 configuration is used for this study. The kinematics and ability to successfully perform the appropriate MEF maneuvers required were verified. During completion of this work, the Space Station was redesigned and the International Space Station Alpha (ISSA) configuration evolved. The transfer procedure for SSF was valid for ISSA; however, a verification of kinematics and clearances was essential. Also, SSF and ISSA robotic interfaces with the Orbiter were different.

  1. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  2. Identifying research needs for wheelchair transfers in the built environment.

    PubMed

    Crytzer, Theresa Marie; Cooper, Rory; Jerome, Genevieve; Koontz, Alicia

    2017-02-01

    The purpose of this study is to describe the results of focus groups held during the Independent Wheelchair Transfer (IWT) Workgroup. The aims were to facilitate exchange of ideas on (1) the impact of the built environment on the wheelchair transfer process within the community (i.e. moving from wheelchair to and from other surfaces (e.g. furniture, toilet seat, bath bench, car seat) to participate in daily activities), (2) wheelchair users' needs during transfers in the built environment, and (3) future research directions. Live web-based conferencing using Adobe Connect technology (Clarix Technologies, Inc., Pittsford, NY) was utilized to conduct three focus groups composed of experts in the field of assistive technology. Investigators independently reviewed focus group meeting transcripts and used qualitative methods to identify main themes. Thirty-one experts in assistive technology and related fields participated in focus groups. Nine main themes were found including the effect of transfer skills training, space considerations in the built environment, wheelchair configuration, and the interaction between the built environment, user preferences, and transfer techniques. All groups raised issues about the transfer process in areas of the built environment with limited access, the effect of wheelchair users' transfer techniques, and user preferences during transfers. The area of independent transfers is multi-faceted and several factors require consideration when contemplating environmental changes to improve accessibility for wheelchair users. Obvious opportunity exists for research which could lead to advances in transfer technology, environments, and techniques for wheelchair users. Implications for Rehabilitation Tremendous opportunities for research collaborations in the field of assistive technology: To develop new terminology to describe wheelchair transfers. To improve the design of the built environment for wheelchair users. To investigate wheelchair transfer training techniques.

  3. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  4. Cryogenic Fluid Management Technology Workshop. Volume 2: Roundtable Discussion of Technology Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.

  5. Energy Efficient Storage and Transfer of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2013-01-01

    Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.

  6. Lea's Pies

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center worked with a pie company owner to develop an inexpensive container that would protect pies and keep them in a near frozen condition for shipping in 48 hours. A NASA engineer made a thermal barrier envelope from a metalized mylar called 'space blanket material,' developed during the Apollo era. The envelope protects the pies from heat transfer. Pictured, a NASA engineer removes the temperature logger from a pecan pie shipped to him in a prototype envelope.

  7. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  8. JPRS Report, Science & Technology, Europe & Latin America

    DTIC Science & Technology

    1988-02-23

    Space Cooperation With USSR, PRC ( ESPACIAL , May 87) 121 - c - Brazil’s SMAR May Sell Automation Equipment to Cuba (0 GLOBO, 16 Nov 87) 124...Edson Fregni, president of Scopus Tecnologia and former president of Abicomp, expects that the process of mergers or takeovers among domestic data...its equipment. 5058 CSO: 3699/0013 120 TECHNOLOGY TRANSFER LATIN AMERICA BRAZILIAN SPACE COOPERATION WITH USSR, PRC San Jose dos Campos ESPACIAL

  9. CNES-NASA Disruption-Tolerant Networking (DTN) Interoperability

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale; Eddy, Wesley M.; Reinhart, Richard C.; Lassere, Francois

    2014-01-01

    Future missions requiring robust internetworking services may use Delay-Disruption-Tolerant Networking (DTN) technology. CNES, NASA, and other international space agencies are committed to using CCSDS standards in their space and ground mission communications systems. The experiment described in this presentation will evaluate operations concepts, system performance, and advance technology readiness for the use of DTN protocols in conjunction with CCSDS ground systems, CCSDS data links, and CCSDS file transfer applications

  10. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  11. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  12. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  13. Technology transfer for DOE's office of buildings and community systems: assessment and strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.A.; Jones, D.W.; Kolb, J.O.

    1986-07-01

    The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and thatmore » these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.« less

  14. Development of a CFC Critical Area Response (CAR) package

    NASA Technical Reports Server (NTRS)

    Mccain, J. Wayne

    1995-01-01

    During the past two years, the NASA Marshall Space Flight Center (MSFC) has studied means to improve the transfer of technology from a major federal lab to a significant portion of an industrial segment. In the past, technology transfers had taken place with individual firms, or small groups of firms. This method of 'customized' transfer is often time consuming and can reduce the effectiveness of a response. Thus, a method was achieved to develop a standardized package on replacement of Chlorofluorocarbons (CFC's) that could be sent out to a large number of firms with minimum follow-up.

  15. Technology transfer initiatives

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Ziemke, M. Carl

    1994-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer activities with the Marshall Space Flight Center (MSFC) for the period of April 1993 through December 1993. Early in 1993, the MSFC/TUO and UAH conceived of the concept of developing stand-alone, integrated data packages on MSFC technology that would serve industrial needs previously determined to be critical. Furthermore, after reviewing over 500 problem statements received by MSFC, it became obvious that many of these requests could be satisfied by a standard type of response. As a result, UAH has developed two critical area response (CAR) packages: CFC (chlorofluorocarbon) replacements and modular manufacturing and simulation. Publicity included news releases, seminars, articles and conference papers. The Huntsville Chamber of Commerce established the Technology Transfer Subcommittee with the charge to identify approaches for the Chamber to assist its members, as well as non-members, access to the technologies at the federal laboratories in North Alabama. The Birmingham Chamber of Commerce has expressed interest in establishing a similar technology transfer program. This report concludes with a section containing a tabulation of the problem statements, including CAR packages, submitted to MSFC from January 1992 through December 1993.

  16. Partnership Successes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Through partnerships with industry and academia, NASA s space-age technology improves all aspects of society. While not every technology transfer activity results in commercialization, these partnerships offer far-reaching benefits to U.S. citizens. The following examples are just a few of the ways NASA is applying its technology and resources to improve the quality of life on Earth.

  17. Microgravity as a research tool to improve US agriculture

    NASA Astrophysics Data System (ADS)

    Bula, R. J.; Stankovic, Bratislav

    2000-01-01

    Crop production and utilization are undergoing significant modifications and improvements that emanate from adaptation of recently developed plant biotechnologies. Several innovative technologies will impact US agriculture in the next century. One of these is the transfer of desirable genes from organisms to economically important crop species in a way that cannot be accomplished with traditional plant breeding techniques. Such plant genetic engineering offers opportunities to improve crop species for a number of characteristics as well as use as source materials for specific medical and industrial applications. Although plant genetic engineering is having an impact on development of new crop cultivars, several major constraints limit the application of this technology to selected crop species and genotypes. Consequently, gene transfer systems that overcome these constraints would greatly enhance development of new crop materials. If results of a recent gene transfer experiment conducted in microgravity during a Space Shuttle mission are confirmed, and with the availability of the International Space Station as a permanent space facility, commercial plant transformation activity in microgravity could become a new research tool to improve US agriculture. .

  18. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  19. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 2: Cryo/aerobrake vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  20. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  1. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  2. Technology Transfer: A Contact Sport

    NASA Technical Reports Server (NTRS)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  3. Tech Transfer News. Volume 6, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    On October 28, 2011, the White House released a Presidential Memorandum entitled: Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses. With this memo, the President challenged all federal agencies conducting R&D to accelerate technology transfer and commercialization of federally developed technology to help stimulate the national economy. The NASA Technology Transfer Program responded by asking the center technology transfer offices to reach out to - and work more closely with - their regional economic development organizations to promote the transfer of NASA technologies to the local private sector for use in the marketplace. Toward that effort, the KSC Technology Transfer Office teamed with the Florida Space Coast Economic Development Commission (EDC) to host a technology transfer forum designed to increase our business community's awareness of available KSC technologies for transfer. In addition, the forum provided opportunities for commercial businesses to collaborate with KSC in technology development. (see article on page 12) The forum, held on September 12, 2013, focused on KSC technology transfer and partnership opportunities within the Robotics, Sustainability, Information Technology and Environmental Remediation technology areas. The event was well attended with over 120 business leaders from the community. KSC Center Director Robert Cabana and the Center Chief Technologist Karen Thompson provided remarks, and several KSC lead researchers presented technical information and answered questions, which were not in short supply. Florida Today and the Orlando Sentinel ran news stories on the forum and both NASA TV and Channel 6 News filmed portions of the event. Given the reaction by the media and local business to the forum, it is evident the community is recognizing the opportunities that NASA-developed technologies can provide to aspiring entrepreneurs and existing companies to bring new technologies to market, as well as the positive impact KSC technology transfer can have on the local economy. We see even more evidence of this in the efforts by several other organizations to develop programs that provide aspiring entrepreneurs with the opportunity and training needed to identify the commercial potential of specific NASA technologies and develop business plans to exploit that potential. Several initiatives include Florida Startup Quest, CareerSource Brevard Energy Launch, Rollins College Entrepreneurial Scholar of Distinction Program, and a new effort led by the University of Central Florida Office of Research and Commercialization to stimulate new business growth in Florida based on NASA technologies. The KSC Technology Transfer Office has stepped up to support each of these programs and is providing them with the NASA technologies they need to help move the economy forward.

  4. NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy

    2005-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.

  5. Research Technology

    NASA Image and Video Library

    2002-03-13

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  6. The X2000 Program: An Institutional Approach to Enabling Smaller Spacecraft

    NASA Technical Reports Server (NTRS)

    Deutsch, Les; Salvo, Chris; Woerner, Dave

    2000-01-01

    NASA's X2000 Program is important for many reasons - It develops the technology that will enable new types of deep space space exploration - It is a new, faster and cheaper process for technology infusion into NASA missions - It transfers these capabilities to US industry so they are available for future spacecraft. Many of these new capabilities are relevant to Earth missions as well X2000 will work with the NASA Goddard Space Flight Center (and others) to help make these capabilities available to a larger community.

  7. Some operational aspects of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.

    1988-01-01

    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

  8. ACTS propagation experiment discussion: Ka-band propagation measurements using the ACTS propagation terminal and the CSU-CHILL and Space Communications Technology Center Florida propagation program

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy

    1993-01-01

    Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.

  9. The CELSS Antarctic Analog Project: an advanced life support testbed at the Amundsen-Scott South Pole Station, Antarctica.

    PubMed

    Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.

  10. Spinoff 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Innovative Partnerships Program of NASA s Exploration Systems Mission Directorate was established to guarantee the transfer of the Space Program s technical advances. Brimming with examples of technologies that have led to significant improvements in quality of life, NASA s technology transfer program has been the conduit for these achievements. The program excels by maintaining established relationships with commercial industries that include and extend beyond the aerospace sector. Spinoff 2004 highlights the diverse benefits that have grown from NASA s partnerships with U.S. companies. These products span the many disciplines of our society. Included among this year s achievements are a natural, low-calorie sugar that is safe for diabetics and contact lenses that offer the benefits of a laser-corrective eye procedure without the need for surgery. This issue also showcases some of the many research and development activities being conducted by NASA s field centers. These activities continue to fuel the Agency s missions, which collectively contribute to making the Vision for Space Exploration a reality. NASA is focusing on identifying common research interests with industry, enabling both parties to leverage their research and produce a technology that will help both the Agency and the private commercial venture. These dual-use joint ventures support the development of new exploration strategies, vehicles, and technologies, while continuing to bring space technologies back down to Earth.

  11. Present challenges of research and technology politics

    NASA Technical Reports Server (NTRS)

    Bulow, A. V.

    1982-01-01

    Research and technology in Germany are discussed. The rapid transfer of scientific knowledge and techniques from the laboratory to the manufacturing and industrial communities is identified as a priority. It is recommended that the government give maximum support to the aviation and space flight industries.

  12. Low-G fluid transfer technology study

    NASA Technical Reports Server (NTRS)

    Stark, J. A.

    1976-01-01

    Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.

  13. Technology transfer. Determining industry needs: A guide for communities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Guide was developed in accordance with the Memorandum of Understanding between the NASA George C. Marshall Space Flight Center and the following States: Alabama, Georgia, Louisiana, Mississippi, Tennessee, West Virginia. The economic welfare of individual communities is currently a matter of considerable interest. Concern for the position of US industry in the competitive world marketplace is a matter of growing concern as well. This 'guide' describes a process whereby communities may seize the opportunity to improve their own economic destiny. The method described involves linking the technology needs of existing industries to the technologies which are available from Federal Laboratories. Community technology transfer is an 'action possibility' which allows individual citizen groups to do something tangible to improve the economic climate of the places where they live and work. The George C. Marshall Space Flight Center in Huntsville, Alabama is pledged to promote and encourage such efforts, and stands ready to help communities both large and small in that regard.

  14. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  15. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  16. Spinoff, 1994

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1994-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. The first section, Aerospace Aims, is an illustrated summary of NASA's major aeronautical and space programs, their goals and directions, their contributions to American scientific and technological growth, and their potential for practical benefit. The second section, Technology Twice Used, is a representative selection of new products and processes adapted from technology originally developed for NASA mainline programs, underlying the broad diversity of spinoff applications and the social/economic benefits they provide. The third section, Technology Transfer, is a description of the mechanisms employed to encourage and facilitate practical application of new technologies developed in the course of NASA activities.

  17. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  18. Marshall Space Flight Center Small Business Opportunities

    NASA Technical Reports Server (NTRS)

    Garrison, Lynn

    2007-01-01

    This viewgraph presentation reviews the small business opportunities that are available with the Marshall Space Flight Center. It includes information on all forms of opportunities available and information sources: subcontracting, websites, contacts and a separate section on Small Business Innovation Research (SBIR) & Small Business Technology Transfer (STTR) Programs

  19. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  20. Aerospace technology as a source of new ideas.

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1972-01-01

    It is shown that technological products and processes resulting from aeronautical and space research and development can be a significant source of new product or product improvement ideas. The problems associated with technology transfer are discussed. As an example, the commercialization of NASTRAN, NASA's structural analysis computer program, is discussed. Some other current application projects are also outlined.

  1. The Space Shuttle focused-technology program - Lessons learned

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Gabris, E. A.

    1983-01-01

    The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.

  2. Space station needs, attributes and architectural options study. Volume 7-2: Data book. Commercial missions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The history of NASA's materials processing in space activities is reviewed. Market projections, support requirements, orbital operations issues, cost estimates and candidate systems (orbiter sortie flight, orbiter serviced free flyer, space station, space station serviced free flyer) for the space production of semiconductor crystals are examined. Mission requirements are identified for materials processing, communications missions, bioprocessing, and for transferring aviation maintenance training technology to spacecraft.

  3. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  4. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.

  5. Images Revealing More Than a Thousand Words

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A unique sensor developed by ProVision Technologies, a NASA Commercial Space Center housed by the Institute for Technology Development, produces hyperspectral images with cutting-edge applications in food safety, skin health, forensics, and anti-terrorism activities. While hyperspectral imaging technology continues to make advances with ProVision Technologies, it has also been transferred to the commercial sector through a spinoff company, Photon Industries, Inc.

  6. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 1, Part 2; Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems.

  7. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    (1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration; (2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment; and (3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment

  8. Report for neutral buoyancy simulations of transfer orbit stage contingency extravehicular activities

    NASA Technical Reports Server (NTRS)

    Sexton, J. D.

    1992-01-01

    The transfer orbit stage (TOS) will propel the advanced communications technology satellite (ACTS) from the Space Shuttle to an Earth geosynchronous transfer orbit. Two neutral buoyancy test series were conducted at MSFC to validate the extravehicular activities (EVA) contingency operations for the ACTS/TOS/mission. The results of the neutral buoyancy tests are delineated and a brief history of the TOS EVA program is given.

  9. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Haley, G. M.

    1979-01-01

    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.

  10. Documentation requirements for Applications Systems Verification and Transfer projects (ASVTs)

    NASA Technical Reports Server (NTRS)

    Suchy, J. T.

    1977-01-01

    NASA's Application Systems Verification and Transfer Projects (ASVTs) are deliberate efforts to facilitate the transfer of applications of NASA-developed space technology to users such as federal agencies, state and local governments, regional planning groups, public service institutions, and private industry. This study focused on the role of documentation in facilitating technology transfer both to primary users identified during project planning and to others with similar information needs. It was understood that documentation can be used effectively when it is combined with informal (primarily verbal) communication within each user community and with other formal techniques such as organized demonstrations and training programs. Documentation examples from eight ASVT projects and one potential project were examined to give scope to the investigation.

  11. Next Generation Spacecraft, Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.

  12. NASA's Microgravity Technology Report, 1996: Summary of Activities

    NASA Technical Reports Server (NTRS)

    Kierk, Isabella

    1996-01-01

    This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.

  13. Space Resource Requirements for Future In-Space Propellant Production Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Fikes, John; Roy, Stephanie; Henley, Mark W.; Potter, Seth D.; Howell, Joe T. (Technical Monitor)

    2001-01-01

    In 2000 and 2001 studies were conducted at the NASA Marshall Space Flight Center on the technical requirements and commercial potential for propellant production depots in low Earth orbit (LEO) to support future commercial, NASA, and other Agency missions. Results indicate that propellant production depots appear to be technically feasible given continued technology development, and there is a substantial growing market that depots could support. Systems studies showed that the most expensive part of transferring payloads to geosynchronous orbit (GEO) is the fuel. A cryogenic propellant production and storage depot stationed in LEO could lower the cost of missions to GEO and beyond. Propellant production separates water into hydrogen and oxygen through electrolysis. This process utilizes large amounts of power, therefore a depot derived from advanced space solar power technology was defined. Results indicate that in the coming decades there could be a significant demand for water-based propellants from Earth, moon, or asteroid resources if in-space transfer vehicles (upper stages) transitioned to reusable systems using water based propellants. This type of strategic planning move could create a substantial commercial market for space resources development, and ultimately lead toward significant commercial infrastructure development within the Earth-Moon system.

  14. Geostationary platform systems concepts definition study. Volume 2: Technical, book 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The supporting research and technology, and space demonstrations required to support the 1990s operational geostationary platforms are identified. Also the requirements on and interfaces with the Space Transportation System hardware elements supporting the geostationary platform program, including the shuttle, orbital transfer vehicles, teleoperator, etc., are investigated to provide integrated support requirements. Finally, a preliminary evaluation of the practicability and capabilities of an experimental platform from the standpoint of technology, schedule, and cost is given.

  15. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  16. Research review for information management

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1988-01-01

    The goal of RICIS research in information management is to apply currently available technology to existing problems in information management. Research projects include the following: the Space Business Research Center (SBRC), the Management Information and Decision Support Environment (MIDSE), and the investigation of visual interface technology. Several additional projects issued reports. New projects include the following: (1) the AdaNET project to develop a technology transfer network for software engineering and the Ada programming language; and (2) work on designing a communication system for the Space Station Project Office at JSC. The central aim of all projects is to use information technology to help people work more productively.

  17. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    NASA Astrophysics Data System (ADS)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.

  18. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.

  19. Modular Manufacturing Simulator Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Since the agency was established in 1958, a key part of the National Aeronautics and Space Administration's mission has been to make technologies available to American industry so it can be more widely used by the citizens who paid for it. While many people might think that 'rocket science' has no application to earthly problems, rocket science in fact employs earthly materials, processes, and designs adapted for space, and which can be adapted for other purposes on Earth. Marshall Space Flight Center's Technology Transfer Office has outreach programs designed to connect American business, industries, educational institutions, and individuals who have needs, with NASA people and laboratories who may have the solutions. MSFC's national goal is to enhance America's competitiveness in the world marketplace and ensure that the technological breakthroughs by American laboratories benefit taxpayers and the many industries making up our Nation's industrial base. Activities may range from simple exchanges of technical data to Space Act Agreements which lead to NASA and industry working closely together to solve a problem. The goal is to ensure that America gains and maintains its proper place of leadership among the world's technologically developed nations. Some of the many technologies transferred from NASA to commercial customers include those associated with: Welding and fabrication; Medical and pharmaceutical uses; Fuels and coatings; Structural composites and Robotics. These activities are aimed to achieve the same goal: slowing, halting, and gradually reversing the erosion of American technological leadership. Legislation such as the National Technology Initiative starts at the top and works down through the national corporate structure, while MSFC's activities start at the grassroots level and work up through the small and medium-sized business which form the bulk of our industrial community.

  20. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  1. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  2. KSC-2013-3569

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Jason Kessler, NASA Asteroid Grand Challenge program executive, discusses the Asteroid Grand Challenge program opportunities with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  3. The Baltimore applications project: A new look at technology transfer

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The history of cooperation between Goddard Space Flight Center and Baltimore City administrators in solving urban problems is summarized. NASA provided consultation and advisory services as well as technology resources and demonstrations. Research and development programs for 69 tasks are briefly described. Technology utilization for incinerator energy, data collection, Health Department problems, and solarization experiments are presented as case histories.

  4. Spinoff 1995

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1995-01-01

    Recognizing the great potential of the technology bank, Congress charged NASA with stimulating the widest possible use of this valuable resource in the national interest. NASA's instrument of that purpose is the Technology Transfer Program, which seeks to broaden and accelerate the spinoff process. Its intent is to spur expanded national benefit, in terms of new products and new jobs, by facilitating the commercial application of the technology; it encourages greater use of the storehouse of knowledge by providing a channel linking the technology and those who might be able to put it to advantageous use. In July 1994, NASA implemented an Agenda for Change - a new way of doing business in partnership with the private sector. This Agenda marks the beginning of a new focus to further improve our contributions to America's economic security through the pursuit of aeronautics and space missions. This publication is an implement of the Technology Transfer Program intended to heighten awareness among potential users of the technology available for transfer and the economic and social benefits that might be realized by applications of NASA technology to US commercial interests. Spinoff 1995 is organized in three sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of technical knowledge available for application. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from applications of technology originally developed to meet NASA aerospace goals. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  5. Technology Transition a Model for Infusion and Commercialization

    NASA Technical Reports Server (NTRS)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  6. Spaces of the possible: universal Darwinism and the wall between technological and biological innovation

    PubMed Central

    Wagner, Andreas; Rosen, William

    2014-01-01

    Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation. PMID:24850903

  7. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  8. Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.

  9. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.

  10. Technology Development Benefits and the Economics Breakdown Structure

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    1998-01-01

    This paper describes the construction and application of the EBS (Economics Breakdown Structure) in evaluating technology investments across multiple systems and organizations, illustrated with examples in space transportation technology. The United States Government (USG) has a long history of investing in technology to enable its missions. Agencies such as the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) have evaluated their technology development programs primarily on their effects on mission performance and cost. More and more, though, USG agencies are being evaluated on their technology transfer to the commercial sector. In addition, an increasing number of USG missions are being accomplished by industry-led or joint efforts, where the USG provides technology and funding but tasks industry with development and operation of the mission systems.

  11. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  12. NASA's approach to the commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1984-01-01

    NASA planning activities in the area of commercial development of space resources are reviewed. Examples of specific types of commercial space ventures are given, according to three different categories: new commercial high-technology ventures; new commercial application of existing space technology, and commercial ventures resulting from the transfer of existing space programs to the private sector. Basic objectives for reducing technical, financial and institutional risks for commercial space operations are considered. Attention is given to the cooperative working environment encouraged by Joint Endeavor Agreements (JEAs) and Technical Exchange Agreements (TEAs) between industrial organizations in the development of space systems. Benefits of the commercial development of space resources include the production of purer pharmaceuticals for the treatment of cancers, kidney diseases, and diabetes; and the development of ultra-pure semiconductor crystals for use in next generation electronic equipment.

  13. 48 CFR 1832.412 - Contract clause. (NASA supplement paragraphs (e) and (f))

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments for... the Small Business Innovation Research (SBIR) or Small Business Technology Transfer (STTR) programs...

  14. 48 CFR 1832.412 - Contract clause. (NASA supplement paragraphs (e) and (f))

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments for... the Small Business Innovation Research (SBIR) or Small Business Technology Transfer (STTR) programs...

  15. 48 CFR 1832.412 - Contract clause. (NASA supplement paragraphs (e) and (f))

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments for... the Small Business Innovation Research (SBIR) or Small Business Technology Transfer (STTR) programs...

  16. 48 CFR 1832.412 - Contract clause. (NASA supplement paragraphs (e) and (f))

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments for... the Small Business Innovation Research (SBIR) or Small Business Technology Transfer (STTR) programs...

  17. 48 CFR 1832.412 - Contract clause. (NASA supplement paragraphs (e) and (f))

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments for... the Small Business Innovation Research (SBIR) or Small Business Technology Transfer (STTR) programs...

  18. Research in space commercialization, technology transfer and communications, vol. 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  19. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  20. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  1. REACT Real-Time Emergency Action Coordination Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Recently the Emergency Management Operations Center (EMOC) of St. Tammany Parish turned to the Technology Development and Transfer Office (TDTO) of NASA's Stennis Space Center (SSC) for help in combating the problems associated with water inundation. Working through a Dual-Use Development Agreement the Technology Development and Transfer Office, EMOC and a small geospatial applications company named Nvision provided the parish with a new front-line defense. REACT, Real-time Emergency Action coordination Tool is a decision support system that integrates disparate information to enable more efficient decision making by emergency management personnel.

  2. Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam

    2004-01-01

    Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.

  3. Telemetry Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Avtec Systems, Inc. developed its first telemetry boards for Goddard Space Flight Center. Avtec products now include PC/AT, PCI and VME-based high speed I/O boards and turn-key systems. The most recent and most successful technology transfer from NASA to Avtec is the Programmable Telemetry Processor (PTP), a personal computer- based, multi-channel telemetry front-end processing system originally developed to support the NASA communication (NASCOM) network. The PTP performs data acquisition, real-time network transfer, and store and forward operations. There are over 100 PTP systems located in NASA facilities and throughout the world.

  4. Flight Dynamics and GN&C for Spacecraft Servicing Missions

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom

    2010-01-01

    Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.

  5. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  6. Systems autonomy technology: Executive summary and program plan

    NASA Technical Reports Server (NTRS)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  7. 48 CFR 1832.501-1 - Customary progress payment rates. (NASA supplements paragraph (a))

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING... II contracts in the Small Business Innovation Research (SBIR) and Small Business Technology Transfer...

  8. 48 CFR 1832.501-1 - Customary progress payment rates. (NASA supplements paragraph (a))

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING... II contracts in the Small Business Innovation Research (SBIR) and Small Business Technology Transfer...

  9. 48 CFR 1832.501-1 - Customary progress payment rates. (NASA supplements paragraph (a))

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING... II contracts in the Small Business Innovation Research (SBIR) and Small Business Technology Transfer...

  10. 48 CFR 1832.501-1 - Customary progress payment rates. (NASA supplements paragraph (a))

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING... II contracts in the Small Business Innovation Research (SBIR) and Small Business Technology Transfer...

  11. Japanese experiments for medical and educational broadcasts by Kiku satellite (PARTNERS Project using ETS-V)

    NASA Astrophysics Data System (ADS)

    Onishi, Yuji

    The Ministry of Posts and Telecommunications (MPT), the National Space Development Agency (NASDA), and others have proposed joint space communication experiments based on the Engineering Test Satellite ETS-V. This joint international project is registered as the Peacesat Expansion / Pan-Pacific Information Network at the United Nations Space Agency Forum for the International Space Year. To make the project more recognizable, it was renamed PARTNERS (Pan-Pacific Regional Telecommunication Network Research Satellite) Project. Under the project, researchers in Japan and developing countries will perform experiments aimed at verifying satellite use technologies. The experiments are intended to promote international cooperation by providing an opportunity for technology transfer and exchange.

  12. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliott, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this paper, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry, and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  13. Space electronics technology summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An overview is given of current electronics R and D activities, potential future thrusts, and related NASA payoffs. Major increases in NASA mission return and significant concurrent reductions in mission cost appear possible through a focused, long range electronics technology program. The overview covers: guidance assessments, navigation and control, and sensing and data acquisition processing, storage, and transfer.

  14. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  15. Bringing NASA Technology Down to Earth

    NASA Technical Reports Server (NTRS)

    Lockney, Daniel P.; Taylor, Terry L.

    2018-01-01

    Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.

  16. The design of transfer trajectory for Ivar asteroid exploration mission

    NASA Astrophysics Data System (ADS)

    Qiao, Dong; Cui, Hutao; Cui, Pingyuan

    2009-12-01

    An impending demand for exploring the small bodies, such as the comets and the asteroids, envisioned the Chinese Deep Space exploration mission to the Near Earth asteroid Ivar. A design and optimal method of transfer trajectory for asteroid Ivar is discussed in this paper. The transfer trajectory for rendezvous with asteroid Ivar is designed by means of Earth gravity assist with deep space maneuver (Delta-VEGA) technology. A Delta-VEGA transfer trajectory is realized by several trajectory segments, which connect the deep space maneuver and swingby point. Each trajectory segment is found by solving Lambert problem. Through adjusting deep maneuver and arrival time, the match condition of swingby is satisfied. To reduce the total mission velocity increments further, a procedure is developed which minimizes total velocity increments for this scheme of transfer trajectory for asteroid Ivar. The trajectory optimization problem is solved with a quasi-Newton algorithm utilizing analytic first derivatives, which are derived from the transversality conditions associated with the optimization formulation and primer vector theory. The simulation results show the scheme for transfer trajectory causes C3 and total velocity increments decrease of 48.80% and 13.20%, respectively.

  17. SMART-1: key technologies and autonomy implementations

    NASA Astrophysics Data System (ADS)

    Elfving, A.; Stagnaro, L.; Winton, A.

    2003-01-01

    SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 Science Plan. The main mission objective of SMART-1 is to demonstrate innovative and key technologies for scientific deep-space missions. One of the key technologies is the solar electric propulsion used as primary propulsion. The electric propulsion will be using 1400 W to transfer the 350 kg spacecraft from an Ariane 5 standard GTO to an elliptic Moon polar orbit, 10000×300 km. The total mission time is 24 months including a maximum of 18 months transfer time. The spacecraft development entered the detailed design and implementation phase in October 1999, under the responsibility of the Swedish Space Cooperation as prime contractor, and the flight acceptance is targeted for the 3rd quarter of 2002. The committed total life cost budget is 84 million Euro. Apart from the in-orbit demonstration of electric propulsion as primary propulsion, SMART-1 is implementing many other enabling technologies for deep-space missions such as deep-space transponder with communication in X-band for uplink and in X- and Ka-band for downlink, highly integrated and radiation tolerant microprocessors, FPGAs and memories, high on-board autonomy driven by ground communication only once per 4 days, maximum available power to electric propulsion by centralised and software-controlled power management, minimum propellant consumption through innovative angular momentum management. In addition, the spacecraft avionics design is tailored to the low-cost philosophy by enabling flexible integration of commercial off the shelf (COTS) equipment. The scientific instruments, five in total, support characterisation of the electric propulsion thrust environment during the long transfer phase and detailed imaging and spectroscopy of the lunar surface in visible, infrared and X-ray during the Moon orbiting phase. Several of the instruments implement new enabling technologies, e.g. swept charge devices for the X-ray spectrometer and quarts gratings for the near-infrared reflectance spectrometer. The paper summarises the baseline mission design, the projected scientific and technology output, and describe the spacecraft bus design. The main part of the paper highlights and elaborate on a number of spacecraft bus technologies; the on-board autonomy, the avionics design, and the X/Ka-band transponder.

  18. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  19. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.

    1982-01-01

    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.

  20. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalisation in Metal-Organic Frameworks.

    PubMed

    Hua, Carol; Doheny, Patrick William; Ding, Bowen; Chan, Bun; Yu, Michelle; Kepert, Cameron J; D'Alessandro, Deanna M

    2018-05-04

    Understanding the nature of charge transfer mechanisms in 3-dimensional Metal-Organic Frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design conductive frameworks. These materials have been implicated as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4-d]thiazole units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space Intervalence Charge Transfer (IVCT) phenomenon represents a new mechanism for charge delocalisation in MOFs. Computational modelling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of delocalisation using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light harvesting systems where through-space mixed-valence interactions are operative.

  1. Mechanical pumps for superfluid helium transfer in space

    NASA Technical Reports Server (NTRS)

    Izenson, M. G.; Swift, W. L.

    1988-01-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  2. Minority University-Space Interdisciplinary Network Conference Proceedings of the Seventh Annual Users' Conference

    NASA Technical Reports Server (NTRS)

    Harrington, James L., Jr.; Brown, Robin L.; Shukla, Pooja

    1998-01-01

    Seventh annual conference proceedings of the Minority University-SPace Interdisciplinary Network (MU-SPIN) conference. MU-SPIN is cosponsored by NASA Goddard Space Flight Center and the National Science Foundation, and is a comprehensive educational initiative for Historically Black Colleges and Universities, and minority universities. MU-SPIN focuses on the transfer of advanced computer networking technologies to these institutions and their use for supporting multidisciplinary research.

  3. Defense Advanced Research Projects Agency Technology Transition

    DTIC Science & Technology

    1997-01-01

    detection of nuclear testing in space , navigation, meteo- rological monitoring, and communication. These early activities were transferred to the Military...used to detect nuclear tests in space and in the atmosphere as part of the overall basis for verification of a future nuclear test ban treaty. The first...background data to detect nuclear explosions taking place in space , and eventually also in the earth’s atmosphere. The program developed x-ray, neutron

  4. Impact of terrestrial solar cell development on space applications

    NASA Astrophysics Data System (ADS)

    Iles, P. A.

    1980-06-01

    Projected space missions are outlined and the cell requirements by mission type mentioned. The techniques used to produce low cost terrestrial use cells are examined for their applicability to space needs, including silicon cell fabrication, barrier formation, contact applications, coatings, and encapsulation. The most likely area for the transfer of terrestrial cell technology is in low Earth orbit missions, based on the use of the shuttle craft.

  5. Guidance, navigation, and control trades for an Electric Orbit Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Zondervan, K. P.; Bauer, T. A.; Jenkin, A. B.; Metzler, R. A.; Shieh, R. A.

    The USAF Space Division initiated the Electric Insertion Transfer Experiment (ELITE) in the fall of 1988. The ELITE space mission is planned for the mid 1990s and will demonstrate technological readiness for the development of operational solar-powered electric orbit transfer vehicles (EOTVs). To minimize the cost of ground operations, autonomous flight is desirable. Thus, the guidance, navigation, and control (GNC) functions of an EOTV should reside on board. In order to define GNC requirements for ELITE, parametric trades must be performed for an operational solar-powered EOTV so that a clearer understanding of the performance aspects is obtained. Parametric trades for the GNC subsystems have provided insight into the relationship between pointing accuracy, transfer time, and propellant utilization. Additional trades need to be performed, taking into account weight, cost, and degree of autonomy.

  6. Application of World Wide Web (W3) Technologies in Payload Operations

    NASA Technical Reports Server (NTRS)

    Sun, Charles; Windrem, May; Picinich, Lou

    1996-01-01

    World Wide Web (W3) technologies are considered in relation to their application to space missions. It is considered that such technologies, including the hypertext transfer protocol and the Java object-oriented language, offer a powerful and relatively inexpensive framework for distributed application software development. The suitability of these technologies for payload monitoring systems development is discussed, and the experience gained from the development of an insect habitat monitoring system based on W3 technologies is reported.

  7. Orders of Magnitude: A History of NACA and NASA, 1915 - 1980

    NASA Technical Reports Server (NTRS)

    Anderson, F. W., Jr.

    1981-01-01

    The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.

  8. The Unification of Space Qualified Integrated Circuits by Example of International Space Project GAMMA-400

    NASA Astrophysics Data System (ADS)

    Bobkov, S. G.; Serdin, O. V.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Suchkov, S. I.; Topchiev, N. P.

    The problem of electronic component unification at the different levels (circuits, interfaces, hardware and software) used in space industry is considered. The task of computer systems for space purposes developing is discussed by example of scientific data acquisition system for space project GAMMA-400. The basic characteristics of high reliable and fault tolerant chips developed by SRISA RAS for space applicable computational systems are given. To reduce power consumption and enhance data reliability, embedded system interconnect made hierarchical: upper level is Serial RapidIO 1x or 4x with rate transfer 1.25 Gbaud; next level - SpaceWire with rate transfer up to 400 Mbaud and lower level - MIL-STD-1553B and RS232/RS485. The Ethernet 10/100 is technology interface and provided connection with the previously released modules too. Systems interconnection allows creating different redundancy systems. Designers can develop heterogeneous systems that employ the peer-to-peer networking performance of Serial RapidIO using multiprocessor clusters interconnected by SpaceWire.

  9. Space Mission : Y3K

    NASA Astrophysics Data System (ADS)

    2001-01-01

    ESA and the APME are hosting a contest for 10 - 15 year olds in nine European countries (Austria, Belgium, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom). The contest is based on an interactive CD ROM, called Space Mission: Y3K, which explores space technology and shows some concrete uses of that technology in enhancing the quality of life on Earth. The CD ROM invites kids to join animated character Space Ranger Pete on an action-packed, colourful journey through space. Space Ranger Pete begins on Earth: the user navigates around a 'locker room' to learn about synthetic materials used in rocket boosters, heat shields, space suits and helmets, and how these materials have now become indispensable to everyday life. From Earth he flies into space and the user follows him from the control room in the spacecraft to a planet, satellites and finally to the International Space Station. Along the way, the user jots down clues that he or she discovers in this exploration, designing an imaginary space community and putting together a submission for the contest. The lucky winners will spend a weekend training as "junior astronauts" at the European Space Centre in Belgium (20-22 April 2001). They will be put through their astronaut paces, learning the art of space walking, running their own space mission, piloting a space capsule and re-entering the Earth's atmosphere. The competition features in various youth media channels across Europe. In the UK, popular BBC Saturday morning TV show, Live & Kicking, will be launching the competition and will invite viewers to submit their space community designs to win a weekend at ESC. In Germany, high circulation children's magazine Geolino will feature the competition in the January issue and on their internet site. And youth magazine ZoZitDat will feature the competition in the Netherlands throughout February. Space Mission: Y3K is part of an on-going partnership between the ESA's Technology Transfer Programme and APME, following the successful launch of "Coming of Age: plastics and space meeting the challenges to mankind" in October 1999. "Coming of Age" is a report produced by APME that brought the role of plastics in technology transfer to adult consumer audiences across Europe.

  10. A plan for time-phased incorporation of automation and robotics on the US space station

    NASA Technical Reports Server (NTRS)

    Purves, R. B.; Lin, P. S.; Fisher, E. M., Jr.

    1988-01-01

    A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.

  11. KSC Tech Transfer News, Volume 3, No. 1

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2010-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program at NASA's Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer and partnership goals. The contents include: 1) About IPP; 2) NTR corner; 3) Innovator Insights; 4) Licensing Success; 5) Partnership Success; 6) SBIR/STTR Success; 7) Events; 8) Trands in Innovation; 9) Q&A: Data Rights; and 10) Awards.

  12. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  13. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  14. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  15. Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series

    NASA Astrophysics Data System (ADS)

    Wang, Weigang

    2017-11-01

    The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.

  16. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Winfield, D. L.; Canada, S. C.

    1991-01-01

    Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  17. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.

  18. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  19. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  20. Status of the Combustion Devices Injector Technology Program at the NASA MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Trinh, Huu; Tucker, Kevin; Nesman, Tomas; Hulka, James

    2005-01-01

    To support the NASA Space Exploration Mission, an in-house program called Combustion Devices Injector Technology (CDIT) is being conducted at the NASA Marshall Space Flight Center (MSFC) for the fiscal year 2005. CDIT is focused on developing combustor technology and analysis tools to improve reliability and durability of upper-stage and in-space liquid propellant rocket engines. The three areas of focus include injector/chamber thermal compatibility, ignition, and combustion stability. In the compatibility and ignition areas, small-scale single- and multi-element hardware experiments will be conducted to demonstrate advanced technological concepts as well as to provide experimental data for validation of computational analysis tools. In addition, advanced analysis tools will be developed to eventually include 3-dimensional and multi- element effects and improve capability and validity to analyze heat transfer and ignition in large, multi-element injectors.

  1. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  2. Options for organization and operation of space applications transfer centers

    NASA Technical Reports Server (NTRS)

    Robinson, A. C.; Madigan, J. A.

    1976-01-01

    The benefits of developing regional facilities for transfer of NASA developed technology are discussed. These centers are designed to inform, persuade, and serve users. Included will be equipment for applications and demonstrations of the processes, a library, training facilities, and meeting rooms. The staff will include experts in the various techniques, as well as personnel involved in finding and persuading potential users.

  3. Fresh Veggies from Space

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Professor Marc Anderson of the University of Wisconsin-Madison developed a technology for use in plant-growth experiments aboard the Space Shuttle. Anderson's research and WCSAR's technology were funded by NASA and resulted in a joint technology licensed to KES Science and Technology, Inc. This transfer of space-age technology resulted in the creation of a new plant-saving product, an ethylene scrubber for plant growth chambers. This innovation presents commercial benefits for the food industry in the form of a new device, named Bio-KES. Bio-KES removes ethylene and helps to prevent spoilage. Ethylene accounts for up to 10 percent of produce losses and 5 percent of flower losses. Using Bio-KES in storage rooms and displays will increase the shelf life of perishable foods by more than one week, drastically reducing the costs associated with discarded rotten foods and flowers. The savings could potentially be passed on to consumers. For NASA, the device means that astronauts can conduct commercial agricultural research in space. Eventually, it may also help to grow food in space and keep it fresh longer. This could lead to less packaged food being taken aboard missions since it could be cultivated in an ethylene-free environment.

  4. Economic benefits of commercial space activities

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1988-01-01

    This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.

  5. Laser Propulsion—Is it another myth or a real potential?

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2008-04-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  6. Propellantless Propulsion Technologies for In-Space Transportation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 or 3 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will be described. Results of recent earth-based technology demonstrations and space tests will also be discussed.

  7. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  8. Trade-Off Analysis Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.

  9. High-performance visible/UV CCD focal plane technology for spacebased applications

    NASA Technical Reports Server (NTRS)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  10. Feasibility Study of Commercial Markets for New Sample Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Brady, Collin; Coyne, Jim; Bilen, Sven G.; Kisenwether, Liz; Miller, Garry; Mueller, Robert P.; Zacny, Kris

    2010-01-01

    The NASA Exploration Systems Mission Directorate (ESMD) and Penn State technology commercialization project was designed to assist in the maturation of a NASA SBIR Phase III technology. The project was funded by NASA's ESMD Education group with oversight from the Surface Systems Office at NASA Kennedy Space Center in the Engineering Directorate. Two Penn State engineering student interns managed the project with support from Honeybee Robotics and NASA Kennedy Space Center. The objective was to find an opportunity to integrate SBIR-developed Regolith Extractor and Sampling Technology as the payload for the future Lunar Lander or Rover missions. The team was able to identify two potential Google Lunar X Prize organizations with considerable interest in utilizing regolith acquisition and transfer technology.

  11. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.

  12. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1982-01-01

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.

  13. Seafood Packaging

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as 'space blanket material,' which was produced during the Apollo era.

  14. Research on the applications of space technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communication satellites and technology transfer are discussed in seven individual reports. Topics cover: (1) NASA'S technological alternatives assuming that the orbit-spectrum resource will continue to be allocated to communication satellite service providers at zero price; (2) the economic aspects of orbit-spectrum allocation; (3) the cost structure of local distribution systems for satellite communication; (4) the economic basis for national science and technology policy; (5) the economics of the household economy; (6) government patent policy; and (7) screening and evaluation in information dissemination.

  15. A Two-Way Spinoff.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    A unusual technology transfer, involving sailboats and commercial wind energy systems, highlights space-related spinoffs for home, consumer, and recreational use. These include clothing for cooling athletes, high-intensity lighting, an advanced welding tool, and a water filter. (Author/JN)

  16. Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration

    NASA Technical Reports Server (NTRS)

    Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.

    2012-01-01

    NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.

  17. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, transfer to a new container material from one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, transfer to a new container material from one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  18. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  19. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  20. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  1. Pen-based computers: Computers without keys

    NASA Technical Reports Server (NTRS)

    Conklin, Cheryl L.

    1994-01-01

    The National Space Transportation System (NSTS) is comprised of many diverse and highly complex systems incorporating the latest technologies. Data collection associated with ground processing of the various Space Shuttle system elements is extremely challenging due to the many separate processing locations where data is generated. This presents a significant problem when the timely collection, transfer, collation, and storage of data is required. This paper describes how new technology, referred to as Pen-Based computers, is being used to transform the data collection process at Kennedy Space Center (KSC). Pen-Based computers have streamlined procedures, increased data accuracy, and now provide more complete information than previous methods. The end results is the elimination of Shuttle processing delays associated with data deficiencies.

  2. LISA Pathfinder: A Mission Status

    NASA Astrophysics Data System (ADS)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  3. Landsat Technology Transfer to the Private and Public Sectors through Community Colleges and Other Locally Available Institutions, Phase II Program. Final Report.

    ERIC Educational Resources Information Center

    Rogers, Robert H.

    In 1979, the National Aeronautics and Space Administration (NASA) and the Environmental Research Institute of Michigan (ERIM) initiated a program to investigate methods of making Landsat (satellite imagery) technology available to private sector firms through a network comprising NASA, a university or research institute, local community colleges,…

  4. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  5. Using the MCPLXS Generator for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Moore, Arlene A.; Dean, Edwin B.

    1987-01-01

    The objective of this paper is to acquaint you with some of the approaches we are taking at Langley to incorporate escalations (or de-escalations) of technology when modeling futuristic systems. Since we have a short turnaround between the time we receive enough descriptive information to start estimating the project and when the estimate is needed (the "we-want-it-yesterday syndrome"), creativity is often necessary. There is not much time available for tool development. It is expedient to use existing tools in an adaptive manner to model the situation at hand. Specifically, this paper describes the use of the RCA PRICE MCPLXS Generator to incorporate technology transfer and technology escalation in estimates for advanced space systems such as Shuttle II and NASA advanced technology vehicles. It is assumed that the reader is familiar with the RCA PRICE family of models as well as the RCA PRICE utility programs such as SCPLX, PARAM, PARASYN, and the MCPLXS Generator.

  6. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  7. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  8. Spaces of the possible: universal Darwinism and the wall between technological and biological innovation.

    PubMed

    Wagner, Andreas; Rosen, William

    2014-08-06

    Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Microgravity Fluid Management Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.

  10. Research and technology, 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by: performing innovative research relevant to national needs and Agency goals; transferring technology to users in a timely manner; and providing development support to other United States Government agencies, industry, and the NASA centers. This report contains highlights of the major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at the NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  11. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. The mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. Government agencies, industry, and other NASA Centers. This report contains highlights of the major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at NASA Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  12. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  13. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  14. Research and technology 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by: performing innovative research relevant to national needs and Agency goals; transferring technology to users in a timely manner; and providing development support to other United States Government agencies, industry, and other NASA centers. Contained are highlights of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activities at the NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  15. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  16. Spinoff 2002: Fortieth Anniversary Technology Utilization Program

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network. Each section of Spinoff 2002 provides compelling evidence of the Technology Transfer Program's success and value. With commercial products and successes spanning from work on the Apollo missions to the International Space Station, the 40th anniversary of the Technology Transfer Program invites us to celebrate our history while planning the future.

  17. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  18. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  19. An Overview of NASA's Contributions to Energy Technology

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Levine, Arlene S.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) is well known for its many contributions to advancing technology for the aviation and space industries. It may be surprising to some that it has also made a major impact in advancing energy technologies. This paper presents a historic overview of some of the energy programs that NASA was involved in, as well as presenting some current energy-related work that is relevant to both aerospace and non-aerospace needs. In the past, NASA developed prototype electric cars, low-emission gas turbines, wind turbines, and solar-powered villages, to name a few of the major energy projects. The fundamental expertise in fluid mechanics, heat transfer, thermodynamics, mechanical and electrical engineering, and other related fields, found in NASA s workforce, can easily be applied to develop creative solutions to energy problems in space, aviation, or terrestrial systems.

  20. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  1. Carbon composites in space vehicle structures

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  2. The proliferation of aerospace weapons technology: Ballistic missiles and the case of Brazil

    NASA Astrophysics Data System (ADS)

    Vossen, Terrence John

    1993-04-01

    The rationale behind the development of ballistic missile production in Brazil is examined by exploring the political, military, and economic determinants of ballistic missile demand in that country. To ascertain how Brazil developed missile production capabilities, the contributions of aerospace industries in industrialized states, the Brazilian space program, trade between less-developed countries, and illicit trade in missile technology are assessed. It is argued that missile development increasingly became a function of economic as opposed to security considerations, and that technologies transferred from developed country aerospace firms and Brazil's space program were primarily responsible for the creation of production capabilities. It is also contended that the proliferation of missile technology to Brazil was consistent with the workings of a system evident in the aerospace weapons technology market that sustains the horizontal spread of weapons production capabilities.

  3. Technology in action

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In keeping with the NASA Administrator's announcement that technology transfer will become a fundamental mission of NASA, the Marshall Space Flight Center (MSFC) has initiated new programs to reach the heartland of U.S. industry. The Center has continued to expand its already well-established outreach program aimed at helping American business, industry, and academia at the grassroots level. The goal is to ensure that America regains and maintains its proper place of leadership among the world's technologically developed nations. MSFC's national goal is to enhance America's competitiveness in the world marketplace, fortify the value of the dollar, and ensure technological breakthroughs by American laboratories benefit taxpayers and industries. The Technology Utilization (TU) Office at MSFC believes a number of measures are possible to slow, then halt, and ultimately reverse the erosion of American technological leadership. MSFC's TU Office is reaching out to American industry on an increasingly broadening scope, facilitating the transfer of NASA derived technologies to American businesses, industries, educational institutions, and individuals. There are many valid approaches to achieving this goal. Some, such as the National Technology Initiative, begin at the top and work down through America's top corporate structure. Others, such as the technology transfer program that MSFC has implemented, begin at the one-on-one, grassroots level -- working with small and medium-sized firms that form the bulk of American industry. What can be done by one NASA center is, admittedly, limited. But by extrapolating this one-on-one approach to the more than 700 Federal laboratories, a great deal can be accomplished. This report contains an examination of outreach and in reach programs, problem statements programs, applications projects, new technology reporting, new technology administration, and the need for increased resources to further facilitate technology transfer.

  4. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Carroll, Carol; Johnson, Les; Baggett, Randy

    2002-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  5. Investigation of Radiation Resistant Polymer Photodetectors for Space Applications

    DTIC Science & Technology

    2002-09-11

    54 A. XPD Data 54 B. Bibliography 56 iv FIGURES Figure Page 1. Electron transfer in a self-assembled dye-sensitized heterojunction device...electrooptic technology for space applications. By employing molecular engineering to achieve selective orientation of π- electrons within the polymer...temperature, vacuum and radiation induced degradation. Many of these adverse effects are well known for a wide variety of inorganic electronic materials

  6. Space station needs, attributes, and architectural options study. Volume 2: Program options, architecture, and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission scenarios and space station architectures are discussed. Electrical power subsystems (EPS), environmental control and life support, subsystems (ECLSS), and reaction control subsystem (RCS) architectures are addressed. Thermal control subsystems, (TCS), guidance/navigation and control (GN and C), information management systems IMS), communications and tracking (C and T), and propellant transfer and storage systems architectures are discussed.

  7. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  8. Optimize Use of Space Research and Technology for Medical Devices

    NASA Technical Reports Server (NTRS)

    Minnifield, Nona K.

    2012-01-01

    systems, and cutting-edge component technologies to conduct a wide range of scientific observations and measurements. These technologies are also considered for practical applications that benefit society in remarkable ways. At NASA Goddard, the technology transfer initiative promotes matching technologies from Earth and space science needs to targeted industry sectors. This requires clear knowledge of industry needs and priorities and social demands. The process entails matching mature technologies where there are known innovation challenges and good opportunities for matching technology needs. This requires creative thinking and takes commitment of time and resources. Additionally, we also look at applications for known hot industry or societal needs. Doing so has given us occasion to host discussions with representatives from industry, academia, government organizations, and societal special interest groups about the application of NASA Goddard technologies for devices used in medical monitoring and detection tools. As a result, partnerships have been established. Innovation transpired when new products were enabled because of NASA Goddard research and technology programs.

  9. Rationale and constituencies for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Johnson, Kristine A.

    1992-01-01

    In order to maximize the benefits from prospective space-exploration endeavors, and to enlist the support of as many constituencies as possible, NASA is either conducting or developing programs which emphasize different aspects of the Space Exploration Initiative. Attention is presently given to the cases of education using space exploration themes as teaching tools and technology transfer from government to private industry. Only on the basis of the establishment of such constituencies, will it be possible to sustain funding over the three decades foreseen as required for a Mars exploration effort.

  10. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  11. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  12. Preparing for Orion Recovery Test on This Week @NASA - August 1, 2014

    NASA Image and Video Library

    2014-08-01

    NASA and the U.S. Navy were busy recently – preparing for tests scheduled off the coast of San Diego, California. Crews will run through the procedures to recover NASA's Orion spacecraft from the ocean, following its water landing from deep space missions. Kennedy Space Center, Johnson Space Center, and Lockheed Martin Space Operations are all involved in the recovery effort. Also, Mars 2020 rover and beyond, Opportunity: 25 miles and counting, Updated K-Rex rover, Automated Transfer Vehicle launch and NASA Technology Days!

  13. Human Research Program Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina

    2010-01-01

    NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3

  14. Innovative Stemless Valve Eliminates Emissions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.

  15. Impact of space research and technology on small countries

    NASA Astrophysics Data System (ADS)

    Serafimov, K. B.

    Space research has generated and stimulated development in the following five ways: influence on other sciences; space technology transfer and spin-offs; rocket industry, direct use of space (communications, remote sensing, meteorology, navigation, etc.); growing interest towards education, science and creative work, increased prestige, etc. The necessity of small and developing countries to participate in space research has been recognized. Their role in international space cooperation has been pointed out. A number of problems have been presented for the small countries related to their adequate engagement in space research activities, as well as some considerations and conclusions in respect to their participation in space research, such as: creating their own `space specialization', optimal choice of participation in international projects and programmes, ensurance of financing, material and technical foundation and other possibilities; active participation in COPEOS, COSPAR, IAF and other space organizations. Some possible negative features in the space activities of small countries have been shown, and a brief review is given as an example of Bulgaria's participation in space research. Some possibilities of help to small and developing countries by COSPAR and IAF are analyzed.

  16. Symposium on Space Industrialization, Huntsville, Ala., May 26, 27, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space habitats are considered, with attention given the evolution of space station systems, space station habitability, space settlement planning methodology, and orbital assembly. Various aspects of the Space Transportation System are discussed, including Shuttle booster/propulsion growth concept, advanced earth orbital transportation systems technology, single-stage-to-orbit vehicles and aeromaneuvering orbit transfer vehicles. Materials processing in space is examined, with emphasis on biological materials, metallurgical materials, the uses of space ultrahigh vacuum, and extraterrestrial mining and industrial processing. Solar space power is investigated, with attention given the potential of satellite solar power stations, thermal engine power satellites and microwave power transmission to earth. Individual items are announced in this issue.

  17. A Sample Handling System for Mars Sample Return - Design and Status

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.

    2009-04-01

    A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture mechanism through a bio-sealing system to the Earth Return Capsule (ERC) and has distinctly different requirements from the surface transfer system. The operations required to transfer the samples to the ERC are clearly defined and make use of mechanisms specifically designed for the job rather than robotic arms. Though it is mechanical rather than robotic, the design of the orbiter transfer system is very complex in comparison to most previous missions to fulfil all the scientific and technological requirements. Further mechanisms will be required to lock the samples into the ERC and to close the door at the rear of the ERC through which the samples have been inserted. Having performed this overall definition study, Astrium is now leading the next step of the development of the MSR sample handling: the Mars Surface Sample Transfer and Manipulation project (MSSTM). Organised in two phases, the project will re-evaluate in phase 1 the output of the previous study in the light of new inputs (e.g. addition of a rover) and investigate further the architectures and systems involved in the sample transfer chain while identifying the critical technologies. The second phase of the project will concentrate on the prototyping of a number of these key technologies with the goal of providing an end-to end validation of the surface sample transfer concept.

  18. CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.

  19. MDP: Reliable File Transfer for Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990's, MDP is now in daily use by both the US Post Office and the DoD. This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Neck Oriented Reliable Multicast) is in the process of becoming an IETF standard.

  20. MSR Fetch Rover Capability Development at the Canadian Space Agency

    NASA Astrophysics Data System (ADS)

    Picard, M.; Hipkin, V.; Gingras, D.; Allard, P.; Lamarche, T.; Rocheleau, S. G.; Gemme, S.

    2018-04-01

    Describes Fetch Rover technology testing during CSA's 2016 Mars Sample Return Analogue Deployment which demonstrated autonomous navigation to 'cache depots' of M-2020-like sample tubes, acquisition of six such tubes, and transfer to a MAV mock up.

  1. 48 CFR 1819.7302 - NASA contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA contract clauses. 1819.7302 Section 1819.7302 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... Business Technology Transfer (STTR) Programs 1819.7302 NASA contract clauses. (a) Contracting officers...

  2. 48 CFR 1819.7302 - NASA contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA contract clauses. 1819.7302 Section 1819.7302 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... Business Technology Transfer (STTR) Programs 1819.7302 NASA contract clauses. (a) Contracting officers...

  3. 48 CFR 1819.7302 - NASA contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA contract clauses. 1819.7302 Section 1819.7302 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... Business Technology Transfer (STTR) Programs 1819.7302 NASA contract clauses. (a) Contracting officers...

  4. 48 CFR 1819.7302 - NASA contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA contract clauses. 1819.7302 Section 1819.7302 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... Business Technology Transfer (STTR) Programs 1819.7302 NASA contract clauses. (a) Contracting officers...

  5. 48 CFR 1819.7302 - NASA contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA contract clauses. 1819.7302 Section 1819.7302 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... Business Technology Transfer (STTR) Programs 1819.7302 NASA contract clauses. (a) Contracting officers...

  6. First Annual Symposium. Volume 1: Plenary Session

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations from the symposium are presented. The progress of the Center for Space Construction is reviewed to promote technology transfer from the University of Colorado at Boulder to the national aerospace community. This symposium was heavily weighted toward plans and methodology.

  7. The Aula EspaZio Gela and the Master of Space Science and Technology in the Universidad del País Vasco (University of the Basque Country)

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, Agustín; Pérez-Hoyos, Santiago; Hueso, Ricardo; del Río-Gaztelurrutia, Teresa; Oleaga, Alberto

    2014-09-01

    We present the Aula EspaZio Gela, a facility dedicated to teaching Space Science and Technology at the master and doctorate level at the University of the Basque Country (Spain), and to promoting the development of this field in both public and private sectors. The one-year master's degree in Space Science and Technology (60 ECTS (European Credit Transfer and Accumulation System)) offers a group of compulsory courses which give way afterwards to a set of elective matters in which students choose one of two tracks: the scientific, primarily oriented to basic research at the University, or the technological, leading to the space industry and space agencies. After completion of the master thesis, our students have direct access to a PhD in both curricular lines. Here we detail the main features of the master's degree and the experience acquired in three years, including a comparative opinion survey to the students. We also describe the facilities at the Faculty of Engineering consisting of a specific classroom (Aula EspaZio Gela), an Astronomical Observatory, and different laboratories.

  8. Internship at NASA Kennedy Space Center's Cryogenic Test laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Katherine

    2013-01-01

    NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a refrigerator capable of removing 850 Watts at 20 Kelvin (shown in green). The refrigerator and most of its supporting equipment will be kept in a standard shipping container (shown in pink). Currently, GODU is in the fabrication process and some of the large components have already been purchased.

  9. LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    NASA Technical Reports Server (NTRS)

    Loghry, Christopher S.; Oleson, Steven R.; Woytach, Jeffrey M.; Martini, Michael C.; Smith, David A.; Fittje, James E.; Gyekenyesi, John Z.; Colozza, Anthony J.; Fincannon, James; Bogner, Aimee; hide

    2017-01-01

    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures.

  10. Environmental Remediation Technologies Derived from Space Industry Research

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Sauser, Brian; Helminger, Andrew

    2004-01-01

    Beginning in the 1950s and 1960s, an abundance of effort and initiative was focused on propelling the space industry outward for planetary exploration and habitation. During these early years, the push to take space science to new levels indirectly contributed to the evolution of another science field that would not fully surface until the early 1980s, environmental remediation. This field is associated with the remediation or cleanup of environmental resources such as groundwater, soil, and sediment. Because the space-exploration initiative began prior to the establishment of the U.S. Environmental Protection Agency (EPA) in December of 1970, many NASA Centers as well as space-related support contractors allowed for the release of spent chemicals into the environment. Subsequently, these land owners have been directed by the EPA to responsibly initiate cleanup of their impacted sites. This paper will focus on the processes and lessons learned with the development, testing, and commercialization initiatives associated with four remediation technologies. The technologies include installation techniques for permeable reactive barriers (PRBs), the use of ultrasound to improve long-term performance of PRBs, emulsified zero-valent iron for product-level solvent degradation, and emulsion technologies for application to metal and polychlorinated biphenyl contaminated media. Details of the paper cover technology research, evaluation, and testing; contracts and grants; and technology transfer strategies including patenting, marketing, and licensing.

  11. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  12. NASA-UK STAP: A technology applications program to aid government and industry in Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    There is a need for a well-defined partnership between universities, and the business and industrial community to promote the transfer of technology. In an effort to foster such a partnership, the Space Systems Program, administered by NASA, has established information dissemination centers in cooperation with various universities throughout the country. As a result of limited success in the transfer of technology to state and local units of government NASA felt that new stimuli and new approaches were needed in the public sector area. NASA selected the University of Kentucky, a land grant institution with a significant research dissemination and service role, as the site for the new program. An annual report of this program at the University of Kentucky is presented.

  13. The repository-based software engineering program: Redefining AdaNET as a mainstream NASA source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Repository-based Software Engineering Program (RBSE) is described to inform and update senior NASA managers about the program. Background and historical perspective on software reuse and RBSE for NASA managers who may not be familiar with these topics are provided. The paper draws upon and updates information from the RBSE Concept Document, baselined by NASA Headquarters, Johnson Space Center, and the University of Houston - Clear Lake in April 1992. Several of NASA's software problems and what RBSE is now doing to address those problems are described. Also, next steps to be taken to derive greater benefit from this Congressionally-mandated program are provided. The section on next steps describes the need to work closely with other NASA software quality, technology transfer, and reuse activities and focuses on goals and objectives relative to this need. RBSE's role within NASA is addressed; however, there is also the potential for systematic transfer of technology outside of NASA in later stages of the RBSE program. This technology transfer is discussed briefly.

  14. Assessment of RFID Read Accuracy for ISS Water Kit

    NASA Technical Reports Server (NTRS)

    Chu, Andrew

    2011-01-01

    The Space Life Sciences Directorate/Medical Informatics and Health Care Systems Branch (SD4) is assessing the benefits Radio Frequency Identification (RFID) technology for tracking items flown onboard the International Space Station (ISS). As an initial study, the Avionic Systems Division Electromagnetic Systems Branch (EV4) is collaborating with SD4 to affix RFID tags to a water kit supplied by SD4 and studying the read success rate of the tagged items. The tagged water kit inside a Cargo Transfer Bag (CTB) was inventoried using three different RFID technologies, including the Johnson Space Center Building 14 Wireless Habitat Test Bed RFID portal, an RFID hand-held reader being targeted for use on board the ISS, and an RFID enclosure designed and prototyped by EV4.

  15. Autonomous onboard crew operations: A review and developmental approach

    NASA Technical Reports Server (NTRS)

    Rogers, J. G.

    1982-01-01

    A review of the literature generated by an intercenter mission approach and consolidation team and their contractors was performed to obtain background information on the development of autonomous operations concepts for future space shuttle and space platform missions. The Boeing 757/767 flight management system was examined to determine the relevance for transfer of the developmental approach and technology to the performance of the crew operations function. In specific, the engine indications and crew alerting system was studied to determine the relevance of this display for the performance of crew operations onboard the vehicle. It was concluded that the developmental approach and technology utilized in the aeronautics industry would be appropriate for development of an autonomous operations concept for the space platform.

  16. Hypergolic Propellant Destruction Evaluation Cost Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    At space vehicle launch sites such as Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS) and Kennedy Space Center (KSC), toxic vapors and hazardous liquid wastes result from the handling of commodities (hypergolic fuels and oxidizers), most notably from transfer operations where fuel and oxidizer are transferred from bulk storage tanks or transfer tankers to space launch vehicles. During commodity transfer at CCAFS and KSC, wet chemical scrubbers (typically containing four scrubbing towers) are used to neutralize fuel saturated vapors from vent systems on tanks and tanker trailers. For fuel vapors, a citric acid solution is used to scrub out most of the hydrazine. Operation of both the hypergolic fuel and oxidizer vapor scrubbers generates waste scrubber liquor. Currently, scrubber liquor from the fuel vapor scrubber is considered non-hazardous. The scrubber liquor is defined as spent citric acid scrubber solution; the solution contains complexed hydrazine I methylhydrazine and is used to neutralize nonspecification hypergolic fuel generated by CCAFS and KSC. This project is a collaborative effort between Air Force Space Command (AFSPC), Space and Missile Center (SMC), the CCAFS, and National Aeronautics and Space Administration (NASA) to evaluate microwave destruction technology for the treatment of non-specification hypergolic fuel generated at CCAFS and KSC. The project will capitalize on knowledge gained from microwave treatment work being accomplished by AFSPC and SMC at V AFB. This report focuses on the costs associated with the current non-specification hypergolic fuel neutralization process (Section 2.0) as well as the estimated costs of operating a mobile microwave unit to treat non-specification hypergolic fuel (Section 3.0), and compares the costs for each (Section 4.0).The purpose of this document is to assess the costs associated with waste hypergolic fuel. This document will report the costs associated with the current fuel neutralization process and also examine the costs of an alternative technology, microwave destruction of waste hypergolic fuel. The microwave destruction system is being designed as a mobile unit to treat non-specification hypergolic fuel at CCAFS and KSC.

  17. Space propulsion and power beaming using millimeter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, J.; Dickinson, R.

    1995-11-01

    Past schemes for using beamed microwave power for space propulsion and providing power to space platforms have used microwaves below 10 GHz. Recent expansions of the high power microwave technology domain offer fundamental reassessment of the following missions: (1) location of orbital debris, (2) supplying power to loitering high-altitude airplanes, (3) satellite battery recharging, (4) imaging of asteroids, (5) orbit raising and transfer, (6) interplanetary probe launch to the outer planets and comets, and ultimately (7) launch into Earth orbit. This group of applications may be done by a ground-based system. The system would start small, being built for themore » near Earth missions, and be enlarged incrementally as the technology matures and confidence develops. Of particular interest are sources in the millimeter range where there are low loss atmospheric windows and MJ pulses are available in quasi-CW operation. A development scenario for these missions using millimeter wave technology is described.« less

  18. Propellant Depots: The Future of Space Exploration

    NASA Astrophysics Data System (ADS)

    Crenwelge, Drew

    NASA is currently exploring several options for mankind's return to the lunar surface and beyond. The selected option must stimulate both commercial and international involvement, support future missions to the Moon and other destinations, and above all, fit within the current budget profile. Contrary to the current Constellation approach, this paper describes the option of using an in-space propellant depot architecture that can refuel or top-off visiting vehicles at EML1, and how it fits within NASA's new space exploration criteria. In addition to receiving and transferring fuel, the propellant depot will also provide cryogenic propellant storage and management that utilizes flight proven technologies in conjunction with technologies currently under development. The propellant depot system, propellant management and acquisition devices, thermodynamic analysis, and key enabling technologies are also discussed. Depot design concepts along with an overview of a future lunar mission sequence are also presented.

  19. Development of a Deterministic Ethernet Building blocks for Space Applications

    NASA Astrophysics Data System (ADS)

    Fidi, C.; Jakovljevic, Mirko

    2015-09-01

    The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.

  20. Two Phase Technology Development Initiatives

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    1999-01-01

    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.

  1. The CCSDS Next Generation Space Data Link Protocol (NGSLP)

    NASA Technical Reports Server (NTRS)

    Kazz, Greg J.; Greenberg, Edward

    2014-01-01

    The CCSDS space link protocols i.e., Telemetry (TM), Telecommand (TC), Advanced Orbiting Systems (AOS) were developed in the early growth period of the space program. They were designed to meet the needs of the early missions, be compatible with the available technology and focused on the specific link environments. Digital technology was in its infancy and spacecraft power and mass issues enforced severe constraints on flight implementations. Therefore the Telecommand protocol was designed around a simple Bose, Hocquenghem, Chaudhuri (BCH) code that provided little coding gain and limited error detection but was relatively simple to decode on board. The infusion of the concatenated Convolutional and Reed-Solomon codes5 for telemetry was a major milestone and transformed telemetry applications by providing them the ability to more efficiently utilize the telemetry link and its ability to deliver user data. The ability to significantly lower the error rates on the telemetry links enabled the use of packet telemetry and data compression. The infusion of the high performance codes for telemetry was enabled by the advent of digital processing, but it was limited to earth based systems supporting telemetry. The latest CCSDS space link protocol, Proximity-1 was developed in early 2000 to meet the needs of short-range, bi-directional, fixed or mobile radio links characterized by short time delays, moderate but not weak signals, and short independent sessions. Proximity-1 has been successfully deployed on both NASA and ESA missions at Mars and is planned to be utilized by all Mars missions in development. A new age has arisen, one that now provides the means to perform advanced digital processing in spacecraft systems enabling the use of improved transponders, digital correlators, and high performance forward error correcting codes for all communications links. Flight transponders utilizing digital technology have emerged and can efficiently provide the means to make the next leap in performance for space link communications. Field Programmable Gate Arrays (FPGAs) provide the capability to incorporate high performance forward error correcting codes implemented within software transponders providing improved performance in data transfer, ranging, link security, and time correlation. Given these synergistic technological breakthroughs, the time has come to take advantage of them in applying them to both on going (e.g., command, telemetry) and emerging (e.g., space link security, optical communication) space link applications. However one of the constraining factors within the Data Link Layer in realizing these performance gains is the lack of a generic transfer frame format and common supporting services amongst the existing CCSDS link layer protocols. Currently each of the four CCSDS link layer protocols (TM, TC, AOS, and Proximity-1) have unique formats and services which prohibits their reuse across the totality of all space link applications of CCSDS member space agencies. For example, Mars missions. These missions implement their proximity data link layer using the Proximity-1 frame format and the services it supports but is still required to support the direct from Earth (TC) protocols and the Direct To Earth (AOS/TM) protocols. The prime purpose of this paper, is to describe a new general purpose CCSDS Data Link layer protocol, the NGSLP that will provide the required services along with a common transfer frame format for all the CCSDS space links (ground to/from space and space to space links) targeted for emerging missions after a CCSDS agency-wide coordinated date. This paper will also describe related options that can be included for the Coding and Synchronization sub-layer of the Data Link layer to extend the capacities of the link and additionally provide an independence of the transfer frame sub-layer from the coding sublayer. This feature will provide missions the option of running either the currently performed synchronous coding and transfer frame data link or an asynchronous coding/frame data link, in which the transfer frame length is independent of the block size of the code. The benefits from the elimination of this constraint (frame synchronized to the code block) will simplify the interface between the transponder and the data handling equipment and reduce implementation costs and complexities. The benefits include: inclusion of encoders/decoders into transmitters and receivers without regard to data link protocols, providing the ability to insert latency sensitive messages into the link to support launch, landing/docking, telerobotics. and Variable Coded Modulation (VCM). In addition the ability to transfer different sized frames can provide a backup for delivering stored anomaly engineering data simultaneously with real time data, or relaying of frames from various sources onto a trunk line for delivery to Earth.

  2. Global partnerships: Expanding the frontiers of space exploration education

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.

  3. New Propulsion Technologies For Exploration of the Solar System and Beyond

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.

  4. ACTS/TOS after release from Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Communications Technology Satellite (ACTS) with its Transfer Orbit Stage (TOS) is backdropped over the blue ocean following its release from the Earth-orbiting Space Shuttle Discovery. ACTS/TOS deploy was the first major task performed on the almost ten-day mission.

  5. MU-SPIN Project Update

    NASA Technical Reports Server (NTRS)

    Harrington, James L., Jr.

    2000-01-01

    The Minority University Space Interdisciplinary (MUSPIN) Network project is a comprehensive outreach and education initiative that focuses on the transfer of advanced computer networking technologies and relevant science to Historically Black Colleges and Universities (HBCU's) and Other Minority Universities (OMU's) for supporting multi-disciplinary education research.

  6. Tapping into a Billion Dollar Resource, SBIR/STTR

    NASA Astrophysics Data System (ADS)

    Mexcur, Paul; Kalshoven, James

    2002-10-01

    This presentation provides an overview of the Small Business Innovation Research (SBIR) and the Small Business Technology Transfer (STTR) Programs as implemented by the National Aeronautics and Space Administration (NASA). These programs, as mandated by Congress, provide an opportunity for small, high technology companies and research institutions to participate in Government sponsored research and development (R&D) efforts in key technology areas. This presentation describes the background and operation of these two programs and discusses what factors a business should consider in making the decision to participate.

  7. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  8. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.

  9. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  10. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    NASA Technical Reports Server (NTRS)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  11. An application of multiattribute decision analysis to the Space Station Freedom program. Case study: Automation and robotics technology evaluation

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Levin, Richard R.; Carpenter, Elisabeth J.

    1990-01-01

    The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most.

  12. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    NASA Astrophysics Data System (ADS)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  13. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing state, but then becomes less significant.

  14. Testimony to the House Science Space and Technology Committee.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, Michael Kenton; Tannenbaum, Benn

    Chairman Smith, Ranking Member Johnson, and distinguished members of the Committee on Science, Space, and Technology, I thank you for the opportunity to testify today on the role of science, engineering, and research at Sandia National Laboratories, one of the nation’s premiere national labs and the nation’s largest Federally Funded Research and Development Center (FFRDC) laboratory. I am Dr. Susan Seestrom, Sandia’s Associate Laboratories Director for Advanced Science & Technology (AST) and Chief Research Officer (CRO). As CRO I am responsible for research strategy, Laboratory Directed Research & Development (LDRD), partnerships strategy, and technology transfer. As director and line managermore » for AST I manage capabilities and mission delivery across a variety of the physical and mathematical sciences and engineering disciplines, such as pulsed power, radiation effects, major environmental testing, high performance computing, and modeling and simulation.« less

  15. Advances in cryogenic engineering. Vols. 35A & 35B - Proceedings of the 1989 Cryogenic Engineering Conference, University of California, Los Angeles, July 24-28, 1989

    NASA Astrophysics Data System (ADS)

    Fast, R. W.

    The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.

  16. NASA Space Engineering Research Center for VLSI System Design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This annual report outlines the activities of the past year at the NASA SERC on VLSI Design. Highlights for this year include the following: a significant breakthrough was achieved in utilizing commercial IC foundries for producing flight electronics; the first two flight qualified chips were designed, fabricated, and tested and are now being delivered into NASA flight systems; and a new technology transfer mechanism has been established to transfer VLSI advances into NASA and commercial systems.

  17. NASA's Impact in Florida: A Tech Transfer Perspective

    NASA Technical Reports Server (NTRS)

    Dunn, Carol

    2009-01-01

    The Innovative Partnerships Program (IPP) Office at NASA's Kennedy Space Center is dedicated to forming partnerships that can positively contribute to -- and benefit from -- NASA's research and development (R&D) and technology innovations. This document discusses the IPP-driven impacts of NASA in Florida.

  18. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priest, R. E.; Sauvageau, J. E.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments inmore » LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.« less

  19. Applying the system engineering approach to devise a master’s degree program in space technology in developing countries

    NASA Astrophysics Data System (ADS)

    Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa

    2010-11-01

    Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group projects and also working in space systems laboratories or choose and write a thesis based on experiences gained through an internship program.

  20. Management of a CFD organization in support of space hardware development

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.; Mcconnaughey, P. K.; Mcconnaughey, H. V.; Wang, T. S.

    1991-01-01

    The management strategy of NASA-Marshall's CFD branch in support of space hardware development and code validation implements various elements of total quality management. The strategy encompasses (1) a teaming strategy which focuses on the most pertinent problem, (2) quick-turnaround analysis, (3) the evaluation of retrofittable design options through sensitivity analysis, and (4) coordination between the chief engineer and the hardware contractors. Advanced-technology concepts are being addressed via the definition of technology-development projects whose products are transferable to hardware programs and the integration of research activities with industry, government agencies, and universities, on the basis of the 'consortium' concept.

  1. Human exploration of space and power development

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1991-01-01

    Reasons for mounting the Space Exploration Initiative, the variables facing U.S. planners, and the developmental technologies that will be needed to support this initiative are discussed. The three more advanced technological approaches in the field of power generation described include a lunar-based solar power system, a geosynchronous-based earth orbit solar power satellite system, and the utilization of helium-3/deuterium fusion reaction to create a nuclear fuel cycle. It is noted that the major elements of the SEI will include a heavy-lift launch vehicle, a transfer vehicle and a descent/ascent vehicle for use on lunar missions and adaptable to Mars exploration.

  2. Development of the electric vehicle analyzer

    NASA Astrophysics Data System (ADS)

    Dickey, Michael R.; Klucz, Raymond S.; Ennix, Kimberly A.; Matuszak, Leo M.

    1990-06-01

    The increasing technological maturity of high power (greater than 20 kW) electric propulsion devices has led to renewed interest in their use as a means of efficiently transferring payloads between earth orbits. Several systems and architecture studies have identified the potential cost benefits of high performance Electric Orbital Transfer Vehicles (EOTVs). These studies led to the initiation of the Electric Insertion Transfer Experiment (ELITE) in 1988. Managed by the Astronautics Laboratory, ELITE is a flight experiment designed to sufficiently demonstrate key technologies and options to pave the way for the full-scale development of an operational EOTV. An important consideration in the development of the ELITE program is the capability of available analytical tools to simulate the orbital mechanics of a low thrust, electric propulsion transfer vehicle. These tools are necessary not only for ELITE mission planning exercises but also for continued, efficient, accurate evaluation of DoD space transportation architectures which include EOTVs. This paper presents such a tool: the Electric Vehicle Analyzer (EVA).

  3. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  4. Hydrodynamic model of screen channel liquid acquisition devices for in-space cryogenic propellant management

    NASA Astrophysics Data System (ADS)

    Darr, S. R.; Camarotti, C. F.; Hartwig, J. W.; Chung, J. N.

    2017-01-01

    Technologies that enable the storage and transfer of cryogenic propellants in space will be needed for the next generation vehicles that will carry humans to Mars. One of the candidate technologies is the screen channel liquid acquisition device (LAD), which uses a metal woven wire mesh to separate the liquid and vapor phases so that single-phase liquid propellant can be transferred in microgravity. In this work, an experiment is carried out that provides measurements of the velocity and pressure fields in a screen channel LAD. These data are used to validate a new analytical solution of the liquid flow through a screen channel LAD. This hydrodynamic model, which accounts for non-uniform injection through the screen, is compared with the traditional pressure term summation model which assumes a constant, uniform injection velocity. Results show that the new model performs best against the new data and historical data. The velocity measurements inside the screen channel LAD are used to provide a more accurate velocity profile which further improves the new model. The result of this work is a predictive tool that will instill confidence in the design of screen channel LADs for future in-space propulsion systems.

  5. SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO

    NASA Astrophysics Data System (ADS)

    Kaiser, Clemens; Sjöberg, Fredrik; Delcura, Juan Manuel; Eilertsen, Baard

    2008-07-01

    Orbital Satellite Services Limited (OSSL) is a satellite servicing company that is developing an orbit life extension vehicle (OLEV) to extend the operational lifetime of geostationary satellites. The industrial consortium of SSC (Sweden), Kayser-Threde (Germany) and Sener (Spain) is in charge to develop and industrialize the space and ground segment. It is a fully commercial program with support of several space agencies during the development phase. The business plan is based on life extension for high value commercial satellites while also providing the satellite operators with various fleet management services such as graveyard burns, slot transfers and on orbit protection against replacement satellite or launch failures. The OLEV spacecraft will be able to dock with a geostationary satellite and uses an electrical propulsion system to extend its life by taking over the attitude control and station keeping functions. The OLEV system is building on the SMART-1 platform developed by Swedish Space Corporation. It was developed for ESA as a technology test-bed to demonstrate the use of electrical propulsion for interplanetary orbit transfer manoeuvres. The concept is called SMART-OLEV and takes advantage of the low cost, low mass SMART-1 platform by a maximum use of recurrent platform technology.

  6. Geostationary platform systems concepts definition study. Volume 2: Technical, book 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A selected concept for a geostationary platform is defined in sufficient detail to identify requirements for supporting research and technology, space demonstrations, GFE interfaces, costs, and schedules. This system consists of six platforms in geostationary orbit (GEO) over the Western Hemisphere and six over the Atlantic, to satisfy the total payload set associated with the nominal traffic model. Each platform is delivered to low Earth orbit (LEO) in a single shuttle flight, already mated to its LEO to GEO transfer vehicle and ready for deployment and transfer to GEO. An alternative concept is looked at briefly for comparison of configuration and technology requirements. This alternative consists of two large platforms, one over the Western Hemisphere consisting of three docked modules, and one over the Atlantic (two docked modules), to satisfy a high traffic model. The modules are full length orbiter cargo bay payloads, mated at LEO to orbital transfer vehicles (OTVs) delivered in other shuttle flights, for transfer to GEO, rendezvous, and docking. A preliminary feasibility study of an experimental platform is also performed to demonstrate communications and platform technologies required for the operational platforms of the 1990s.

  7. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  8. Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.

  9. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.

  10. Satellite power system: Engineering and economic analysis summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.

  11. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  12. A space-to-space microwave wireless power transmission experiential mission using small satellites

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey; Straub, Jeremy

    2014-10-01

    A space solar microwave power transfer system (SSMPTS) may represent a paradigm shift to how space missions in Earth orbit are designed. A SSMPTS may allow a smaller receiving surface to be utilized on the receiving craft due to the higher-density power transfer (compared to direct solar flux) from a SSMPTS supplier craft; the receiving system is also more efficient and requires less mass and volume. The SSMPTS approach also increases mission lifetime, as antenna systems do not degrade nearly as quickly as solar panels. The SSMPTS supplier craft (instead) can be replaced as its solar panels degrade, a mechanism for replacing panels can be utilized or the SSMPTS can be maneuvered closer to a subset of consumer spacecraft. SSMPTS can also be utilized to supply power to spacecraft in eclipse and to supply variable amounts of power, based on current mission needs, to power the craft or augment other power systems. A minimal level of orbital demonstrations of SSP technologies have occurred. A mission is planned to demonstrate and characterize the efficacy of space-to-space microwave wireless power transfer. This paper presents an overview of this prospective mission. It then discusses the spacecraft system (comprised of an ESPA/SmallSat-class spacecraft and a 1-U CubeSat), launch options, mission operations and the process of evaluating mission outcomes.

  13. Spinoff 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In 1958, a Congressional Mandate directed the National Aeronautics and Space Agency to ensure for the widest possible dissemination of its research and development results. Thus, the Scientific and Technical Information (STI) Program was born. While this program addressed mostly the timely dissemination of information to NASA, NASA contractors, other government agencies, and the public, technologies were identified that were clearly transferable and applicable to industry for additional use in the development of commercial products and services. Such considerations spun off the Technology Utilization Program. The very successful program went through several name changes and is today called the NASA Commercial Technology Program. The changes that have occurred over time are not only name changes, but program changes that have dramatically altered the philosophy, mission, and goal of the program. It has been identified that a more intense and proactive outreach effort within the program is necessary in order to make the newest and latest technologies available to industry now-at the time the technology is actually developed. The NASA Commercial Technology Network (NCTN), its interaction with industry at all levels through a large network of organizations and offices, is contributing to the success of small, medium, and large U.S. businesses to remain globally competitive. At the same time, new products and services derived from the transfer and application of NASA technology benefit everyone. This publication includes the following: Aerospace research and development - NASA headquarters and centers. Technology transfer and commercialization. Commercial benefits - spinoffs.NASA success and education. NASA commercial technology network.

  14. The Commtech Methodology: A Demand-Driven Approach to Efficient, Productive, and Measurable Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1999-01-01

    This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.

  15. Thin-Film Photovoltaics: Status and Applications to Space Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  16. KSC-04pd1824

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Corky Philyaw (left) and Edgar Suarez (right) prepare the flight battery for installation on the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (far left). DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. It is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station. DART will be launched from an Orbital Sciences Pegasus XL rocket no earlier than Oct. 26.

  17. KSC-04pd1817

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers prepare the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft for launch. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  18. Enhancing space transportation: The NASA program to develop electric propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Watkins, Marcus A.; Byers, David C.; Barnett, John W.

    1990-01-01

    The NASA Office of Aeronautics, Exploration, and Technology (OAET) supports a research and technology (R and T) program in electric propulsion to provide the basis for increased performance and life of electric thruster systems which can have a major impact on space system performance, including orbital transfer, stationkeeping, and planetary exploration. The program is oriented toward providing high-performance options that will be applicable to a broad range of near-term and far-term missions and vehicles. The program, which is being conducted through the Jet Propulsion Laboratory (JPL) and Lewis Research Center (LeRC) includes research on resistojet, arcjets, ion engines, magnetoplasmadynamic (MPD) thrusters, and electrodeless thrusters. Planning is also under way for nuclear electric propulsion (NEP) as part of the Space Exploration Initiative (SEI).

  19. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    NASA Technical Reports Server (NTRS)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  20. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  1. CIRiS: Compact Infrared Radiometer in Space

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  2. The SIGMA CubeSat Mission for Space Research and Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, J. K.; Lee, H.; Shin, J.; Jeong, S.; Jin, H.; Nam, U. W.; Kim, H.; Lessard, M.; Lee, R.

    2016-12-01

    The Scientific cubesat with Instrument for Global Magnetic field and rAdiation (SIGMA) is the 3U standard CubeSat measuring the space radiation and magnetic field on a 450 × 720 km sun-synchronous orbit. Its mass is 2.95 kg and the communication system consists of Very High Frequency (VHF) uplink and Ultra High Frequency (UHF) downlink. The SIGMA mission has two academic purposes which are space research and technology demonstration. For the space research, SIGMA has two instruments such as Tissue Equivalent Proportional Counter (TEPC) and a miniaturized fluxgate MAGnetometer (MAG). The TEPC primary instrument measures the Linear Energy Transfer (LET) spectrum and calculates the equivalent dose in the range from 0.3 to 1,000 keV/μm with a single Multi-Channel Analyzer. The secondary is a miniaturized fluxgate magnetometer which have 1 nT resolution with the dynamic range of ±42000 nT. The MAG is deployed by 0.7 m folding boom to avoid CubeSat body's Electromagnetic Interference (EMI). This boom is one of our mechanical technology demonstrations. After launch, we expect that the SIGMA give us new scientific data and technologic verification. This CubeSat is supported by Korean CubeSat contest program.

  3. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  4. Planetary stations and Abyssal Benthic Laboratories: An overview of parallel approaches for long-term investigation in extreme environments

    NASA Technical Reports Server (NTRS)

    Dipippo, S.; Prendin, W.; Gasparoni, F.

    1994-01-01

    In spite of the apparent great differences between deep ocean and space environment, significant similarities can be recognized when considering the possible solutions and technologies enabling the development of remote automatic stations supporting the execution of scientific activities. In this sense it is believed that mutual benefits shall be derived from the exchange of experiences and results between people and organizations involved in research and engineering activities for hostile environments, such as space, deep sea, and polar areas. A significant example of possible technology transfer and common systematic approach is given, which describes in some detail how the solutions and the enabling technologies identified for an Abyssal Benthic Laboratory can be applied for the case of a lunar or planetary station.

  5. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  6. Technology development of the Space Transportation System mission and terrestrial applications of satellite technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.

  7. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.

  8. Biomedical technical transfer. Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  9. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    USDA-ARS?s Scientific Manuscript database

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  10. JPL Non-NASA Programs

    NASA Technical Reports Server (NTRS)

    Cox, Robert S.

    2006-01-01

    A viewgraph presentation describing JPL's non-NASA Programs is shown. The contents include: 1) JPL/Caltech: National Security Heritage; 2) Organization and Portfolio; 3) Synergistic Areas of Interest; 4) Business Environment; 5) National Space Community; 6) New Business Environment; 7) Technology Transfer Techniques; 8) Innovative Partnership Program (IPP); and 9) JPL's Track Record.

  11. TROPIX: A solar electric propulsion flight experiment

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.

    1993-01-01

    The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.

  12. Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED.

    PubMed

    Liu, Tong; Su, Qi-Ping; Yang, Jin-Hu; Zhang, Yu; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping

    2017-08-01

    A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.

  13. Technology transfer program of Microlabsat

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Hashimoto, H.

    2004-11-01

    A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.

  14. KSC-06pd0179

    NASA Image and Video Library

    2006-01-17

    VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft out of the Orbital Sciences Building 836 onto a truck for transfer to Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  15. New space vehicle archetypes for human planetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  16. Foale and Kuipers work at the MSG during EXP 8 / EXP 9

    NASA Image and Video Library

    2004-04-22

    ISS008-E-21999 (22 April 2004) --- Astronaut C. Michael Foale (foreground), Expedition 8 commander and NASA ISS science officer, and European Space Agency (ESA) astronaut Andre Kuipers of the Netherlands work with the HEAT experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station (ISS). The main aim of the HEAT technology demonstration is the characterization of the heat transfer performance of a grooved heat pipe in weightlessness.

  17. Optical interferometer testbed

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.

    1991-01-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  18. Midcourse Space Experiment Data Certification and Technology Transfer

    NASA Technical Reports Server (NTRS)

    Pollock, David B.

    1998-01-01

    The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime with a 12 month lifetime for the cryogenically cooled IR sensor. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instrument's Level 2 data base is being extended to the in-orbit environment.

  19. Thermodynamic analysis and subscale modeling of space-based orbit transfer vehicle cryogenic propellant resupply

    NASA Technical Reports Server (NTRS)

    Defelice, David M.; Aydelott, John C.

    1987-01-01

    The resupply of the cryogenic propellants is an enabling technology for spacebased orbit transfer vehicles. As part of the NASA Lewis ongoing efforts in microgravity fluid management, thermodynamic analysis and subscale modeling techniques were developed to support an on-orbit test bed for cryogenic fluid management technologies. Analytical results have shown that subscale experimental modeling of liquid resupply can be used to validate analytical models when the appropriate target temperature is selected to relate the model to its prototype system. Further analyses were used to develop a thermodynamic model of the tank chilldown process which is required prior to the no-vent fill operation. These efforts were incorporated into two FORTRAN programs which were used to present preliminary analyticl results.

  20. Technology transfer at NASA - A librarian's view

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  1. Johnson Space Center Research and Technology Annual Report 1998-1999

    NASA Technical Reports Server (NTRS)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  2. Cold Stowage: An ISS Project

    NASA Technical Reports Server (NTRS)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  3. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    NASA Astrophysics Data System (ADS)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The Lunar Space Tug represents an alternative to the SLS scenario, especially for what concerns all unmanned or logistic missions (e.g. cargo transfer, on orbit assembly, samples return), from Low Earth Orbit to Cislunar space. The paper focuses on the mission analysis and conceptual design of the Lunar Space Tug to support the growth and sustainment of the Cislunar Station. Particular attention is dedicated to the analysis of the propulsion subsystem effects of the Lunar Space Tug design. Main results are presented and discussed, and main conclusions are drawn.

  4. Using Paraffin with -10 deg C to 10 deg C Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2013-01-01

    A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.

  5. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    NASA Technical Reports Server (NTRS)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  6. Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2005-01-01

    Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.

  7. Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Yang; Yu, Chang-Shui; Zhang, Wei-Ning

    2017-05-01

    Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

  8. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.

    PubMed

    Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping

    2015-12-01

    Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.

  9. Chemical Research Projects Office: Functions, accomplishments, and programs

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1972-01-01

    The purpose, technical accomplishments, and related activities of the Chemical Research Project Group are outlined. Data cover efforts made to: (1) identify chemical research and technology required for solutions to problems of national urgency, synchronous with aeronautics and space effort; (2) conduct basic and applied interdisciplinary research on chemical problems in the areas of macromolecular science and fire research, and (3) provide productive liason with the engineering community and effective transfer of technology to other agencies and industry.

  10. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  11. Biona-C Cell Culture pH Monitoring System

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  12. KSC-04pd1819

    NASA Image and Video Library

    2004-09-01

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers help guide the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft onto the mobile stand below. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  13. Spinoff 1979

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1979-01-01

    Technology is knowledge, the technical "know-how" employed by a society to produce things that improve the quality of human life. Like other forms of knowledge, it is transferable; once developed, technology can be applied to uses different-and often remote-from the original application. Thus, the technology that NASA has developed in more than two decades of space and aeronautical research constitutes a valuable national resource, a bank of knowledge available for secondary utilization, or "spinoff." NASA mainline programs, by their challenging nature, are particularly demanding of technological advance; meeting their goals has forced extraordinary advancements in virtually every scientific and technological discipline. For that reason, the wealth of aerospace-generated knowledge available for transfer is exceptionally diverse, and much of it is readily applicable to secondary use over a broad spectrum of public needs and conveniences. Through its Congressionally mandated Technology Utilization Program, NASA seeks to promote wider use of this technological resource. The program provides a link between the technology bank and those in either the private or public sectors who might be able to re-use the technology productively. Its aim is to accelerate the transfer process, to bring to the marketplace sooner those spinoffs which might eventually occur in the normal course of events, and to gain thereby more immediate economic benefit in terms of new products and new jobs. The program has been remarkably successful. Since its inception 17 years ago, thousands of spinoff products and processes have emerged. Some of these innovations bring only moderate increments of economic gain or lifestyle improvement, but many others amount to significant public benefits, with economic values often running to millions of dollars. Collectively, spinoffs provide a substantial bonus return on the funds invested in aerospace research. This publication is intended to increase public awareness of the resource that is NASA's technology bank and its potential for further public benefit. It is devoted primarily to the NASA technology transfer process, but in the interests of perspective it also describes related areas of NASA endeavor. Section 1 consists of a resume of NASA's current mainline programs. These programs are producing direct public benefit through direct application of technology; at the same time, they are contributing to indirect benefit-spinoff-by generating new technology which may find secondary application in the future. Section 2 is the focal point of this volume. It contains a representative sampling of spinoff products and processes employed in various avenues of everyday life, and it describes briefly the NASA technology from which these transfers derived. Section 3 details the mechanisms of the technology transfer process, including the means by which NASA seeks to stimulate technology utilization. Also described are NASA's activities in a related area of technology transfer: provision of assistance to agencies interested in exploiting the benefit potential of satellite remote sensing technology.

  14. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill process to develop an analytical model of No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing stage, but then becomes less significant.

  15. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  16. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    PubMed

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

  17. KSC-98pc1186

    NASA Image and Video Library

    1998-09-30

    The open doors of the payload bay on Space Shuttle Discovery await the transfer of four of the payloads on mission STS-95: the SPACEHAB single module, Spartan, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). At the top of bay are the airlock (used for depressurization and repressurization during extravehicular activity and transfer to Mir) and the tunnel adapter (enables the flight crew members to transfer from the pressurized middeck crew compartment to Spacelab's pressurized shirt-sleeve environment). SPACEHAB involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Discovery is scheduled to launch on Oct. 29, 1998

  18. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology has been demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  19. A Revolution in the Making: Advances in Materials That May Transform Future Exploration Infrastructures and Missions

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.

    2001-01-01

    The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.

  20. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center, MS - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.

    2008-01-01

    May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.

Top