Science.gov

Sample records for space telescope nicmos

  1. Hubble Space Telescope NICMOS Polarization Measurements of OMC-1

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Schultz, A. S. B.

    2006-01-01

    We present 2 micrometer polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2" resolution) on Hubble Space Telescope. Our goals are to seek the sources of heating for IRc2, 3, 4, and 7, identify possible young stellar objects (YSOs), and characterize the grain alignment in the dust clouds along the lines-of-sight to the stars. Our results are as follows: BN is approximately 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to approximately 5" to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7" east of BN, and a deeply-embedded IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. Their polarization ranges from N less than or equal to 1% (all stars with this low polarization are optically visible) to greater than 40%. The most polarized star has a polarization position angle different from its neighbors by approximately 40 degrees, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1. The polarization

  2. TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS

    SciTech Connect

    Crouzet, N.; McCullough, P. R.; Long, D.; Burke, C.

    2012-12-10

    Spectroscopy during planetary transits is a powerful tool to probe exoplanet atmospheres. We present the near-infrared transit spectroscopy of XO-2b obtained with Hubble Space Telescope NICMOS. Uniquely for NICMOS transit spectroscopy, a companion star of similar properties to XO-2 is present in the field of view. We derive improved star and planet parameters through a photometric white-light analysis. We show a clear correlation of the spectrum noise with instrumental parameters, in particular the angle of the spectral trace on the detector. An MCMC method using a decorrelation from instrumental parameters is used to extract the planetary spectrum. Spectra derived independently from each of the three visits have an rms of 430, 510, and 1000 ppm, respectively. The same analysis is performed on the companion star after numerical injection of a transit with a depth constant at all wavelengths. The extracted spectra exhibit residuals of similar amplitude as for XO-2, which represent the level of remaining NICMOS systematics. This shows that extracting planetary spectra is at the limit of NICMOS's capability. We derive a spectrum for the planet XO-2b using the companion star as a reference. The derived spectrum can be represented by a theoretical model including atmospheric water vapor or by a flat spectrum model. We derive a 3{sigma} upper limit of 1570 ppm on the presence of water vapor absorption in the atmosphere of XO-2b. In the Appendix, we perform a similar analysis for the gas giant planet XO-1b.

  3. FIVE DEBRIS DISKS NEWLY REVEALED IN SCATTERED LIGHT FROM THE HUBBLE SPACE TELESCOPE NICMOS ARCHIVE

    SciTech Connect

    Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent; Choquet, Élodie; Chen, Christine; Golimowski, David A.; Brendan Hagan, J.; Moerchen, Margaret; N'Diaye, Mamadou; Wolff, Schuyler; Debes, John; Hines, Dean C.; Mittal, Tushar; Rajan, Abhijith; Schneider, Glenn

    2014-05-10

    We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of the disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.

  4. VizieR Online Data Catalog: Hubble Space Telescope GOODS NICMOS Survey (Conselice+, 2011)

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Bluck, A. F. L.; Buitrago, F.; Bauer, A. E.; Grutzbauch, R.; Bouwens, R. J.; Bevan, S.; Mortlock, A.; Dickinson, M.; Daddi, E.; Yan, H.; Scott, D.; Chapman, S. C.; Chary, R.-R.; Ferguson, H. C.; Giavalisco, M.; Grogin, N.; Illingworth, G.; Jogee, S.; Koekemoer, A. M.; Lucas, R. A.; Mobasher, B.; Moustakas, L.; Papovich, C.; Ravindranath, S.; Siana, B.; Teplitz, H.; Trujillo, I.; Urry, M.; Weinzirl, T.

    2013-09-01

    We present the details and early results from a deep near-infrared survey utilizing the NICMOS instrument on the Hubble Space Telescope centred around massive M*>1011M⊙ galaxies at 1.7NICMOS Survey (GNS) was designed to obtain deep F160W (H-band) imaging of 80 of these massive galaxies and other colour-selected objects such as Lyman-break dropouts, BzK objects, distant red galaxies (DRGs), extremely red objects (EROs), Spitzer-selected EROs, BX/BM galaxies, as well as flux-selected submillimetre galaxies. We present in this paper details of the observations, our sample selection, as well as a description of the properties of the massive galaxies found within our survey fields. This includes photometric redshifts, rest-frame colours and stellar masses. We furthermore provide an analysis of the selection methods for finding massive galaxies at high redshifts, including colour-selection methods and how galaxy populations selected through these colour methods overlap. (2 data files).

  5. Hubble Space Telescope Pointing Performance Due to Micro-Dynamic Disturbances from the NICMOS Cryogenic Cooler

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)

    2002-01-01

    The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.

  6. Hubble Space Telescope/NICMOS Observations of I Zw 18: A Population of Old Asymptotic Giant Branch Stars Revealed.

    PubMed

    Östlin

    2000-06-01

    I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe.

  7. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  8. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  9. KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-22

    KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.

  10. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  11. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  12. HUBBLE SPACE TELESCOPE/NICMOS Imaging of Disks and Envelopes around Very Young Stars

    NASA Astrophysics Data System (ADS)

    Padgett, Deborah L.; Brandner, Wolfgang; Stapelfeldt, Karl R.; Strom, Stephen E.; Terebey, Susan; Koerner, David

    1999-03-01

    We present HST/NICMOS observations with ~0.1"~15 AU resolution of six young stellar objects in the Taurus star formation region. The targets of our survey are three Class I IRAS sources (IRAS 04016+2610, IRAS 04248+2612, and IRAS 04302+2247) and three low-luminosity stars (DG Tau B, Haro 6-5B, and CoKu Tau/1) associated with Herbig-Haro jets. The broadband images show that the near-infrared radiation from these sources is dominated by light scattered from dusty circumstellar material distributed in a region 10-15 times the size of our solar system. Although the detailed morphologies of the individual objects are unique, the observed young stellar objects share common features. All of the circumstellar reflection nebulae are crossed by dark lanes from 500 to 900 AU in extent and from less than 50 to 350 AU in apparent thickness. The absorption lanes extend perpendicular to known optical and millimeter outflows in these sources. We interpret the dark lanes as optically thick circumstellar disks seen in silhouette against bright reflection nebulosity. The bipolar reflection nebulae extending perpendicular to the dust lanes appear to be produced by scattering from the upper and lower surfaces of the disks and from dusty material within or on the walls of the outflow cavities. Of five objects in which the central source is directly detected, two are found to be subarcsecond binaries. This minisurvey is the highest resolution near-infrared study to date of circumstellar environments around solar-type stars with age<=1 Myr.

  13. The Lower Main Sequence of ω Centauri from Deep Hubble Space Telescope NICMOS Near-Infrared Observations

    NASA Astrophysics Data System (ADS)

    Pulone, Luigi; De Marchi, Guido; Paresce, Francesco; Allard, France

    1998-01-01

    A 20" × 20" field located ~7' from the center of the massive galactic globular cluster ω Centauri (NGC 5139) was observed by the NIC2 camera of the Near-Infrared Camera and Multiobject Spectrometer on board the Hubble Space Telescope (HST) through the F110W and F160W broadband filters centered at 1.1 and 1.6 μm for a total of 3000 and 4000 s for the two filters, respectively. Standard photometric analysis of the resulting images yields 340 stars with a signal above a 10 σ threshold in both filters, covering the range of HST m160 magnitudes between 20 and 26, the deepest probe yet of a globular cluster in this wavelength region. These objects form a well-defined sequence in the m160 versus m110-m160 plane that is consistent with the theoretical near-IR color-magnitude diagram expected from recent low-mass stellar model calculations. The resulting stellar luminosity function increases steadily with increasing magnitude up to a peak at m160~=25, where it turns over and drops slowly down to the detection limit set by the incompleteness limit of 60% at m160~=26. With the theoretical mass-luminosity relationship that provides the best fit to the IR color-magnitude diagram, we obtain an excellent fit to the observed luminosity function down to a mass of ~0.2 Msolar with a power-law mass function having a slope of α=-1. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract NAS5-26555.

  14. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  15. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  16. Highlights HST-NICMOS

    NASA Astrophysics Data System (ADS)

    Schneider, G.

    The Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) was installed in the Hubble Space Telescope in February, 1997. After twenty-two months of operation the 110 kg. supply of solid N2 which cooled the NICMOS-3 HgCdTe detectors was exhausted and the cryostat warmed up leaving the instrument in an electromechanically functional, but scientifically non-viable, passive state. Following a two year suspension of observations, an active cooling system featuring a reverse Brayton cycle micro-turbine was installed and integrated with NICMOS during HST servicing mission 3B. As a result the NICMOS detectors and cold optics have successfully been re-cooled to operationally effective temperatures and the science program has begun following an instrumental verification and re-calibration program. Today, we present an assessment of the performance of the instrument in terms of its optical quality, quantum efficiencies, dark currents, and other metrics, in absolute terms and in comparison to its previous on-orbit incarnation which define the define the scope and nature of the astronomical investigations which have now resumed. Some of the first scientific results from a subset of those programs will be presented and discussed. This work is supported by NASA grants NAG5 - 3042 and 10843 to the NICMOS Instrument Definition and Guaranteed Time Observing Teams.

  17. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronomers using the Hubble Space Telescope (HST) have identified what may be the most luminous star known; a celestial mammoth that releases up to 10-million times the power of the Sun and is big enough to fill the diameter of Earth's orbit. The star unleashes as much energy in six seconds as our Sun does in one year. The image, taken by a UCLA-led team with the recently installed Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the HST, also reveals a bright nebula, created by extremely massive stellar eruptions. The UCLA astronomers estimate that the star, called the Pistol Star, (for the pistol shaped nebula surrounding it), is approximately 25,000 light-years from Earth, near the center of our Milky Way galaxy. The Pistol Star is not visible to the eye, but is located in the direction of the constellation Sagittarius, hidden behind the great dust clouds along the Milky Way

  18. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  19. Highlights from HST/NICMOS

    NASA Astrophysics Data System (ADS)

    Schneider, G.

    2004-01-01

    The near-infrared camera and multi-object spectrometer (NICMOS) was installed in the Hubble Space Telescope in February 1997. After 22 months of operation the 110 kg supply of solid N 2, which cooled the NICMOS-3 HgCdTe detectors, was exhausted. The cryostat warmed up leaving the instrument in an electromechanically functional, but scientifically non-viable, passive state. Following a three year suspension of observations, an active cooling system featuring a reverse Brayton cycle micro-turbine was installed and integrated with NICMOS during HST servicing mission 3B. As a result the NICMOS detectors and cold optics have successfully been re-cooled to operationally effective temperatures and the science program has begun. We review the operating characteristics of the NICMOS instrument, its new cooling system, and its performance both in absolute terms and in comparison to its previous on-orbit incarnation. We discuss the scope and nature of the astronomical investigations that have been and are again enabled with NICMOS. Additionally, we present some of the first scientific results from programs executed with the re-cooled NICMOS.

  20. Future directions for NICMOS arrays

    NASA Technical Reports Server (NTRS)

    Thompson, R.; Rieke, Marcia J.; Young, Erick T.; Mccarthy, D.; Rasche, Robert; Blessinger, Michael; Vural, Kadri; Kleinhans, William

    1989-01-01

    The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) for the Hubble Space Telescope (HST) requires focal plane arrays of 256x256 pixels for both its cameras and its spectrometers. The new arrays, developed by the Rockwell Corporation for NICMOS, have 40 microns pixels of HgCdTe bump bonded to a switched MOSFET readout. Expected read noise and dark current for the arrays at 60 K are 30 e and 1 e/sec. respectively. The basis for these numbers is previous experience with 128x128 arrays.

  1. Space Telescopes

    DTIC Science & Technology

    2010-01-01

    extrasolar terrestrial planet detection with coronagraphs. Astrophys J Suppl Ser 167:81–99 Handy BN, Acton LW, Kankelborg CC (plus 45 authors) (1999... planets nearby a brighter star. Normal-incidence telescopes One-mirror telescope The one-mirror telescope (mostly an off-axis paraboloid; Figure 9.1) has...Leviton 1993). For a point source such as a star, a bright star can mask a weak star or a planet ; for extended sources, nearby features (the corona

  2. NICMOS Data Handbook v. 8.0

    NASA Astrophysics Data System (ADS)

    Thatte, D.; et al.

    2009-05-01

    This handbook is designed to help you manipulate, process and analyze data from the Near-Infrared Camera and MultiObject Spectrometer (NICMOS) on board the Hubble Space Telescope (HST). This is presented as an independent and self-contained document. Users who wish to find more general information about details of acquiring HST data from archive, their file formats, and general purpose software for displaying and processing these data, are referred to a companion volume, the "HST Data Handbook". The current edition of the NICMOS Data Handbook has been written after servicing mission 3b (SM3b) and the installation of the NICMOS Cooling System (NCS). Therefore, where appropriate, details are given about the instrument performance in both pre- and post- NCS cycles. After the NCS installation (Cycles 11 and beyond), NICMOS had been operating at a warmer temperature (77.15 ° K), leading to differences in calibration compared to Cycles 7/7N, as many of the instrument properties are temperature sensitive (e.g., dark current, bias behavior, quantum efficiency and hence, photometric calibration). NICMOS has been in the safe mode since September 2008 and NCS/NCS restart attempt has been deferred until after Servicing Mission 4. However, this handbook contains up-to-date information (as of March 2009), about photometric calibrations, bias-derived temperature, temperature dependent reference files, dark current and polarimetry. This handbook provides comprehensive information for treatment of the NICMOS data obtained during Cycles 7/7N, 11 and beyond. For updated information, readers are advised to consult the NICMOS Web pages on the Space Telescope Science Institute Web site for the latest information regarding NICMOS performance and calibration.

  3. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  4. A Mechanical Cryogenic Cooler for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.

  5. Space telescope history project

    NASA Astrophysics Data System (ADS)

    Historians of science from the Johns Hopkins University and the Smithsonian Institution's National Air and Space Museum have begun an historical study of the development of the Space Telescope.The Space Telescope Historical Project, designed to enhance the public's understanding of the Space Telescope, is under the direction of Robert Kargon, the Willis K. Shepard Professor and chairman of the department of history of science at Johns Hopkins, and Paul Hanle, chairman of the department of space science and exploration at the National Air and Space Museum. One of the goals of the project is to write a history of the telescope and to publish it at a time proximate to the telescope's launch, which is scheduled for early 1985.

  6. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  7. Hubble Space Telescope Program on STS-95 Supported by Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    2000-01-01

    John Glenn's historic return to space was a primary focus of the STS 95 space shuttle mission; however, the 83 science payloads aboard were the focus of the flight activities. One of the payloads, the Hubble Space Telescope Orbital System Test (HOST), was flown in the cargo bay by the NASA Goddard Space Flight Center. It served as a space flight test of upgrade components for the telescope before they are installed in the shuttle for the next Hubble Space Telescope servicing mission. One of the upgrade components is a cryogenic cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The cooling is required for low noise in the receiver's sensitive electronic instrumentation. Originally, a passive system using dry ice cooled NICMOS, but the ice leaked away and must be replaced. The active cryogenic cooler can provide the cold temperatures required for the NICMOS, but there was a concern that it would create vibrations that would affect the fine pointing accuracy of the Hubble platform.

  8. NICMOS PEERS INTO HEART OF DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Egg Nebula, also known as CRL 2688, is shown on the left as it appears in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) and on the right as it appears in infrared light with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Since infrared light is invisible to humans, the NICMOS image has been assigned colors to distinguish different wavelengths: blue corresponds to starlight reflected by dust particles, and red corresponds to heat radiation emitted by hot molecular hydrogen. Objects like the Egg Nebula are helping astronomers understand how stars like our Sun expel carbon and nitrogen -- elements crucial for life -- into space. Studies on the Egg Nebula show that these dying stars eject matter at high speeds along a preferred axis and may even have multiple jet-like outflows. The signature of the collision between this fast-moving material and the slower outflowing shells is the glow of hydrogen molecules captured in the NICMOS image. The distance between the tip of each jet is approximately 200 times the diameter of our solar system (out to Pluto's orbit). Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider, Dean Hines (University of Arizona); Raghvendra Sahai (Jet Propulsion Laboratory); NICMOS Instrument Definition Team; and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  9. Composite Space Telescope Truss

    NASA Image and Video Library

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  10. Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John; Stockman, H. S.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Next Generation Space Telescope (NGST), planned for launch in 2009, will be an 8-m class radiatively cooled infrared telescope at the Lagrange point L2. It will cover the wavelength range from 0.6 to 28 microns with cameras and spectrometers, to observe the first luminous objects after the Big Bang, and the formation, growth, clustering, and evolution of galaxies, stars, and protoplanetary clouds, leading to better understanding of our own Origins. It will seek evidence of the cosmic dark matter through its gravitational effects. With an aperture three times greater than the Hubble Space Telescope, it will provide extraordinary advances in capabilities and enable the discovery of many new phenomena. It is a joint project of the NASA, ESA, and CSA, and scientific operations will be provided by the Space Telescope Science Institute.

  11. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    replaced by COSTAR. During the second Servicing Mission instruments and other equipment were repaired and updated. The Space Telescope Imaging Spectrograph (STIS) replaced the Goddard High Resolution Spectrograph (GHRS) and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) replaced the Faint Object Spectrograph (FOS). Servicing mission 3A The original Servicing Mission 3 (initially planned for June 2000) has been split into two missions - SM3A and SM3B - due in part to its complexity, and in part to the urgent need to replace the failed gyroscopes on board. Three gyroscopes must function to meet the telescope's very precise pointing requirements. With only two new operational, observations have had to be suspended, but the telescope will remain safely in orbit until the servicing crew arrives. During this servicing mission * all six gyroscopes will be replaced, * a Fine Guidance Sensor will be replaced, * the spacecraft's computer will be replaced by a new one which will reduce the burden of flight software maintenance and significantly lower costs, * six voltage/temperature kits will be installed to protect spacecraft batteries from overcharging and overheating if the spacecraft enters safe mode, * a new S-Band Single Access Transmitter will replace a failed spare currently aboard the spacecraft, * a solid-state recorder will be installed to replace the tape recorder, * degraded telescope thermal insulation will be replaced if time allows; this insulation is necessary to control the internal temperature on HST. For the mission to be fully successful the gyroscopes, the Fine Guidance Sensor, the computer and the voltage/temperature kits must be installed. The minimum mission success criterion is that HST will have 5 operational gyros after the mission, 4 of them newly installed. The Future During SM3B (presently scheduled for 2001) the astronauts will replace the Faint Object Camera with the Advanced Camera for Surveys (ACS), install a cooling system for

  12. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  13. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineers and technicians conduct a fit check of the Hubble Space Telescope (HST) Solar Array flight article in a clean room of the Lockheed Missile and Space Company. The Solar Array is 40- feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, and provides power to the spacecraft. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. Photon Sieve Space Telescope

    DTIC Science & Technology

    2010-09-01

    a two-year effort to test and construct a membrane photon sieve for deployment from a 3U CubeSat. With a 0.3m diameter and 1m focal length this...Photon Sieve Space Telescope Geoff Andersen, Mike Dearborn and Geoff McHarg 2354 Fairchild Dr, Ste 2A31 USAF Academy, CO 80840 Contact...geoff.andersen@usafa.edu, 719-333-2829 Introduction One approach for constructing ultra-large (>20m) next-generation, space-based telescopes is to use

  16. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  17. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  18. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  19. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  20. TAUVEX - UV Space Telescope

    NASA Astrophysics Data System (ADS)

    Topaz, Jeremy; Braun, Ofer; Brosch, Noah

    1993-01-01

    The TAUVEX UV Space Telescope currently under construction by El-Op Ltd. in Israel is designed both for recording images of the sky in the UV region and to serve as the optical monitor for the SODART X-Ray Telescope being built by the Danish Space Research Institute. The two systems, together with several other experiments, will be flown on the S-R-G satellite to be launched by the CIS in 1995. TAUVEX will image a field of about 1 deg simultaneously in three spectral bands. In addition, it will record a selected object in a high-speed time-resolved mode in these bands. The concept and design of TAUVEX is described in this paper.

  1. Science operations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1982-01-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  2. Hubble Space Telescope Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  3. Origins Space Telescope

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.

  4. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  5. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  6. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    Bob O'Connell, chair of the science oversight committee for the NASA Hubble Space Telescope Wide Field Camera 3 at the University of Virginia discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  7. Why Space Telescopes Are Amazing

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster?

  8. Space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1979-01-01

    The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.

  9. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  10. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  11. NICMOS PEELS AWAY LAYERS OF DUST TO SHOW INNER REGION OF DUSTY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has penetrated layers of dust in a star-forming cloud to uncover a dense, craggy edifice of dust and gas . This region is called the Cone Nebula (NGC 2264), so named because, in ground-based images, it has a conical shape. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the nebula's inner regions. But the Cone is so dense that even the near-infared 'eyes' of NICMOS can't penetrate all the way through it. The image shows the upper 0.5 light-years of the nebula. The entire nebula is 7 light-years long. The Cone resides in a turbulent star-forming region, located 2,500 light-years away in the constellation Monoceros. Radiation from hot, young stars [located beyond the top of the image] has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. NICMOS has peeled away the outer layers of dust to reveal even denser dust. The denser regions give the nebula a more three-dimensional structure than can be seen in the visible-light picture at left, taken by the Advanced Camera for Surveys aboard the Hubble telescope. In peering through the dusty facade to the nebula's inner regions, NICMOS has unmasked several stars [yellow dots at upper right]. Astronomers don't know whether these stars are behind the dusty nebula or embedded in it. The four bright stars lined up on the left are in front of the nebula. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The NICMOS color composite image was made by combining photographs taken in J-band, H-band, and Paschen-alpha filters. The NICMOS images were taken

  12. The NICMOS Cooling SYSTEM-5 Years of Successful On-Orbit Operation

    NASA Astrophysics Data System (ADS)

    Swift, W. L.; Dolan, F. X.; Zagarola, M. V.

    2008-03-01

    The NICMOS Cooling System consists of a closed-loop turbo-Brayton cryocooler coupled with a cryogenic circulator that provides refrigeration to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The cryocooler heat is rejected to space through a capillary pumped loop connected to radiators mounted on the side of the telescope. The system was deployed and integrated with NICMOS by astronauts during STS-109 (Space Shuttle Columbia) in March 2002. It has operated nearly continuously without performance degradation since that time, maintaining NICMOS detectors at a constant temperature of 77 K. Miniature, high-speed turbomachines are used in the cryocooler and the circulator loop to provide vibration-free, long-life operation. A small centrifugal compressor and miniature turboalternator are key elements of the closed loop cryocooler. A miniature cryogenic centrifugal circulator in a separate pressurized neon loop transports heat from the NICMOS instrument to the cryocooler interface heat exchanger. This paper describes the development of the system, key operational features, ground and orbital tests prior to its deployment, and operational results during its five-year operational history on orbit.

  13. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    David Leckrone, senior project scientist for Hubble at NASA's Goddard Space Flight Center in Greenbelt, Md. discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  14. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    Heidi Hammel, senior research scientist at the Space Science Institute in Boulder, Colorado discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  15. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.

  16. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  17. Repaired and Reconfigured Hubble Space Telescope Returns to Routine

    NASA Technical Reports Server (NTRS)

    2002-01-01

    After five days of service and upgrade work on the Hubble Space Telescope (HST), the STS-109 crew photographed the giant telescope returning to its normal routine. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near- Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  18. On-Orbit Performance of the NICMOS Coronagraph

    NASA Astrophysics Data System (ADS)

    Schneider, G.

    1997-12-01

    The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope includes a coronagraph in the f/45 camera. Under the HST Guaranteed Time Observing program the NICMOS IDT will be carrying out coronagraphic imaging surveys of selected M-dwarfs, young stars and main sequence stars with IR excesses to search for brown dwarf and giant planet companions, and protoplanetary disks. The performance levels of the NICMOS coronagraph were determined during the on-orbit instrumental calibration carried out the Servicing Mission Observatory Verification phase of the mission. To obtain optimal performance in lowering both the diffracted energy in the regions surrounding bright star, by reducing the high spatial frequency components of the occulted core of the PSF, and down stream scattering a number of adjustments were made to coronagraphic operations. With those improvements in place we will be able to reduce the background from the unocculted wings of a centrally occulted stellar PSF by factors of 1E-5 near the edge of the coronagraphic hole (375 mas radius) to 1E-6 at 1" using a differential imaging strategy. Details of the calibration and performance levels of the NICMOS coronagraph and their implications for our GTO coronagraphic science programs are presented.

  19. Space Telescope Systems Description Handbook

    NASA Technical Reports Server (NTRS)

    Carter, R. E.

    1985-01-01

    The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.

  20. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Public Affairs Officer J.D. Harrington, left, monitors a press conference where NASA released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. Participants on stage from left, Bob O'Connell, chair of the science oversight committee for the NASA Hubble Space Telescope Wide Field Camera 3, James Green, the Cosmic Origins Spectrograph principal investigator, NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler, David Leckrone, senior project scientist, and Heidi Hammel, senior research scientist at the Space Science Institute in Boulder. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  1. NICMOS CAPTURES THE HEART OF OMC-1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The infrared vision of the Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is providing a dramatic new look at the beautiful Orion Nebula which contains the nearest nursery for massive stars. For comparison, Hubble's Wide Field and Planetary Camera 2 (WFPC2) image on the left shows a large part of the nebula as it appears in visible light. The heart of the giant Orion molecular cloud, OMC-1, is included in the relatively dim and featureless area inside the blue outline near the top of the image. Light from a few foreground stars seen in the WFPC2 image provides only a hint of the many other stars embedded in this dense cloud. NICMOS's infrared vision reveals a chaotic, active star birth region (as seen in the right-hand image). Here, stars and glowing interstellar dust, heated by and scattering the intense starlight, appear yellow-orange. Emission by excited hydrogen molecules appears blue. The image is oriented with north up and east to the left. The diagonal extent of the image is about 0.4 light-years. Some details are as small as the size of our solar system. The brightest object in the image is a massive young star called BN (Becklin-Neugebauer). Blue 'fingers' of molecular hydrogen emission indicate the presence of violent outflows, probably produced by a young star or stars still embedded in dust (located to the lower left, southeast, of BN). The outflowing material may also produce the crescent-shaped 'bow shock' on the edge of a dark feature north of BN and the two bright 'arcs' south of BN. The detection of several sets of closely spaced double stars in these observations further demonstrates NICMOS's ability to see fine details not possible from ground-based telescopes. Credits: NICMOS image -- Rodger Thompson, Marcia Rieke, Glenn Schneider, Susan Stolovy (University of Arizona); Edwin Erickson (SETI Institute/Ames Research Center); David Axon (STScI); and NASA WFPC2 image -- C. Robert O'Dell, Shui Kwan Wong (Rice

  2. The STScI NICMOS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Bushouse, H.; Skinner, C.; MacKenty, J.; Axon, D.; Stobie, E.

    1997-12-01

    Reduction and calibration of data from the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has presented new challenges, as well as opportunities, for the pipeline processing systems at the Space Telescope Science Institute (STScI), which have resulted in many features that are new and different from what has been employed for previous Hubble Space Telescope (HST) instruments. The biggest challenge is the need to handle, as a group, multiple exposures associated with a single target. Associated images are required for several reasons, including the need to measure the near-infrared thermal background signal, cosmic-ray rejection via anticoincidence detection, and mosaicing of large angular-sized targets. STScI has taken advantage of the opportunities presented by the creation of a new pipeline system to make other changes and advancements as well. First, all reduction and analysis software for NICMOS is written in the ANSI C language, and uses C-to-IRAF interface libraries to allow access to IRAF data I/O and analysis routines. Second, the run-time file format for all NICMOS data reduction and analysis is FITS format, with extensive use of FITS image and table extensions. Two levels of physical packaging of NICMOS data are employed. Images produced by multiple non-destructive detector readouts during the course of a single exposure are packaged together within one FITS file. Second, error estimate and data quality flag images associated with each science image are also contained within the same FITS file. A third, logical, grouping of images is used to relate multiple observations of a single target. The data reduction and calibration process is divided into two distinct phases. The first phase, accomplished by the program "calnica", is used to perform standard instrumental calibration (e.g. dark current subtraction, flat-fielding) for individual exposures. The second phase, "calnicb", performs background subtraction and image combination for associated

  3. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    U.S. Senator Barbara A. Mikulski, D-Md. delivers her remarks during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  4. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  5. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Administrator Charles F. Bolden delivers his remarks during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  6. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler listens to a reporters question during a press conference where NASA released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  7. Astrometry with Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Benedict, G.; Murdin, P.

    2000-11-01

    In 1990 NASA launched the HUBBLE SPACE TELESCOPE. In addition to cameras and spectrographs usable from the far ultraviolet to the near-infrared, the observatory contains three white-light INTERFEROMETERS. As part of engineering and science support their primary task was telescope guiding; to position and hold science targets within the science instrument apertures with tolerances approaching 0.1'...

  8. Space Telescope moving target tracking

    NASA Technical Reports Server (NTRS)

    Strikwerda, T. E.; Strohbehn, K.; Fowler, K. R.; Skillman, D. R.

    1985-01-01

    This paper formulates a Space Telescope (ST) moving target tracking algorithm and evaluates a practical implementation. The algorithm is shown to be satisfactory for tracking such moving objects as the moons of Mars.

  9. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    U.S. Senator Barbara A. Mikulski, D-Md., left foreground, NASA Administrator Charles F. Bolden, center, and NASA Deputy Administrator Lori Garver, right, along with members of the STS-125 and STS-31 space shuttle crews listen during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  10. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a cutaway illustration of the Hubble Space Telescope (HST) with callouts. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. Telescoping Space-Station Modules

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1986-01-01

    New telescoping-space-station design involves module within a module. After being carried to orbit within payload bay of Space Shuttle orbiter, outer module telescopically deployed to achieve nearly twice as much usable space-station volume per Space Shuttle launch. Closed-loop or "race-track" space-station configurations possible with this concept and provide additional benefits. One benefit involves making one of modules double-walled haven safe from debris, radiation, and like. Module accessible from either end, and readily available to all positions in space station. Concept also provides flexibility in methods in which Space Shuttle orbiter docked or berthed with space station and decrease chances of damage.

  14. Telescoping Space-Station Modules

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1986-01-01

    New telescoping-space-station design involves module within a module. After being carried to orbit within payload bay of Space Shuttle orbiter, outer module telescopically deployed to achieve nearly twice as much usable space-station volume per Space Shuttle launch. Closed-loop or "race-track" space-station configurations possible with this concept and provide additional benefits. One benefit involves making one of modules double-walled haven safe from debris, radiation, and like. Module accessible from either end, and readily available to all positions in space station. Concept also provides flexibility in methods in which Space Shuttle orbiter docked or berthed with space station and decrease chances of damage.

  15. NICMOS flight FPA qualification program

    NASA Astrophysics Data System (ADS)

    Markum, Arvel D.; Kormos, Karen A.; Edwards, Jere B.

    1993-10-01

    A comprehensive program has been developed for the production of focal plane assemblies (FPA) for use on the University of Arizona Near Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument which is to be installed in the Hubble Space Telescope (HST). This paper describes the current schedule, tests to be performed, test conditions and unique test facilities of the flight FPA qualification test program. This test series is intended to validate design, assembly, performance and reliability of flight qualified FPAs. Also described are the design features, performance characteristics and test results obtained with prototype FPAs used as engineering evaluation units prior to committing the flight qualification units to manufacture. The qualification tests will demonstrate performance margins over and above requirements under operating environmental conditions. Included in the qualification tests are electrical, mechanical and thermal tests. Random vibration tests and mechanical shock tests will be performed at 1.5 times the load level specified for acceptance requirements. The random vibration tests simulate launch conditions and will induce stresses to uncover any potential structural deficiencies that might exist. The mechanical shock tests will simulate potential impacts incurred as a result of handling or transport. The qualification test program is intended to maximize confidence in the quality and integrity of the flight FPAs.

  16. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew

    2008-01-01

    The James Webb Space Telescope is being developed by NASA in partnership with the European and Canadian space agencies for launch during 2013. This mission is expected to carry the legacy of discovery of the Hubble Space Telescope through the next decade, and is designed with unique capability to address key questions about formation of the first galaxies after the Big Bang, their subsequelet volution, and the formation of stars and planets within our own galaxy. This talk will present an overview of the mission science objectives and the status of the mission development.

  17. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    U.S. Senator Barbara A. Mikulski, D-Md., left, NASA Administrator Charles F. Bolden, center, and NASA Deputy Administrator Lori Garver listen during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  18. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler speaks at the podium as Sen. Barbara A. Mikulski, D-Md., left, listens during a press conference where NASA unveiled new images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  19. NICMOS Spectrophotometry and Models for a Stars

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Cohen, Martin

    2008-09-01

    Absolute flux distributions for eight stars are well measured from 0.8 to 2.5 μm with NICMOS grism spectrophotometry at a resolution of R ~ 100 and an accuracy of 1-2%. These spectral energy distributions (SEDs) are fitted with Castelli & Kurucz model atmospheres, and the results are compared with the Cohen-Walker-Witteborn (CWW) template models for the same stars. In some cases, the T eff, log g, and log z parameters of the best-fitting model differ by up to 1000 K from the earlier CWW model. However, differences in the continua of the modeled infrared flux distributions from 0.4 to 40 μm are always less than the quoted CWW uncertainty of 5% because of compensating changes in the measured extinction. At wavelengths longward of the 2.5 μm NICMOS limit, uncertainties still approach 5%, because A star models are not yet perfect. All of these A stars lie in the James Webb Space Telescope (JWST) continuous viewing zone and will be important absolute flux standards for the 0.8-30 μm JWST wavelength range.

  20. HST STIS & NICMOS Coronagraphy of Four Debris Disks around Young Solar Analogs

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Choquet, Elodie; Greenbaum, Alexandra; Ren, Bin; Debes, John H.; Mazoyer, Johan; Ygouf, Marie; Pueyo, Laurent; Aguilar, Jonathan; Chen, Christine; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Soummer, Remi; Stark, Chris; Wolff, Schuyler

    2016-01-01

    We present new deep Hubble Space Telescope STIS coronagraphy of four debris disks around nearby young solar type stars (<40 Myr, G2-F3), corresponding to the age at which terrestrial planet formation was being completed in our own solar system. The four disks were first seen by our team in a reprocessing of the NICMOS archive using modern principal component analysis PSF subtraction algorithms. Our new STIS observations surpass the earlier NICMOS imagery in angular resolution, contrast, and sensitivity to extended diffuse scattered light, enabling a much clearer view of the diverse disk structures and asymmetries. Careful forward modeling of the PSF-subtraction process allows us to accurately assess the surface brightnesses in scattered light. Visible to near-infrared colors from HST STIS and NICMOS can constrain the dust particle properties. Analysis and modeling of these young planetary systems are ongoing.

  1. Space Infrared Telescope Facility (SIRTF)

    NASA Astrophysics Data System (ADS)

    Fanson, James L.; Fazio, Giovanni G.; Houck, James R.; Kelly, Tim; Rieke, George H.; Tenerelli, Domenick J.; Whitten, Milt

    1998-08-01

    This paper describes the design of the space IR telescope Facility (SIRTF) as the project enters the detailed design phase. SIRTF is the fourth of NASA's Great Observatories, and is scheduled for launch in December 2001. SIRTF provides background limited imaging and spectroscopy covering the spectral range from 3 to 180 micrometers , complementing the capabilities of the other great observatories - the Hubble Space Telescope (HST), the Advanced X-ray Astrophysics Facility, and the Compton Gamma Ray Observatory. SIRTF will be the first mission to combine the high sensitivity achievable forma cryogenic space telescope with the imaging and spectroscopic power of the new generation of IR detector arrays. The scientific capabilities of this combination are so great that SIRTF was designated the highest priority major mission for all of US astronomy in the 1990s.

  2. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  3. James Webb Space Telescope: large deployable cryogenic telescope in space

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Atkinson, Charles; Clampin, Mark; Feinberg, Lee D.

    2012-01-01

    The James Webb Space Telescope (JWST) is an infrared space telescope designed to explore four major science themes: first light and reionization, the assembly of galaxies, the birth of stars and protoplanetary systems, and planetary systems and origins of life. JWST is a segmented architecture telescope with an aperture of 6.6 m. It will operate at cryogenic temperature (40 K), achieved via passive cooling, in an orbit about the Earth-Sun second Lagrange point (L2). Passive cooling is facilitated by means of a large sunshield that provides thermal isolation and protection from direct illumination from the Sun. The large size of the telescope and spacecraft systems require that they are stowed for launch in a configuration that fits the Ariane 5 fairing, and then deployed after launch. Routine wavefront sensing and control measurements are used to achieve phasing of the segmented primary mirror and initial alignment of the telescope. A suite of instruments will provide the capability to observe over a spectral range from 0.6- to 27-μm wavelengths with imaging and spectroscopic configurations. An overview is presented of the architecture and selected optical design features of JWST are described.

  4. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  5. Hubble Space Telescope prescription retrieval.

    PubMed

    Redding, D; Dumont, P; Yu, J

    1993-04-01

    Prescription retrieval is a technique for directly estimating optical prescription parameters from images. We apply it to estimate the value of the Hubble Space Telescope primary mirror conic constant. Our results agree with other studies that examined primary-mirror test fixtures and results. In addition they show that small aberrations exist on the planetary-camera repeater optics.

  6. James Webb Space Telescope Calibration

    NASA Astrophysics Data System (ADS)

    Mather, John C.

    2010-07-01

    The James Webb Space Telescope (JWST) is the planned successor to the magnificent Hubble Space Telescope and the smaller but remarkably powerful Spitzer Space Telescope. It will extend the Hubble and Spitzer science in many areas, ranging from the first stars and galaxies, to the current formation of stars and planets, and the evolution of planetary systems to conditions capable of supporting life. The JWST is a NASA-led project in partnership with the European and Canadian space agencies. The deployable cooled 6.5 meter telescope will cover the wavelength range from 0.6 to 28 μm with imaging and spectroscopy. With diffraction-limited image < 10 μm, the JWST will be the most powerful space observatory yet constructed. To enable the huge telescope to fit into the rocket fairing, it is very carefully folded up for launch. It has a primary mirror with 18 segments, each one able to be positioned with 6 degrees of freedom and a radius of curvature adjustment. While it is quite well protected from thermal variations, it is nevertheless expected that the JWST primary mirror may be readjusted on the order of every two weeks. This design enables a primary mirror larger than the rocket fairing, but also leads to very interesting calibration issues. In the years since JWST was conceived, the potential scientific benefits of greatly improved calibration and stability have become apparent. Now the challenge is to find ways to achieve those improvements with hardware that has already been designed. In this paper, I outline the basic issues and some strategies to pursue.

  7. Photon Sieve Space Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dearborn, M.; Hcharg, G.

    2010-09-01

    We are investigating new technologies for creating ultra-large apertures (>20m) for space-based imagery. Our approach has been to create diffractive primaries in flat membranes deployed from compact payloads. These structures are attractive in that they are much simpler to fabricate, launch and deploy compared to conventional three-dimensional optics. In this case the flat focusing element is a photon sieve which consists of a large number of holes in an otherwise opaque substrate. A photon sieve is essentially a large number of holes located according to an underlying Fresnel Zone Plate (FZP) geometry. The advantages over the FZP are that there are no support struts which lead to diffraction spikes in the far-field and non-uniform tension which can cause wrinkling of the substrate. Furthermore, with modifications in hole size and distribution we can achieve improved resolution and contrast over conventional optics. The trade-offs in using diffractive optics are the large amounts of dispersion and decreased efficiency. We present both theoretical and experimental results from small-scale prototypes. Several key solutions to issues of limited bandwidth and efficiency have been addressed. Along with these we have studied the materials aspects in order to optimize performance and achieve a scalable solution to an on-orbit demonstrator. Our current efforts are being directed towards an on-orbit 1m solar observatory demonstration deployed from a CubeSat bus.

  8. The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Bely, Pierre-Yves (Editor); Burrows,, Christopher J. (Editor); Illingworth,, Garth D.

    1989-01-01

    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the

  9. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  10. James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2017-09-27

    The James Webb Space Telescope mirrors have completed deep-freeze tests and are removed from the X-ray and Cryogenic test Facility at Marshall Space Flight Center. To read more go to: www.nasa.gov/topics/technology/features/webb-mirror-cryo.... Credit: Emmett Given, NASA Marshall NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  12. Hubble Space Telescope systems engineering

    NASA Technical Reports Server (NTRS)

    Wojtalik, F. S.

    1988-01-01

    The role of systems engineering in the Hubble Space Telescope (HST) development program at NASA Marshall is reviewed. The scientific objectives and overall characteristics of the HST are recalled, and particular attention is given to the early identification and correction of problems in the optical system, the pointing-control system (maneuvering and fine guidance), the rate-gyro assembly, reaction-wheel isolation, the battery reconditioning circuit, and optical cleanliness.

  13. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  14. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  15. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  16. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  17. Detectors for the space telescope

    NASA Technical Reports Server (NTRS)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  18. NICMOS Calibration Pipeline---A Collaborative Project Between IDT and STScI

    NASA Astrophysics Data System (ADS)

    Bushouse, H.; MacKenty, J.; Skinner, C.; Axon, D.; Stobie, E.; Schneider, G.

    The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a second-generation instrument to be installed on the Hubble Space Telescope (HST) during the second servicing mission in early 1997. The Space Telescope Science Institute (STScI) and the NICMOS Investigation Definition Team (IDT) are collaborating on the development of a data calibration pipeline where not only algorithms, but also code will be shared. STScI is developing its pipeline in the IRAF environment, while the IDT pipeline is being developed in an IDL environment. Code common to both environments is written in ANSI C. We describe the methodology used for this project, as well as hurdles overcome in making it work.

  19. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; hide

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  20. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; Quigley, Robert; Jetten, Mark; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  1. Spitzer Space Telescope mission design

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.; Garcia, Mark D.; Bonfiglio, Eugene; Long, Stacia M.

    2004-01-01

    This paper gives a description of the mission design, launch, orbit, and navigation results for the Spitzer space telescope mission. The Spitzer telescope was launched by the Delta II Heavy launch vehicle into a heliocentric Earth trailing orbit. This orbit is flown for the first time and will be used by several future astronomical missions such as Kepler, SIM, and LISA. This paper describes the launch strategy for a winter versus a summer launch and how it affects communications. It also describes how the solar orbit affects the design and operations of the Observatory. It describes the actual launch timeline, launch vehicle flight performance, and the long term behavior of the as flown orbit. It also provides the orbit knowledge from in-flight navigation data.

  2. James Webb Space Telescope Mirror Halfway Complete

    NASA Image and Video Library

    2017-09-28

    Inside NASA's Goddard Space Flight Center's massive clean room in Greenbelt, Maryland, the ninth flight mirror was installed onto the telescope structure with a robotic arm. This marks the halfway completion point for the James Webb Space Telescope's segmented primary mirror. Nine of the James Webb Space Telescope's 18 primary flight mirrors have been installed on the telescope structure. This marks the halfway point in the James Webb Space Telescope's primary mirror installation. Credit: NASA's Goddard Space Flight Center/Chris Gunn Read more: go.nasa.gov/1kqK6fW

  3. Hubble Space Telescope Servicing begins.

    NASA Astrophysics Data System (ADS)

    1993-12-01

    The day's work began when astronauts Story Musgrave and Jeff Hoffman stepped out into the cargo bay at 9h41 pm CST, Saturday (4h41 am CET, Sunday). They immediately set to work replacing two gyroscope assemblies, known as the Rate Sensor Units, two associated electronics boxes, called Electronic Control Units, and eight electrical fuse plugs. The work was completed ahead of schedule, but the astronauts had trouble closing the doors of the compartment housing the gyros and took over an hour to get them shut. The astronauts also prepared equipment for the replacement of the solar arrays. "The feeling down here is one of great satisfaction for a tremendous job today" said spacecraft communicator Greg Harbaugh in mission control. "We are very proud of the work that you all did and we are very confident in the continued success of the mission. Everything is going great and tomorrow is going to be another great day". ESA astronaut Claude Nicollier played a vital role during the spacewalk moving the astronauts and their equipment around the cargo bay with the shuttle's robot arm. The Hubble Space Telescope servicing mission features more robot arm operations than any other shuttle flight. The telescope's left-hand solar array was rolled up successfully at 6h24 am CST (1h24 pm CET). The 11-tonne observatory was rotated 180 degrees on its turntable before commands were sent to retract the second array at 8h23 am CST (3h23 pm CET). The crew stopped the retraction when it appeared the system may have jammed. Mission control instructed the crew to jettison the array, a procedure that they have trained for. Tomorrow astronauts Kathy Thornton and Tom Akers will make a six-hour spacewalk to jettison the troublesome wing, store the other in the cargo bay, and install two new panels supplied by ESA. The second set of arrays feature thermal shields and a modified thermal compensation system to prevent the flexing that affected the first pair. The Hubble Space Telescope was plucked

  4. Infrastructure for large space telescopes

    NASA Astrophysics Data System (ADS)

    MacEwen, Howard A.; Lillie, Charles F.

    2016-10-01

    It is generally recognized (e.g., in the National Aeronautics and Space Administration response to recent congressional appropriations) that future space observatories must be serviceable, even if they are orbiting in deep space (e.g., around the Sun-Earth libration point, SEL2). On the basis of this legislation, we believe that budgetary considerations throughout the foreseeable future will require that large, long-lived astrophysics missions must be designed as evolvable semipermanent observatories that will be serviced using an operational, in-space infrastructure. We believe that the development of this infrastructure will include the design and development of a small to mid-sized servicing vehicle (MiniServ) as a key element of an affordable infrastructure for in-space assembly and servicing of future space vehicles. This can be accomplished by the adaptation of technology developed over the past half-century into a vehicle approximately the size of the ascent stage of the Apollo Lunar Module to provide some of the servicing capabilities that will be needed by very large telescopes located in deep space in the near future (2020s and 2030s). We specifically address the need for a detailed study of these servicing requirements and the current proposals for using presently available technologies to provide the appropriate infrastructure.

  5. Space Telescopes and Orbital Debris

    NASA Astrophysics Data System (ADS)

    Seitzer, Patrick

    2009-01-01

    Almost 12,000 artificial objects orbiting the Earth are currently in the public catalog of orbital elements maintained by the USAF. Only a small fraction of them are operational satellites. The remainder is satellites whose missions have ended, rocket bodies, and parts and debris from larger parent objects. And the catalog only contains the biggest and brightest of the objects in orbit. The Low Earth Orbit (LEO) regime where most of this population concentrates is also a regime of incredible interest to astronomers, since it is where flagship missions such as the Hubble Space Telescope and other Great Observatories operate. I'll review the current state of knowledge of the orbital debris population, how it has grown with time, and how this environment could affect current and future space telescopes. There are mitigation measures which many spacecraft operators have adopted which can control the growth of the debris population. Orbital debris research at the University of Michigan is funded by NASA's Orbital Debris Program Office, Johnson Space Center, Houston, Texas.

  6. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  7. Cooling the Origins Space Telescope

    NASA Technical Reports Server (NTRS)

    Dipirro, M.; Canavan, E.; Fantano, L.

    2017-01-01

    The NASA Astrophysics Division has commissioned 4 studies for consideration by the 2020 Decadal Survey to be the next flagship mission following WFIRST (Wide Field Infrared Survey Telescope). One of the four studies is the Origins Space Telescope (OST), which will cover wavelengths from 6 microns to 600 microns. To perform at the level of the zodiacal, galactic, and cosmic background, the telescope must be cooled to 4 degrees Kelvin. 4 degrees Kelvin multi-stage mechanical cryocoolers will be employed along with a multilayer sunshield/thermal shield to achieve this temperature with a manageable parasitic heat load. Current state-of-the-art cryocoolers can achieve close to 4 degrees Kelvin, providing about 50 megawatts of cooling at 4 degrees Kelvin with an input power of 500 watts. Multiple coolers at this power level will be used in parallel. These coolers also provide extra cooling power at intermediate temperature stages of 15-20 degrees Kelvin and 50-70 degrees Kelvin . This upper stage cooling will be used to limit the heat conducted to 4 degrees Kelvin . The multi-layer sunshield will limit the radiated thermal energy to the 4 degrees Kelvin volume. This paper will describe the architecture of the cryogenic system for OST along with preliminary thermal models.

  8. Hubble Space Telescope battery background

    NASA Technical Reports Server (NTRS)

    Standlee, Dan

    1991-01-01

    The following topics are presented in viewgraph form and include the following: the MSFC Hubble Space Telescope (HST) Nickel-Hydrogen Battery Contract; HST battery design requirements; HST nickel-hydrogen battery development; HST nickel-hydrogen battery module; HST NiH2 battery module hardware; pressure vessel design; HST NiH2 cell design; offset non-opposing vs. rabbit ear cell; HST NiH2 specified capacity; HST NiH2 battery design; and HST NiH2 module design.

  9. Hubble Space Telescope battery background

    NASA Technical Reports Server (NTRS)

    Standlee, Dan

    1991-01-01

    The following topics are presented in viewgraph form and include the following: the MSFC Hubble Space Telescope (HST) Nickel-Hydrogen Battery Contract; HST battery design requirements; HST nickel-hydrogen battery development; HST nickel-hydrogen battery module; HST NiH2 battery module hardware; pressure vessel design; HST NiH2 cell design; offset non-opposing vs. rabbit ear cell; HST NiH2 specified capacity; HST NiH2 battery design; and HST NiH2 module design.

  10. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In this paper, the status and capabilities of the observatory and instruments in the context of the major scientific goals are reviewed.

  11. Origins Space Telescope: Study Plan

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  12. Far Ultraviolot Space Telescope (FAUST)

    NASA Technical Reports Server (NTRS)

    Bowyer, S.

    1988-01-01

    The Far Ultraviolet Space Telescope is a compact, wide field-of-view, far ultraviolet instrument designed for observations of extended and point sources of astronomical interest. It was originally used in sounding rocket work by both French and American investigators. The instrument was modified for flight on the space shuttle and flew on the Spacelab 1 mission as a joint effort between the Laboratoire d'Astronomie Spatiale and the University of California, Berkeley. The prime experiment objective of this telescope on the Atmospheric Laboratory Applications and Science (ATLAS 1) NASA mission is to observe faint astronomical sources in the far ultraviolet with sensitivities far higher than previously available. The experiment will cover the 1300 to 1800 A band, which is inaccessible to observers on earth. The observing program during the mission consists of obtaining deep sky images during spacecraft nighttime. The targets will include hot stars and nebulae in our own galaxy, faint diffuse galactic features similar to the cirrus clouds seen by the Infrared Astronomical Satellite (IRAS), large nearby galaxies, nearby clusters of galaxies, and objects of cosmological interest such as quasars and the diffuse far ultraviolet background.

  13. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  14. James Webb Space Telescope Mirror Halfway Complete

    NASA Image and Video Library

    2017-09-28

    Inside NASA's Goddard Space Flight Center's massive clean room in Greenbelt, Maryland, the ninth flight mirror was installed onto the telescope structure with a robotic arm. This marks the halfway completion point for the James Webb Space Telescope's segmented primary mirror. This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA's Goddard Space Flight Center/Chris Gunn Read more: go.nasa.gov/1kqK6fW

  15. Origins Space Telescope: Community Participation

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. This poster will outline the ways in which the astronomical community can participate in the STDT activities and a summary of tools that are currently available or are planned for the community during the study. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.

  16. James Webb Space Telescope Mirror Halfway Complete

    NASA Image and Video Library

    2017-09-28

    Inside NASA's Goddard Space Flight Center's massive clean room in Greenbelt, Maryland, the ninth flight mirror was installed onto the telescope structure with a robotic arm. This marks the halfway completion point for the James Webb Space Telescope's segmented primary mirror. Engineers worked tirelessly to install the ninth primary flight mirror onto the telescope structure. Credit: NASA's Goddard Space Flight Center/Chris Gunn Read more: go.nasa.gov/1kqK6fW

  17. NICMOS Defocus parameter test

    NASA Astrophysics Data System (ADS)

    Dashevsky, Ilana

    2007-07-01

    This proposal tests the new NICMOS non-nominal focus positions, which are implemented in the front-end systems and are specified in the Phase II using the CAMERA-FOCUS=DEFOCUS Optional Parameter. The targets from Proposals 9832 and 11063 are used in this Proposal. The GO Proposal 9832 is an example of how GOs may use the new non-nominal focus implementation for detector 3. Proposal 11063 is the NICMOS focus monitor, which will be used to verify the non-nominal focus for all 3 detectors.

  18. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  19. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  20. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    John Mather, James Webb Space Telescope senior project scientist, speaks in front of the mirrors of the James Webb Space Telescope during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  1. LAST: Laser Array Space Telescope

    NASA Astrophysics Data System (ADS)

    Madajian, Jonathan A.; Cohen, Alexander; Hwang, Rebecca; Bishman, Chase; Reyes, Rachel; Bautista, Miguel; Tsukamoto, Ryan; Pon, Brandon; Vanmali, Dylan; Xu, Xu; Rommelfanger, Nicholas; Ho, Ian; Lin, Lucas; Prazak, Michael; Ruehl, Patrick; Brashears, Travis; Rupert, Nic; Lubin, Philip

    2016-09-01

    A phased array operates by modulating the phases of several signals, allowing electronic control over the locations that these signals interfere constructively or destructively, allowing the beam to be steered. A space-based laser phased array, called the Directed Energy System for Targeting of Asteroids and exploRation (DE-STAR) has previously been posited by our group for a number of uses, from planetary defense to relativistic propulsion of small probes. Here we propose using the same basic system topology as a receiver rather than a transmitter. All of the components in the system, excluding the laser, are bidirectional. Rather than each elements transmitting laser light, they would instead receive light, which will then be combined to create an interference pattern that can be imaged onto a focal plane. The Laser Array Space Telescope (LAST) uses most of the same components and metrology as DE-STAR and could thus be integrated into a singular system, allowing both transmit and receive modes. This paper discusses the possible applications of this system from laser communications to astrophysics.

  2. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  3. Hubble Space Telescope Deploy, Eastern Cuba, Haiti

    NASA Image and Video Library

    1990-04-29

    A close up deploy view of the Hubble Space Telescope on the end of the space shuttle remote manipulator system (RMS) with Eastern Cuba, (20.0N, 74.0W) seen on the left side of the telescope and northern Haiti seen on the right side of the telescope. The light colored blue feature in the water north of Haiti is the shallow waters of the Caicos Bank.

  4. Flight Test Results for the NICMOS Cryocooler

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; McCormick, J. A.; Nellis, G. F.; Sixsmith, H.; Swift, W. L.

    1999-01-01

    In October 1998 a mechanical cryocooler and cryogenic circulator loop were flown on NASA's STS-95 as part of the Hubble Orbital System Test (HOST). The system will be installed on the Hubble Space Telescope (HST) during Service Mission #3 in 2000 and will provide cooling to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It will extend the useful life of that instrument by 5 to 10 years. This was the first successful space demonstration of a turbobrayton cryocooler. The cooler is a single stage reverse Brayton type, using low-vibration high-speed miniature turbomachines for the compression and expansion functions. A miniature centrifugal cryogenic circulator is used to deliver refrigerated neon to the instrument. During the mission, the cooler operated without anomalies for approximately 185 hours over a range of conditions to verify its mechanical, thermodynamic and control functions. The cryocooler satisfied all mission objectives including maximum cooldown to near-design operating conditions, warm and cold starts and stops, operation at near-design temperatures, and demonstration of long-term temperature stability. This paper presents a description of the cooler and its operation during the HOST flight.

  5. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  6. The Hubble Space Telescope (HST) Transportation Operation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Ready for transportation to the Kennedy Space Center, the Hubble Space Telescope (HST) is pictured onboard the strongback dolly at the Vertical Processing Facility (VPF) at the Lockheed assembly plant upon completion of final testing and verification.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-10-10

    Ready for transportation to the Kennedy Space Center, the Hubble Space Telescope (HST) is pictured onboard the strongback dolly at the Vertical Processing Facility (VPF) at the Lockheed assembly plant upon completion of final testing and verification.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-10-04

    The Hubble Space Telescope (HST) being transferred from the Vertical Assembly Test Area (VATA) to the High Bay at the Lockheed assembly plant in preparation for transport to the Kennedy Space Center (KSC) after final testing and verification.

  9. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  10. Parallaxes with Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; McArthur, B. E.; Harrison, T. E.; Lee, J.; Slesnick, C. L.; HST Astrometry Science Team

    2001-11-01

    We report on parallaxes for astrophysically interesting stars obtained with the Fine Guidance Sensor interferometer on Hubble Space Telescope. These objects include the central star of the planetary nebula NGC 6853, the cataclysmic variable TV Col, and the distance scale calibrators RR Lyr and delta Cep. We will discuss our considerable efforts to characterize the reference stars associated with each prime target, necessary to effect the correction from relative to absolute parallax. These targets were originally chosen by L. W. Fredrick in 1980. We compare these and our past results with all past, non-HST determinations, including those from HIPPARCOS for our brighter targets. The HST Astrometry Sceince Team consists of W. H. Jefferys , P.I., G. F. Benedict, deputy P.I., B. E. McArthur, P. J. Shelus, R. Duncombe (UTexas), E. Nelan (STScI), W. van Altena and J. Lee (Yale), O. Franz and L. Wasserman (Lowell Obs.), and L. Fredrick (UVirginia). We gratefully acknowledge the support of NASA grant NAG5-1603 and our many supporters at STScI and Goddard Spaceflight Center. We thank R. Patterson, J. Rhee, and S. Majewski (UVirginia) and T. Montemayor (UTexas) for assistance with reference star photometry.

  11. Beyond the Hubble Space Telescope: Early Development of the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert W.; Patrick McCray, W.

    In this paper we investigate the early history of what was at first called the Next Generation Space Telescope, later to be renamed the James Webb Space Telescope. We argue that the initial ideas for such a Next Generation Space Telescope were developed in the context of the planning for a successor to the Hubble Space Telescope. Much the most important group of astronomers and engineers examining such a successor was based at the Space Telescope Science Institute in Baltimore. By the late 1980s, they had fashioned concepts for a successor that would work in optical, ultraviolet and infrared wavelengths, concepts that would later be regarded as politically unrealistic given the costs associated with them. We also explore how the fortunes of the planned Next Generation Space Telescope were intimately linked to that of its "parent," the Hubble Space Telescope.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-01

    This photograph shows the Hubble Space Telescope (HST) installed in the cargo bay of the Space Shuttle Orbiter Discovery for the STS-31 Mission at The Kennedy Space Center prior to launch on April 24, 1990. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1982-01-01

    Prior to installation, technicians inspect the primary mirror of the Hubble Space Telescope (HST). The first in a series of great observatories launched by NASA, the HST was designed to last approximately 15 years. The Marshall Space Flight Center had management responsibility for the development of the HST and played a major role in ground tests and orbital checkout of the telescope. The HST was launched April 24, 1990 aboard Space Shuttle Discovery's STS-31 mission.

  15. Hubble Space Telescope nears Shuttle Endeavour

    NASA Image and Video Library

    1993-12-04

    STS061-73-040 (4 Dec 1993) --- Backdropped against the blackness of space, the Hubble Space Telescope (HST) nears the Space Shuttle Endeavour. With the aid of the Remote Manipulator System (RMS), the STS-61 crew members later grappled the spacecraft and berthed it in the cargo bay for five-days of servicing chores by four space walkers.

  16. NICMOS focus monitor

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This proposal is used to determine and monitor the optimal focus and tilt settings for all three NICMOS cameras. It is derived from SM2/NIC 7041, but is structurally quite a bit different. This proposal is built to run NIC1/2 focus sweeps on a weekly basis, and NIC3 focus sweeps twice a week during SMOV {following the "interim" runs of the 7150}. 7043 will run for as long as it is deemed necessary to keep track of the camera focii and to monitor the dewar anomaly. After the discussion on 20/3/96, this proposal is written to run 4 complete 1-week iterations starting 3 days after the last run of the 7150 {NICMOS COARSE OPTICAL ALIGNMENT, PART 2}.

  17. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    NASA Public Affairs Officer Stephanie Schierholz, left, moderates a question and answer session with NASA Administrator Charles Bolden, second from left, and James Webb Space Telescope Senior Project Scientist John Mather, right, during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  18. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    NASA Administrator Charles Bolden, left, and James Webb Space Telescope Senior Project Scientist John Mather, right, are seen as they answer questions during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  19. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    NASA Administrator Charles Bolden is seen in front of the mirrors of the James Webb Space Telescope as he speaks during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  20. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    NASA Administrator Charles Bolden speaks about the James Webb Space Telescope during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  1. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    The mirrors of the James Webb Space Telescope are seen as senior project scientist John Mather speaks during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  2. James Webb Space Telescope Media Day

    NASA Image and Video Library

    2016-11-02

    Christopher Scolese, director of NASA's Goddard Spaceflight Center delivers opening remarks in front of the mirrors of the James Webb Space Telescope during a media event on Wednesday, Nov. 2, 2016 at NASA's Goddard Spaceflight Center in Greenbelt, Md. The James Webb Space Telescope, the world's largest and most complex space telescope, will study every phase in the history of the universe; from the first luminous glows of the Big Bang, to the formation of planetary systems capable of supporting life, to the evolution of our own solar system. Photo Credit: (NASA/Joel Kowsky)

  3. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  4. NICMOS OBSERVATIONS OF THE TRANSITING HOT JUPITER XO-1b

    SciTech Connect

    Burke, Christopher J.; McCullough, P. R.; Bergeron, L. E.; Long, Douglas; Gilliland, Ronald L.; Nelan, Edmund P.; Valenti, Jeff A.; Johns-Krull, Christopher M.; Janes, Kenneth A.

    2010-08-20

    We refine the physical parameters of the transiting hot Jupiter planet XO-1b and its stellar host XO-1 using Hubble Space Telescope (HST) NICMOS observations. XO-1b has a radius R{sub p} = 1.21 {+-} 0.03 R{sub J} , and XO-1 has a radius R{sub *} = 0.94 {+-} 0.02 R{sub sun}, where the uncertainty in the mass of XO-1 dominates the uncertainty of R{sub p} and R{sub *}. There are no significant differences in the XO-1 system properties between these broadband NIR observations and previous determinations based upon ground-based optical observations. We measure two transit timings from these observations with 9 s and 15 s precision. As a residual to a linear ephemeris model, there is a 2.0{sigma} timing difference between the two HST visits that are separated by three transit events (11.8 days). These two transit timings and additional timings from the literature are sufficient to rule out the presence of an Earth mass planet orbiting in 2:1 mean motion resonance coplanar with XO-1b. We identify and correct for poorly understood 'gain-like' variations present in NICMOS time series data. This correction reduces the effective noise in time series photometry by a factor of 2 for the case of XO-1.

  5. Analysis of space telescope data collection systems

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1984-01-01

    The Multiple Access (MA) communication link of the Space Telescope (ST) is described. An expected performance bit error rate is presented. The historical perspective and rationale behind the ESTL space shuttle end-to-end tests are given. The concatenated coding scheme using a convolutional encoder for the outer coder is developed. The ESTL end-to-end tests on the space shuttle communication link are described. Most important is how a concatenated coding system will perform. This is a go-no-go system with respect to received signal-to-noise ratio. A discussion of the verification requirements and Specification document is presented, and those sections that apply to Space Telescope data and communications system are discussed. The Space Telescope System consists of the Space Telescope Orbiting Observatory (ST), the Space Telescope Science Institute, and the Space Telescope Operation Control Center. The MA system consists of the ST, the return link from the ST via the Tracking and Delay Relay Satellite system to White Sands, and from White Sands via the Domestic Communications Satellite to the STOCC.

  6. Space Infrared Telescope Facility science instruments overview

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will contain three cryogenically cooled infrared instruments: the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Infrared Photometer for SIRTF (MIPS). These instruments are sensitive to infrared radiation in the 1.8-1,200 micrometer range. This paper will discuss the three instruments' functional requirements and their accommodation in the SIRTF telescope system.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1998-01-01

    This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.

  8. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  9. Hubble Space Telescope Primer for Cycle 21

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2012-12-01

    The Hubble Space Telescope Primer for Cycle 21 is a companion document to the HST Call for Proposals1. It provides an overview of the Hubble Space Telescope (HST), with basic information about telescope operations, instrument capabilities, and technical aspects of the proposal preparation process. A thorough understanding of the material in this document is essential for the preparation of a competitive proposal. This document is available as an online HTML document and a PDF file. The HTML version, optimized for online browsing, contains many links to additional information. The PDF version is optimized for printing, but online PDF readers have search capabilities for quick retrieval of specific information.

  10. PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Rubin, D.; Rykoff, E.; Aldering, G.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Hsiao, E. Y.; Knop, R. A.; Amanullah, R.; Goobar, A.; Burns, M. S.; Conley, A.; Connolly, N.; Deustua, S.; Fruchter, A. S.; Fadeyev, V.; Gibbons, R. A.; Huang, X.; Kowalski, M.; Lidman, C.; Collaboration: Supernova Cosmology Project; and others

    2013-01-20

    We report the discovery of a redshift 1.71 supernova in the GOODS-North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies. Although the rest-frame-sampled range is too blue to include any Si II line, a principal component analysis allows us to confirm it as a Type Ia supernova with 92% confidence. A recent serendipitous archival HST WFC3 grism spectrum contributed a key element of the confirmation by giving a host-galaxy redshift of 1.713 {+-} 0.007. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of {Lambda}CDM.

  11. Low noise HgCdTe 128 x 128 SWIR FPA for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Blessinger, Michael; Vural, Kadri; Kleinhans, William; Rieke, Marcia J.; Thompson, Rodger; Rasche, Robert

    1989-01-01

    Large area focal plane arrays of unprecedented performance were developed for use in Near Infrared Camera and Multi-Object Spectrometer (NICMOS), a proposed Hubble Space Telescope refurbishment instrument. These FPAs are 128x128-element, HgCdTe hybrid arrays with a cutoff wavelength of 2.5 microns. The multiplexer consists of a CMOS field effect transistor switch array with a typical mean readout noise of less than 30 electrons. The detectors typically have a mean dark current of less than 10 electrons/s at 77 K, with currents below 2 electrons measured at 60 K (both at 0.5 V reverse bias). The mean quantum efficiency is 40 to 60 percent at 77 K for 1.0 to 2.4 microns. Functional pixel yield is typically greater than 99 percent, and the power consumption is approximately 0.2 mW (during readout only).

  12. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  13. Spontaneously deployable structure for space diffractive telescope

    NASA Astrophysics Data System (ADS)

    Zuo, Yu-di; Li, Zong-xuan; Jin, Guang; Xie, Peng

    2017-07-01

    In order to satisfy the demands for diffractive telescopes in space exploration, a new deployable space diffractive telescope is designed. The structure and geometrical sizes of the spontaneously deployable telescope are preliminarily designated through the Serrurier truss principle and the optimized design theory. The finite element model of the deployable structure is established, and its deployed characteristics are analyzed. The prototype of the spontaneously deployable structure is constructed and some experiments are carried out to study its characteristics. Experimental results indicate that the deployable structure is 2.95 m in length, its repetitive deployed precision can reach less than 2 mm, the off-center error is less than 0.3 mm, and its deployed precision can be adjusted to micrometer level by actuators when it has deployed. It has simple structure, low mass, steady and reliable deployment, as well as higher precision for space diffractive telescopes.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-04-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. THE HUBBLE SPACE TELESCOPE TREASURY PROGRAM ON THE ORION NEBULA CLUSTER {sup ,}

    SciTech Connect

    Robberto, M.; Soderblom, D. R.; Bergeron, E.; Kozhurina-Platais, V.; Makidon, R. B.; McCullough, P. R.; McMaster, M.; Panagia, N.; Reid, I. N.; Levay, Z.; Frattare, L.; Da Rio, N.; Andersen, M.; O'Dell, C. R.; Stassun, K. G.; Simon, M.; Feigelson, E. D.; Stauffer, J. R.; Meyer, M.; Reggiani, M.; and others

    2013-07-01

    The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster (ONC) has used 104 orbits of HST time to image the Great Orion Nebula region with the Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2), and the Near-Infrared Camera and Multi-Object Spectrograph (NICMOS) instrument in 11 filters ranging from the U band to the H band equivalent of HST. The program has been intended to perform the definitive study of the stellar component of the ONC at visible wavelengths, addressing key questions like the cluster initial mass function, age spread, mass accretion, binarity, and cirumstellar disk evolution. The scanning pattern allowed us to cover a contiguous field of approximately 600 arcmin{sup 2} with both ACS and WFPC2, with a typical exposure time of approximately 11 minutes per ACS filter, corresponding to a point source depth AB(F435W) = 25.8 and AB(F775W) = 25.2 with 0.2 mag of photometric error. We describe the observations, data reduction, and data products, including images, source catalogs, and tools for quick look preview. In particular, we provide ACS photometry for 3399 stars, most of them detected at multiple epochs; WFPC2 photometry for 1643 stars, 1021 of them detected in the U band; and NICMOS JH photometry for 2116 stars. We summarize the early science results that have been presented in a number of papers. The final set of images and the photometric catalogs are publicly available through the archive as High Level Science Products at the STScI Multimission Archive hosted by the Space Telescope Science Institute.

  19. NICMOS Filter Wheel Test

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta

    2003-07-01

    This is an engineering test to verify the aliveness, functionality, operability, and electro-mechanical calibration of the NICMOS filter wheel motors and assembly after NCS restart in August 2003. This test has been designed to obviate concerns over possible deformation or breakage of the fitter wheel "soda-straw" shafts due to excess rotational drag torque and/or bending moments which may be imparted due to changes in the dewar metrology from warm-up/cool-down. This test should be executed after the NCS {and filter wheel housing} has reached and approximately equilibrated to its nominal Cycle 11 operating temperature.

  20. Compact telescope for free-space communications

    NASA Astrophysics Data System (ADS)

    Draganov, Vladimir; James, Daryl G.

    2002-10-01

    Several types of telescopes are used for free space telecommunications. The most common are Cassegrain and Gregorian telescopes. The main difference between Cassegrain and Gregorian optical systems is that Gregorian telescopes employ a concave secondary mirror located beyond the focus of the primary mirror. This results in longer tube lengths, as the distance between mirrors is slightly more than the sum of their focal lengths, which is the reason Cassegrain systems are the most common. In addition, Gregorian telescopes produce an upright image, while Cassegrain telescopes produce an inverted image. FSONA is presenting a new compact optical system, which can be described as a modified Gregorian telescope. This telescope is ideally suited for free space optical communications but also has many other applications. The compact telescope is created from a standard Gregorian system by flipping the secondary mirror over a folding mirror installed approximately in the middle of the optical path between primary and secondary mirrors. In this manner, the primary mirror is constructed with a concentric "double curved" geometry, and a central obscuring folding mirror which matches the diameter of the smaller curve of the primary is mounted a short distance in front. This "double curved" geometry is easily produced using diamond turning technology, and the result is a compact telescope approximately 1/2 the length of a regular Gregorian telescope and roughly 2/3 the length of a Cassegrain telescope. There are several advantages to using this type of telescope: 1. The system is very compact. Telescope can be as short as 1/7 of the focal length of the system. 2. For Cassegrain and Gregorian systems it is very critical to keep tight tolerances on the centration between primary and secondary mirrors. The modified Gregorian telescope will always have perfect centration because both curved surfaces are machined at the same time on a diamond turning lathe. The folding mirror is flat

  1. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  3. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  4. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. James Webb Space Telescope Project (JWST) Overview

    NASA Technical Reports Server (NTRS)

    Dutta, Mitra

    2008-01-01

    This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.

  6. Finishing Touches for Space Infrared Telescope Facility SIRTF

    NASA Image and Video Library

    2003-03-19

    Technicians put final touches on NASA Space Infrared Telescope Facility at Lockheed Martin Aeronautics in Sunnyvale, Calif., which launched on August 25, 2003. The telescope is now known as the Spitzer Space Telescope.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    This photograph shows the Hubble Space Telescope (HST) being assembled in the clean room of the Lockheed Missile Space Company. The Optical Telescope Assembly (OTA) is being readied for the installation of the AFT shroud. The OTA contains two mirrors, primary and secondary, to collect and focus light from selected celestial objects. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  8. The Infrared Telescope in Space (IRTS)

    NASA Technical Reports Server (NTRS)

    Murakami, H.; Bock, J.; Freund, M. M.; Guo, H.; Hirao, T.; Lange, A. E.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Mcmahon, T. J.

    1994-01-01

    The Infrared Telescope in Space (IRTS) is a cryogenically cooled small infrared telescope that will fly aboard the small space platform Space Flyer Unit. It will survey approximately 10% of the sky with a relatively wide beam during its 20 day emission. Four focal-plane instruments will make simultaneous observations of the sky at wavelengths ranging from 1 to 1000 microns. The IRTS will provide significant information on cosmology, interstellar matter, late-type stars, and interplanetary dust. This paper describes the instrumentation and mission.

  9. TV system considerations for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Lowrance, J. L.

    1976-01-01

    The Space Telescope, designed as a permanent observatory in space, will be launched into orbit, maintained, and refurbished by the Space Shuttle. One of the primary instruments to fly with the telescope is the f/24 Camera. The camera's mission requirements and their impact on the choice and design of a television system are discussed, along with the system engineering aspects of the TV system design and spacecraft design. An SEC type television camera tube was selected as the primary data acquisition sensor, because of its ability to accommodate exposure times of several hours with only modest cooling.

  10. The Infrared Telescope in Space (IRTS)

    NASA Technical Reports Server (NTRS)

    Murakami, H.; Bock, J.; Freund, M. M.; Guo, H.; Hirao, T.; Lange, A. E.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Mcmahon, T. J.

    1994-01-01

    The Infrared Telescope in Space (IRTS) is a cryogenically cooled small infrared telescope that will fly aboard the small space platform Space Flyer Unit. It will survey approximately 10% of the sky with a relatively wide beam during its 20 day emission. Four focal-plane instruments will make simultaneous observations of the sky at wavelengths ranging from 1 to 1000 microns. The IRTS will provide significant information on cosmology, interstellar matter, late-type stars, and interplanetary dust. This paper describes the instrumentation and mission.

  11. The James Webb Space Telescope Mission

    NASA Astrophysics Data System (ADS)

    Greenhouse, Matthew

    2015-08-01

    The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 m2 aperture telescope that will extend humanities’ high angular resolution view of the universe into the infrared spectrum to reveal early epochs of the universe that the Hubble cannot see. The Webb’s science instrument payload includes four cryogenic near-infrared sensors that provide imagery, coronagraphy, and spectroscopy over the near- and mid-infrared spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble. Construction, integration and verification testing is underway in all areas of the program. The JWST is on schedule for launch during 2018.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. Hubble Space Telescope approaches Shuttle Endeavour

    NASA Image and Video Library

    1993-12-04

    STS061-93-031 (4 Dec 1993) --- Part of the vast Indian Ocean forms the backdrop for this scene of the Hubble Space Telescope (HST) as it approaches the Space Shuttle Endeavour. Denham Sound and Shark Bay, on Australia's west coast, are just below the waiting mechanical arm at lower right corner.

  16. Teaching a Course about the Space Telescope.

    ERIC Educational Resources Information Center

    Page, Thornton

    1983-01-01

    "Astronomy with the Space Telescope" is a course designed to show scientists/engineers how this instrument can make important advances in astrophysics, planetology, and geophysics. A description of the course (taught to 11 students working for the National Aeronautics and Space Administration) and sample student paper on black holes are…

  17. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Fiight Center (MSFC), which is instrumented with individual cell voltage monitoring.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-01-01

    STS-61 astronauts practice installing the corrective optics module on a Hubble Space Telescope mockup in Marshall Space Flight Center's Neutral Buoyancy Simulator. Test activities for STS-61 were carried out at Marshall from June 21, 1993 through July 2, 1993 and again in October 1993.

  19. Teaching a Course about the Space Telescope.

    ERIC Educational Resources Information Center

    Page, Thornton

    1983-01-01

    "Astronomy with the Space Telescope" is a course designed to show scientists/engineers how this instrument can make important advances in astrophysics, planetology, and geophysics. A description of the course (taught to 11 students working for the National Aeronautics and Space Administration) and sample student paper on black holes are…

  20. Space Telescope Science Institute (STScI)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located on the Johns Hopkins University Homewood campus, Baltimore, Maryland. The institute is responsible to NASA's GODDARD SPACE FLIGHT CENTER for the scientific operations of the Hubble Space Telescope (HST). It was established by NASA, following a recommendation by the National Academy of Sciences, and is operated by ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY (AURA) under contract ...

  1. Zone generator for Large Space Telescope technology

    NASA Technical Reports Server (NTRS)

    Erickson, K. E.

    1974-01-01

    A concept is presented for monitoring the optical adjustment and performance of a Large Space Telescope which consists of a 1.2m diameter turntable with a laser stylus to operate at speeds up to 30 rpm. The focus of the laser stylus is under closed loop control. A technique for scribing zones of suitable depth, width, and uniformity applicable to large telescope mirrors is also reported.

  2. NICMOS Filter Wheel Test

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2009-07-01

    This is an engineering test {described in SMOV4 Activity Description NICMOS-04} to verify the aliveness, functionality, operability, and electro-mechanical calibration of the NICMOS filter wheel motors and assembly after NCS restart in SMOV4. This test has been designed to obviate concerns over possible deformation or breakage of the fitter wheel "soda-straw" shafts due to excess rotational drag torque and/or bending moments which may be imparted due to changes in the dewar metrology from warm-up/cool-down. This test should be executed after the NCS {and filter wheel housing} has reached and approximately equilibrated to its nominal operating temperature.Addition of visits G0 - G9 {9/9/09}: Ten visits copied from proposal 11868 {visits 20, 30, ..., 90, A0, B0}. Each visit moves two filter positions, takes lamp ON/OFF exposures and then moves back to the blank position. Visits G0, G1 and G2 will leave the filter wheels disabled. The remaining visits will leave the filter wheels enabled. There are sufficient in between times to allow for data download and analysis. In the case of problem is encountered, the filter wheels will be disabled through a real time command. The in between times are all set to 22-50 hours. It is preferable to have as short as possible in between time.

  3. Telescopes Lofted to Space: An Historical Chronology

    NASA Astrophysics Data System (ADS)

    Abrahams, Peter

    2005-01-01

    To become airborne was an early dream of humanity. It was a profound dream because of the meaningfulness of the perspective from aloft: the subject was able to observe the Earth and to become closer to heaven. In this context, a telescope is the most basic augmentation of the airborne experience: it expands the new perspective, allows measurement and analysis, and provides new forms of beauty. The first telescopes in space were anticipated by imaginative authors and by exacting engineers, whose dreams and proposals have a part in this story. The earliest telescopes to achieve space, the rocket-launched suborbital missions, both successes and failures, will be described, along with the effect they had on science and culture. Telescopes in orbit and in space probes are the current generation of instruments, a prelude to a future of lunar and planetary telescopes. Every success can be seen to have had a direct effect on the widening of horizons provided by the telescope. This paper will serve as an introduction to a very extensive subject.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-10-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-07-09

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  7. Neutral Buoyancy Simulator - Hubble Space Telescope Training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This photograph shows STS-61 crewmemmbers training for the Hubble Space Telescope (HST) servicing mission in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1979-03-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-24

    The STS-31 crew launched aboard the Space Shuttle Discovery on April 24, 1990 at 8:33:51am (EDT). Included in the crew of five were Loren J. Shriver, commander; Charles F. Bolden, pilot; and Steven A. Hawley, Bruce McCandless, and Kathryn D. Sullivan, all mission specialists. The primary goal of the mission was the deployment of the Hubble Space Telescope (HST) which was a Marshall Space Flight Center (MSFC) managed program.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    Engineers and technicians conduct a fit check of the Hubble Space Telescope (HST) Solar Array flight article in a clean room of the Lockheed Missile and Space Company. The Solar Array is 40- feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, and provides power to the spacecraft. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. 8-Meter UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This slide presentation proposes using the unprecedented capability of the planned Ares V launch vehicle, to place a 8 meter monolithic space telescope at the Earth-Sun L2 point. This new capability enables a new design pardigm -- simplicity. The six to eight meter class telescope with a massive high Technical Readiness Level ground observatory class monolithic primary mirror has been determined feasible. The proposed design, structural analysis, spacecraft design and shroud integration, thermal analysis, propulsion system, guidance navigation and pointing control assumptions about the avionics, and power systems, operational lifetime, and the idea of in-space servicing are reviewed.

  17. DESTINY, The Dark Energy Space Telescope

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  18. DESTINY, The Dark Energy Space Telescope

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  19. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-01-01

    This is a photograph of giant twisters and star wisps in the Lagoon Nebula. This superb Hubble Space Telescope (HST) image reveals a pair of one-half light-year long interstellar twisters, eerie furnels and twisted rope structures (upper left), in the heart of the Lagoon Nebula (Messier 8) that lies 5,000 light-years away in the direction of the constellation Sagittarius. This image was taken by the Hubble Space Telescope Wide Field/Planetary Camera 2 (WF/PC2).

  20. Origins Space Telescope: Telescope Design and Instrument Specifications

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; Carter, Ruth; Leisawitz, David; Dipirro, Mike; Flores, Anel; Staguhn, Johannes; Kellog, James; Roellig, Thomas L.; Melnick, Gary J.; Bradford, Charles; Wright, Edward L.; Zmuidzinas, Jonas; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The renaming of the mission reflects Origins science goals that will discover and characterize the most distant galaxies, nearby galaxies and the Milky Way, exoplanets, and the outer reaches of our Solar system. This poster will show the preliminary telescope design that will be a large aperture (>8 m in diameter), cryogenically cooled telescope. We will also present the specifications for the spectrographs and imagers over a potential wavelength range of ~10 microns to 1 millimeter. We look forward to community input into this mission definition over the coming year as we work on the concept design for the mission. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at firsurveyor_info@lists.ipac.caltech.edu.

  1. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-01

    Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  2. Overview of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2012-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, protoplanetary systems, and the formation of evolution of planetary systems. We will review recent progress in the design of JWST' s observatory architecture leading up to JWST's recent Mission Preliminary Design Review (PDR). In particular, we will discuss the status of JWST's optical system, the current status of the telescope mirror fabrication effort, the final design of the observatory sunshield and the plans for integration and test. In this context, we will discuss the expected scientific performance of the observatory.

  3. Cooling Technology for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    DiPirro, Michael; Cleveland, Paul; Durand, Dale; Klavins, Andy; Muheim, Daniella; Paine, Christopher; Petach, Mike; Tenerelli, Domenick; Tolomeo, Jason; Walyus, Keith

    2007-01-01

    NASA's New Millennium Program funded an effort to develop a system cooling technology, which is applicable to all future infrared, sub-millimeter and millimeter cryogenic space telescopes. In particular, this technology is necessary for the proposed large space telescope Single Aperture Far-Infrared Telescope (SAFIR) mission. This technology will also enhance the performance and lower the risk and cost for other cryogenic missions. The new paradigm for cooling to low temperatures will involve passive cooling using lightweight deployable membranes that serve both as sunshields and V-groove radiators, in combination with active cooling using mechanical coolers operating down to 4 K. The Cooling Technology for Large Space Telescopes (LST) mission planned to develop and demonstrate a multi-layered sunshield, which is actively cooled by a multi-stage mechanical cryocooler, and further the models and analyses critical to scaling to future missions. The outer four layers of the sunshield cool passively by radiation, while the innermost layer is actively cooled to enable the sunshield to decrease the incident solar irradiance by a factor of more than one million. The cryocooler cools the inner layer of the sunshield to 20 K, and provides cooling to 6 K at a telescope mounting plate. The technology readiness level (TRL) of 7 will be achieved by the active cooling technology following the technology validation flight in Low Earth Orbit. In accordance with the New Millennium charter, tests and modeling are tightly integrated to advance the technology and the flight design for "ST-class" missions. Commercial off-the-shelf engineering analysis products are used to develop validated modeling capabilities to allow the techniques and results from LST to apply to a wide variety of future missions. The LST mission plans to "rewrite the book" on cryo-thermal testing and modeling techniques, and validate modeling techniques to scale to future space telescopes such as SAFIR.

  4. Hubble Space Telescope Briefing: HST Science Overview

    NASA Astrophysics Data System (ADS)

    1994-01-01

    This NASA Kennedy Space Center video release presents a broad overview of the science that is now possible as a result of the servicing of the Hubble Space Telescope (HST). Dr. Ed Weiler (HST Program Scientist, NASA Headquarters), Dr. Dave Leckrone (HST, Senior Project Scientist, Goddard Space Flight Center (GSFC)), Dr. John Trauger (Wide Field Planetary Camera 2 (WFPC2) Principal Investigator, Jet Propulsion Lab. (JPL)), Dr. Chris Burrows (WFPC2 Co-Investigator, Space Telescope Science Inst.(STSci)-European Space Agency (ESA), Jim Crocker ((Corrective Optics Space Telescope Axial Replacement) COSTAR Team Leader, STSci), Dr. Holland Ford (COSTAR Project Scientist, Johns Hopkins Univ., STSci), and Dr. Duccio Machetto (European Space Agency (ESA)) give brief presentations, which feature images of stars and galaxies taken from the ground, from WFPC1 (prior to the servicing mission), and from WFPC2 (after the servicing mission). The main theme of the discussions center around the spherical aberration that was found in the images prior to servicing and the corrected images seen without the aberration following servicing. A question and answer period rounds out the press conference, with questions posed from scientific journalists at GSFC and other NASA centers.

  5. Active Space Telescope Systems - A New Paradigm

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; Coulter, D. R.; Gallagher, D. B.; Hickey, G. S.; Laskin, R. A.; Redding, D. C.; Traub, W. A.; Werner, M. W.

    2010-01-01

    New active optics technologies are rapidly maturing that will enable outstanding scientific performance for the next generation of astronomical space telescopes, while dramatically reducing cost drivers such as mass and manufacturing time. Using these technologies, NASA can, with modest further development, field high-performance space telescopes at a cost, risk and development schedule substantially below historical norms. Many key elements of this new system architecture are currently, or soon will be, demonstrated at TRL 6 or even space qualified through previous and ongoing work at the Jet Propulsion Laboratory. This paper describes the overall architecture, discusses the current status of the relevant active optics technologies, and proposes a technology development path to address the remaining elements for some specific NASA science mission examples. Our approach is a new paradigm for moderate-to-large space telescopes, building on the advancements incorporated into the James Webb Space Telescope (JWST) including primary and secondary mirror deployment, segmented optics and a modest level of active control. The primary new ingredients of the flight system are lightweight, easily replicable, mirror segments, incorporating actuators which can control the segment figure on orbit; a robust Wavefront Sensing and Control system to establish the overall figure, phasing, and alignment; and a real time, high dynamic range, high precision control system which maintains the rigid body alignment of the segments to the required precision. This controllability makes it possible to fabricate and assemble to looser tolerances, while reducing overall mission risk. In addition, the control system can greatly simplify the lengthy and expensive integration and test process that is faced by all large telescope missions. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National

  6. The polarimetric capabilities of NICMOS

    NASA Technical Reports Server (NTRS)

    Hines, D. C.; Schmidt, G. D.; Lytle, Dyer

    1997-01-01

    The polarimetric capabilities of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) are demonstrated from data obtained during the Early Release Observations of IRC+10216 and CRL 2688 (the Egg Nebula). Preflight Thermal Vacuum tests revealed that each polarizer has a unique polarizing efficiency, and that the position angle offsets differ from the nominal positions of O deg, 120 deg and 240 deg. Therefore an algorithm different from that of an ideal polarizer is required for proper reduction of astronomical polarimetry data. We discuss this new algorithm and the results of its application to NICMOS data. We also present preliminary estimates of the Instrumental Polarization, the sensitivity of the grisms to polarized light, and the accuracy of NICMOS imaging polarimetry for faint and low polarization objects. Finally, we suggest strategies for maximizing the success of NICMOS polarimetry observations.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-09

    Astronaut Story Musgrave, anchored to the end of the remote manipulator arm, prepares to be elevated to the top of the towering Hubble Space Telescope (HST) to install protective covers on magnetometers. Astornaut Jeffrey Hoffman assisted Musgrave with the final servicing tasks.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1994-01-01

    A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-07

    Anchored on the end of orbiter Endeavour's remote manipulator system arm, astronaut Jeffrey Hoffman (foreground) prepares to install the new wide field planetary camera into the empty cavity of the Hubble Space Telescope (HST). Astronaut Story Musgrave works with a portable foot restraint.

  11. Optimal Calibration of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Kang, Bryan; Brugarolas, Paul; Boussalis, Dhemetrio

    2007-01-01

    A document discusses the focal-plane calibration of the Spitzer Space Telescope by use of the instrument pointing frame (IPF) Kalman filter, which was described in Kalman Filter for Calibrating a Telescope Focal Plane (NPO-40798), NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 62. To recapitulate: In the IPF Kalman filter, optimal estimates of both engineering and scientific focal-plane parameters are obtained simultaneously, using data taken in each focalplane survey activity. The IPF Kalman filter offers greater efficiency and economy, relative to prior calibration practice in which scientific and engineering parameters were estimated by separate teams of scientists and engineers and iterated upon each other. In the Spitzer Space Telescope application, the IPF Kalman filter was used to calibrate 56 frames for precise telescope pointing, estimate >1,500 parameters associated with focal-plane mapping, and process calibration runs involving as many as 1,338 scientific image centroids. The final typical survey calibration accuracy was found to be 0.09 arc second. The use of the IPF Kalman filter enabled a team of only four analysts to complete the calibration processing in three months. An unanticipated benefit afforded by the IPF Kalman filter was the ability to monitor health and diagnose performance of the entire end-to-end telescope-pointing system.

  12. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  13. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  14. Observing New Worlds with Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The search for exoplanets and characterization of their properties has seen increasing success over the last few years. In excess of 500 explanets are known and there are approximately 1200 additional candidates. Recently, progress has been made in direct imaging planets, both from the ground and in space. This presentation will discuss the history and current state of technology used for such discoveries, and highlight the new results enabled by the current and future space telescopes.

  15. Hubble Space Telescope: Battery Capacity Trend Studies

    NASA Technical Reports Server (NTRS)

    Rao, M. Gopalakrishna; Hollandsworth, Roger; Armantrout, Jon

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. Capacity trend data is presented which suggests HST battery replacement is required in 2005-2007 or sooner.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-08-09

    This close-up of astronaut and mission specialist, Kathryn Thornton, was captured under water in the Marshall Space Flight Center (MSFC) Neural Buoyancy Simulator (NBS) where she is participating in a training session for the STS-61 mission. The NBS provided the weightless environment encountered in space needed for testing and the practices of Extravehicular Activities (EVA). Launched on December 2, 1993 aboard the Space Shuttle Orbiter Endeavor, STS-61 was the first Hubble Space Telescope (HST) serving mission. During the 2nd EVA of the mission, Thornton, along with astronaut and mission specialist Thomas Akers, performed the task of replacing the solar arrays. The EVA lasted 6 hours and 35 minutes.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-25

    In this photograph, the Hubble Space Telescope (HST) is clearing the cargo bay during its deployment on April 25, 1990. The photograph was taken by the IMAX Cargo Bay Camera (ICBC) mounted in a container on the port side of the Space Shuttle orbiter Discovery STS-31 mission. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space servicing mission (STS-61) in 1993 permitted scientists to correct the problem. During four space walks, new instruments were installed into the HST that had optical corrections. A total of four HST servicing missions have taken place since its deployment: STS-61 in December 1993, STS-82 in February 1997, STS-103 in December 1999, and STS-109 in March 2002. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  18. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  19. TeraHertz Space Telescope (TST)

    NASA Astrophysics Data System (ADS)

    Dunn, Marina Madeline; Lesser, David; O'Dougherty, Stephan; Swift, Brandon; Pat, Terrance; Cortez, German; Smith, Steve; Goldsmith, Paul; Walker, Christopher K.

    2017-01-01

    The Terahertz Space Telescope (TST) utilizes breakthrough inflatable technology to create a ~25 m far-infrared observing system at a fraction of the cost of previous space telescopes. As a follow-on to JWST and Herschel, TST will probe the FIR/THz regime with unprecedented sensitivity and angular resolution, answering fundamental questions concerning the origin and destiny of the cosmos. Prior and planned space telescopes have barely scratched the surface of what can be learned in this wavelength region. TST will pick up where JWST and Herschel leave off. At ~30µm TST will have ~10x the sensitivity and ~3x the angular resolution of JWST. At longer wavelengths it will have ~1000x the sensitivity of Herschel and ~7 times the angular resolution. TST can achieve this at low cost through the innovative use of inflatable technology. A recently-completed NIAC Phase II study (Large Balloon Reflector) validated, both analytically and experimentally, the concept of a large inflatable spherical reflector and demonstrated critical telescope functions. In our poster we will introduce the TST concept and compare its performance to past, present, and proposed far-infrared observatories.

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1998-01-07

    This is the first image of Saturn's ultraviolet aurora taken by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST) in October 1998, when Saturn was a distance of 810 million miles (1.3 billion kilometers) from Earth. The new instrument, used as a camera, provides more than 10 times the sensitivity of the previous HST instruments in the ultraviolet. STIS images reveal exquisite detail never before seen in the spectacular auroral curtains of light that encircle Saturn's north and south poles which rise more than a thousand miles above the cloud tops. Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like the Earth's aurora that is occasionally seen in the nighttime sky. Unlike the Earth, Saturn's aurora is only seen in ultraviolet light that is invisible from the Earth's surface, hence can only be observed from space.

  1. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This illustration is a diagram of the Hubble Space Telescope's (HST's), Wide Field Planetary Camera (WF/PC), one of the five Scientific Instruments. The WF/PC uses a four-sided pyramid mirror to split a light image into quarters. It then focuses each quadrant onto one of two sets of four sensors. The sensors are charge-coupled detectors and function as the electronic equivalent of extremely sensitive photographic plates. The WF/PC operates in two modes. The Wide-Field mode that will view 7.2-arcmin sections of the sky, and the Planetary mode that will look at narrower fields of view, such as planets or areas within other galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  3. The Configurable Aperture Space Telescope (CAST)

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-25

    In this photograph, the Hubble Space Telescope (HST) was being deployed on April 25, 1990. The photograph was taken by the IMAX Cargo Bay Camera (ICBC) mounted in a container on the port side of the Space Shuttle orbiter Discovery (STS-31 mission). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. During four spacewalks, new instruments were installed into the HST that had optical corrections. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. Photo Credit: NASA/Smithsonian Institution/Lockheed Corporation.

  5. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  6. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  7. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  8. HST NICMOS Observations of the Polarization of NGC 1068

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Hines, Dean C.; Schultz, A. S. B.; Trammell, Susan R.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We have observed the polarized light at 2 microns in the center of NGC 1068 with HST (Hubble Space Telescope) NICMOS (Near Infrared Camera Multi Object Spectrometer) Camera 2. The nucleus is dominated by a bright, unresolved source, polarized at a level of 6.0 +/- 1.2% with a position angle of 122 degrees +/- 1.5 degrees. There are two polarized lobes extending tip to 8" northeast and southwest of the nucleus. The polarized flux in both lobes is quite clumpy, with the maximum polarization occurring in the southwest lobe at a level of 17% when smoothed to 0.23" resolution. The perpendiculars to the polarization vectors in these two lobes point back to the intense unresolved nuclear source to within one 0.076" Camera 2 pixel, thereby confirming that this source is the origin of the scattered light and therefore the probable AGN (Active Galactic Nuclei) central engine. Whereas the polarization of the nucleus is probably caused by dichroic absorption, the polarization in the lobes is almost certainly caused by scattering, with very little contribution from dichroic absorption. Features in the polarized lobes include a gap at a distance of about 1" from the nucleus toward the southwest lobe and a "knot" of emission about 5" northwest of the nucleus. Both features had been discussed by groundbased observers, but they are much better defined with the high spatial resolution of NICMOS. The northeast knot may be the side of a molecular cloud that is facing the nucleus, which cloud may be preventing the expansion of the northeast radio lobe at the head of the radio synchrotron-radiation-emitting jet. We also report the presence of two ghosts in the Camera 2 polarizers.

  9. Neutral Buoyancy Simulator- NB38 -Space Telescope

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  10. Hubble Space Telescope: A cosmic time machine

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.; Harms, R. J.; Brandt, J. C.; Bless, R. C.; Macchetto, F. D.; Jefferys, W. H.

    1991-01-01

    The mission of the Hubble Space Telescope (HST) is to explore the expanding and evolving universe. During the 3,000 operating hours every year for the next 15 years or more, the HST will be used to study: galaxies; pulsars; globular clusters; neighboring stars where planets may be forming; binary star systems; condensing gas clouds and their chemical composition; and the rings of Saturn and the swirling ultraviolet clouds of Venus. The major technical achievements - its nearly perfect mirrors, its precise guidance system of rate gyroscopes, reaction wheels, star trackers, and fine guidance sensors are briefly discussed. The scientific instruments on board HST are briefly described. The integration of the equipment and instruments is outlined. The Space Telescope Science Institute (STScI) has approved time for 162 observations from among 556 proposals. The mission operation and data flow are explained.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  13. Hubble space telescope onboard battery performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Wajsgras, Harry; Vaidyanathan, Hari; Armontrout, Jon D.

    1996-01-01

    The performance of six 88 Ah Nickel-Hydrogen (Ni-H2) batteries that are used onboard in the Hubble Space Telescope (Flight Spare Module (FSM) and Flight Module 2 (FM2)) is discussed. These batteries have 22 series cells per battery and a common bus that would enable them to operate at a common voltage. It is launched on April 24, 1990. This paper reviews: the cell design, battery specification, system constraints, operating parameters, onboard battery management, and battery performance.

  14. Preliminary Multivariable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-01-02

    What look like giant twisters are spotted by the Hubble Space Telescope (HST). These images are, in actuality, pillars of gases that are in the process of the formation of a new star. These pillars can be billions of miles in length and may have been forming for millions of years. This one formation is located in the Lagoon Nebula and was captured by the Hubble's wide field planetary camera-2 (WFPC-2).

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2000-07-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  17. Creation of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2009-08-01

    The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.

  18. Spacecraft momentum management procedures. [large space telescope

    NASA Technical Reports Server (NTRS)

    Chen, L. C.; Davenport, P. B.; Sturch, C. R.

    1980-01-01

    Techniques appropriate for implementation onboard the space telescope and other spacecraft to manage the accumulation of momentum in reaction wheel control systems using magnetic torquing coils are described. Generalized analytical equations are derived for momentum control laws that command the magnetic torquers. These control laws naturally fall into two main categories according to the methods used for updating the magnetic dipole command: closed loop, in which the update is based on current measurements to achieve a desired torque instantaneously, and open-loop, in which the update is based on predicted information to achieve a desired momentum at the end of a period of time. Physical interpretations of control laws in general and of the Space Telescope cross product and minimum energy control laws in particular are presented, and their merits and drawbacks are discussed. A technique for retaining the advantages of both the open-loop and the closed-loop control laws is introduced. Simulation results are presented to compare the performance of these control laws in the Space Telescope environment.

  19. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitiess Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instrument(s) and the start of the integration and test phase.

  20. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  1. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a Rood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, Dr. Gardner will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope.

  2. New Eyes for Space Exploration: Upgrading the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Grunsfeld, John

    2002-09-01

    In March 2002, a team of seven astronauts launched from the KennedyCenter aboard Space Shuttle Columbia in route to the Hubble SpaceTelescope. The Hubble Space Telescope was designed to be servicedperiodically to upgrade its instruments and fix broken equipment. TheSTS-109 mission, the fourth Hubble servicing mission, was the mostambitious repair mission to date. Over a series of five space walks,astronauts in space suits replaced the solar arrays and power system,installed a new sensitive camera, and brought an infra-red cameraback to life. Details of the mission will be presented, as well assome of the first exciting pictures from the new camera.John Mace Grunsfeld received a B.S. degree in physics fromM.I.T. ; an M.S. degree and Ph.D. in physics from the University ofChicago. Dr. Grunsfeld studies binary pulsars and energetic x-ray andgamma ray sources using the NASA Compton Gamma Ray Observatory, x-rayastronomy satellites, radio telescopes, and optical telescopesincluding the NASA Hubble Space Telescope. He became an astronaut in1992 and led a team of scientists tasked with defining and producingthe crew displays for command and control of the International SpaceCenter (ISS). He has logged over 45 days in space, including 5 spacewalks. He participated in the second flight of the astro observatoryin 1995. He served as flight engineer of a 10 day mission to dockwith Russia's Space Station Mir in 1997. He has participated in twoservicing missions of the Hubble Telescope in 1999 and 2002.

  3. New Eyes for Space Exploration: Upgrading the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Grunsfeld, John

    2002-10-01

    In March 2002, a team of seven astronauts launched from the KennedyCenter aboard Space Shuttle Columbia in route to the Hubble SpaceTelescope. The Hubble Space Telescope was designed to be servicedperiodically to upgrade its instruments and fix broken equipment. TheSTS-109 mission, the fourth Hubble servicing mission, was the mostambitious repair mission to date. Over a series of five space walks,astronauts in space suits replaced the solar arrays and power system,installed a new sensitive camera, and brought an infra-red cameraback to life. Details of the mission will be presented, as well assome of the first exciting pictures from the new camera.John Mace Grunsfeld received a B.S. degree in physics fromM.I.T. ; an M.S. degree and Ph.D. in physics from the University ofChicago. Dr. Grunsfeld studies binary pulsars and energetic x-ray andgamma ray sources using the NASA Compton Gamma Ray Observatory, x-rayastronomy satellites, radio telescopes, and optical telescopesincluding the NASA Hubble Space Telescope. He became an astronaut in1992 and led a team of scientists tasked with defining and producingthe crew displays for command and control of the International SpaceCenter (ISS). He has logged over 45 days in space, including 5 spacewalks. He participated in the second flight of the astro observatoryin 1995. He served as flight engineer of a 10 day mission to dockwith Russia's Space Station Mir in 1997. He has participated in twoservicing missions of the Hubble Telescope in 1999 and 2002.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-08-16

    NASA's Hubble Space Telescope (HST) captures a lumpy bubble of hot gas rising from a cauldron of glowing matter in Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major. Astronomers suspect the bubble is being blown by "winds" or high speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc that whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them, and form a new generation of stars.

  5. Unimorph piezoelectric deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Rausch, P.; Verpoort, S.; Wittrock, U.

    2016-07-01

    We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC.

  6. Europe discusses role in future space telescope

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Prof. Roger Bonnet said it was important for Europe to make an informed decision in the next few years on whether to support NASA's proposed New Generation Space Telescope (NGST), a follow-on programme to the Hubble Space Telescope. NGST's observing capabilities will far extend the reach of existing ground or space-based telescopes, providing the opportunity for the first time to look back through eons of time to the very first stars and galaxies in the Universe. With an aperture greater than four metres, NGST could also provide European astronomers with a crucial complement to some of ESA's planned future space projects, like FIRST (the Far InfraRed Submillimetre Telescope) and Planck (a mission to study the cosmic background radiation field). NASA and ESA are already involved in preliminary NGST studies but Europe has yet to make a commitment to support the programme. NASA wants to start formal development in 2003, with a launch currently planned for 2007. This week's conference at Liege in Belgium was the first opportunity for many astronomers to exchange ideas and compare technological notes on a Next Generation Space Telescope. It also provided a forum for representatives of Europe's space industry to discuss the technological challenges presented by such a project. Prof. Bonnet said: "From recent experience it is clear that the best scientific results in astronomy and astrophysics are obtained by coordinated observations in different wavelength ranges. "The joint effort of the European space programme and of the various large European ground observatories currently allows European astronomers to be on the front-line of astrophysics research."He said that ESA - if supported programmatically and financially by its member states - is willing to discuss with NASA a mutually fruitful form of NGST participation. But Prof. Bonnet stressed that for this type of collaboration to be approved it remained crucial that the European share contained both scientific and

  7. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  8. Searching Hubble Space Telescope Archives for Solar System Observations and Planned Improvements for James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.; Brasseur, C.; Fleming, S.; Mutchler, M.

    2017-06-01

    We present tips and tools for searching Hubble Space Telescope archives for solar system observations. Additionally, we provide an overview of planned archive improvements for James Webb Space Telescope.

  9. NICMOS FINDS A GOLDEN RING AT THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has pierced the dusty disk of the 'edge-on' galaxy NGC 4013 and peered all the way to the galactic core. To the surprise of astronomers, NICMOS found a brilliant band-like structure, that may be a ring of newly formed stars [yellow band in middle photo] seen edge-on. In the visible-light view of the galaxy [top photo], the star-forming ring cannot be seen because it is embedded in dust. The most prominent feature in the visible-light image -- taken by the Wide Field and Planetary Camera 2 (WFPC2) -- is the thin, dark band of gas and dust, which is about 500 light-years thick. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the inner hub of the galaxy. The ring-like structure spied by NICMOS encircles the core and is about 720 light-years wide, which is the typical size of most star-forming rings found in disk galaxies. The small ring is churning out stars at a torrid pace. The Milky Way Galaxy, for example, is more than 10,000 times larger than the ring. If the Milky Way produced stars at the same rate, it would be making 1,000 times more stars a year. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The ring-like structure is seen more clearly in the photo at bottom. This picture, taken with a filter sensitive to hydrogen, shows the glow of stars and gas. Astronomers used this information to calculate the rate of star formation in the ring-like structure. The extremely bright star near the center of each picture is a nearby foreground star belonging to our own Milky Way. Rings of developing stars are common in barred spiral galaxies, which have 'bars' of stars and gas slicing across their disks. The

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-06-14

    This close-up of astronaut and mission specialist Kathryn Thornton readies herself for submersion into the water in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) where she is participating in a training session for the STS-61 mission. The NBS provided the weightless environment encountered in space needed for testing and the practices of Extravehicular Activities (EVA). Launched on December 2, 1993 aboard the Space Shuttle Orbiter Endeavor, STS-61 was the first Hubble Space Telescope (HST) serving mission. During the 2nd EVA of the mission, Thornton, along with astronaut and mission specialist Thomas Akers, performed the task of replacing the solar arrays. The EVA lasted 6 hours and 35 minutes.

  11. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  12. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point in 2014. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA.

  13. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point in 2014. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA.

  14. A Calibration of NICMOS Camera 2 for Low Count Rates

    NASA Astrophysics Data System (ADS)

    Rubin, D.; Aldering, G.; Amanullah, R.; Barbary, K.; Dawson, K. S.; Deustua, S.; Faccioli, L.; Fadeyev, V.; Fakhouri, H. K.; Fruchter, A. S.; Gladders, M. D.; de Jong, R. S.; Koekemoer, A.; Krechmer, E.; Lidman, C.; Meyers, J.; Nordin, J.; Perlmutter, S.; Ripoche, P.; Schlegel, D. J.; Spadafora, A.; Suzuki, N.

    2015-05-01

    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z\\gt 1 SNe Ia. Unlike conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count rates. However, observations at faint count rates rely on extrapolations. Here instead, we provide a new zero-point calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with the Wide Field Camera 3 (WFC3) in the low count-rate regime using z∼ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR spectral energy distributions, uniform colors, and their extended nature gives a superior signal-to-noise ratio at the same count rate than would stars. The use of extended objects also allows greater tolerances on point-spread function profiles. We find space telescope magnitude zero points (after the installation of the NICMOS cooling system, NCS) of 25.296\\+/- 0.022 for F110W and 25.803\\+/- 0.023 for F160W, both in agreement with the calibration extrapolated from count rates ≳1000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843\\+/- 0.025 for F110W and 25.498\\+/- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zero points. To avoid human bias, our cross-calibration was “blinded” in that the fitted zero-point differences were hidden until the analysis was finalized. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, under programs

  15. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  16. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  17. NASA's Spitzer Space Telescope's Operational Mission Experience

    NASA Technical Reports Server (NTRS)

    Wilson, Robert K.; Scott, Charles P.

    2006-01-01

    New Generation of Detector Arrays(100 to 10,000 Gain in Capability over Previous Infrared Space Missions). IRAC: 256 x 256 pixel arrays operating at 3.6 microns, 4.5 microns, 5.8 microns, 8.0 microns. MIPS: Photometer with 3 sets of arrays operating at 24 microns, 70 microns and 160 microns. 128 x 128; 32 x 32 and 2 x 20 arrays. Spectrometer with 50-100 micron capabilities. IRS: 4 Array (128x128 pixel) Spectrograph, 4 -40 microns. Warm Launch Architecture: All other Infrared Missions launched with both the telescope and scientific instrument payload within the cryostat or Dewar. Passive cooling used to cool outer shell to approx.40 K. Cryogenic Boil-off then cools telescope to required 5.5K. Earth Trailing Heliocentric Orbit: Increased observing efficiency, simplification of observation planning, removes earth as heat source.

  18. Lightweight deformable mirrors for future space telescopes

    NASA Astrophysics Data System (ADS)

    Patterson, Keith

    This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during

  19. The James Webb Space Telescope Sunshield Waterfall

    NASA Image and Video Library

    2017-09-27

    This shiny silver "waterfall" is actually the five layers of the full-scale engineering model of NASA's James Webb Space Telescope sunshield being laid out by technicians at the Northrop Grumman Aerospace Systems Space Park facility in Redondo Beach, Calif. who are conducting endurance tests on them. For more information, visit: jwst.nasa.gov Credit: Northrop Grumman NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  1. Asteroid observations with the Hubble Space Telescope and the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Zellner, B.; Wells, Eddie N.; Chapman, Clark R.; Cruikshank, D. P.

    1989-01-01

    The ways that the asteroids can be studied with the Hubble Space Telescope (HST) and the Space Infrared Telescope Facility (SIRTF) are examined. Spectrophotometry of asteroids and the study of asteroid surfaces, shape, spins, configuration, normal reflectance, and limb darkening of asteroids using the HST are addressed along with the detection of asteroid satellites and the discovery of small asteroids using the HST. The relation of the HST to its ground system is described, as are the spectrophotometric instruments of the HST. Imaging with the HST using the Faint Object Camera and the Wide Field and Planetary Camera is examined. Finally, the SIRTF observatory, instrumentation, and capabilities for solar system science are discussed.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1969-01-01

    This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.

  3. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  4. Hubble Space Telescope electrical power system model

    NASA Technical Reports Server (NTRS)

    Baggett, Randy; Miller, Jim; Leisgang, Tom

    1988-01-01

    This paper describes one of the most comprehensive models ever developed for a spacecraft electrical power system (EPS). The model was developed for the Hubble Space Telescope (HST) to evaluate vehicle power system performance and to assist in scheduling maintenance and refurbishment missions by providing data needed to forecast EPS power and energy margins for the mission phases being planned. The EPS model requires a specific mission phase description as the input driver and uses a high granularity database to produce a multi-orbit power system performance report. The EPS model accurately predicts the power system response to various mission timelines over the entire operational life of the spacecraft.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-09-08

    This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.

  6. NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-05-08

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall SPace Flight Center’s (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-05-08

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center’s (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-05-08

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center’s (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-05-08

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center’s (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  11. Webb Telescope Backplane Arrives at NASA Goddard Space Flight Center

    NASA Image and Video Library

    Webb Telescope's Backplane arrived at Joint Base Andrews on Monday, August 24, 2015 aboard a U.S. Air Force C-5 cargo plane. The Backplane, inside the Space Telescope Transporter for Air Road and S...

  12. Gamma-Ray Large Area Space Telescope- GLAST Mission Overview

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander A.

    2007-01-01

    This viewgraph presentation reviews the Gamma-ray Large Area Space Telescope (GLAST), and the instrumentation that will be on the spacecraft: Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). The presentation revierws in detail the LAT instrument.

  13. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope in orbit around the second Earth-Sun Lagrange point. It is the successor to the Hubble and Spitzer Space Telescopes, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  14. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have three instruments: The Near-Infrared Camera, and the Near-Infrared multi-object Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its "star factories" are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  16. Space Telescope - Eye on the universe

    NASA Technical Reports Server (NTRS)

    Davies, J. K.

    1982-01-01

    The NASA Space Telescope, which is to be put into orbit by the Space Shuttle in 1985, is described with attention to the design characteristics and fabrication processes of its optics and the five scientific instruments that will be mounted at the focal plane, behind the primary mirror. The primary mirror is fabricated from Ultra Low Expansion Glass, weighed 907 kg as a blank and took three and a half years to grind and polish to a deviation of no more than 0.000025 mm from the ideal surface. The instruments carried are the Wide Field Planetary Camera, which employs CCD detectors, the Faint Object Camera, the Faint Object Spectrograph, for use at visible and UV wavelengths, the UV High Resolution Spectrograph for 1100-2300 A wavelengths, and the High Speed Photometer for the study of time-dependent brightness fluctuations.

  17. Hubble Space Telescope Battery Capacity Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-10-09

    This color image of Saturn was taken with the Hubble Space Telescope's (HST's) Wide Field Camera (WFC) at 3:25 am EDT, August 26, 1990, when the planet was at a distance of 2.39 million km (360 million miles) from Earth. The color in the image is reconstructed by combining three different pictures, taken in blue, green and red light (4390, 5470 and 7180 angstroms). Because Saturn's north pole is currently tilted toward Earth (24 degrees), the HST image reveals unprecedented detail in atmospheric features at the northern polar hood, a region not extensively imaged by the Voyager space probes. The classic features of Saturn's vast ring system are also clearly seen from outer to irner edge; the bright A and B rings, divided by the Cassini division, and the very faint inner C ring. The Enche division, a dark gap near the outer edge of the A ring, has never before been photographed from Earth.

  19. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  20. Space Telescope - Eye on the universe

    NASA Technical Reports Server (NTRS)

    Davies, J. K.

    1982-01-01

    The NASA Space Telescope, which is to be put into orbit by the Space Shuttle in 1985, is described with attention to the design characteristics and fabrication processes of its optics and the five scientific instruments that will be mounted at the focal plane, behind the primary mirror. The primary mirror is fabricated from Ultra Low Expansion Glass, weighed 907 kg as a blank and took three and a half years to grind and polish to a deviation of no more than 0.000025 mm from the ideal surface. The instruments carried are the Wide Field Planetary Camera, which employs CCD detectors, the Faint Object Camera, the Faint Object Spectrograph, for use at visible and UV wavelengths, the UV High Resolution Spectrograph for 1100-2300 A wavelengths, and the High Speed Photometer for the study of time-dependent brightness fluctuations.

  1. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-02-08

    This photo, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys, is Hubble's latest view of an expanding halo of light around the distant star V838 Monocerotis, or V Mon, caused by an unusual stellar outburst that occurred back in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". Located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn), the star brightened to more than 600,000 times our Sun's luminosity. The light echo gives the illusion of contracting, until it finally disappears by the end of the decade.

  3. Asteroid Detection Results Using the Space Surveillance Telescope

    DTIC Science & Technology

    2015-10-18

    Distribution Statement A: Approved for public release, distribution unlimited. Asteroid Detection Results Using the Space Surveillance Telescope ...two 1-m optical telescopes located at the MIT Lincoln Laboratory Experimental Test Site (ETS) in Socorro, N.M. In 2014, the Lincoln Near-Earth Asteroid...Research (LINEAR) program successfully transitioned operations from the two 1-m telescopes to the 3.5-m Space Surveillance Telescope (SST) located

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1979-11-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the first and flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator that served as the test center for shuttle astronauts training for Hubble related missions. Shown is an astronaut training on a mock-up of a modular section of the HST in the removal and replacement of scientific instruments.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-05-08

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  6. Asteroid Detection with the Space Surveillance Telescope

    NASA Astrophysics Data System (ADS)

    Woods, D.; Shah, R.; Johnson, J.; Pearce, E.; Lambour, R.; Faccenda, W.

    2013-09-01

    The Space Surveillance Telescope (SST) is a 3.5 m wide field-of-view system developed for DARPA by MIT Lincoln Laboratory to advance the nation's capabilities in space situational awareness. In addition to the national interest in identifying and cataloging man-made space objects, there is a growing concern for near-Earth asteroid identification and tracking. MIT is developing a program to detect near-Earth asteroids, as an extension of the Lincoln Near-Earth Asteroid Research (LINEAR) survey, to identify potentially hazardous near-Earth objects, and to extend the catalog of known asteroids to smaller sizes (< 140 m). MIT believes SST's capability to detect asteroids on size scales as small as 5-10 m is well suited to provide NASA with a sample of small asteroids of interest for its proposed mission to send astronauts to near-Earth asteroids as a stepping-stone to further manned exploration of the Solar System. The Keck Institute for Space Studies (Brophy et al. 2012), studied the feasibility of asteroid capture into lunar orbit as a destination for additional investigation. A major requirement of such an effort is the development of a sample of suitable asteroids, a job that SST is uniquely able to achieve by means of its capacity for search rate and sensitivity. The SST also brings the capability of high speed photometry at rates of 100 Hz to 1 kHz; we present initial observations of asteroids using the photometers.

  7. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  8. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  9. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  10. Astronomers, Congress, and the Large Space Telescope

    NASA Astrophysics Data System (ADS)

    Hanle, P. A.

    1985-04-01

    The Hubble Space Telescope (HST) project was initiated near the end of the Apollo program and immediately encountered fiscal contraints. Planned as a long-term facility, the HST had to be continually justified to the public, astronomers and Congress from 1973 onward. Budgetary restraints caused design reductions which for a while threatened the practicality of the HST and changed it from a pressurized, manned unit to an automatic mode, teleoperated, intermittently visited spacecraft. It is noted that numerous exaggerations were made of both the power of the HST for scientific research and the total support of the astronomical community during promotion of the HST program, although the HST is the most powerful visual wavelength telescope ever to be built due to its unique operating environment. NASA's consistent and steadily more detailed definitions of the design features and missions of the HST proved to be a decisive factor in repeated requests for information by funding committees who were deliberating in the presence of severe fiscal difficulties.

  11. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dustenshrouded protostars, to the genesis of planetary systems. Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope with four instruments, capable of imaging and spectroscopy from 0.6 to 27 microns wavelength.

  12. Origins Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.In the Solar System, OST will provide km/sec resolution on lines from planet, moons and comets. OST will measure molecular abundances and isotope ratios in planets and comets. OST will be able to do continuum surveys for faint moving sources such as Kuiper Belt Objects, enabling a census of smaller objects in the Kuiper Belt. If the putative Planet IX is massive enough to be self-luminous, then OST will be able to detect it out to thousands of AU from the Sun.

  13. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-EarthMoon L2 libration point, 1.5 million km away from Earth. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate orbit determination (OD) solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cmsec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  14. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  15. Shaped pupil design for future space telescopes

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Zimmerman, Neil; Carlotti, Alexis; Kasdin, N. Jeremy; Vanderbei, Robert

    2014-08-01

    Several years ago at Princeton we invented a technique to optimize shaped pupil (SP) coronagraphs for any telescope aperture. In the last year, our colleagues at the Jet Propulsion Laboratory (JPL) invented a method to produce these non-freestanding mask designs on a substrate. These two advances allowed us to design SPs for two possible space telescopes for the direct imaging of exoplanets and disks, WFIRST-AFTA and Exo-C. In December 2013, the SP was selected along with the hybrid Lyot coronagraph for placement in the AFTA coronagraph instrument. Here we describe our designs and analysis of the SPs being manufactured and tested in the High Contrast Imaging Testbed at JPL.We also explore hybrid SP coronagraph designs for AFTA that would improve performance with minimal or no changes to the optical layout. These possibilities include utilizing a Lyot stop after the focal plane mask or applying large, static deformations to the deformable mirrors (nominally for wavefront correction) already in the system.

  16. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Ygouf, Marie; Choquet, Elodie; Hines, Dean C.; Perrin, Marshall D.; Golimowski, David A.; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Rémi; van der Marel, Roeland

    2016-01-01

    The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

  17. Optical Testing of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Aronstein, David

    2017-01-01

    The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror, working to an October 2018 launch date. Ground testing for the JWST occurred in two test campaigns, at NASAs Goddard Space Flight Center and Johnson Space Center. The talk describes the JWST and its optical ground testing.

  18. Variable Stars with the Kepler Space Telescope

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Szabó, R.; Plachy, E.

    2016-12-01

    The Kepler space telescope has revolutionized our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars, and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars, too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.

  19. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  20. Wavelet Analysis of Space Solar Telescope Images

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-An; Jin, Sheng-Zhen; Wang, Jing-Yu; Ning, Shu-Nian

    2003-12-01

    The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.

  1. Automation of Hubble Space Telescope Mission Operations

    NASA Technical Reports Server (NTRS)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-01-01

    Astronomers are studying the unusual appearance of Saturn's rings. The top portion of this Hubble Space Telescope snapshot shows Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted, but because the Earth was almost in the plane of Saturn's rings, they appear edge-on. Positioned above the ring plane, the Sun is causing the rings to cast a shadow on Saturn. The bottom photograph shows Saturn with its rings slightly tilted, and displays a faint narrow ring, the F-ring, just outside the main ring, which is normally invisible from Earth. The moon called Dion, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting of the sun on the ring plane.

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-03-30

    This photograph depicts four Mars views in northern summer provided by the Hubble Space Telescope (HST). The upper left view is centered on Ares Valles where Pathfinder landed in July 1997. Upper right is the Tharsis volcanic region and its associated cloud in the western half of the view. Olympus Mons lies near the western limb, Arsi Mons, Pavonis Mons Ascraeus Mons are to the west of the the center, and Valles Marineris is to the east. The lower Left view shows the Elysium volcanic region in the west, the Tharsis volcanos in East, and Cerberus is left of the center. In the lower right view, the Dark Syrtis Major region, Eysium Mons and Hellas are featured.

  4. Faint-object spectrograph for Space Telescope

    NASA Technical Reports Server (NTRS)

    Harms, r. J.; Beaver, E.; Burbidge, E. M.; Angel, R.; Bartko, F.; Bloomquist, W.; Flemming, J. C.; Bohlin, R.; Davidsen, A. F.; Ford, H.

    1979-01-01

    The paper presents the Faint Object Spectrograph (FOS) for the Space Telescope to provide a digitized spectra of faint astronomical objects over the 115 to 700 nm wavelength range at resolving powers of 1000 and 100. A variety of concave gratings and prisms is employed to form nearly stigmatic spectra on one of the two Digicon photon counting detectors which are optimized for two different but overlapping ranges. The scientific goals associated with quasars, active galaxies, and objects within our solar system are discussed, and the FOS optical design features, including detectors, electronics, signal processing, power supplies, and data handling are examined. The FOS structural system, mechanism, and controls are described, along with the predicted performance capabilities in the spectral and spectropolarimetry modes. Finally, system performance parameters, including spatial resolution, time resolution, noise, and efficiency are discussed.

  5. Detecting distant planets with Space Telescope

    NASA Technical Reports Server (NTRS)

    Page, T.

    1985-01-01

    In 1981 and in 1984, research projects were chosen by graduate students at the University of Houston which were designed for the Space Telescope (ST). The six ST instruments which were most important for their purposes (most were interested in the detection of planets of other stars) were: the wide field/planetary camera, the faint object camera, the faint object spectrograph, the high resolution spectrograph, the high speed photometer and the fine guidance system. The capability of these instruments is discussed along with the techniques likely to be most effective in the detection of planets of other stars. It is noted that the student proposals require a significant fraction of ST observing time; the ST Science Institute is laden with over-subscription.

  6. Surface analysis of space telescope material specimens

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Daneshvar, K.

    1985-01-01

    Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE.

  7. Metrication study for large space telescope

    NASA Technical Reports Server (NTRS)

    Creswick, F. A.; Weller, A. E.

    1973-01-01

    Various approaches which could be taken in developing a metric-system design for the Large Space Telescope, considering potential penalties on development cost and time, commonality with other satellite programs, and contribution to national goals for conversion to the metric system of units were investigated. Information on the problems, potential approaches, and impacts of metrication was collected from published reports on previous aerospace-industry metrication-impact studies and through numerous telephone interviews. The recommended approach to LST metrication formulated in this study cells for new components and subsystems to be designed in metric-module dimensions, but U.S. customary practice is allowed where U.S. metric standards and metric components are not available or would be unsuitable. Electrical/electronic-system design, which is presently largely metric, is considered exempt from futher metrication. An important guideline is that metric design and fabrication should in no way compromise the effectiveness of the LST equipment.

  8. The Multimission Archive at Space Telescope

    NASA Astrophysics Data System (ADS)

    Christian, Damian; Abney, Faith; Comeau, Thomas; Hanisch, Robert; Harrison, Jill; Imhoff, Catherine; Kidwell, Richard; Kimball, Timothy; Levay, Karen; Padovani, Paolo; Postman, Marc; Richon, Joel; Smith, Myron; Thompson, Randall

    We present an overview of the recently created Multimission Archive at Space Telescope (MAST). The Hubble Data Archive has expanded to provide easy access to non-HST data sets. MAST includes the following: the International Ultraviolet Explorer (IUE), the Extreme Ultraviolet Explorer (EUVE), Copernicus (OAO-3), ASTRO HUT, WUPPE and UIT data sets, and VLA FIRST data. The Digitized Sky survey is also accessible through MAST. Data from the Far Ultraviolet Spectroscopic Explorer (FUSE) currently scheduled for launch in early 1999, ORFEUS 1 & 2 EUV spectrometer data, and Voyager-1,2 UVS data will be added in the near future. Two 480-platter Plasmon CD-ROM jukeboxes provide data storage and easy access to the MAST data. Data hierarchy, ingest and retrievals, plans for expansion, and features of the web interface are also presented. Users can access data via a WWW interface at htmladdURL{http://archive.stsci.edu/mast.html}.

  9. Uranus's auroras observed from Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    New observations from the Hubble Space Telescope provide the first ever images of Uranus's auroras. The new observations, described by Lamy et al., are also the first unambiguous detections of Uranus's auroras since they were first discovered using the Voyager 2 spacecraft, which few by the planet in 1986. Auroras arise from the solar wind's interaction with a planet's magnetosphere. Uranus's magnetosphere, which is not well studied, is unusual because the planet's magnetic axis is both offset and sharply tilted with respect to the planet's spin axis. The newly detected auroras, seen on the dayside of the planet in November 2011, are quite different from Earth's—Uranus's auroras were faint dots of light that lasted online a few minutes, unlike the dancing colored curtains organized along rings of emissions around Earth's magnetic poles, intensified on the nightside and lasting for hours. (Geophysical Research Letters, doi:10.1029/ 2012GL051312, 2012)

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1999-05-29

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  11. The pointing system for Space Telescope

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.; Dougherty, H. J.

    1984-01-01

    This paper provides a description of the Space Telescope (ST) Pointing System (PS), and an overview of the pointing operations and procedures that support celestial observations. It is aimed at indicating to the user-astronomer the ST pointing capabilities and the mechanics of insuring the presence of the correct star in an instrument aperture. The paper begins by summarizing the general requirements regarding image stability and pointing accuracy to which the ST is being designed. This is followed by a description of the PS, in which primary elements are rate gyros, star sensors, reaction wheels, and an onboard digital computer. The Fine Guidance System is the star sensor that provides the precise, long term celestial reference and is given special emphasis, since its autonomous modes are so intimately tied to the acquisition process. A description of a nominal acquisition sequence is given, and some strategies for dealing with acquisition and pointing anomalies are discussed.

  12. Hubble Space Telescope Data and Citizen Science

    NASA Astrophysics Data System (ADS)

    Christian, Carol A.

    2015-08-01

    The general public is enthusiastic about astronomy and in particular the research and associated imagery produced by the Hubble Space Telescope (HST). The HST Education and Outreach program (EPO) offers myriad resources for education and also engagement by the public in the research endeavor (hubblesite.org). One facet of this landscape is the opportunity to participate in Citizen Science projects. There are many flavors of citizen science and those discussed here are focussed on producing research results through the collaboration and activity of volunteer members of the public who conduct tasks that only can be accomplished through human endeavor. This paper touches upon several projects based on HST data and reviews a few others that are derived from the archives at STScI covering several different astrophysics areas.

  13. Surface analysis of space telescope material specimens

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.

    1984-01-01

    Surface analysis by electron spectroscopy for chemical analysis (ESCA) was used to characterize a number of the material samples for the space telescope. With ESCA, the sample is irradiated with monoenergetic soft X-rays and the resulting emitted electrons are energy analyzed to determine the binding energy of electrons to the surface atoms. The major peaks were used in the quantitative determination of the surface composition. The presence of trace elements (impurities below 1% atomic composition) was also detailed. Initially a survey scan was run for each sample to deduce the elemental composition. Then the major peaks of interest and those of the trace elements were individually examined. After this, the samples were argon sputtered to etch away surface layers, and then additional measurements were carried out in order to obtain depth profile information. In this way it was possible for those species present only on the surface to be distinguished from those having a significant depth distribution within the sample.

  14. Primary mirror assemblies for large space telescopes

    NASA Astrophysics Data System (ADS)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    In this report are considered the basic problems which relate to developemnt, manufacture, experimental trying out, and usage of primary mirrors (PM) of the large space telescopes intended to perform distant sounding of the Earth. Attention is concentrated on development of weight-reduced passive mirrors which ensure more reliable operation of the telescope as a whole. In the report we expressed the opinion that it is quite possible to manufacture a passive weight-reduced PM if its diameter is equal approximately to 3 m. Materials which may be used for the manufacturing of PM are beryllium and silicon carbide, physical and mechanical parameters of which are the most preferable ones. But it should be taken into consideration that this is the glass ceramic of CO115M brand which has been mastered by the industry of Russia in the greatest extent. It was confirmed that parameters of this material remain unchanged during a long period of time. Constructions of the PM, made of glass ceramic, as well as constructions of holders intended to fix the mirror, are presented in this report. A holder is used first of all to prevent lowering of a PM surface quality after a mirror has been removed from a machine and fixed in a primary mirror assembly (PMA). At present two-layer construction of a PM is preferable. This construction consists of thick base including weight reduction structure, which is in a radius which is optimum from the standpoint of deformation of a mirror operating surface. In the process of manufacture a mirror is deprived of its weight with the use of special pneumatic off-loading elements. PMA is erected in vertical plane by means of using an interferometric inspection system. In the end of this report we expressed the views on an approach to engineering of a PM by taking into account potentialities both of space ships and of carrier rockets.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-06-09

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2006-06-09

    In the 19th century, astronomer V. M. Slipher first discovered a hat-like object that appeared to be rushing away from us at 700 miles per second. This enormous velocity offered some of the earliest clues that it was really another galaxy, and that the universe was expanding in all directions. The trained razor sharp eye of the Hubble Space Telescope (HST) easily resolves this Sombrero galaxy, Messier 104 (M104). The galaxy is 50,000 light-years across and is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. At a relatively bright magnitude of +8, M104 is just beyond the limit of naked-eye visibility and is easily seen through small telescopes. This rich system of globular clusters are estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. The ages of the clusters are similar to the clusters in the Milky Way, ranging from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. X-ray emission suggests that there is material falling into the compact core, where a 1-billion-solar-mass black hole resides. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  17. Dr. John Mather and the James Webb Space Telescope

    NASA Image and Video Library

    2017-09-28

    Nobel Laureate and James Webb Space Telescope project scientist Dr. John Mather takes a selfie with the telescope. May 4, 2016 was a rare day for JWST, as it briefly faced the cleanroom observation window. The telescope was eventually rotated face-down in prep for the installation of the flight instruments. Credit: Meredith Gibb

  18. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.

    2010-01-01

    In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.

  19. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.

    2006-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.

  20. Efficient Mosaicking of Spitzer Space Telescope Images

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  1. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  2. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  3. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  4. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss the top 10 astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  5. The Hubble Space Telescope Survey of BL Lacertae Objects. IV. Infrared Imaging of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Urry, C. Megan; Padovani, Paolo; Calzetti, Daniela; O'Dowd, Matthew

    2000-11-01

    The Hubble Space Telescope NICMOS Camera 2 was used for H-band imaging of 12 BL Lacertae objects taken from the larger sample observed with the WFPC2 in the R band by Urry and coworkers and Scarpa and coworkers. Ten of the 12 BL Lacs are clearly resolved, and the detected host galaxies are large, bright ellipticals with average absolute magnitude =-26.2+/-0.45 mag and effective radius =10+/-5 kpc. The rest-frame integrated color of the host galaxies is on average =2.3+/-0.3, consistent with the value for both radio galaxies and normal, nonactive elliptical galaxies and indicating that the dominant stellar population is old. The host galaxies tend to be bluer in their outer regions than in their cores, with average color gradient Δ(R-H)/Δlogr=-0.2 mag, again consistent with results for normal nonactive elliptical galaxies. The infrared Kormendy relation, derived for the first time for BL Lac host galaxies, is μe=3.8logre+14.8, fully in agreement with the relation for normal ellipticals. The close similarity between BL Lac host galaxies and normal ellipticals suggests that the active nucleus has surprisingly little effect on the host galaxy. This supports a picture in which all elliptical galaxies harbor black holes that can be actively accreting for some fraction of their lifetime.

  6. James Webb Space Telescope (JWST) Optical Telescope Element (OTE) Development Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2004-01-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) is a segmented, cryogenic telescope scheduled for launch in 2011. In September of 2002, NASA selected prime contractor Northrop Grumman Space Technology (NGST) to build the observatory including management of the OTE. NGST is teamed with subcontractors Ball Aerospace, Alliant Techsystems (ATK). and Kodak. The team has completed several significant design, technology, architecture definition, and manufacturing milestones in the past year that are summarized in this paper.

  7. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-01-01

    Residing roughly 17 million light years from Earth, in the northern constellation Coma Berenices, is a merged star system known as Messier 64 (M64). First cataloged in the 18th century by the French astronomer Messier, M64 is a result of two colliding galaxies and has an unusual appearance as well as bizarre internal motions. It has a spectacular dark band of absorbing dust in front of its bright nucleus, lending to it the nickname of the "Black Eye" or "Evil Eye" galaxy. Fine details of the dark band can be seen in this image of the central portion of M64 obtained by the Wide Field Planetary Camera (WFPC2) of NASA's Hubble Space Telescope (HST). Appearing to be a fairly normal pinwheel-shaped galaxy, the M64 stars are rotating in the same direction, clockwise, as in the majority of galaxies. However, detailed studies in the 1990's led to the remarkable discovery that the interstellar gas in the outer regions of M64 rotates in the opposite direction from the gas and stars in the irner region. Astronomers believe that the oppositely rotating gas arose when M64 absorbed a satellite galaxy that collided with it, perhaps more than one billion years ago. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST.

  9. Hubble Space Telescope Spies on 'Black Eye'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Residing roughly 17 million light years from Earth, in the northern constellation Coma Berenices, is a merged star system known as Messier 64 (M64). First cataloged in the 18th century by the French astronomer Messier, M64 is a result of two colliding galaxies and has an unusual appearance as well as bizarre internal motions. It has a spectacular dark band of absorbing dust in front of its bright nucleus, lending to it the nickname of the 'Black Eye' or 'Evil Eye' galaxy. Fine details of the dark band can be seen in this image of the central portion of M64 obtained by the Wide Field Planetary Camera (WFPC2) of NASA's Hubble Space Telescope (HST). Appearing to be a fairly normal pinwheel-shaped galaxy, the M64 stars are rotating in the same direction, clockwise, as in the majority of galaxies. However, detailed studies in the 1990's led to the remarkable discovery that the interstellar gas in the outer regions of M64 rotates in the opposite direction from the gas and stars in the irner region. Astronomers believe that the oppositely rotating gas arose when M64 absorbed a satellite galaxy that collided with it, perhaps more than one billion years ago. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-08-24

    Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-02-01

    The nearby intense star-forming region known as the Great Nebula in the Orion constellation reveals a bow shock around a very young star as seen by NASA's Hubble Space Telescope (HST). Named for the crescent-shaped wave made by a ship as it moves through the water, a bow shock can be created in space where two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own sun has a less energetic version of this wind. The material in the fast wind from LL Ori collides with slow moving gas evaporating away form the center of the Orion Nebula, which is located in the lower right of this image, producing the crescent shaped bow shock seen in the image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars. A close visitor in our Milky Way Galaxy, the nebula is only 1,500 light years away from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions.

  12. Origins Space Telescope: Cosmology and Reionization

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin D.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  13. Single-variable parametric cost models for space telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Henrichs, Todd; Smart, Christian; Prince, Frank A.

    2010-07-01

    Parametric cost models are routinely used to plan missions, compare concepts, and justify technology investments. Unfortunately, there is no definitive space telescope cost model. For example, historical cost estimating relationships (CERs) based on primary mirror diameter vary by an order of magnitude. We present new single-variable cost models for space telescope optical telescope assembly (OTA). They are based on data collected from 30 different space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models

  14. Rapid Cadence Collections with the Space Surveillance Telescope

    DTIC Science & Technology

    2012-09-01

    as a function of mean magnitude. Telescope : Diameter (actual): 3.50 meter Diameter (effective): 2.90 meter Effective focal length ...Rapid Cadence Collections with the Space Surveillance Telescope D. Monet U.S. Naval Observatory Flagstaff Station T. Axelrod, C. Claver LSST...ABSTRACT The Defense Advanced Research Projects Agency (DARPA) has constructed the 3.5-meter Space Surveillance Telescope (SST) on North Oscura Peak

  15. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael; Boyer, Roger; Thigpen, Eric

    2009-01-01

    In the aftermath of the 2003 Columbia accident NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. There was at the time no viable technique to repair the orbiter s thermal protection system if it were to be damaged by debris during ascent. Furthermore in the event of damage, since the mission was not to the International Space Station, there was no safe haven for the crew to wait for an extended period of time for a rescue. The HST servicing mission was reconsidered because of improvements in the ascent debris environment, the development of techniques for the astronauts to perform on orbit repairs to damage thermal protection, and the development of a strategy to provide a crew rescue capability. However, leading up to the launch of servicing mission, the HST crew rescue capability was a recurring topic. For HST there was a limited amount of time available to perform a crew rescue because of the limited consumables available on the Orbiter. The success of crew rescue depends upon several factors including when a problem is identified, when and to what extent power down procedures are begun, and where the rescue vehicle is in its ground processing cycle. Severe power downs maximize crew rescue success but would eliminate the option for the orbiter servicing the HST to attempt a landing. Therefore, crew rescue success needed to be weighed against preserving the ability of the orbiter to have landing option in case there was a problem with the rescue vehicle. This paper focuses on quantification of the HST mission loss of crew rescue capability using Shuttle historical data and various power down capabilities. That work supported NASA s decision to proceed with the HST service mission, which was successfully completed on May 24th 2009.

  16. The Hubble Space Telescope Frontier Fields Program

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt

    2017-08-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  17. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. In this paper, we review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research. The James Webb Space Telescope was designed to meet science objectives in four themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life. More recently, it has become clear that Webb will also make major contributions to studies of dark energy, dark matter

  18. Exploring the Universe with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.

  19. Lessons Learned from the Kepler Mission and Space Telescope Management

    NASA Technical Reports Server (NTRS)

    Fanson, James

    2010-01-01

    This paper presents lessons learned over the course of several space telescope mission and instrument developments spanning two decades. These projects involved astronomical telescopes developed by the National Aeronautics and Space Administration (NASA) and were designed to further our understanding of the Universe. It is hoped that the lessons drawn from these experiences may be of use to future mission developers.

  20. Astronaut Hoffman replaces fuse plugs on Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman sees to the replacement of fuse plugs on the Hubble Space Telescope (HST) during the first of five space walks. Thunderclouds are all that is visible on the dark earth in the background.

  1. Space-based radio telescopes and an orbiting deep-space relay station

    NASA Technical Reports Server (NTRS)

    Powell, R. V.

    1979-01-01

    Foremost among the candidates for early utilization of the Shuttle-launched self-deployable structures are the space-based radio telescopes. Several space-based telescopes are examined including an orbiting VLBI terminal, an orbiting submillimeter telescope, and a large ambient deployable IR telescope. Particular consideration is given to the high-gain Orbiting Deep-Space Relay Station for communication with deep-space probes. Details of deployable antenna technology are discussed.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-09-06

    Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst "turned on" more than 100 million years ago.

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-11-28

    This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.

  4. A Decade of Hubble Space Telescope Science

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Noll, Keith; Stiavelli, Massimo

    2003-06-01

    1. HST studies of Mars J. F. Bell; 2. HST images of Jupiter's UV aurora J. T. Clarke; 3. Star formation J. Bally; 4. SN1987A: the birth of a supernova remnant R. McCray; 5. Globular clusters: the view from HST W. E. Harris; 6. Ultraviolet absorption line studies of the Galactic interstellar medium with the Goddard High Resolution Spectrograph B. D. Savage; 7. HST's view of the center of the Milky Way galaxy M. J. Rieke; 8. Stellar populations in dwarf galaxies: a review of the contribution of HST to our understanding of the nearby universe E. Tolstoy; 9. The formation of star clusters B. C. Whitmore; 10. Starburst galaxies observed with the Hubble Space Telescope C. Leitherer; 11. Supermassive black holes F. D. Macchetto; 12. The HST Key Project to measure the Hubble Constant W. L. Freedman, R. C. Kennicutt, J. R. Mould and B. F. Madore; 13. Ho from Type Ia Supernovae G. A. Tammann, A. Sandage and A. Saha; 14. Strong gravitational lensing: cosmology from angels and redshifts A. Tyson.

  5. Controller Redesign for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Irwin, R. Dennis; Glenn, Russell D.; Frazier, W. Garth; Lawrence, Douglas A.; Follett, Randolph F.

    1993-09-01

    The Pointing Control System (PCS) onboard the Hubble Space Telescope (HST) is required to maintain line of sight pointing error less than 0.007 arc-seconds for observations lasting as long as 24 hours. Since deployment, an unanticipated disturbance source has resulted in line of sight jitter far exceeding this requirement. Detailed analysis has indicated that this disturbance is most likely due to thermally induced in-plane and out-of-plane flexing of the solar arrays (SA) at frequencies of roughly 0.6 Hz and 0.11 Hz, respectively. NASA efforts to redesign the HST PCS have led to significant, yet insufficient, pointing error attenuation 1. The purpose of this report is to detail efforts in applying Multi-Input, Multi-Output (MIMO) analysis and design techniques to the PCS redesign problem. In particular, the notion of singular value frequency response (i.e., H(infinity) specifications) is used extensively in formulating performance specifications and performing stability analyses for coupled MIMO systems such as the HST.

  6. Space Telescope Fine Guidance Sensor Bearing Anomaly

    NASA Technical Reports Server (NTRS)

    Loewenthal, S.; Esper, J.; Pan, J.; Decker, J.

    1996-01-01

    Early in 1993, a servo motor within one of three Fine Guidance Sensors (FGS) aboard the Hubble Space Telescope (HST) reached stall torque levels on several occasions. Little time was left to plan replacement during the first servicing mission, scheduled at the end of '93. Accelerated bearing life tests confirmed that a small angle rocking motion, known as Coarse Track (CT), accelerated bearing degradation. Saturation torque levels were reached after approximately 20 million test cycles, similar to the flight bearings. Reduction in CT operation, implemented in flight software, extended FGS life well beyond the first servicing mission. However in recent years, bearing torques have resumed upward trends and together with a second, recent bearing torque anomaly has necessitated a scheduled FGS replacement during the upcoming second servicing mission in '97. The results from two series of life tests to quantify FGS bearing remaining life, discussion of bearing on-orbit performance, and future plans to service the FGS servos are presented in this paper.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-01-01

    These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.

  8. Space Telescope precision pointing control system

    NASA Technical Reports Server (NTRS)

    Beals, G. A.; Crum, R. C.; Dougherty, H. J.; Hegel, D. K.; Kelley, J. L.

    1986-01-01

    The Hubble Space Telescope has the most stringent pointing requirements imposed on any spacecraft to date. The overall HST stability shall not exceed 0.007 arc-seconds rms. The Pointing Control System utilizes fine guidance sensors and rate gyros for attitude reference and rate information. Control torques are provided by reaction wheels. A digital computer collects the sensor data, performs the control law computations, and sends torque commands to the reaction wheels. To attain this precision pointing, improvements were made to the rate gyros to lower their noise characteristics and to the reaction wheels to reduce their emitted vibration levels. The control system design was validated in a test sequence which progressed from model verification tests on an air-bearing to operations-oriented, closed loop testing on the assembled vehicle. A test system is described which allowed the simultaneous production of test case command loads for the flight computer and plots of predicted profiles to assist in test data analysis. Workarounds were required during system test to accommodate gyro biases and noise introduced into the closed loop system. Testing and analysis indicate that the HST will provide the capability to meet the requirements for precision pointing.

  9. Parallaxes with Hubble Space Telescope II

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; McArthur, B. E.; Harrison, T. E.; Lee, J.; Slesnick, C. L.; HST Astrometry Science Team

    2001-11-01

    We report on parallaxes for astrophysically interesting stars obtained with the Fine Guidance Sensor interferometer on Hubble Space Telescope. These objects include the central star of the planetary nebula NGC 6853, the cataclysmic variable TV Col, and the distance scale calibrators RR Lyr and delta Cep. We will discuss our considerable efforts to characterize the reference stars associated with each prime target, necessary to effect the correction from relative to absolute parallax. These targets were originally chosen by L. W. Fredrick in 1980. We compare these and our past results with all past, non-HST determinations, including those from HIPPARCOS for our brighter targets. The HST Astrometry Sceince Team consists of W. H. Jefferys , P.I., G. F. Benedict, deputy P.I., B. E. McArthur, P. J. Shelus, R. Duncombe (UTexas), E. Nelan (STScI), W. van Altena and J. Lee (Yale), O. Franz and L. Wasserman (Lowell Obs.), and L. Fredrick (UVirginia). We gratefully acknowledge the support of NASA grant NAG5-1603 and our many supporters at STScI and Goddard Spaceflight Center. We thank R. Patterson, J. Rhee, and S. Majewski (UVirginia) and T. Montemayor (UTexas) for assistance with reference star photometry.

  10. An evolvable space telescope for future astronomical missions 2015 update

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.; Baldauf, Brian; Makowski, David; Rafanelli, Gerald L.

    2015-09-01

    In 2014 we presented a concept for an Evolvable Space Telescope (EST) that was assembled on orbit in 3 stages, growing from a 4x12 meter telescope in Stage 1, to a 12-meter filled aperture in Stage 2, and then to a 20-meter filled aperture in Stage 3. Stage 1 is launched as a fully functional telescope and begins gathering science data immediately after checkout on orbit. This observatory is then periodically augmented in space with additional mirror segments, structures, and newer instruments to evolve the telescope over the years to a 20-meter space telescope. In this 2015 update of EST we focus upon three items: 1) a restructured Stage 1 EST with three mirror segments forming an off-axis telescope (half a 12-meter filled aperture); 2) more details on the value and architecture of the prime focus instrument accommodation; and 3) a more in depth discussion of the essential in-space infrastructure, early ground testing and a concept for an International Space Station testbed called MoDEST. In addition to the EST discussions we introduce a different alternative telescope architecture: a Rotating Synthetic Aperture (RSA). This is a rectangular primary mirror that can be rotated to fill the UV-plane. The original concept was developed by Raytheon Space and Airborne Systems for non-astronomical applications. In collaboration with Raytheon we have begun to explore the RSA approach as an astronomical space telescope and have initiated studies of science and cost performance.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1996-01-16

    Taken by the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST), this image of MyCn18, a young planetary nebula located about 8,000 light-years away, reveals its true shape to be an hourglass with an intricate pattern of "etchings" in its walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger, flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. According to one theory on the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud, which is denser near its equator than near its poles. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green) and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of sun-like stars. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  12. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  13. Innovative telescope architectures for future large space observatories

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.

    2016-10-01

    Over the past few years, we have developed a concept for an evolvable space telescope (EST) that is assembled on orbit in three stages, growing from a 4×12-m telescope in Stage 1, to a 12-m filled aperture in Stage 2, and then to a 20-m filled aperture in Stage 3. Stage 1 is launched as a fully functional telescope and begins gathering science data immediately after checkout on orbit. This observatory is then periodically augmented in space with additional mirror segments, structures, and newer instruments to evolve the telescope over the years to a 20-m space telescope. We discuss the EST architecture, the motivation for this approach, and the benefits it provides over current approaches to building and maintaining large space observatories.

  14. HUBBLE SPACE TELESCOPE IMAGING AND SPECTRAL ANALYSIS OF TWO BROWN DWARF BINARIES AT THE L DWARF/T DWARF TRANSITION

    SciTech Connect

    Burgasser, Adam J.; Bardalez-Gagliuffi, Daniella C.; Gizis, John E.

    2011-03-15

    We present a detailed examination of the brown dwarf multiples 2MASS J08503593+1057156 and 2MASS J17281150+3948593, both suspected of harboring components that straddle the L dwarf/T dwarf transition. Resolved photometry from Hubble Space Telescope/NICMOS shows opposite trends in the relative colors of the components, with the secondary of 2MASS J0850+1057 being redder than its primary, while that of 2MASS J1728+3948 is bluer. We determine near-infrared component types by matching combined-light, near-infrared spectral data to binary templates, with component spectra scaled to resolved NICMOS and K{sub p} photometry. Combinations of L7 + L6 for 2MASS J0850+1057 and L5 + L6.5 for 2MASS J1728+3948 are inferred. Remarkably, the primary of 2MASS J0850+1057 appears to have a later-type classification compared to its secondary, despite being 0.8-1.2 mag brighter in the near-infrared, while the primary of 2MASS J1728+3948 is unusually early for its combined-light optical classification. Comparison to absolute magnitude/spectral type trends also distinguishes these components, with 2MASS J0850+1057A being {approx}1 mag brighter and 2MASS J1728+3948A {approx} 0.5 mag fainter than equivalently classified field counterparts. We deduce that thick condensate clouds are likely responsible for the unusual properties of 2MASS J1728+3948A, while 2MASS J0850+1057A is either an inflated young brown dwarf or a tight unresolved binary, making it potentially part of a wide, low-mass, hierarchical quintuple system.

  15. Design of Large Lightweight Space Telescope Optical Systems for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Jacobson, Dave; Craig, Larry; Schunk, Greg; Shapiro, Alan; Cloyd, Dick; Ricks, Ed; Vacarro, Mark; Redding, Dave; Hadaway, James; Bely, Pierre

    1998-01-01

    The Next Generation Space Telescope (NGST) is currently in a Pre Phase A study effort to prove feasibility of design and to show that the design can be implemented within cost constraint guidelines and meet the requirements of the science community. In an effort to achieve the science communities goals as outlined in "HST and Beyond" the NGST team has developed a government "yardstick" design of an eight meter diameter segmented telescope which would be launched in an Atlas IIAS launch vehicle to a L2 (Lagrange Point) orbit. This paper will discuss the design of the Optical Telescope Assembly (OTA) and the various issues and complications of designing lightweight optics to be placed in the environment that the NGST will encounter both during launch and during its operational mission at L2. The OTA must be lightweight but structurally must withstand the launch environment and transfer to its final L2 orbit. The OTA must be stable at L2 to provide high quality science at the cryogenic temperatures it will experience. The OTA segmented petal concept is to develop lightweight optics which can either be manipulated to achieve and maintain a desired figure or be rigid enough so that change in shape is only necessary for phasing and alignment. The secondary mirror structural mast must also be rigid with frequency responses which are not coupled to spacecraft modes in order to maintain and decenter and despace requirements.

  16. Europe's new space telescope unmasks colliding galaxies

    NASA Astrophysics Data System (ADS)

    1996-02-01

    Collisions between galaxies, each containing billions of stars, are the biggest events since the origin of the Universe. They may occur often enough to play a major role in the evolution of galaxies, and they provide a major theme for ISO's research teams. Collisions trigger star formation within dense dust clouds. These are opaque to visible light, so that even the Hubble Space Telescope is blind to the events within them. One target for ISO's Camera was a pair of galaxies known as the Antennae, 60 million light- years away. The name comes from antenna-like streamers of stars torn from the galaxies by a collision. The galaxies look quite similar by visible light. With its unprecedented ability to harvest and analyse infrared rays, ISO distinguishes different kinds of commotion provoked by the encounter. To ISO's penetrating infrared eye, one of the Antennae galaxies shows a large ring of intense starmaking around the central nucleus. This feature is absent in the other galaxy. Another region of star formation extends along a line marking the overlap of the disks of the two galaxies, where the collision is fiercest. ISO's Camera has also observed merging galaxies 230 million light-years away, known as Arp 220. Here the intense infrared emission is concentrated in such a small region that astronomers suspect a possible interaction with a giant black hole. At a long infrared wavelength, ISO's Photometer has measured the temperature of the dust in a pair of colliding galaxies, NGC 6090. The result is minus 250 degrees Celsius. Astronomers estimate the rate of starmaking in NGC 6090 at 25 sun-like stars created every year in NGC 6090, compared with two or three a year in the Milky Way. The nearby Whirlpool Galaxy, M51, was ISO's "first light" target on 28 November, when the telescope was opened to the sky. Since then the Camera team has made much better pictures of M51. The infrared images show regions of star formation along the galaxy's spiral arms and on either side

  17. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  18. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  19. Optical Testing of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.

    2014-01-01

    The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror, working to a 2018 launch date. Ground testing for the JWST will occur in two test campaigns, at NASAs Goddard Space Flight Center and Johnson Space Center. The talk describes the JWST and its optical ground testing, highlighting the roles of many of the University of Rochester Institute of Optics' alumni as well as current faculty and students.

  20. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  1. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  2. Database architectures for Space Telescope Science Institute

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen

    1993-08-01

    At STScI nearly all large applications require database support. A general purpose architecture has been developed and is in use that relies upon an extended client-server paradigm. Processing is in general distributed across three processes, each of which generally resides on its own processor. Database queries are evaluated on one such process, called the DBMS server. The DBMS server software is provided by a database vendor. The application issues database queries and is called the application client. This client uses a set of generic DBMS application programming calls through our STDB/NET programming interface. Intermediate between the application client and the DBMS server is the STDB/NET server. This server accepts generic query requests from the application and converts them into the specific requirements of the DBMS server. In addition, it accepts query results from the DBMS server and passes them back to the application. Typically the STDB/NET server is local to the DBMS server, while the application client may be remote. The STDB/NET server provides additional capabilities such as database deadlock restart and performance monitoring. This architecture is currently in use for some major STScI applications, including the ground support system. We are currently investigating means of providing ad hoc query support to users through the above architecture. Such support is critical for providing flexible user interface capabilities. The Universal Relation advocated by Ullman, Kernighan, and others appears to be promising. In this approach, the user sees the entire database as a single table, thereby freeing the user from needing to understand the detailed schema. A software layer provides the translation between the user and detailed schema views of the database. However, many subtle issues arise in making this transformation. We are currently exploring this scheme for use in the Hubble Space Telescope user interface to the data archive system (DADS).

  3. Progress on the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    I will describe the scientific program anticipated for the James Webb Space Telescope and the progress in its construction. When the JWST was conceived in 1995 it was expected to make its greatest contributions in the study of the first objects to form after the Big Bang, in the evolution of galaxies, and in the formation and evolution of stars and planetary systems. Since then, the age-distance-redshift relation has become clear with the precise measurement of the Hubble constant, the discovery of the accelerating universe, and the remarkable agreement of CMBR calculations with direct measurements of the large-scale structure. So what is left and what has changed? Galaxy formation and growth is still mysterious, star formation is still hidden, the dark matter and dark energy are still unobservable, and the tools at hand may or may not help enough. But the JWST, as a general-purpose observatory, will be available for imaginative use, and is just what Simon White's polemic seems to request. As an example, the JWST should be quite capable of observing transiting exoplanets with remarkable precision, even though there was no requirement to do so, and its coronagraphs will be very good even without a monolithic primary mirror. The JWST mission has now been officially approved by NASA and is in the Federal budget. It is planned for launch in 2014. Flight instruments will begin to arrive at Goddard in mid-2010, and the first flight mirror segments have already passed their first cryogenic tests. The flight detectors have been selected and have remarkable performance; for example, the near IR detectors have dark currents of the order of 10 electrons per pixel per hour.

  4. Lights Out on the James Webb Space Telescope

    NASA Image and Video Library

    2017-09-28

    What happens when the lights are turned out in the enormous clean room that currently houses NASA's James Webb Space Telescope? The technicians who are inspecting the telescope and its expansive golden mirrors look like ghostly wraiths in this image as they conduct a "lights out inspection" in the Spacecraft Systems Development and Integration Facility (SSDIF) at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The clean room lights were turned off to inspect the telescope after it experienced vibration and acoustic testing. The contamination control engineer used a bright flashlight and special ultraviolet flashlights to inspect for contamination because it's easier to find in the dark. NASA photographer Chris Gunn said "The people have a ghostly appearance because it's a long exposure." He left the camera's shutter open for a longer than normal time so the movement of the technicians appear as a blur. He also used a special light "painting" technique to light up the primary mirror. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. For more information about the Webb telescope visit: www.jwst.nasa.gov or www.nasa.gov/webb Image Credit: NASA/Chris Gunn

  5. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  6. Payload maintenance cost model for the space telescope

    NASA Technical Reports Server (NTRS)

    White, W. L.

    1980-01-01

    An optimum maintenance cost model for the space telescope for a fifteen year mission cycle was developed. Various documents and subsequent updates of failure rates and configurations were made. The reliability of the space telescope for one year, two and one half years, and five years were determined using the failure rates and configurations. The failure rates and configurations were also used in the maintenance simulation computer model which simulate the failure patterns for the fifteen year mission life of the space telescope. Cost algorithms associated with the maintenance options as indicated by the failure patterns were developed and integrated into the model.

  7. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.; Campbell, Doug; Clampin, Mark; Decker, John; Greenhouse, Matt; Johns, Alan; Menzel, Mike; Smith, Robert; Sullivan, Pam

    2005-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  8. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.

    2004-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the recent selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  9. Hubble Space Telescope (HST) shipping container test operations at KSC

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Ground crews look on as a crane lifts the 11,500 pound aluminum cap from the Hubble Space Telescope (HST) shipping container in front of the Multiuse Mission Support Equipment (MMSE) Building at the Kennedy Space Center (KSC). KSC workers continue to test and checkout the container which will be used to transport the 43 foot long, 14 foot diameter telescope from Lockheed in Sunnyvale, California to KSC next year. The telescope is scheduled for launch aboard the space shuttle in November 1988. View provided by KSC with alternate KSC number KSC-87PC-502.

  10. Payload maintenance cost model for the space telescope

    NASA Technical Reports Server (NTRS)

    White, W. L.

    1980-01-01

    An optimum maintenance cost model for the space telescope for a fifteen year mission cycle was developed. Various documents and subsequent updates of failure rates and configurations were made. The reliability of the space telescope for one year, two and one half years, and five years were determined using the failure rates and configurations. The failure rates and configurations were also used in the maintenance simulation computer model which simulate the failure patterns for the fifteen year mission life of the space telescope. Cost algorithms associated with the maintenance options as indicated by the failure patterns were developed and integrated into the model.

  11. Hubble Space Telescope (HST) shipping container test operations at KSC

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Ground crews look on as a crane lifts the 11,500 pound aluminum cap from the Hubble Space Telescope (HST) shipping container in front of the Multiuse Mission Support Equipment (MMSE) Building at the Kennedy Space Center (KSC). KSC workers continue to test and checkout the container which will be used to transport the 43 foot long, 14 foot diameter telescope from Lockheed in Sunnyvale, California to KSC next year. The telescope is scheduled for launch aboard the space shuttle in November 1988. View provided by KSC with alternate KSC number KSC-87PC-502.

  12. Design of optical systems for large space telescopes

    NASA Astrophysics Data System (ADS)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    On the basis of long-term experience of LOMO PLC in creating large optical systems for ground and space telescopes, with diameter of primary mirror from 1 to 6 meters, the following issues should be considered: principles of constructing optical systems for space telescopes and selecting their optimum design in respect of dimensions/mass and performance criteria; ensuring the fulfillment of image quality requirements in the process of manufacturing optical systems for controlling ground telescope elements in operating conditions; providing automatic adjustment of telescope secondary mirror, automatic focusing, interferometric control of image quality by means of stellar interferometer with radial shift and internal control with Gartman's test. Description of space telescope equipped with primary mirror of diameter 1.5 m, manufactured in LOMO PLC, is given.

  13. NICMOS non-linearity tests

    NASA Astrophysics Data System (ADS)

    de Jong, Roelof

    2005-07-01

    This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap

  14. Early Scientific Results from the Rejuvenated Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm

    2010-01-01

    With the complete success of Servicing Mission 4 (SM4) to the Hubble Space Telescope in May, 2009, the Observatory's capabilities are extremely broad and beyond anything it has previously been equipped with. I will present results on the important early science corning out of the telescope and discuss prospects for the future."

  15. Exo-atmospheric telescopes for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Hurd, William J.; MacNeal, Bruce E.; Ortiz, Gerardo G.; Cheng, Edward S.; Moe, Rud V.; Walker, Jon Z.; Fairbrother, Debora A.; Dennis, Michael L.; Eegholm, Bente; Kasunic, Keith J.

    2006-01-01

    For deep space optical communications, optical telescopes located above the Earth's atmosphere would have significant performance advantages over telescopes mounted on the Earth's surface. Link outages due to could cover would be eliminated, atmospheric attenuation would be eliminated, and signal degradation due to stray light would be reduced.

  16. Early Scientific Results from the Rejuvenated Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm

    2010-01-01

    With the complete success of Servicing Mission 4 (SM4) to the Hubble Space Telescope in May, 2009, the Observatory's capabilities are extremely broad and beyond anything it has previously been equipped with. I will present results on the important early science corning out of the telescope and discuss prospects for the future."

  17. Mirror Technology Roadmap for Optical/IR/FIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil

    2006-01-01

    The Optics sub-committee of the Advanced Telescope and Observatory {ATO) Capability Roadmap developed an optics capability roadmap to enable planned future space telescopes. The roadmap details 4 basic technologies: cryogenic optics for IR and Far-IR missions; precision optics for optical, UV and EUV missions; grazing incidence optics for x-ray missions; and novel optics with revolutionary capabilities.

  18. Overview of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a cryogenic, 6.5 meter diameter space telescope. JWST has a unique architecture, compared to previous space telescopes, that is driven by its science requirements, ia passively cooled cryogenic design, and the need to stow the observatory for launch. JWST's large, segmented mirror meets the requirement for high angular resolution in the infrared coupled with a significant increase in collecting area compared to the Spitzer and Hubble Space telescopes in order to detect the first galaxies. JWST's unique five-layer sunshield allows the telescope and instrument module to passively cool to cryogenic temperatures. JWST will be launched on an Ariane 5, and so both its telescope optics, and the sunshield have to be stowed in order to fit the Ariane 5 fairing. Following launch the sunshield and telescope optics must be deployed, and the primary mirror phased for science operations. In this presentation we will review the design of the observatory and highlight recent progress in the construction of the JWST observatory. In particular, we address recent progress with the telescope optics, sunshield and spacecraft. We will discuss predicted observatory performance in terms of the scientific goals of JWST and address key operational considerations that might bear upon frontier science observations.

  19. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    NASA Technical Reports Server (NTRS)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  20. The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

    SciTech Connect

    Max, C E; Canalizo, G; Macintosh, B A; Raschke, L; Whysong, D; Antonucci, R; Schneider, G

    2004-11-19

    We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern subnucleus is more highly reddened. Based upon the nuclear separation measured at 5 GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H{sub 2} 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H{sub 2} emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many any point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.

  1. The Core of NGC 6240 from Keck Adaptive Optics and HST NICMOS Observations

    SciTech Connect

    Max, C E; Canalizo, G; Macintosh, B A; Raschke, L; Whysong, D; Antonucci, R; Schneider, G

    2004-06-28

    We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K' band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern subnucleus is more highly reddened. Based upon the nuclear separation measured at 5 GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K' band, and is located slightly to the north of the brightest point in K' band. Within the South nucleus there is strong H{sub 2} 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H{sub 2} emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K'-band with Keck adaptive optics. We suggest that these point-sources represent star clusters formed in the course of the merger.

  2. Space telescope - Meeting the pointing control challenge with today's technology

    NASA Technical Reports Server (NTRS)

    Dougherty, H.; Rodoni, C.; Rodden, J.; Tompetrini, K.

    1982-01-01

    The pointing control system of the Space Telescope, which provides target-to-target maneuvering capability and precision pointing on the target star (with 0.007-arcsec stability and 0.01-arcsec accuracy), is described. Spacecraft attitude control is undertaken by onboard computer processing of attitude and rate sensor data that generates reaction wheel torque commands. The Space Telescope Operations Control Center communicates with the Space Telescope via the synchronous altitude tracking and data relay satellite system, and determines vehicle attitude more precisely by means of sun sensors, magnetometers and fixed-head star trackers. Such disturbance torques as those of gravity gradients and aerodynamics act on the Space Telescope, causing the speeds of the four reaction wheels to increase. In order to prevent the wheels from reaching a speed-saturated condition, a momentum control system is provided for the management of reaction wheel speed buildup. Attention is given to development testing and control hardware investigations and improvements.

  3. How Long Can the Hubble Space Telescope Operate Reliably?

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Lum, G.; Haskins, D. N.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    Total ionizing dose exposure of electronic parts in the Hubble Space Telescope is analyzed using 3-D ray trace and Monte Carlo simulations. Results are discussed along with other potential failure mechanisms for science operations.

  4. Fine Guidance System for the James Webb Space Telescope Delivered

    NASA Image and Video Library

    Video has music in the background but no dialogue. The second of four main instruments to fly aboard NASA's James Webb Space Telescope (Webb) has been delivered to NASA. The Fine Guidance Sensor (F...

  5. Space telescope observatory management system preliminary test and verification plan

    NASA Technical Reports Server (NTRS)

    Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.

    1982-01-01

    The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.

  6. James Webb Space Telescope (JWST) Town Hall - Panel question and

    NASA Image and Video Library

    2016-11-02

    James Webb Space Telescope (JWST) Town Hall - Panel question and answer - Bill Ochs; Dr. John Mather; Dr. Eric Smith; Thomas Zurbuchen; Center Director Chris Scolese; NASA Administrator Charlie Bolden.

  7. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2004-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.

  8. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  9. POST: a stratospheric testbed for testing new space telescope technologies

    NASA Astrophysics Data System (ADS)

    Tilley, James N.; Friedman, Ed; Ford, Holland C.; Bely, Pierre Y.

    1995-06-01

    The Polar Stratospheric Telescope payload will be the prototype of a diffraction limited, large space telescope and will fly in the stratosphere to validate a number of new technologies that future large space telescopes will require. The telescope is a 6-m diameter, sparsely-filled array comprised on one 1.8-m and six 60-cm mirrors. Each mirror is a segment of an f/1.2 primary. The mirrors have an unequal spacing around the circumference which optimizes spatial coverage of the u,v plane. The mirror segments are coaligned and cophased by a combination of internal metrology and re-imaging of the pupil onto a small active mirror for the correction of piston and tilt errors. The telescope will be flown during the winter in a polar region where the tropopause is a factor of two lower than at lower latitudes, making the stratosphere accessible to tethered aerostats. The telescope is suspended approximately 100 m below a tethered aerostat flying at an altitude of about 12 km. The telescope body is stabilized gyroscopically with two reaction wheels, and fine guidance of the line of sight is provided by a fast steering mirror. The telescopes primary mirrors are at the ambient temperature of 190 to 220 K, and internal baffles and relay optics are cooled to 160 K to minimize the instrumental background in the near infrared.

  10. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.

  11. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    NASA Administrator Charles Bolden speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Administrator Bolden spoke about his involvement with the Hubble Space Telescope and took questions from the students. Photo Credit: (NASA/Joel Kowsky)

  12. Yes, the James Webb Space Telescope Mirrors 'Can'

    NASA Image and Video Library

    2017-09-27

    The powerful primary mirrors of the James Webb Space Telescope will be able to detect the light from distant galaxies. The manufacturer of those mirrors, Ball Aerospace & Technologies Corp. of Boulder, Colo., recently celebrated their successful efforts as mirror segments were packed up in special shipping canisters (cans) for shipping to NASA. The Webb telescope has 21 mirrors, with 18 primary mirror segments working together as one large 21.3-foot (6.5-meter) primary mirror. The mirror segments are made of beryllium, which was selected for its stiffness, light weight and stability at cryogenic temperatures. Bare beryllium is not very reflective of near-infrared light, so each mirror is coated with about 0.12 ounce of gold. Northrop Grumman Corp. Aerospace Systems is the principal contractor on the telescope and commissioned Ball for the optics system's development, design, manufacturing, integration and testing. The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency. For more information about the James Webb Space Telescope, visit: www.jwst.nasa.gov Credit: Ball Aerospace NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Space telescope neutral buoyancy simulations: The first two years

    NASA Technical Reports Server (NTRS)

    Sanders, F. G.

    1982-01-01

    Neutral Buoyancy simulations which were conducted to validate the crew systems interface as it relates to space telescope on-orbit maintenance and contingency operations is discussed. The initial concept validation tests using low fidelity mockups is described. The entire spectrum of proposed space telescope refurbishment and selected contingencies using upgraded mockups which reflect flight hardware are reported. Findings which may be applicable to future efforts of a similar nature are presented.

  14. Working model of a gossamer membrane spectrographic space telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joe; Valliant, John

    2009-08-01

    The nineteenth century Fraunhofer primary objective grating (POG) telescope has been redesigned with a secondary spectrometer. The POG is embossed on a membrane and placed at an angle of grazing exodus relative to a conventional spectrographic telescope. The result is a new type of telescope that disambiguates overlapping spectra and can capture spectral flux from all objects over its free spectral range, nearly 40°. For space deployment, the ribbon-shaped membrane can be stowed as a cylinder under a rocket fairing for launch and deployed in space from a cylindrical drum. Any length up to kilometer scale could be contemplated.

  15. Infiltration of Supermicron Aerosols into a Simulated Space Telescope

    DTIC Science & Technology

    2011-02-10

    AEROSPACE REPORT NO. TR-2011(8550)-1 Infiltration of Supermicron Aerosols into a Simulated Space Telescope February 10,2011 De-Ling Liu and... Telescope 5a. CONTRACT NUMBER FA8802-09-C-0001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) De-Ling Liu and Kenneth T. Luey 5d. PROJECT...system, such as a space telescope , during a purge outage. This study presents experi- mental work performed to measure time-dependent aerosol

  16. An Evolvable Space Telescope for Future Astronomical Missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin; Dailey, Dean

    2015-01-01

    Astronomical flagship missions after the James Webb Space Telescope (JWST) will require lower cost space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures.Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance.Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8-m to 16-m telescopes that have been studied for the follow-on to JWST using similar development/assembly approaches without accounting for too large of a portion of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an 'Evolvable Space Telescope' that would be 3 to 4-m when placed on orbit and then periodically augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16-m space telescope.This paper reviews the technologies required for such a mission, identifies candidate architectures, and discusses different science measurement objectives for these architectures.

  17. Space environmental effects observed on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Edelman, Joel E.; Mason, James B.

    1995-01-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interest to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG's). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.

  18. NICMOS Narrow-band Images of OMC-1

    NASA Technical Reports Server (NTRS)

    Schultz, Angela S. B.; Colgan, Sean W. J.; Erickson, E. F.; Kaufman, M. J.; Hollenbach, D. J.; O'Dell, C. R.; Young, E. T.; Chen, H.

    1998-01-01

    We present images of a 90in. x 90in. field centered on BN in OMC-1, taken with the Near-Infrared Camera and MultiObject Spectrograph (NICMOS) aboard the Hubble Space Telescope. The observed lines are H2 1-0 S(l), Pa, [FeII] 1.64 pm, and the adjacent continua. The region is rich in interesting structures. The most remarkable are the streamers or "fingers" of H2 emission which extend from 15in. to 50in. from IRc2, seen here in unprecedented detail. Unlike the northern H2 fingers, the inner fingers do not exhibit significant [FeII] emission at theirdips, which we suggest is due to lower excitation. These observations also show that the general morphology of the Pa and [FeII] emission (both imaged for the first time in this region) bears a striking resemblance to that of the Ha and [SII] emission previously observed with WFPC2. This implies that these IR and optical lines are produced by radiative excitation on the surface of the molecular cloud. The Pa morphology of HH 202 is also very similar to its H a and [OIII] emission, again suggesting that the Pa in this object is photo-excited by the Trapezium, as has been suggested for the optical emission. We find evidence of shock-excited [FeII] in HH 208, where it again closely follows the morphology of [SII]. There is also H2 coincident with the [SII] and [FeII] emission, which may be associated with HH 208. Finally, we note some interesting continuum features: diffuse "tails" trailing from IRc3 and IRc4, more extensive observations of the "crescent" found by Stolovy, et al. (1998), and new observations of a similar oval object nearby. We also find a "V"-shaped region which may be the boundary of a cavity being cleared by IRc2.

  19. James Webb Space Telescope stray light performance status update

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Wei, Zongying

    2012-09-01

    The James Webb Space Telescope (JWST) is a large space based astronomical telescope that will operate at cryogenic temperatures. The architecture has the telescope exposed to space, with a large sun shield providing thermal isolation and protection from direct illumination from the sun. The instruments will have the capability to observe over a spectral range from 0.6 µm to 28 µm wavelengths. The following paper will present updated stray light analysis results characterizing the stray light getting to the instrument focal planes from the full galactic sky, zodiacal background, bright objects near the line of sight, and scattered earth and moon shine. Included is a discussion of internal alignments of pupils at relevant interface planes to stray light. The amount of self-generated infrared background from the Observatory that reaches the instrument focal planes will be presented including the tolerance to the alignment of the edges of the sun shield membranes relative to each other and the telescope.

  20. Feasibility study of an optically coherent telescope array in space

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1983-01-01

    Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.

  1. NICMOS History Database and Web Tools

    NASA Astrophysics Data System (ADS)

    Tullos, C.

    1998-04-01

    The history of NICMOS platescale, focus, and coronographic hole data has been stored in a database which is accessible via tools on the World Wide Web. The history tool which allows queries on the data, is available to the public.

  2. Hubble Space Telescope: Optical telescope assembly handbook. Version 1.0

    NASA Technical Reports Server (NTRS)

    Burrows, Chris

    1990-01-01

    The Hubble Space Telescope is described along with how its design affects the images produced at the Science Instruments. An overview is presented of the hardware. Details are presented of the focal plane, throughput of the telescope, and the point spread function (image of an unresolved point source). Some detailed simulations are available of this, which might be useful to observers in planning their observations and in reducing their data.

  3. An evolvable space telescope for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.

    2014-08-01

    Astronomical flagship missions after JWST will require affordable space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures. Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance. Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8 m to 16 m telescopes that have been studied as a follow-on to JWST using similar development/assembly approaches without decimating the rest of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an "Evolvable Space Telescope" that would begin as a 3 to 4 m telescope when placed on orbit and then periodically be augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16 m or larger space telescope. This paper reviews the approach for such a mission and identifies and discusses candidate architectures.

  4. Enthusiasm for Europe's space telescope ISO

    NASA Astrophysics Data System (ADS)

    1996-11-01

    . Several new candidate Vega-like dust disks are reported in Astronomy and Astrophysics by Harm Habing of Leiden in the Netherlands, and his colleagues. Their preliminary conclusion is that the dust disks are a common feature of ordinary stars as massive as the Sun or heavier, but they are by no means ubiquitous. Further measurements on Vega itself show relatively low emissions at the longest wavelengths, which implies that the dust grains are small. In a related programme, a Belgian-led team has used ISO's Short-Wavelength Spectrometer to probe the composition of dust near very young stars. It reports the discovery of crystals of olivine, a silicate mineral and a major constituent of the Earth's own rocky mantle. The firm detection of olivine crystals builds a bridge from the stars to the minerals of the solar system. Most mineral grains in interstellar space lack the crystalline forms of common minerals, even if they have the same chemical composition. Hints of infrared emissions from olivine crystals, detected by ground-based telescopes at around 11 microns wavelength, are confused by emissions coming also from carbon compounds. ISO, with its unhampered view at longer wavelengths, sees signatures of magnesium-rich olivine crystals at 20, 24 and 34 microns. The minerals crystallize when gravity concentrates them near a young star, and intense radiation from the star modifies the grains. ISO also sees similar materials in the dust shells of old stars, in a project headed by the Dutch astronomer Rens Waters, who is also closely involved in the work on young stars. Apparently the mineral crystals do not survive in interstellar space, but have to be refashioned near young stars. The most clear-cut evidence for olivine crystals comes from the vicinity of HD 100546, a young blue star about 500 light-years away near the Southern Cross. It is thought to be only a few million years old and it is a strong infrared emitter. The star also shows peculiar ultraviolet absorptions

  5. The STScI NICMOS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Bushouse, H. A.; Stobie, E.

    The NICMOS data reduction and calibration pipeline employs file formats and software architecture techniques that are new and different from what has been used for previous HST instruments. This paper describes the FITS file format used for NICMOS data, which includes error estimate and data quality arrays for each science image, and describes the approach used to associate multiple observations of a single target. The software architecture, which employs ANSI C language algorithms and C bindings to IRAF libraries, is also described.

  6. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  7. Improving active space telescope wavefront control using predictive thermal modeling

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  8. James Webb Space Telescope in NASA's giant thermal vacuum chamber

    NASA Image and Video Library

    2017-09-28

    Inside NASA's giant thermal vacuum chamber, called Chamber A, at NASA's Johnson Space Center in Houston, the James Webb Space Telescope's Pathfinder backplane test model, is being prepared for its cryogenic test. Previously used for manned spaceflight missions, this historic chamber is now filled with engineers and technicians preparing for a crucial test. Exelis developed and installed the optical test equipment in the chamber. "The optical test equipment was developed and installed in the chamber by Exelis," said Thomas Scorse, Exelis JWST Program Manager. "The Pathfinder telescope gives us our first opportunity for an end-to-end checkout of our equipment." "This will be the first time on the program that we will be aligning two primary mirror segments together," said Lee Feinberg, NASA Optical Telescope Element Manager. "In the past, we have always tested one mirror at a time but this time we will use a single test system and align both mirrors to it as though they are a single monolithic mirror." The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Chris Gunn Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian

    2017-01-01

    The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and

  10. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  11. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  12. An 8 Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.

  13. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; hide

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  14. Hubble Space Telescope. Update: 18 months in orbit

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1990, Space Shuttle Discovery launched the Hubble Space Telescope (HST). An 18 month in-orbit update of the operations and performance of the HST is presented. Numerous color photographs are shown of objects already observed, and mission plans are presented for future observations by the HST.

  15. New set of solar arrays deployed on Hubble Space Telescope

    NASA Image and Video Library

    1993-12-09

    STS061-99-009 (9 Dec 1993) --- Sunlight reflects off the Space Shuttle Endeavour's aft windows and the shiny Hubble Space Telescope (HST) prior to its post-servicing deployment near the end of the eleven-day mission. A handheld Hasselblad camera was used inside Endeavour's cabin to record the image.

  16. Telescopes for a Space-Based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Sankar, Shannon; Livas, Jeffrey

    2017-01-01

    Telescopes are an important part of the science measurement for a space-based gravitational wave observatory. The telescopes should not introduce excess phase noise which might lower the signal-to-noise of the gravitational wave signal. This requirement constrains both the telescope stability and the phase noise due to scattered light. The photoreceiver senses a combination of a local beam, the received beam and scattered light. If the scattered light has significant spatial overlap, and if there is displacement noise in the scatter path, the signal-to-noise of the main measurement can be impacted. We will discuss our approach to addressing this concern. We model the scattered power from the telescope under expected conditions and use these models for evaluating potential telescope designs. We also determine allowable mirror surface roughness and contamination levels from the scattered light models. We implement the best designs by fabricating a series of prototype telescopes of increasing flight readiness, using eLISA as a reference mission for design specifications. Finally, we perform laboratory tests of the fabricated prototype telescope to validate the models and inform our understanding of the eventual flight telescopes.

  17. Preliminary Multi-Variable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.

  18. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  19. Three-mirror space telescope, volume 2. [coronagraphy

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1978-01-01

    The anastigmatic three mirror telescope for STARSAT, a space astronomy facility, was redesigned and reoptimized in order to improve the optical system and increase its versatility. A more compact system was obtained by decreasing the primary focal ratio from 2.2 to 2.0. A high performance Rowland spectrograph that uses only a total of three reflections and does not interfere with the imaging process, was successfully incorporated into the telescope so that it could be a permanent part of the system. The usefulness of this telescope concept as a high resolution coronagraph is examined.

  20. Monolithic telescopes for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2014-03-01

    Free-space optical communications terminals frequently rely on optical telescopes to enhance the transmitted and received efficiency of the communication system. We have designed and patented a suite of monolithic optical telescope systems, fabricated from a single piece of transparent material. In small sizes (5 to 15 cm apertures) these designs hold promise for reducing flight terminal mass and volume, reducing risks associated with telescope alignment, and reducing costs of flight optical terminals when produced in volume. This paper presents variations of optical designs and compares their characteristics, and fabrication tolerances. Results of a prototyping effort demonstrate the feasibility of producing these elements using modern fabrication techniques.

  1. Exo-atmospheric telescopes for Deep Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Hurd, William J.; Moe, Rud V.; Dennis, Michael L.; MacNeal, Bruce E.; Walker, Jon Z.; Ortiz, Gerardo G.; Eegholm, Bente; Fairbrother, debora A.; Cheng, Edward S.; Kasunic, Keith J.

    2006-01-01

    For deep space optical communications, optical telescopes located above the Earth's atmosphere would have significant performance advantages over telescopes mounted on the Earth's surface. Link outages due to cloud cover would be eliminated, atmospheric attenuation would be eliminated, and signal degradation due to stray light would be reduced. A study has been conducted to compare various exo-atmospheric platforms for the Earth end of the optical link.

  2. Looking Back in Time: Building the James Webb Space Telescope (JWST) Optical Telescope Element

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee

    2016-01-01

    When it launches in 2018, the James Webb Space Telescope (JWST) will look back in time at the earliest stars and galaxies forming in the universe. This talk will look back in time at the development of the JWST telescope. This will include a discussion of the design, technology development, mirror development, wave front sensing and control algorithms, lightweight cryogenic deployable structure, pathfinder telescope, and integration and test program evolution and status. The talk will provide the engineering answers on why the mirrors are made of Beryllium, why there are 18 segments, where and how the mirrors were made, how the mirrors get aligned using the main science camera, and how the telescope is being tested. It will also look back in time at the many dedicated people all over the country who helped build it.

  3. Performance of the second MEMS space telescope for observation of extreme lightning from space

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-A.; Lee, Hye Young; Kim, Ji Eun; Lee, Jik; Park, Il H.

    2016-03-01

    A small space-telescope equipped with a micro-electro-mechanical system (MEMS) micro-mirror is applied to space missions for observing random, rare and temporal events like transient luminous events (TLEs). The measurement of TLEs with fine time resolution will show the different temporal profiles predicted by the various models for sprites, blue jets, elves and halos. The proposed space-telescope consists of three components: two sub-telescopes with different focal lengths and a spectrometer. The trigger telescope with a short focal length surveys a wide field of view. The zoom-in telescope with a long focal length looks into a small field of view area that is part of the trigger telescope's wide field of view. Upon identifying a candidate TLE, the trigger telescope determines the location of the event and provides the location to the MEMS micro-mirror. Then, the micro-mirror, which is placed as a pinhole in front of the zoom-in telescope, rotates its mirror plane by such an angle that the zoom-in telescope will watch the small field of view around the center of the event. In this manner, the zoom-in telescope achieves the zoom-in designed by its long focal length. The first such small-space telescope, the MEMS Telescope for Extreme Lightning (MTEL), was launched into space in 2009 and identified a few candidates sprites. However a power failure (over-charge of the solar battery) of the main satellite occurred, and the MTEL was not able to continue space operation to acquire sizable statistics for TLE events. We developed and constructed the second small-space telescope, called MTEL-II, to continue to observe TLE events in space. In this paper, we present the performance of MTEL-II based on ground tests.

  4. Artist's Concept of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pictured is the chosen artist's rendering of NASA's next generation space telescope, a successor to the Hubble Space Telescope, was named the James Webb Space Telescope (JWST) in honor of NASA's second administrator, James E. Webb. To further our understanding of the way our present universe formed following the the big bang, NASA is developing the JWST to observe the first stars and galaxies in the universe. This grand effort will help to answer the following fundamental questions: How galaxies form and evolve, how stars and planetary systems form and interact, how the universe builds up its present elemental/chemical composition, and what dark matter is. To see into the depths of space, the JWST is currently plarning to carry instruments that are sensitive to the infrared wavelengths of the electromagnetic spectrum. The new telescope will carry a near-infrared camera, a multi-object spectrometer, and a mid-infrared camera/spectrometer. The JWST is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space. Marshall Space Flight Center (MSFC) is supporting Goddard Space Flight Center (GSFC) in developing the JWST by creating an ultra-lightweight mirror for the telescope at MSFC's Space Optics Manufacturing Technology Center. GSFC, Greenbelt, Maryland, manages the JWST, and TRW will design and fabricate the observatory's primary mirror and spacecraft. The program has a number of industry, academic, and government partners, as well as the European Space Agency and the Canadian Space Agency. (Image: Courtesy of TRW)

  5. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal

  6. The Virtual Space Telescope: A New Class of Science Missions

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Calhoun, Philip

    2016-01-01

    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST.

  7. Moisture loss from graphite structures for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Facey, T. A.; Defilippis, N. A.; Young, P. J.

    1985-01-01

    The construction and telescope assembly of the NASA's Hubble Space Telescope (HST) is described with particular reference to the features of its construction material. Due to the hygroscopic nature of the graphite-fiber reinforced epoxy, used for much of the structure of the HST, the telescope, when in orbit, suffers losses of water, absorbed during on-ground procedures, accompanied by shrinkage of the epoxy matrix, and needs periodic realignment. Using a combination of analytic, laboratory measured, and in-space measured data, an operational plan for adjusting the alignment of the HST is presented. The refocusing plan must take into account the preceding ground environment, as well as the prelaunch, lift-off, and predeployment environments of the HST-bearing Space Shuttle.

  8. The James Webb Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Hammel, H. B.; Lunine, J. I.; Milam, S. N.; Kalirai, J. S.; Sonneborn, G.

    2013-01-01

    The James Webb Space Telescope (JWST) is poised to revolutionize many areas of astrophysical research including Solar System Science. Scheduled for launch in 2018, JWST is ~100 times more powerful than the Hubble and Spitzer observatories. It has greater sensitivity, higher spatial resolution in the infrared, and significantly higher spectral resolution in the mid infrared. Imaging and spectroscopy (both long-slit and integral-field) will be available across the entire 0.6 - 28.5 micron wavelength range. Herein, we discuss the capabilities of the four science instruments with a focus on Solar System Science, including instrument modes that enable observations over the huge range of brightness presented by objects within the Solar System. The telescope is being built by Northrop Grumman Aerospace Systems for NASA, ESA, and CSA. JWST development is led by NASA's Goddard Space Flight Center. The Space Telescope Science Institute (STScI) is the Science and Operations Center (S&OC) for JWST.

  9. Structural Modeling of the Next Generation Space Telescope's Primary Mirror

    NASA Technical Reports Server (NTRS)

    Boulet, J. A. M.

    1998-01-01

    In recent years, astronomical observations made with space telescopes have dramatically increased our understanding of the history of the universe. In particular, the cosmic Background Explorer (COBE) and the Hubble Space Telescope (HST) have yielded observations that cannot be achieved at ground-based observatories. We now have views of the universe before galaxies existed (from COBE) and views of young galaxies (from HST). But none of the existing observatories can provide views of the period in which the galaxies were born, about 100 million to one billion years after the "big bang". NASA expects the Next Generation Space Telescope (NGST) to fill this gap. An investigation into the structural modeling of the primary mirror of the NGST, its methodology and results are presented.

  10. Optomechanical design and analysis for the LLCD space terminal telescope

    NASA Astrophysics Data System (ADS)

    Nevin, Kate E.; Doyle, Keith B.; Pillsbury, Allen D.

    2011-10-01

    An earth-based ground terminal and a lunar orbiting space terminal are being developed as part of NASA's Lunar Laser Communications Demonstration program. The space terminal is designed to minimize mass and power requirements while delivering high data rates using a four-inch aperture telescope and a 0.5 watt beam. Design challenges for the space terminal include providing telescope pointing stability to 4 μrad RMS and diffraction-limited wavefront quality. Conflicting design requirements including stress, LOS jitter, mounting errors, and thermal distortion were balanced to meet performance requirements in the presence of operational vibration and thermal disturbances while assuring that the system will survive the launch load environment. Analysis techniques including finite element analyses, closed-loop LOS jitter simulations, and integrated optomechanical analyses were utilized to evaluate and drive proposed design solutions to the final telescope configuration.

  11. Exploration of the environments of nearby stars with the NICMOS coronagraph: instrumental performance considerations

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Thompson, Rodger I.; Smith, Bradford A.; Terrile, Richard J.

    1998-08-01

    The Near IR Camera and Multi-Object Spectrometer (NICMOS), installed into the Hubble Space Telescope (HST) in February 1997, incorporates a coronagraphic imaging capability. The coronagraph is comprised of two optical elements. The camera 2 field divider mirror, upon which the HST f/24 input beam is imaged, includes a 170 micrometers diameter hole which contains approximately 93 percent of the encircled energy from a stellar Point Spread Function (PSF) at a wavelength of 1.6 micrometers . The coronagraphic hole lowers both the diffracted energy in the surrounding region by reducing the high spatial frequency components of the occulted core of the PSF< and down stream scattering. The geometrical radius of this occulting spot, when re-imaged through the camera 2 f/45 optics, is approximately 4 pixels at the detector focal plane. An oversized cold pupil-plane mask, with radial structures co-aligned with the HST secondary mirror spider, acts over the whole 19.1 inch by 19.2 field to further reduce the diffracted energy in the direction of the spider vanes. The absolute performance levels of the coronagraph were ascertained during the servicing mission observatory verification program. Using a differential imaging strategy we expect to achieve statistically significant detectors of sub-stellar companions at 1.6 micrometers with a (Delta) H of approximately 10 and separations as close as 0.5 inch. The NICMOS environments of nearby stars programs is exploiting this capability in systematic surveys of nearby, and young stars searching for brown dwarfs and giant planets, and protoplanetary disks around main-sequence stars.

  12. Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; Spitzer Science Center

    2016-01-01

    The Spitzer Space Telescope, launched on 2003 August 25, continues to produce new and exciting views of the Universe as seen in infrared light. Spitzer is the fourth and final space telescope in NASA's Great Observatory series. Originally it consisted of a liquid-helium-cooled 85-cm telescope and three imaging and spectroscopic instruments capable of observing infrared light (3-160 micron wavelength) from regions of space invisible to optical telescopes. In mid-2009 Spitzer's cryogen was exhausted, leaving the observatory with two operating imaging arrays at 3.6 and 4.5 micron wavelength. "Warm" Spitzer, as it is now called, continues to match the sensitivity achieved at these wavelengths during the cryogenic mission and remains very much in demand. The Spitzer Space Telescope has changed our view of the Universe. Spitzer's scientific results include the study of the formation and evolution of galaxies in the early Universe, star formation and evolution, exoplanets, the structure and evolution of planetary disks around nearby stars, the cosmic distance scale, clusters of galaxies, near-Earth asteroids, and comets. After a brief description of the Spitzer mission, achievements of Spitzer's extragalactic and galactic observational programs will be presented, including many of Spitzer's very spectacular images.

  13. NICMOS Optimum Coronagraphic Focus Determinaton

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This test will ascertain the optimum position of the PAM for maximizing the local contrast ratios in coronagraphic images. Because of the forward motion of the NICMOS optical bench and dewar, the nominal operational position for the PAM is set {for each camera} to achieve diffraction limited focus at the image plane formed at the detector. As a result of the forward motion of the camera 2 detector, hard images are no longer formed coincidentally at the field divider mirror surface {where the coronagraphic hole is located} and at the detector. This will lead to an increase in the diffracted energy in the wings of a PSF from a target placed inside of the coronagraphic hole as the image plane will fall behind the surface of the FDA mirror. The contrast in a coronagraphic image might be enhanced by placing the focus to form an image at either image planes {FDA or detector} or at a place in-between. This is highly dependent on scattering and must be ascertained by direct measurement.

  14. Design of a space telescope for vibration control

    NASA Astrophysics Data System (ADS)

    Dresner, Thomas L.; Freier, Larry J.; Chien, Tze T.; Gilmore, Jerold P.

    1994-10-01

    The end of the Cold War has made large-aperture telescope technologies from the U.S. Strategic Defense Initiative program available for non-defense missions. Now, a four-meter aperture space telescope, a seventy percent larger aperture than that of the Hubble space telescope, has been proposed for a dual military and astronomical mission. An important part of the preliminary design work was to determine how to meet the telescope's pointing and jitter criteria. The telescope will be required to maintain an rms pointing accuracy of 24 nrad, preferably over periods of several hours. Vibration was a critical issue in the study because of the stringent pointing requirement, the relatively light structures desirable for spacecraft, thermal transients, the presence of disturbances from many spacecraft mechanisms (solar array drives, momentum wheels, thrusters, antenna steering mechanisms, etc.), and the many external appendages. The four-meter telescope design uses an inertial optical reference system combined with an actively controlled `fast steering mirror' in the target beam path to actively counteract vibration.

  15. The James Webb Space Telescope (JWST), The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  16. Hubble Space Telescope maintenance and refurbishment planning analysis

    NASA Technical Reports Server (NTRS)

    Pizzano, F.; Kincade, R. S.

    1989-01-01

    This paper presents an updated analytical approach toward the identification of Hubble Space Telescope system failures and downstates, maintenance requirements, and overall support to maintenance mission planning. Different sparing options of Orbital Replacement Units are evaluated, and the optimum spares complement that satisfies the expected servicing requirements is identified. Specific Space Telescope Reliability and maintenance Simulation Computer Program (SPATEL) updates and refinements are reported, and input data updates relevant to failure rates, downstate ground rules, and maintenance policy are addressed. A summary of the latest SPATEL outputs is provided along with maintenance analysis results.

  17. Giving Birth to the James Webb Space Telescope: Part 1

    NASA Technical Reports Server (NTRS)

    Mather, John

    2013-01-01

    In late October 1995, I found a remarkable message on my answering machine from Ed Weiler, then the Program Scientist for the Hubble Space Telescope. Would I work on the next generation space telescope, the successor to the beautiful HST? It took me mere moments to work out the answer: Of course! At the time, my work on the COsmic Background Explorer (COBE) was finished, I was writing a book about it (The Very First Light, with John Boslough), and I thought NASA might never do anything nearly as spectacular again. Wow, was I happy to be surprised by that call!

  18. James Webb Space Telescope (JWST): The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, Philip

    2009-01-01

    This slide presentation review the mission objective, the organization of the mission planning, the design, and testing of the James Webb Space Telescope (JWST). There is also information about the orbit, in comparison to the Hubble Space Telescope, the mirror design, and the science instruments. Pictures of the full scale mockup of the JWST are given. A brief history of the universe is also presented from the big bang through the formation of galaxies, and the planets, to life itself. One of the goals of the JWST is to search for extra solar planets and then to search for signs of life.

  19. James Webb Space Telescope: The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Scheduled to begin its 10 year mission no sooner than 2013, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  20. Hubble Space Telescope maintenance and refurbishment planning analysis

    NASA Technical Reports Server (NTRS)

    Pizzano, F.; Kincade, R. S.

    1989-01-01

    This paper presents an updated analytical approach toward the identification of Hubble Space Telescope system failures and downstates, maintenance requirements, and overall support to maintenance mission planning. Different sparing options of Orbital Replacement Units are evaluated, and the optimum spares complement that satisfies the expected servicing requirements is identified. Specific Space Telescope Reliability and maintenance Simulation Computer Program (SPATEL) updates and refinements are reported, and input data updates relevant to failure rates, downstate ground rules, and maintenance policy are addressed. A summary of the latest SPATEL outputs is provided along with maintenance analysis results.

  1. Capabilities of the James Webb Space Telescope for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging.

  2. Capabilities of the James Webb Space Telescope for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging.

  3. Cats: Optical to Near-Infrared Colors of the Bulge and Disk of Two z = 0.7 Galaxies Using Hubble Space Telescope and Keck Laser Adaptive Optics Imaging

    NASA Astrophysics Data System (ADS)

    Steinbring, E.; Melbourne, J.; Metevier, A. J.; Koo, D. C.; Chun, M. R.; Simard, L.; Larkin, J. E.; Max, C. E.

    2008-10-01

    We have employed laser guide star (LGS) adaptive optics (AO) on the Keck II telescope to obtain near-infrared (NIR) images in the Extended Groth Strip deep galaxy survey field. This is a continuation of our Center for Adaptive Optics Treasury Survey program of targeting 0.5 < z < 1 galaxies where existing images with the Hubble Space Telescope (HST) are already in hand. Our AO field has already been imaged by the Advanced Camera for Surveys and the Near Infrared Camera and Multiobject Spectrograph (NICMOS). Our AO images at 2.2 μm (K') are comparable in depth to those from the HST, have Strehl ratios up to 0.4, and full width at half-maximum resolutions superior to that from NICMOS. By sampling the field with the LGS at different positions, we obtain better quality AO images than with an immovable natural guide star. As examples of the power of adding LGS AO to HST data, we study the optical to NIR colors and color gradients of the bulge and disk of two galaxies in the field with z = 0.7. All authors except L.S. are affiliated with the Center for Adaptive Optics.

  4. Development of CFRP mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2013-09-01

    CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.

  5. Hubble Space Telescope characterized by using phase-retrieval algorithms.

    PubMed

    Fienup, J R; Marron, J C; Schulz, T J; Seldin, J H

    1993-04-01

    We describe several results characterizing the Hubble Space Telescope from measured point spread functions by using phase-retrieval algorithms. The Cramer-Rao lower bounds show that point spread functions taken well out of focus result in smaller errors when aberrations are estimated and that, for those images, photon noise is not a limiting factor. Reconstruction experiments with both simulated and real data show that the calculation of wave-front propagation by the retrieval algorithms must be performed with a multiple-plane propagation rather than a simple fast Fourier transform to ensure the high accuracy required. Pupil reconstruction was performed and indicates a misalignment of the optical axis of a camera relay telescope relative to the main telescope. After we accounted for measured spherical aberration in the relay telescope, our estimate of the conic constant of the primary mirror of the HST was - 1.0144.

  6. Lightweight optical barrel assembly structures for large deployable space telescopes

    NASA Astrophysics Data System (ADS)

    Warren, Peter A.; Silver, Mark J.; Dobson, Benjamin J.

    2009-08-01

    Future space based telescopes will need apertures and focal lengths that exceed the dimensions of the launch vehicle shroud. In addition to deploying the primary mirror and secondary mirror support structure, these large telescopes must also deploy the stray light and thermal barriers needed to ensure proper telescope performance. The authors present a deployable light and thermal optical barrel assembly approach for a very large telescope with a variable sun angle and fast slew rate. The Strain Energy Deployable Optical Barrel Assembly (SEDOBA) uses elastic composite hinges to power the deployment of a hierarchical truss structure that supports the thermal and stray light shroud material that form the overall system. The paper describes the overall design approach, the key component technologies, and the design and preliminary testing of a self deploying scale model prototype.

  7. Contamination Control Considerations for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Wooldridge, Eve M.

    1998-01-01

    The NASA Space Science Program, in its ongoing mission to study the universe, has begun planning for a telescope that will carry on the Hubble Space Telescope's exploration. This telescope, the 'Next Generation Space Telescope' (NGST), will be 6-8 meters in diameter, will be radiatively cooled to 30-60 Kelvin in order to enable extremely deep exposures at near infrared wavelengths, and will operate for a lifetime of 5-10 years. The requirement will be to measure wavelengths from 1-5 microns, with a goal to measure wavelengths from 0.6-30 microns. As such, NGST will present a new contamination control challenge. The Goddard Space Flight Center (GSFC) performed one of three preliminary feasibility studies for the NGST, presenting a telescope with an 8 meter, deployable primary mirror and a deployable secondary mirror. The telescope would be radiatively cooled, with the optical telescope assembly (OTA) and the science instrument module (SIM) isolated from the warmer spacecraft support module (SSM). The OTA and the SIM would also be shielded from sunlight with an enormous, inflatable sun-shield. The GSFC telescope was designed for launch on an Atlas HAS, which would require launching the telescope in a stowed configuration, with the SSM, antennae, sun-shield, primary mirror 'petals', and secondary mirror deployed once on-orbit. The launch configuration and deployment scenario of an exposed telescope measuring near infrared and cooled to 30-60 K are the factors presenting contamination hazards to the NGST mission. Preliminary science requirements established are: less than 20% reflectance decrease on optical surfaces over the wavelength range, and less than 0.3% obscuration of optical surfaces. In order to meet these requirements, NGST must be built and launched with careful attention to contamination control. Initial contamination control design options include strict selecting of materials and baking out of hardware down to the component level, minimizing or

  8. Pointing History Engine for the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David; Ahmed, Asif; Brugarolas, Paul

    2007-01-01

    The Pointing History Engine (PHE) is a computer program that provides mathematical transformations needed to reconstruct, from downlinked telemetry data, the attitude of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility) as a function of time. The PHE also serves as an example for development of similar pointing reconstruction software for future space telescopes. The transformations implemented in the PHE take account of the unique geometry of the Spitzer telescope-pointing chain, including all data on relative alignments of components, and all information available from attitude-determination instruments. The PHE makes it possible to coordinate attitude data with observational data acquired at the same time, so that any observed astronomical object can be located for future reference and re-observation. The PHE is implemented as a subroutine used in conjunction with telemetry-formatting services of the Mission Image Processing Laboratory of NASA s Jet Propulsion Laboratory to generate the Boresight Pointing History File (BPHF). The BPHF is an archival database designed to serve as Spitzer s primary astronomical reference documenting where the telescope was pointed at any time during its mission.

  9. Feasibility of Exoplanet Coronagraphy with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Woodruff, Robert A.; Brown, Robert; Noecker, M. Charley; Cheng, Edward

    2010-01-01

    Herein we report on a preliminary study to assess the use of the Hubble Space Telescope (HST) for the direct detection and spectroscopic characterization of exoplanets and debris disks - an application for which HST was not originally designed. Coronagraphic advances may enable the design of a science instrument that could achieve limiting contrasts approx.10deg beyond 275 milli-arcseconds (4 lambda/D at 800 nm) inner working angle, thereby enabling detection and characterization of several known jovian planets and imaging of debris disks. Advantages of using HST are that it already exists in orbit, it's primary mirror is thermally stable and it is the most characterized space telescope yet flown. However there is drift of the HST telescope, likely due to thermal effects crossing the terminator. The drift, however, is well characterized and consists of a larger deterministic components and a smaller stochastic component. It is the effect of this drift versus the sensing and control bandwidth of the instrument that would likely limit HST coronagraphic performance. Herein we discuss the science case, quantifY the limiting factors and assess the feasibility of using HST for exoplanet discovery using a hypothetical new instrument. Keywords: Hubble Space Telescope, coronagraphy, exoplanets, telescopes

  10. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  11. STS-61 Onboard Photograph-Hubble Space Telescope Servicing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  12. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2011-01-01

    The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6 Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program.

  13. Multilayer active shell mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (< 1.0 mm), lightweight (2.7 kg/m2), and have large actuation capabilities. These capabilities, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  14. Ultraviolet astronomy with small space telescopes

    NASA Astrophysics Data System (ADS)

    Brosch, N.; Goméz De Castro, Ana I.; Murthy, J.; Ribak, E. N.; Behar, E.; Balabanov, V.

    2017-07-01

    After describing the present situation with astronomy in the ultraviolet (UV), reviewing a few past and proposed future missions, we present options to develop space missions that have been realized for modest costs. In this context, we bring together a few aspects of different missions and projects that, when combined, might result in a low-cost mission for imaging or low-resolution spectroscopy in the UV.

  15. James Webb Space Telescope primary mirror integration: testing the multiwavelength interferometer on the test bed telescope

    NASA Astrophysics Data System (ADS)

    Olczak, Gene; Fischer, David J.; Connelly, Mark; Wells, Conrad

    2011-09-01

    The James Webb Space Telescope (JWST) integration includes a center of curvature test on its 18 primary mirror segment assemblies (PMSAs). This important test is the only ground test that will demonstrate the ability to align all 18 PMSAs. Using a multi-wavelength interferometer (MWIF) integrated to the test bed telescope (TBT), a one-sixth scale model of the JWST, we verify our ability to align and phase the 18 PMSAs. In this paper we will discuss data analysis and test results when using the MWIF to align the segments of the TBT in preparation for alignment of the JWST.

  16. An Improved Wavefront Control Algorithm for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Basinger, Scott A.; Redding, David C.

    2008-01-01

    Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.

  17. Novel In-Space Manufacturing Concepts for the Development of Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Mooney, James T.; Reardon, Patrick; Gregory Don; Manning, Andrew; Blackmon, Jim; Howsman, Tom; Williams, Philip; Brantley, Whitt; Rakoczy, John; Herren, Kenneth

    2006-01-01

    There is a continuous demand for larger, lighter, and higher quality telescopes. Over the past several decades, we have seen the evolution from launchable 2 meter-class telescopes (such as Hubble), to today s demand for deployable 6 meter-class telescopes (such as JWST), to tomorrow s need for up to 150 meter-class telescopes. As the apertures continue to grow, it will become much more difficult and expensive to launch assembled telescope structures. To address this issue, we are seeing the emergence of new novel structural concepts, such as inflatable structures and membrane optics. While these structural concepts do show promise, it is very difficult to achieve and maintain high surface figure quality. Another potential solution to develop large space telescopes is to move the fabrication facility into space and launch the raw materials. In this paper we present initial in-space manufacturing concepts to enable the development of large telescopes. This includes novel approaches for the fabrication of both the optical elements and the telescope support structure. We will also discuss potential optical designs for large space telescopes and describe their relation to the fabrication methods. These concepts are being developed to meet the demanding requirements of DARPA s LASSO (Large Aperture Space Surveillance Optic) program which currently requires a 150 meter optical aperture with a 17 degree field of view.

  18. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the

  19. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis

  20. Hubble Space Telescope COSTAR asphere verification with a modified computer-generated hologram interferometer. [Corrective Optics Space Telescope Axial Replacement

    NASA Technical Reports Server (NTRS)

    Feinberg, L.; Wilson, M.

    1993-01-01

    To correct for the spherical aberration in the Hubble Space Telescope primary mirror, five anamorphic aspheric mirrors representing correction for three scientific instruments have been fabricated as part of the development of the corrective-optics space telescope axial-replacement instrument (COSTAR). During the acceptance tests of these mirrors at the vendor, a quick and simple method for verifying the asphere surface figure was developed. The technique has been used on three of the aspheres relating to the three instrument prescriptions. Results indicate that the three aspheres are correct to the limited accuracy expected of this test.

  1. The Optical Telescope Element Simulator for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Davila, Pamela S.; Bos, Brent J.; Cheng, Edward S.; Chang, Bill; Eichhorn, William L.; Frey, Bradley J.; Garza, Mario; Gong, Qian; Greeley, Bradford W.; Guzek, Jeff; Hakun, Claef F.; Hovmand, Lars; Kirk, Jeff; Kubalak, David A.; Leviton, Douglas; Nagle, Adrian; Nyquist, Rich; Pham, Thai; Robinson, F. David; Sabatke, Derek; Sullivan, Joseph F.; Volmer, Paul; VonHandorf, Rob; Youngworth, Richard N.

    2008-07-01

    The James Webb Space Telescope Observatory will consist of three flight elements: (1) the Optical Telescope Element (OTE), (2) the Integrated Science Instrument Module Element (ISIM), and (3) the Spacecraft Element. The ISIM element consists of a composite bench structure that uses kinematic mounts to interface to each of the optical benches of the three science instruments and the guider. The ISIM is also kinematically mounted to the telescope primary mirror structure. An enclosure surrounds the ISIM structure, isolates the ISIM region thermally from the other thermal regions of the Observatory, and serves as a radiator for the science instruments and guider. Cryogenic optical testing of the ISIM Structure and the Science Instruments will be conducted at Goddard Space Flight Center using an optical telescope simulator that is being developed by a team from Ball Aerospace and Goddard Space Flight Center, and other local contractors. This simulator will be used to verify the performance of the ISIM element before delivery to the Northup Grumman team for integration with the OTE. In this paper, we describe the O OTE Sim TE Simulator (OSIM) and provide a brief overview of the optical test program. ulator

  2. Discarded solar array panel removed from Hubble Space telescope

    NASA Image and Video Library

    1993-12-06

    STS061-95-031 (6 Dec 1993) --- The damaged solar array panel removed from the Hubble Space Telescope (HST) is backdropped over northern Sudan. Astronaut Kathryn C. Thornton, just out of frame at top right, watched the panel after releasing it moments earlier.

  3. The James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Sullivan, Pamela C.; Boyce, Leslye A.; Glazer, Stuart D.; Johnson, Eric L.; McCloskey, John C.; Voyton, Mark F.

    2004-01-01

    The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.

  4. Hubble Space Telescope cycle 5 call for proposals

    NASA Technical Reports Server (NTRS)

    Bond, Howard E. (Editor)

    1994-01-01

    This document invites and supports participation by the international astronomical community in the HST General Observer and Archival Research programs. These documents contain the basic procedural and technical information required for HST proposal preparation and submission, including applicable deadlines. The telescope and its instruments were built under the auspices of the NASA and the European Space Agency.

  5. Space telescope coordinate systems, symbols, and nomenclature definitions

    NASA Technical Reports Server (NTRS)

    Kennel, H. F.

    1976-01-01

    The major coordinate systems as well as the transformations and transformation angles between them, for the Space Telescope are defined. The coordinate systems were primarily developed for use in pointing and control system analysis and simulation. Additional useful information (on nomenclature, symbols, quaternion operations, etc.) is also contained.

  6. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  7. Hubble Space Telescope (HST) at Lockheed Facility during preflight assembly

    NASA Image and Video Library

    1988-03-31

    A mechanical arm positions the axial scientific instrument (SI) module (orbital replacement unit (ORU)) just outside the open doors of the Hubble Space Telescope (HST) Support System Module (SSM) as clean-suited technicians oversee the process. HST assembly is being completed at the Lockheed Facility in Sunnyvale, California.

  8. Scientific Instrument Package for the large space telescope (SIP)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The feasibility of a scientific instrument package (SIP) that will satisfy the requirements of the large space telescope was established. A reference configuration serving as a study model and data which will aid in the trade-off studies leading to the final design configuration are reported.

  9. Space telescope searches for black holes in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.

    1989-01-01

    The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.

  10. Polarizer mechanism for the space telescope faint object spectrograph

    NASA Technical Reports Server (NTRS)

    Thulson, M. D.

    1983-01-01

    The polarizer mechanism for the Space Telescope Faint Object Spectrograph is described. This device will allow spectropolarimetric measurements of faint astronomical objects. The mechanism employs a unique arrangement to meet functional requirements in a compact package and with only one actuator. Detailed tolerance analysis and a variety of tests indicate that the polarizer is capable of accurate and reliable performance.

  11. Wavefront Control for Space Telescope Applications Using Adaptive Optics

    DTIC Science & Technology

    2007-12-01

    SPACE TELESCOPE APPLICATIONS USING ADAPTIVE OPTICS by Matthew R. Allen December 2007 Thesis Advisor: Brij Agrawal Second Reader...ASTRONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 2007 Author: Matthew R. Allen Approved by: Dr, Brij Agrawal...34 3. Direct Iterative Zonal Feedback Control ........................................ 35 4. Direct Iterative

  12. Reliability and maintenance simulation of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pizzano, F.

    1986-01-01

    An analytical approach is presented which was developed and implemented at MSFC specifically for the Space Telescope Program to provide comparisons of critical item failures, system downstates, on-orbit servicing versus return for ground maintenance, overall system downtime, and to obtain a measure of expected uptime for science functions.

  13. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  14. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  15. The first year of observations with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kinney, A. L.; Maran, S. P.

    1991-12-01

    The Hubble Space Telescope has gathered unique information that supports many very significant scientific investigations during its early orbital operations, despite the limitations imposed by an unexpected spherical aberration in the primary mirror. These early results, gathered primarily with the HST cameras and spectrographs, are reviewed, with emphasis on extragalactic, stellar, and nebular astronomy.

  16. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  17. Large space telescope, phase A. Volume 4: Scientific instrument package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.

  18. Hubble Space Telescope On-orbit Transfer Function Test

    NASA Technical Reports Server (NTRS)

    Vadlamudi, N.; Blair, M. A.; Clapp, B. R.

    1992-01-01

    The paper describes the On-orbit Transfer Function Test (TFT) designed for on-orbit vibration testing of the Hubble Space Telescope (HST). The TFT provides means for extracting accurate on-orbit characteristics of HST flexible body dynamics, making it possible to check periodically the state of the vehicle on-orbit and to assess changes in modal parameters.

  19. James Webb Space Telescope (JWST) Primary Mirror Material Selection

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee D.; Russell, Kevin; Texter, Scott

    2004-01-01

    The James Webb Space Telescope (JWST) conducted a phase down select process via the Advanced Mirror System Demonstrator (AMSD) project to assess the Technology Readiness Level of various candidate mirror materials. This process culminated in the selection of Beryllium as the JWST primary mirror material. This paper outlines the mirror evaluation process, defines the selection criteria and summarizes the candidate mirror's performances.

  20. Capturing the Imagination: The Promise of the Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Livio, M.; Eisenhammer, B.; Kakadelis, S.; Villard, R.; Stiavelli, M.; Stockman, P.

    2010-08-01

    The Webb Space Telescope will take us on a journey back to the beginning, enabling us to see the first galaxies, the birth of stars, the creation of planets, and the origins of galactic structure. News, education, and outreach activities led by the Space Telescope Science Institute Office of Public Outreach use the promise of Webb's scientific return and technical prowess to capture the imagination—inspiring and educating youth and adults about key science, technology, engineering, and mathematics concepts and the process of science itself. We highlight activities designed to introduce cutting-edge Webb science and technology to established audiences cultivated through a decade of Hubble-based Amazing Space, ViewSpace, HubbleSite, and NewsCenter products and services. Critical underlying components include a commitment to evaluation of audience needs and partnerships between scientists and educators.

  1. Infiltration of supermicron aerosols into a simulated space telescope

    NASA Astrophysics Data System (ADS)

    Liu, De-Ling; Luey, Kenneth T.

    2010-08-01

    Purging is a common scheme to protect sensitive surfaces of payloads and spacecraft from airborne contaminant intrusion during ground assembly, integration, and launch vehicle encapsulation. However, the purge for space volumes must be occasionally interrupted. Thus it is important to gain insights into the transport of ambient particles penetrating through vent holes and entering the interior of a confined space system, such as a space telescope, during a purge outage. This study presents experimental work performed to measure time-dependent aerosol concentration changes during a purge outage. The laboratory results from the aerosol experiments were compared with a mass balance based mechanistic model which had been experimentally validated for aerosols ranging from 0.5 to 2 μm. The experimental data show that the steady-state aerosol concentration inside a simulated space telescope (SST) is governed by the surrounding particle concentration, SST air exchange rate, and the particle deposition rate.

  2. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  3. Observing Exoplanets with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin Mark

    2011-01-01

    The search for exoplanets and characterization of their properties has seen increasing success over the last few years. In excess of 500 exoplanets are known and Kepler has approx. 1000 additional candidates. Recently, progress has been made in direct imaging planets, both from the ground and in space. This presentation will discuss the history and current state of technology used for such discoveries, and highlight the new capabilities that will be enabled by the James Webb Space Telescope.

  4. Space Station utilization for the Astrometric Telescope Facility

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Black, David C.; Gatewood, George D.; Levy, Eugene H.

    1989-01-01

    It is shown how it is possible for the Astrometric Telescope Facility (ATF) to utilize the Space Station Freedom as an attached payload by complying with changes in the Station concept and schedule. The ability of the station to accommodate ATF's firm requirements is also addressed. The main factors that led the ATF to utilize the Space Station Freedom are the Station's relative orbital stability and longevity, the availability of maintenance and repair services, and the provision of utilities.

  5. Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.

  6. European astronaut duo on their way to Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1999-12-01

    They are on a 8-day mission to service the orbiting Hubble Space Telescope. The European scientific community is waiting anxiously for the telescope to be returned to full operation. Nicollier is set to become the first European to walk in space from the Space Shuttle. On Thrusday 23 December, Nicollier will step out of the Shuttle's airlock, help fit a new main computer, a replacement fine guidance sensor which will allow fine pointing and keep Hubble stable. Clervoy will operate the Shuttle's robotic arm during demanding phases of the mission, including initial capture of the satellite and for the spacewalks. Nicollier is on his fourth flight into space. Among them he took part in the first Hubble servicing mission in 1993, controlling the Shuttle's robotic arm while astronauts outside performed repairs to the telescope. This time Clervoy, on his third flight, will have the lead role in the operation of the robotic arm. A vital part of the mission is to replace the telescope's six gyroscopes which help stabilise the giant observatory during observations of distant astronomical objects. Hubble requires three of its six gyroscopes to operate properly for accurate stabilisation but a fourth failed in November posing no long term threat to the telescope but meaning observations had to be suspended until replacements are fitted. Discovery's mission is scheduled to last almost 9 days with a landing targeted to occur at the Kennedy Space Centre Shuttle Landing Facility on Monday 27 December at 17:24 EST local time (Monday 27 December 23:24 CET). Hubble was launched in 1990 with an expected orbital lifetime of 20 years. ESA contributed a 15 percent share to its development and in return European astronomers receive a guaranteed 15 percent share of observing time but in reality this has averaged 20 percent because of the high quality of proposals from scientists in Europe.

  7. Modular Orbital Demonstration of an Evolvable Space Telescope

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian

    2016-06-01

    The key driver for a telescope's sensitivityis directly related to the size of t he mirror area that collects light from the objects being observed.The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The HDST envisioned for this mission would have an aperture >10 m, which is a larger payload than can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. The Optical Telescope Assembly for HDST is a primary mission cost driver. Enabling affordable solutions for this next generation of large aperture space-based telescope are needed.This reports on the concept for the MODEST, which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student's exploration of space. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Ceramic Matrix Composite that have excellent mechanical and thermal properties, e.g. high stiffness, high thermal conductivity, and low thermal expansion. It has been demonstrated

  8. STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an

  9. STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an

  10. STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an

  11. James Webb Space Telescope (JWST): The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The James Webb Space Telescope (JWST), expected to launch in 2011, will study the origin and evolution of luminous objects, galaxies, stars, planetary systems and the origins of life. It is optimized for near infrared wavelength operation of 0.6-28 micrometers and will have a 5 year mission life (with a 10 year goal). This presentation reviews JWST's science objectives, the JWST telescope and mirror requirements and how they support the JWST architecture. Additionally, an overview of the JWST primary mirror technology development effort is highlighted.

  12. 18 years of science with the Hubble Space Telescope.

    PubMed

    Dalcanton, Julianne J

    2009-01-01

    After several decades of planning, the Hubble Space Telescope (HST) was launched in 1990 as the first of NASA's Great Observatories. After a rocky start arising from an error in the fabrication of its main mirror, it went on to change forever many fields of astronomy, and to capture the public's imagination with its images. An ongoing programme of servicing missions has kept the telescope on the cutting edge of astronomical research. Here I review the advances made possible by the HST over the past 18 years.

  13. The James Webb Space Telescope: Observatory Status Update

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; Bowers, Charles W.; Clampin, Mark; Niedner, Malcolm B.; Kimble, Randy A.

    2017-01-01

    The James Webb Space Telescope (JWST) is a large (6.5 m) segmented aperture telescope equipped with near- and mid-infrared instruments (0.6-28 microns), all of which are passively cooled to ~40 K by a 5-layer sunshield while the mid-infrared instrument is actively cooled to 7 K. JWST is currently in the integration and test phase, with parallel activities on-going across the project. The current estimated JWST performance metrics will be presented, such as the image quality, pointing stability, sensitivity, and stray light backgrounds. The JWST development status and future schedule will be described for the full integration, launch, and commissioning.

  14. Fermi Gamma-Ray Space Telescope Science Overview

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    After more than 2 years of science operations, the Fermi Gamma-ray Space Telescope continues to survey the high-energy sky on a daily basis. In addition to the more than 1400 sources found in the first Fermi Large Area Telescope Catalog (I FGL), new results continue to emerge. Some of these are: (1) Large-scale diffuse emission suggests possible activity from the Galactic Center region in the past; (2) a gamma-ray nova was found, indicating particle acceleration in this binary system; and (3) the Crab Nebula, long thought to be a steady source, has varied in the energy ranges seen by both Fermi instruments.

  15. James Webb Space Telescope microshutter arrays and beyond

    NASA Astrophysics Data System (ADS)

    Li, Mary J.; Brown, Ari-David; Burns, Devin E.; Kelly, Daniel P.; Kim, Kyowon; Kutyrev, Alexander S.; Moseley, Samuel H.; Mikula, Vilem; Oh, Lance

    2017-04-01

    Microshutter array (MSA) subsystems were developed at NASA Goddard Space Flight Center as multiobject selectors for the Near-Infrared Spectrograph (NIRSpec) instrument on the James Webb Space Telescope (JWST). The subsystem will enable NIRSpec to simultaneously obtain spectra from >100 targets, which, in turn, increases instrument efficiency 100-fold. This system represents one of the three major innovations on the JWST that is scheduled to be launched in 2018 as the successor to the Hubble Space Telescope. Featuring torsion hinges, light shields, magnetic actuation, and electrostatic latching and addressing, microshutters are designed for the selective transmission of light with high efficiency and contrast. Complete MSA assemblies consisting of 365×171 microshutters were successfully fabricated and tested, and passed a series of critical reviews for programmable 2-D addressing, life tests, and optical contrast tests. At the final stage of the JWST MSA fabrication, we began to develop the next generation microshutter arrays (NGMSA) for future telescopes. These telescopes will require a much larger field of view than JWSTs. We discussed strategies for fabrication of a proof-of-concept NGMSA that will be modular in design and electrostatically actuated. The details of NGMSA development will be discussed in a follow-up paper.

  16. Multivariable parametric cost model for space and ground telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Henrichs, Todd

    2016-09-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost (X) D (1.75 +/- 0.05) λ (-0.5 +/- 0.25) T-0.25 e (-0.04) Y Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  17. Ares V Launch Capability Enables Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    NASA's Ares V cargo launch vehicle offers the potential to completely change the paradigm of future space science mission architectures. A major finding of the NASA Advanced Telescope and Observatory Capability Roadmap Study was that current launch vehicle mass and volume constraints severely limit future space science missions. And thus, that significant technology development is required to package increasingly larger collecting apertures into existing launch shrouds. The Ares V greatly relaxes these constraints. For example, while a Delta IV has the ability to launch approximate a 4.5 meter diameter payload with a mass of 13,000 kg to L2, the Ares V is projected to have the ability to launch an 8 to 12 meter diameter payload with a mass of 60,000 kg to L2 and 130,000 kg to Low Earth Orbit. This paper summarizes the Ares V payload launch capability and introduces how it might enable new classes of future space telescopes such as 6 to 8 meter class monolithic primary mirror observatories, 15 meter class segmented telescopes, 6 to 8 meter class x-ray telescopes or high-energy particle calorimeters.

  18. Solar System Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Norwood, J.; Hammel, H. B.; Milam, S.; Lunine, J. I.; Chanover, N.; Stansberry, J.; Hines, D. C.; Sonneborn, G.; Brown, M. E.; Tiscareno, M. S.

    2013-12-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA's premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope's moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail. This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 and 2013 DPS meetings, and the 2013 LPSC meeting.

  19. Spitzer Space Telescope Spectroscopy of the Kepler Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Onaka, T.

    2004-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope was used for observations of the Kepler supernova remnant, with all four instrument modules targeted on the bright infrared knot located at 17h30m35.80s,-21d28m54.0s (J2000). The low spectral resolution modules data show a dust continuum spectrum consistent with dust grains heated by high-energy electrons, while the high resolution modules data show atomic emission line ratios consistent with excitation by a high velocity shock of greater than 100 kilometers per second and electron densities of approximately 1,000 per centimeter. The abundance ratios for the six detected elements show signs of heavy-element enhancement. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology. Support for this work was provided by NASA's Office of Space Science.

  20. Rigid ultralight primary mirror segments for space telescopes

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2000-10-01

    The development of ultra-light fibrous substrate mirrors allows serious contemplation of large multi-mirror space telescopes using rigid segments. Mirrors made of silica and alumina fibers have a small coefficient of thermal expansion and a density competitive with inflatable structures. Furthermore, they are without the imagery problems caused by non parabolic figures, gaseous expansion and contraction, tidal distortion of large gas filled structures, leaks, and long lived transient mirror perturbations caused by intentional pointing and tracking movements, micrometeor and space debris impacts, and mechanical vibrations. Fibrous substrate primary mirrors also have logistical advantages, since segments can be fabricated in orbit from small amounts of dense raw materials. One space shuttle flight, lifting about half its payload capacity, is adequate to transport all the material necessary to fabricate substrates for a one hundred meter telescope whose primary mirror consists of 12,086 hexagonal segments, each having a diameter of 1 meter and an area of 0.6495 square meters.