Algorithms for Brownian first-passage-time estimation
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2009-09-01
A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.
NASA Technical Reports Server (NTRS)
George, Kerry A.; Cucinotta, Francis A.
2009-01-01
The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.
Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts
NASA Technical Reports Server (NTRS)
George, Kerry; Cucinotta, Francis A.
2008-01-01
Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after exposure, at least in the case of space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts blood lymphocytes assessed by FISH painting and collected a various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provides limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.
Impacts of variability in cellulosic biomass yields on energy security.
Mullins, Kimberley A; Matthews, H Scott; Griffin, W Michael; Anex, Robert
2014-07-01
The practice of modeling biomass yields on the basis of deterministic point values aggregated over space and time obscures important risks associated with large-scale biofuel use, particularly risks related to drought-induced yield reductions that may become increasingly frequent under a changing climate. Using switchgrass as a case study, this work quantifies the variability in expected yields over time and space through switchgrass growth modeling under historical and simulated future weather. The predicted switchgrass yields across the United States range from about 12 to 19 Mg/ha, and the 80% confidence intervals range from 20 to 60% of the mean. Average yields are predicted to decrease with increased temperatures and weather variability induced by climate change. Feedstock yield variability needs to be a central part of modeling to ensure that policy makers acknowledge risks to energy supplies and develop strategies or contingency plans that mitigate those risks.
Gong, Xingchu; Zhang, Ying; Pan, Jianyang; Qu, Haibin
2014-01-01
A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs). Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES) were identified as the critical process parameters (CPPs) via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79–82%, extraction time of 6.1–7.1 h, and RES of 0.039–0.040 min−1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met. PMID:25470598
NASA Technical Reports Server (NTRS)
George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.
2010-01-01
Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.
Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.
2008-01-01
A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.
2017-12-01
An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.
MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis
NASA Technical Reports Server (NTRS)
McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.
2010-01-01
Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.
The Universality of Time Dilation and Space Contraction.
ERIC Educational Resources Information Center
Daly, Lisa N.; Horton, George K.
1994-01-01
Describes the extended general physics course taught at Rutgers University. The course presents to students at the high school algebra level the topic of analyzing a particular thought experiment that yields the time dilation formula and subsequently space contraction, velocity addition, and other 20th-century physics concepts. (MVL)
Detecting recurrence domains of dynamical systems by symbolic dynamics.
beim Graben, Peter; Hutt, Axel
2013-04-12
We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.
Benefits of increasing plant diversity in sustainable agroecosystems
USDA-ARS?s Scientific Manuscript database
Recent studies have revealed many potential benefits of increasing plant diversity in agroecosystems and production forests, including enhancing yields of crops, forage, and wood; stabilizing yields across time and space; enhancing pollinators and pollination; suppressing weeds and other pests; and ...
Persistence of space radiation induced cytogenetic damage in the blood lymphocytes of astronauts.
George, K; Chappell, L J; Cucinotta, F A
2010-08-14
Cytogenetic damage was assessed in blood lymphocytes from 16 astronauts before and after they participated in long-duration space missions of 3 months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their preflight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. When analysis was restricted to data collected within 220 days of return from the mission there was no relationship between total exchanges and time. Translocation yields varied more between astronauts and there was only a slight non-significant decrease with time after flight that was similar for both later and earlier sampling times. Copyright (c) 2010. Published by Elsevier B.V.
George, K; Willingham, V; Cucinotta, F A
2005-10-01
Follow-up measurements of chromosome aberrations in the blood lymphocytes of astronauts were performed by FISH chromosome painting at various intervals from 5 months to more than 5 years after space flight and compared to preflight baseline measurements. For five of the six astronauts studied, the analysis of individual time courses for translocations revealed a temporal decline of yields with half-lives ranging from 10 to 58 months. The yield of exchanges remained unchanged for the sixth astronaut during an observation period of 5 months after flight. These results may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure.
NASA Technical Reports Server (NTRS)
George, K.; Willingham, V.; Cucinotta, F. A.
2005-01-01
Follow-up measurements of chromosome aberrations in the blood lymphocytes of astronauts were performed by FISH chromosome painting at various intervals from 5 months to more than 5 years after space flight and compared to preflight baseline measurements. For five of the six astronauts studied, the analysis of individual time courses for translocations revealed a temporal decline of yields with half-lives ranging from 10 to 58 months. The yield of exchanges remained unchanged for the sixth astronaut during an observation period of 5 months after flight. These results may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure.
A model of head-related transfer functions based on a state-space analysis
NASA Astrophysics Data System (ADS)
Adams, Norman Herkamp
This dissertation develops and validates a novel state-space method for binaural auditory display. Binaural displays seek to immerse a listener in a 3D virtual auditory scene with a pair of headphones. The challenge for any binaural display is to compute the two signals to supply to the headphones. The present work considers a general framework capable of synthesizing a wide variety of auditory scenes. The framework models collections of head-related transfer functions (HRTFs) simultaneously. This framework improves the flexibility of contemporary displays, but it also compounds the steep computational cost of the display. The cost is reduced dramatically by formulating the collection of HRTFs in the state-space and employing order-reduction techniques to design efficient approximants. Order-reduction techniques based on the Hankel-operator are found to yield accurate low-cost approximants. However, the inter-aural time difference (ITD) of the HRTFs degrades the time-domain response of the approximants. Fortunately, this problem can be circumvented by employing a state-space architecture that allows the ITD to be modeled outside of the state-space. Accordingly, three state-space architectures are considered. Overall, a multiple-input, single-output (MISO) architecture yields the best compromise between performance and flexibility. The state-space approximants are evaluated both empirically and psychoacoustically. An array of truncated FIR filters is used as a pragmatic reference system for comparison. For a fixed cost bound, the state-space systems yield lower approximation error than FIR arrays for D>10, where D is the number of directions in the HRTF collection. A series of headphone listening tests are also performed to validate the state-space approach, and to estimate the minimum order N of indiscriminable approximants. For D = 50, the state-space systems yield order thresholds less than half those of the FIR arrays. Depending upon the stimulus uncertainty, a minimum state-space order of 7≤N≤23 appears to be adequate. In conclusion, the proposed state-space method enables a more flexible and immersive binaural display with low computational cost.
Quantum asymmetry between time and space
2016-01-01
An asymmetry exists between time and space in the sense that physical systems inevitably evolve over time, whereas there is no corresponding ubiquitous translation over space. The asymmetry, which is presumed to be elemental, is represented by equations of motion and conservation laws that operate differently over time and space. If, however, the asymmetry was found to be due to deeper causes, this conventional view of time evolution would need reworking. Here we show, using a sum-over-paths formalism, that a violation of time reversal (T) symmetry might be such a cause. If T symmetry is obeyed, then the formalism treats time and space symmetrically such that states of matter are localized both in space and in time. In this case, equations of motion and conservation laws are undefined or inapplicable. However, if T symmetry is violated, then the same sum over paths formalism yields states that are localized in space and distributed without bound over time, creating an asymmetry between time and space. Moreover, the states satisfy an equation of motion (the Schrödinger equation) and conservation laws apply. This suggests that the time–space asymmetry is not elemental as currently presumed, and that T violation may have a deep connection with time evolution. PMID:26997899
General Relativity without paradigm of space-time covariance, and resolution of the problem of time
NASA Astrophysics Data System (ADS)
Soo, Chopin; Yu, Hoi-Lai
2014-01-01
The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.
Ge Sun; Steve G. McNulty; J. Lu; Devendra M. Amatya; Y. Liang; R.K. Kolka
2005-01-01
Regional water yield at a meso-scale can be estimated as the difference between precipitation input and evapotranspiration output. Forest water yield from the southeastern US varies greatly both in space and time. Because of the hot climate and high evapotranspiration, less than half of the annual precipitation that falls on forest lands is available for stream flow...
Construction of a Penrose Diagram for a Spatially Coherent Evaporating Black Hole
NASA Technical Reports Server (NTRS)
Brown, Beth A.; Lindesay, James
2007-01-01
A Penrose diagram is constructed for an example black hole that evaporates at a steady rate as measured by a distant observer, until the mass vanishes, yielding a final state Minkowski space-time. Coordinate dependencies of significant features, such as the horizon and coordinate anomalies, are clearly demonstrated on the diagram. The large-scale causal structure of the space-time is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.
1992-03-01
The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.
Nonlinear dynamic theory for photorefractive phase hologram formation
NASA Technical Reports Server (NTRS)
Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.
1976-01-01
A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.
Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts
NASA Technical Reports Server (NTRS)
George, K.; Cucinotta, F. A.
2008-01-01
Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.
Statistical analysis of flight times for space shuttle ferry flights
NASA Technical Reports Server (NTRS)
Graves, M. E.; Perlmutter, M.
1974-01-01
Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.
Lower Limits on Aperture Size for an ExoEarth Detecting Coronagraphic Mission
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Stapelfeldt, Karl R.
2015-01-01
The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.
Twistor encoding of Lienard--Wiechert fields in Minkowski space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, J.R.
1985-03-01
The twistor encoding of the anti-self-dual Lienard--Wiechert field on Minkowski space-time yields a considerably richer structure than that of the Coulomb field encoding due to the presence of a nonzero radiation field. The combination of advanced and retarded transverse fields together with the longitudinal field and the individual aspects of these fields provides this structure. Higher-order longitudinal moments can be incorporated so that general longitudinal fields can be given a twistor description.
Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
NASA Astrophysics Data System (ADS)
Muruganandam, P.; Adhikari, S. K.
2009-10-01
Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.
Evaluation of GAGG:Ce scintillators for future space applications
NASA Astrophysics Data System (ADS)
Yoneyama, M.; Kataoka, J.; Arimoto, M.; Masuda, T.; Yoshino, M.; Kamada, K.; Yoshikawa, A.; Sato, H.; Usuki, Y.
2018-02-01
Cerium-doped Gd3(Ga, Al)5O12 (GAGG:Ce) is a promising novel scintillator for gamma-ray detectors. While GAGG:Ce has already been implemented in various commercial products, its detailed characteristics and response to high-energy particles and gamma rays remain unknown. In particular, knowledge is lacking on the radiation tolerance of this scintillator against the gamma-ray and proton irradiation expected in future space satellite mission applications. In this study, we first investigate the light-yield energy dependence, energy resolution, decay time, radiation tolerance, and afterglow of GAGG:Ce scintillators under various temperature conditions. We find excellent linearity of ±3% between light yields and deposited energy over a wide range of 30-1836 keV; however, a light-yield deficit of more than 10% is observed below 30 keV of deposited gamma ray energy. We confirm that the temperature dependence of the light yield, energy resolution, and scintillation decay time is within 5-20% between -20 and 20 oC. We also evaluate the GAGG:Ce activation characteristics under proton irradiation and the light-yield degradation by accumulated dose using a 60Co source. Moreover, we successfully identify various gamma-ray lines due to activation. Finally, we find a substantial afterglow for GAGG:Ce scintillators over a few hours; such an afterglow is only minimally observed in other scintillators such as CsI:Tl and Bi4Ge3O12 (BGO). However, the afterglow can be substantially reduced through additional co-doping with divalent metal ions, such as Mg ions. These results suggest that GAGG:Ce is a promising scintillator with potential application in space satellite missions in the near future.
NASA Astrophysics Data System (ADS)
Stude, Joan; Wieser, Martin; Barabash, Stas
2016-10-01
Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.
Liu, Zhi-Qiang; Wu, Lin; Zheng, Ling; Wang, Wen-Zhong; Zhang, Xiao-Jian; Jin, Li-Qun; Zheng, Yu-Guo
2018-02-01
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is the key intermediate for synthesis of atorvastatin and rosuvastatin. Carbonyl reductase exhibits excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) to synthesize (3R,5S)-CDHH. In this study, a whole cell biosynthesis reaction system to produce (3R,5S)-CDHH was constructed in organic solvents. A solution of 10% (v/v) Tween-80 was introduced to the reaction system as a co-solvent, which greatly enhanced biotransformation process, giving 98.9% yield, >99% ee and 1.8-fold higher space time yield in 5 h bioconversion of 1 M (S)-CHOH, compared with 98.7% yield and >99% ee in 9 h bioconversion of a purely aqueous reaction system. Moreover, a water-octanol biphasic reaction system was built and 20% of octanol was added as reservoir of substrate resulting in 98% yield, >99% ee and 4.08 mmol L -1 h -1 g -1 (wet cell weight) space time yield. This study paved a way for the whole cell biosynthesis of (3R,5S)-CDHH in mono and biphasic media. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bosshart, Andreas; Wagner, Nina; Lei, Lei; Panke, Sven; Bechtold, Matthias
2016-02-01
Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible. © 2015 Wiley Periodicals, Inc.
Modeling utilization distributions in space and time
Keating, K.A.; Cherry, S.
2009-01-01
W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Heine, Frank; Schwander, Thomas; Lange, Robert; Smutny, Berry
2006-04-01
Tesat-Spacecom has developed a series of fiber coupled single frequency lasers for space applications ranging from onboard metrology for space borne FTIR spectrometers to step tunable seed lasers for LIDAR applications. The cw-seed laser developed for the ESA AEOLUS Mission shows a 3* 10 -11 Allen variance from 1 sec time intervals up to 1000 sec. Q-switched lasers with stable beam pointing under space environments are another field of development. One important aspect of a space borne laser system is a reliable fiber coupled laser diode pump source around 808nm. A dedicated development concerning chip design and packaging yielded in a 5*10 6h MTTF (mean time to failure) for the broad area emitters. Qualification and performance test results for the different laser assemblies will be presented and their application in the different space programs.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Space-resolved measurements of neutrons and ions emitted by a plasma focus
NASA Astrophysics Data System (ADS)
Jaeger, U.
1980-05-01
Space-resolved measurements of neutrons and of accelerated charged particles emitted by a plasma focus device are presented. The neutron source was measured with one and two dimensional paraffin collimators. The spatial resolution is 5 mn along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron scattering, absorption, and nuclear reactions were taken into account. Part of the neutron measurement was carried out together with time and space resolved measurements of the electron density to study possible correlations between n sub e and y sub n.
Cassava; African perspective on space agriculture
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi
Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.
Self-biased broadband magnet-free linear isolator based on one-way space-time coherency
NASA Astrophysics Data System (ADS)
Taravati, Sajjad
2017-12-01
This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.
Influence of Cutting Cycle and Spacing on Coppice Sycamore Yield
H. E. Kennedy
1975-01-01
Cutting cycle significantly affected total aboveground dry-weight yields, which were greater with the 2-, 3-, and 4-year cycles than with the I-year. For all cutting cycles, significantly higher yields were obtained with 2- by 5-foot spacings than with 4 by 5. Dry-weight yields ranged from 3,229 pounds per acre per year for the I-year cutting cycle spaced at 4 by 5...
NASA Astrophysics Data System (ADS)
Ryblewski, Radoslaw; Strickland, Michael
2015-07-01
We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3 +1 )-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.
Discrete Space-Time: History and Recent Developments
NASA Astrophysics Data System (ADS)
Crouse, David
2017-01-01
Discussed in this work is the long history and debate of whether space and time are discrete or continuous. Starting from Zeno of Elea and progressing to Heisenberg and others, the issues with discrete space are discussed, including: Lorentz contraction (time dilation) of the ostensibly smallest spatial (temporal) interval, maintaining isotropy, violations of causality, and conservation of energy and momentum. It is shown that there are solutions to all these issues, such that discrete space is a viable model, yet the solution require strict non-absolute space (i.e., Mach's principle) and a re-analysis of the concept of measurement and the foundations of special relativity. In developing these solutions, the long forgotten but important debate between Albert Einstein and Henri Bergson concerning time will be discussed. Also discussed is the resolution to the Weyl tile argument against discrete space; however, the solution involves a modified version of the typical distance formula. One example effect of discrete space is then discussed, namely how it necessarily imposes order upon Wheeler's quantum foam, changing the foam into a gravity crystal and yielding crystalline properties of bandgaps, Brilluoin zones and negative inertial mass for astronomical bodies.
Coppice Sycamore Yields Through 9 Years
Harvey E. Kennedy
1980-01-01
Cutting cycle and spacing did not significantly affect sycamore dry-weight yields from ages 5-9 years (1974-l 978). Longer cutting cycles usually did give higher yields. Dry-weight yields ranged from 2886 lb per acre (3233 kg/ha) per year in the 1 year, 4x5 ft (1.2 x 1.5 m) spacing to 4541 lb (5088 kg/ha) in the 4-year, 4x5 ft s,pacing. Survival averaged 67 percent...
Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors
NASA Astrophysics Data System (ADS)
Wang, Shunqiang; Wan, Yuan; Liu, Yaling
2014-10-01
While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f
Control of Space-Based Electron Beam Free Form Fabrication
NASA Technical Reports Server (NTRS)
Seifzer. W. J.; Taminger, K. M.
2007-01-01
Engineering a closed-loop control system for an electron beam welder for space-based additive manufacturing is challenging. For earth and space based applications, components must work in a vacuum and optical components become occluded with metal vapor deposition. For extraterrestrial applications added components increase launch weight, increase complexity, and increase space flight certification efforts. Here we present a software tool that closely couples path planning and E-beam parameter controls into the build process to increase flexibility. In an environment where data collection hinders real-time control, another approach is considered that will still yield a high quality build.
Bartnik’s splitting conjecture and Lorentzian Busemann function
NASA Astrophysics Data System (ADS)
Amini, Roya; Sharifzadeh, Mehdi; Bahrampour, Yousof
2018-05-01
In 1988 Bartnik posed the splitting conjecture about the cosmological space-time. This conjecture has been proved by several people, with different approaches and by using some additional assumptions such as ‘S-ray condition’ and ‘level set condition’. It is known that the ‘S-ray condition’ yields the ‘level set condition’. We have proved that the two are indeed equivalent, by giving a different proof under the assumption of the ‘level set condition’. In addition, we have shown several properties of the cosmological space-time, under the presence of the ‘level set condition’. Finally we have provided a proof of the conjecture under a different assumption on the cosmological space-time. But we first prove some results without the timelike convergence condition which help us to state our proofs.
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
Experimental study of the space-time development of the particle production process in hadronic collisions at its initial stage was performed. Massive target nuclei have been used as fine detectors of properties of the particle production process development within time intervals smaller than 10 to the 22nd power s and spatial distances smaller than 10 to the 12th power cm. In hadron-nucleon collisions, in particular in nucleon-nucleon collisions, the particle production process goes through intermediate objects in 2 yields 2 type endoergic reactions. The objects decay into commonly observed resonances and paricles.
Photoperiod shift effects on yield characteristics of rice
NASA Technical Reports Server (NTRS)
Volk, G. M.; Mitchell, C. A.
1995-01-01
Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.
On Gravitational Effects in the Schrödinger Equation
NASA Astrophysics Data System (ADS)
Pollock, M. D.
2014-04-01
The Schrödinger equation for a particle of rest mass and electrical charge interacting with a four-vector potential can be derived as the non-relativistic limit of the Klein-Gordon equation for the wave function , where and , or equivalently from the one-dimensional action for the corresponding point particle in the semi-classical approximation , both methods yielding the equation in Minkowski space-time , where and . We show that these two methods generally yield equations that differ in a curved background space-time , although they coincide when if is replaced by the effective mass in both the Klein-Gordon action and , allowing for non-minimal coupling to the gravitational field, where is the Ricci scalar and is a constant. In this case , where and , the correctness of the gravitational contribution to the potential having been verified to linear order in the thermal-neutron beam interferometry experiment due to Colella et al. Setting and regarding as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space-time. Conservation of probability and electrical current requires both electromagnetic gauge and space-time coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div, where and . The quantum-cosmological Schrödinger (Wheeler-DeWitt) equation is also discussed in the -dimensional mini-superspace idealization, with particular regard to the vacuum potential and the characteristics of the ground state, assuming a gravitational Lagrangian which contains higher-derivative terms up to order . For the heterotic superstring theory , consists of an infinite series in , where is the Regge slope parameter, and in the perturbative approximation , is positive semi-definite for . The maximally symmetric ground state satisfying the field equations is Minkowski space for and anti-de Sitter space for.
Bridging legal and economic perspectives on interstate municipal solid waste disposal in the US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Christine, E-mail: Christine.L.Longo@irs.gov; Wagner, Jeffrey, E-mail: jeffrey.wagner@rit.edu
Research highlights: {yields} Legal and economic opinions of free interstate trade of MSW in the US are reviewed. {yields} Economic theory of landfill space as the article of commerce can align opinions. {yields} Waste management policies implied by this economic theory are compared/contrasted. - Abstract: Managing municipal solid waste (MSW) within and across regions is a complex public policy problem. One challenge regards conceptualizing precisely what commodity is to be managed across space and time. The US Supreme Court view is that waste disposal is the article of commerce per se. Some justices, however, have argued that while waste disposalmore » is the article of commerce, its interstate flow could be impeded by states on the grounds that they have the authority to regulate natural resource quality within their boundaries. The argument in this paper is that adopting the economic theory view of the article of commerce as landfill space brings the majority and dissenting US Supreme Court views-and the resulting sides of the public policy dispute-into closer alignment. We discuss waste management policy tools that emerge from this closer alignment that are more likely to both withstand judicial scrutiny and achieve economic efficiency.« less
Nuclear reactor descriptions for space power systems analysis
NASA Technical Reports Server (NTRS)
Mccauley, E. W.; Brown, N. J.
1972-01-01
For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.
High-Speed Observer: Automated Streak Detection in SSME Plumes
NASA Technical Reports Server (NTRS)
Rieckoff, T. J.; Covan, M.; OFarrell, J. M.
2001-01-01
A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.
Second-order numerical solution of time-dependent, first-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Shah, Patricia L.; Hardin, Jay
1995-01-01
A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.
Extended canonical field theory of matter and space-time
NASA Astrophysics Data System (ADS)
Struckmeier, J.; Vasak, D.; matter, H. Stoecker Field theory of; space-time
2015-11-01
Any physical theory that follows from an action principle should be invariant in its form under mappings of the reference frame in order to comply with the general principle of relativity. The required form-invariance of the action principle implies that the mapping must constitute a particular extended canonical transformation. In the realm of the covariant Hamiltonian formulation of field theory, the term ``extended'' implies that not only the fields but also the space-time geometry is subject to transformation. A canonical transformation maintains the general form of the action principle by simultaneously defining the appropriate transformation rules for the fields, the conjugate momentum fields, and the transformation rule for the Hamiltonian. Provided that the given system of fields exhibits a particular global symmetry, the associated extended canonical transformation determines an amended Hamiltonian that is form-invariant under the corresponding local symmetry. This will be worked out for a Hamiltonian system of scalar and vector fields that is presupposed to be form-invariant under space-time transformations xμ\\mapsto Xμ with partial Xμ/partial xν=const., hence under global space-time transformations such as the Poincaré transformation. The corresponding amended system that is form-invariant under local space-time transformations partial Xμ/partial xν≠qconst. then describes the coupling of the fields to the space-time geometry and thus yields the dynamics of space-time that is associated with the given physical system. Non-zero spin matter determines thereby the space-time curvature via a well-defined source term in a covariant Poisson-type equation for the Riemann tensor.
Future projects in asteroseismology: the unique role of Antarctica
NASA Astrophysics Data System (ADS)
Mosser, B.; Siamois Team
Asteroseismology requires observables registered in stringent conditions: very high sensitivity, uninterrupted time series, long duration. These specifications then allow to study the details of the stellar interior structure. Space-borne and ground-based asteroseismic projects are presented and compared. With CoRoT as a precursor, then Kepler and maybe Plato, the roadmap in space appears to be precisely designed. In parallel, ground-based projects are necessary to provide different and unique information on bright stars with Doppler measurements. Dome C appears to be the ideal place for ground-based asteroseismic observations. The unequalled weather conditions yield a duty cycle comparable to space. Long time series (up to 3 months) will be possible, thanks to the long duration of the polar night.
Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers
NASA Astrophysics Data System (ADS)
Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.
2009-01-01
The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.
An Adynamical, Graphical Approach to Quantum Gravity and Unification
NASA Astrophysics Data System (ADS)
Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy
We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum interference.
Development of compact particle detectors for space based instruments
NASA Astrophysics Data System (ADS)
Barner, Lindsey; Grove, Andrew; Mohler, Jacob; Sisson, Caleb; Roth, Alex; Kryemadhi, Abaz
2017-01-01
The Silicon Photomultipliers (SiPMs) are new photon-detectors which have been increasingly used in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers benefits compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high stopping power, very good light yield and fast decay time. The response of these detectors to low energy gamma rays will be presented. NASA Pennsylvania Space Grant Consortium.
Fast and accurate fitting and filtering of noisy exponentials in Legendre space.
Bao, Guobin; Schild, Detlev
2014-01-01
The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Helicons in uniform fields. I. Wave diagnostics with hodograms
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2018-03-01
The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.
Piezoelectric Polymers Actuators for Precise Shape Control of Large Scale Space Antennas
NASA Technical Reports Server (NTRS)
Chen, Qin; Natale, Don; Neese, Bret; Ren, Kailiang; Lin, Minren; Zhang, Q. M.; Pattom, Matthew; Wang, K. W.; Fang, Houfei; Im, Eastwood
2007-01-01
Extremely large, lightweight, in-space deployable active and passive microwave antennas are demanded by future space missions. This paper investigates the development of PVDF based piezopolymer actuators for controlling the surface accuracy of a membrane reflector. Uniaxially stretched PVDF films were poled using an electrodeless method which yielded high quality poled piezofilms required for this application. To further improve the piezoperformance of piezopolymers, several PVDF based copolymers were examined. It was found that one of them exhibits nearly three times improvement in the in-plane piezoresponse compared with PVDF and P(VDF-TrFE) piezopolymers. Preliminary experimental results indicate that these flexible actuators are very promising in controlling precisely the shape of the space reflectors.
NASA Astrophysics Data System (ADS)
Simpson, R.; Broussely, M.; Edwards, G.; Robinson, D.; Cozzani, A.; Casarosa, G.
2012-07-01
The National Physical Laboratory (NPL) and The European Space Research and Technology Centre (ESTEC) have performed for the first time successful surface temperature measurements using infrared thermal imaging in the ESTEC Large Space Simulator (LSS) under vacuum and with the Sun Simulator (SUSI) switched on during thermal qualification tests of the GAIA Deployable Sunshield Assembly (DSA). The thermal imager temperature measurements, with radiosity model corrections, show good agreement with thermocouple readings on well characterised regions of the spacecraft. In addition, the thermal imaging measurements identified potentially misleading thermocouple temperature readings and provided qualitative real-time observations of the thermal and spatial evolution of surface structure changes and heat dissipation during hot test loadings, which may yield additional thermal and physical measurement information through further research.
Use of data from space for earth resources exploration and management in Alabama
NASA Technical Reports Server (NTRS)
Lamoreaux, P. E.; Henry, H. R.
1972-01-01
The University of Alabama, the Geological Survey of Alabama, and the George C. Marshall Space Flight Center are involved in an interagency, interdisciplinary effort to use remotely sensed, multispectral observations to yield improved and timely assessment of earth resources and environmental quality in Alabama. It is the goal of this effort to interpret these data and provide them in a format which is meaningful to and readily usable by agencies, industries, and individuals who are potential users throughout the State.
Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).
Majano, Gerardo; Pérez-Ramírez, Javier
2013-02-20
Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Techniques Verified for Determining Yield and Flow Surfaces
NASA Technical Reports Server (NTRS)
Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.
1998-01-01
Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow surfaces at elevated temperatures. The heating system induced a large amount of noise in the data. By reducing thermal fluctuations and using appropriate data averaging schemes, we could render the noise inconsequential. Thus, accurate and reproducible flow surfaces (see the figure) could be obtained.
Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture
NASA Astrophysics Data System (ADS)
Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro
Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.
Minimizing energy utilization for growing strawberries during long-duration space habitation
NASA Astrophysics Data System (ADS)
Massa, Gioia D.; Santini, Judith B.; Mitchell, Cary A.
2010-09-01
Strawberry is a candidate crop for space that is rich in protective antioxidants and could also have psychological benefits as a component of crew diets during long-duration space habitation. Energy for electric lighting is a major input to a controlled-environment crop-production system for space habitation. Day-neutral strawberry cultivars were evaluated at several different photoperiods to determine minimum lighting requirements without limiting yield or negatively impacting fruit quality. The cultivars 'Tribute', 'Seascape', and 'Fern' were grown at 14, 17, or 20 h of light per day, and fruit yield was evaluated over a 31-week production period. This amounted to a difference of 2418 kWh m -2 in energy usage between the longest and shortest photoperiods. All cultivars produced similar total fresh weight of fruit regardless of photoperiod. Volunteer tasters rated organoleptic characteristics including sweetness, tartness, texture, and overall appeal as measures of fruit quality. Generally, organoleptic attributes were not affected by photoperiod, but these attributes were somewhat dependent upon cultivar and harvest time. Cultivars under different photoperiods varied in their production of fruit over time. 'Seascape' was the most consistent producer, typically with the largest, most palatable fruit. 'Seascape' plants subsequently were grown at 10-, 12-, or 14-h photoperiods over a treatment period of 33 weeks. Photoperiod again had no significant effect on total fruit weight, although there were periodic flushes of productivity. Fruit under all photoperiods had acceptable approval ratings. A large-fruited, day-neutral strawberry cultivar such as 'Seascape' remains productive under shortened photoperiods, allowing reductions in energy and crew labor while maintaining flexibility for mixed-cropping scenarios in space.
Preparatory space experiments for development of a CELSS
NASA Technical Reports Server (NTRS)
Salisbury, Frank B.
1990-01-01
The goal of Closed Ecological Life Support System (CELSS) studies is to examine the effects of microgravity on yield and quality of plant products and on the interactions between irradiance and crop area. Measuring yield and quality of crops as a function of irradiance in microgravity is virtually unique to the CELSS program, as is the emphasis on canopies rather than individual plants. The first step for space experiments is to develop a relatively stress free environment for plant growth, something that has so far never been achieved. High light levels are essential, and there must be time enough to complete a significant portion of the life cycle. Optimal atmosphere and nutrients must be provided. Such responses as germination, orientation of roots and shoots, photosynthesis and respiration, floral initiation and development, and seed maturation and viability will be studied.
NASA Technical Reports Server (NTRS)
Dubos, Gregory F.; Cornford, Steven
2012-01-01
While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".
Estimation of river and stream temperature trends under haphazard sampling
Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao
2015-01-01
Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.
TNT equivalency study for space shuttle (EOS). Volume 1: Management summary report
NASA Technical Reports Server (NTRS)
Wolfe, R. R.
1971-01-01
The existing TNT equivalency criterion for LO2/LH2 propellant is reevaluated. It addresses the static, on-pad phase of the space shuttle launch operations and was performed to determine whether the use of a TNT equivalency criterion lower than that presently used (60%) could be substantiated. The large quantity of propellant on-board the space shuttle, 4 million pounds, was considered of prime importance to the study. A qualitative failure analysis of the space shuttle (EOS) on the launch pad was made because it was concluded that available test data on the explosive yield of LO2/LH2 propellant was insufficient to support a reduction in the present TNT equivalency value, considering the large quantity of propellant used in the space shuttle. The failure analysis had two objectives. The first was to determine whether a failure resulting in the total release of propellant could occur. The second was to determine whether, if such a failure did occur, ignition could be delayed long enough to allow the degree of propellant mixing required to produce an explosion of 60% TNT equivalency since the explosive yield of this propellant is directly related to the quantities of LH2 and LO2 mixed at the time of the explosion.
Interstellar scintillations of PSR B1919+21: space-ground interferometry
NASA Astrophysics Data System (ADS)
Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.
2017-07-01
We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.
NASA Technical Reports Server (NTRS)
1997-01-01
Kennedy Space Center specialists aided Space, Energy, Time Saving (SETS) Systems, Inc. in working out the problems they encountered with their new electronic "tankless" water heater. The flow switch design suffered intermittent problems. Hiring several testing and engineering firms produced only graphs, printouts, and a large expense, but no solutions. Then through the Kennedy Space Center/State of Florida Technology Outreach Program, SETS was referred to Michael Brooks, a 21-year space program veteran and flowmeter expert. Run throughout Florida to provide technical service to businesses at no cost, the program applies scientific and engineering expertise originally developed for space applications to the Florida business community. Brooks discovered several key problems, resulting in a new design that turned out to be simpler, yielding a 63 percent reduction in labor and material costs over the old design.
Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers
2015-01-01
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...
Use of Hypnosis by Psychologists in a Pediatric Setting: Establishing and Maintaining Credibility.
ERIC Educational Resources Information Center
O'Grady, Donald J.; Hoffmann, Claudia
The use of hypnosis in a pediatric setting has the potential for yielding effective results. Obstacles to its use are inappropriate training of psychologists in pediatric psychology, resistance to hypnosis from the pediatricians and mental health professionals, fragmented communication, and constant demand for space and time. Success of hypnosis…
Proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Barger, G. L.
1975-01-01
The proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference are presented. The state of art of wheat-yield forecasting and the feasibility of incorporating remote sensing into this forecasting were discussed with emphasis on formulating common approach to wheat-yield forecasting, primarily using conventional meteorological measurements, which can later include the various applications of remote sensing. Papers are presented which deal with developments in the field of crop modelling.
Impact of initial spacing on yield per acre and wood quality of unthinned loblolly pine at age 21
Alexander, III Clark; Richard F. Daniels; Lewis Jordan; Laurie Schimleck
2010-01-01
The market for southern pine first thinnings is soft. Thus, forest managers are planting at wider spacings, and using weed control and fertilization to grow chipping-saw and sawtimber trees in shorter rotations. A 21-year-old unthinned spacing study was sampled to determine the effect of initial spacing on wood quality and yield per acre of planted loblolly pine (
Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits
NASA Technical Reports Server (NTRS)
Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.
2013-01-01
A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.
Fast and Accurate Fitting and Filtering of Noisy Exponentials in Legendre Space
Bao, Guobin; Schild, Detlev
2014-01-01
The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters. PMID:24603904
Bulk nuclear properties from dynamical description of heavy-ion collisions
NASA Astrophysics Data System (ADS)
Hong, Jun
Mapping out the equation of state (EOS) of nuclear matter is a long standing problem in nuclear physics. Both experimentalists and theoretical physicists spare no effort in improving understanding of the EOS. In this thesis, we examine observables sensitive to the EOS within the pBUU transport model based on the Boltzmann equation. By comparing theoretical predictions with experimental data, we arrive at new constraints for the EOS. Further we propose novel promising observables for analysis of future experimental data. One set of observables that we examine within the pBUU model are pion yields. First, we find that net pion yields in central heavy-ion collisions (HIC) are strongly sensitive to the momentum dependence of the isoscalar nuclear mean field. We reexamine the momentum dependence that is assumed in the Boltzmann equation model for the collisions and optimize that dependence to describe the FOPI measurements of pion yields from the Au+Au collisions at different beam energies. Alas such optimized dependence yields a somewhat weaker baryonic elliptic flow than seen in measurements. Subsequently, we use the same pBUU model to generate predictions for baryonic elliptic flow observable in HIC, while varying the incompressibility of nuclear matter. In parallel, we test the sensitivity of pion multiplicity to the density dependence of EOS, and in particular to incompressibility, and optimize that dependence to describe both the elliptic flow and pion yields. Upon arriving at acceptable regions of density dependence of pressure and energy, we compare our constraints on EOS with those recently arrived at by the joint experiment and theory effort FOPI-IQMD. We should mention that, for the more advanced observables from HIC, there remain discrepancies of up to 30%, depending on energy, between the theory and experiment, indicating the limitations of the transport theory. Next, we explore the impact of the density dependence of the symmetry energy on observables, motivated by experiments aiming at constraining the symmetry energy. In contradiction to IBUU and ImIQMD models in the literature, that claim sensitivity of net charged pion yields to the density dependence of the symmetry energy, albeit in direction opposite from each other, we find practically no such sensitivity in pBUU. However, we find a rather dramatic sensitivity of differential high-energy charged-pion yield ratio to that density dependence, which can be qualitatively understood, and we propose that differential ratio be used in future experiments to constrain the symmetry energy. Finally, we present Gaussian phase-space representation method for studying strongly correlated systems. This approach allows to follow time evolution of quantum many-body systems with large Hilbert spaces through stochastic sampling, provided the interactions are two-body in nature. We demonstrate the advantage of the Gaussian phase-space representation method in coping with the notorious numerical sign problem for fermion systems. Lastly, we discuss the difficulty in trying to stabilize the system during its time evolution, within the Gaussian phase-space method.
Viscerotropic disease following yellow fever vaccination in Peru.
Whittembury, Alvaro; Ramirez, Gladys; Hernández, Herminio; Ropero, Alba Maria; Waterman, Steve; Ticona, María; Brinton, Margo; Uchuya, Jorge; Gershman, Mark; Toledo, Washington; Staples, Erin; Campos, Clarense; Martínez, Mario; Chang, Gwong-Jen J; Cabezas, Cesar; Lanciotti, Robert; Zaki, Sherif; Montgomery, Joel M; Monath, Thomas; Hayes, Edward
2009-10-09
Five suspected cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) clustered in space and time following a vaccination campaign in Ica, Peru in 2007. All five people received the same lot of 17DD live attenuated yellow fever vaccine before their illness; four of the five died of confirmed YEL-AVD. The surviving case was classified as probable YEL-AVD. Intensive investigation yielded no abnormalities of the implicated vaccine lot and no common risk factors. This is the first described space-time cluster of yellow fever viscerotropic disease involving more than two cases. Mass yellow fever vaccination should be avoided in areas that present extremely low risk of yellow fever.
USDA-ARS?s Scientific Manuscript database
Little information is available on the interactive effects of tillage and row spacing on yield of soybean and population dynamics of H. glycines. This study investigated the effects of rotation of soybean and corn, tillage, row spacing, and cultivar on yield of soybean and population dynamics of H. ...
NASA Technical Reports Server (NTRS)
Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.
2011-01-01
The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.
Rapidity distribution of photons from an anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Bhattacharya, Lusaka; Roy, Pradip
2010-05-01
We calculate rapidity distribution of photons due to Compton and annihilation processes from quark gluon plasma with pre-equilibrium momentum-space anisotropy. We also include contributions from hadronic matter with late-stage transverse expansion. A phenomenological model has been used for the time evolution of hard momentum scale, phard(τ), and anisotropy parameter, ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of photons rapidity distribution. For example, with the fixed initial condition (FIC) free-streaming (δ=2) interpolating model we observe significant enhancement of photon rapidity distribution at fixed pT, where as for FIC collisionally broadened (δ=2/3) interpolating model the yield increases till y~1. Beyond that suppression is observed. With fixed final multiplicity (FFM) free-streaming interpolating model we predict enhancement of photon yield which is less than the case of FIC. Suppression is always observed for FFM collisionally broadened interpolating model.
Propellant isolation shutoff valve program
NASA Technical Reports Server (NTRS)
Merritt, F. L.
1973-01-01
An analysis and design effort directed to advancing the state-of-the-art of space storable isolation valves for control of flow of the propellants liquid fluorine/hydrazine and Flox/monomethylhydrazine is discussed. Emphasis is on achieving zero liquid leakage and capability of withstanding missions up to 10 years in interplanetary space. Included is a study of all-metal poppet sealing theory, an evaluation of candidate seal configurations, a valve actuator trade-off study and design description of a pneumo-thermally actuated soft metal poppet seal valve. The concepts and analysis leading to the soft seal approach are documented. A theoretical evaluation of seal leakage versus seal loading, related finishes and yield strengths of various materials is provided. Application of a confined soft aluminum seal loaded to 2 to 3 times yield strength is recommended. Use of either an electro-mechanical or pneumatic actuator appears to be feasible for the application.
Human Pathophysiological Adaptations to the Space Environment
Demontis, Gian C.; Germani, Marco M.; Caiani, Enrico G.; Barravecchia, Ivana; Passino, Claudio; Angeloni, Debora
2017-01-01
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population. PMID:28824446
Human Pathophysiological Adaptations to the Space Environment.
Demontis, Gian C; Germani, Marco M; Caiani, Enrico G; Barravecchia, Ivana; Passino, Claudio; Angeloni, Debora
2017-01-01
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
NASA Technical Reports Server (NTRS)
Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)
1973-01-01
A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.
Nie, Lei; Hu, Mingming; Yan, Xu; Guo, Tingting; Wang, Haibin; Zhang, Sheng; Qu, Haibin
2018-05-03
This case study described a successful application of the quality by design (QbD) principles to a coupling process development of insulin degludec. Failure mode effects analysis (FMEA) risk analysis was first used to recognize critical process parameters (CPPs). Five CPPs, including coupling temperature (Temp), pH of desB30 solution (pH), reaction time (Time), desB30 concentration (Conc), and molar equivalent of ester per mole of desB30 insulin (MolE), were then investigated using a fractional factorial design. The curvature effect was found significant, indicating the requirement of second-order models. Afterwards, a central composite design was built with an augmented star and center points study. Regression models were developed for the CPPs to predict the purity and yield of predegludec using above experimental data. The R 2 and adjusted R 2 were higher than 96 and 93% for the two models respectively. The Q 2 values were more than 80% indicating a good predictive ability of models. MolE was found to be the most significant factor affecting both yield and purity of predegludec. Temp, pH, and Conc were also significant for predegludec purity, while Time appeared to remarkably influence the yield model. The multi-dimensional design space and normal operating region (NOR) with a robust setpoint were determined using a probability-based Monte-Carlo simulation method. The verified experimental results showed that the design space was reliable and effective. This study enriches the understanding of acetylation process and is instructional to other complicated operations in biopharmaceutical engineering.
A Fast Track approach to deal with the temporal dimension of crop water footprint
NASA Astrophysics Data System (ADS)
Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2017-07-01
Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.
Space-time measurements of oceanic sea states
NASA Astrophysics Data System (ADS)
Fedele, Francesco; Benetazzo, Alvise; Gallego, Guillermo; Shih, Ping-Chang; Yezzi, Anthony; Barbariol, Francesco; Ardhuin, Fabrice
2013-10-01
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space-time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space-time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space-time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.
NASA Astrophysics Data System (ADS)
Kammerer, Jens; Quanz, Sascha P.
2018-01-01
Aims: We predict the exoplanet yield of a space-based mid-infrared nulling interferometer using Monte Carlo simulations. We quantify the number and properties of detectable exoplanets and identify those target stars that have the highest or most complete detection rate. We investigate how changes in the underlying technical assumptions and uncertainties in the underlying planet population impact the scientific return. Methods: We simulated 2000 exoplanetary systems, based on planet occurrence statistics from Kepler with randomly orientated orbits and uniformly distributed albedos around each of 326 nearby (d< 20 pc) stars. Assuming thermal equilibrium and blackbody emission, together with the limiting spatial resolution and sensitivity of our simulated instrument in the three specific bands 5.6, 10.0, and 15.0 μm, we quantified the number of detectable exoplanets as a function of their radii and equilibrium temperatures. Results: Approximately exoplanets, with radii 0.5 REarth ≤ Rp ≤ 6 REarth, were detected in at least one band and half were detected in all three bands during 0.52 years of mission time assuming throughputs 3.5 times worse than those for the James Webb Space Telescope and 40% overheads. Accounting for stellar leakage and (unknown) exozodiacal light, the discovery phase of the mission very likely requires 2-3 years in total. The uncertainties in planet yield are dominated by uncertainties in the underlying planet population, but the distribution of the Bond albedos also has a significant impact. Roughly 50% of the detected planets orbit M stars, which also have the highest planet yield per star; the other 50% orbit FGK stars, which show a higher completeness in the detectability. Roughly 85 planets could be habitable (0.5 REarth ≤ Rp ≤ 1.75 REarth and 200 K ≤ Teq ≤ 450 K) and are prime targets for spectroscopic observations in a second mission phase. Comparing these results to those of a large optical/near-infrared telescope, we find that a mid-infrared interferometer would detect more planets and the number of planets depends less strongly on the wavelength. Conclusions: An optimized space-based nulling interferometer operating in the mid-infrared would deliver an unprecedented dataset for the characterization of (small) nearby exoplanets including dozens of potentially habitable worlds.
Forecasting space weather: Can new econometric methods improve accuracy?
NASA Astrophysics Data System (ADS)
Reikard, Gordon
2011-06-01
Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.
Anti-pointing is mediated by a perceptual bias of target location in left and right visual space.
Heath, Matthew; Maraj, Anika; Gradkowski, Ashlee; Binsted, Gordon
2009-01-01
We sought to determine whether mirror-symmetrical limb movements (so-called anti-pointing) elicit a pattern of endpoint bias commensurate with perceptual judgments. In particular, we examined whether asymmetries related to the perceptual over- and under-estimation of target extent in respective left and right visual space impacts the trajectories of anti-pointing. In Experiment 1, participants completed direct (i.e. pro-pointing) and mirror-symmetrical (i.e. anti-pointing) responses to targets in left and right visual space with their right hand. In line with the anti-saccade literature, anti-pointing yielded longer reaction times than pro-pointing: a result suggesting increased top-down processing for the sensorimotor transformations underlying a mirror-symmetrical response. Most interestingly, pro-pointing yielded comparable endpoint accuracy in left and right visual space; however, anti-pointing produced an under- and overshooting bias in respective left and right visual space. In Experiment 2, we replicated the findings from Experiment 1 and further demonstrate that the endpoint bias of anti-pointing is independent of the reaching limb (i.e. left vs. right hand) and between-task differences in saccadic drive. We thus propose that the visual field-specific endpoint bias observed here is related to the cognitive (i.e. top-down) nature of anti-pointing and the corollary use of visuo-perceptual networks to support the sensorimotor transformations underlying such actions.
Influence of spacing and depth of planting to growth and yield of arrowroot (Marantha arundinacea)
NASA Astrophysics Data System (ADS)
Qodliyati, M.; Supriyono; Nyoto, S.
2018-03-01
This study was conducted to determine the optimum spacing and depth of planting to the growth and yield of arrowroot. This research was conducted at the Experimental Field of Agriculture Faculty, Sebelas Maret University on Jumantono, Karanganyar. This research was conducted using Randomized Completely Block Design (RCBD) with two treatment factors of plant spacing and depth of planting. Plant spacing consists of 3 levels, including J1 (30×30 cm), J2 (30×40 cm) and J3 (30×50 cm). Depth of planting consists of 2 levels which are K1 (10 cm) and K2 (20 cm). Data were analyzed by DMRT (Duncan’s Multiple Range Test) at 5% significance level. The results showed that spacing of 30×50 cm have significantly higher plant height, tuber (common names of rhizome) length, and tuber weight per plant. The depth of 20 cm gives a higher yield on the number of tubers per plant and tuber weight per plot variables. Both treatments have no significant interaction on growth and yield.
Domain decomposition methods for systems of conservation laws: Spectral collocation approximations
NASA Technical Reports Server (NTRS)
Quarteroni, Alfio
1989-01-01
Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.
Methods for improved forewarning of critical events across multiple data channels
Hively, Lee M [Philadelphia, TN
2007-04-24
This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Issues on 3D noncommutative electromagnetic duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Davi C.; Wotzasek, Clovis
We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter {theta}, defining a new scalar field model. There are similarities with the 4D NC duality; these are exploited to clarify properties of both cases. Up to second order in {theta}, we find that duality interchanges the 2-form {theta} with its 1-form Hodge dual *{theta} times the gauge coupling constant, i.e., {theta}{yields}*{theta}g{sup 2} (similar to the 4D NC electromagnetic duality). We directly prove that this property is false in the third order expansion in both 3D and 4Dmore » space-times, unless the slowly varying fields limit is imposed. Outside this limit, starting from the third order expansion, {theta} cannot be rescaled to attain an S-duality. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of NC theories. In particular, in this dimension, we deduce an expression that significantly simplifies the Seiberg-Witten mapped Lagrangian to all orders in {theta}.« less
Variational Algorithms for Test Particle Trajectories
NASA Astrophysics Data System (ADS)
Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.
2015-11-01
The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.
Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.
Xiao, Dan; Balcom, Bruce J
2012-07-01
Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.
Finsler-type modification of the Coulomb law
NASA Astrophysics Data System (ADS)
Itin, Yakov; Lämmerzahl, Claus; Perlick, Volker
2014-12-01
Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.
Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application
NASA Astrophysics Data System (ADS)
Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.
2006-12-01
The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.
Emergent space-time via a geometric renormalization method
NASA Astrophysics Data System (ADS)
Rastgoo, Saeed; Requardt, Manfred
2016-12-01
We present a purely geometric renormalization scheme for metric spaces (including uncolored graphs), which consists of a coarse graining and a rescaling operation on such spaces. The coarse graining is based on the concept of quasi-isometry, which yields a sequence of discrete coarse grained spaces each having a continuum limit under the rescaling operation. We provide criteria under which such sequences do converge within a superspace of metric spaces, or may constitute the basin of attraction of a common continuum limit, which hopefully may represent our space-time continuum. We discuss some of the properties of these coarse grained spaces as well as their continuum limits, such as scale invariance and metric similarity, and show that different layers of space-time can carry different distance functions while being homeomorphic. Important tools in this analysis are the Gromov-Hausdorff distance functional for general metric spaces and the growth degree of graphs or networks. The whole construction is in the spirit of the Wilsonian renormalization group (RG). Furthermore, we introduce a physically relevant notion of dimension on the spaces of interest in our analysis, which, e.g., for regular lattices reduces to the ordinary lattice dimension. We show that this dimension is stable under the proposed coarse graining procedure as long as the latter is sufficiently local, i.e., quasi-isometric, and discuss the conditions under which this dimension is an integer. We comment on the possibility that the limit space may turn out to be fractal in case the dimension is noninteger. At the end of the paper we briefly mention the possibility that our network carries a translocal far order that leads to the concept of wormhole spaces and a scale dependent dimension if the coarse graining procedure is no longer local.
[Dendrobium officinale stereoscopic cultivation method].
Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui
2014-12-01
The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.
Positive psychological effects of space missions
NASA Astrophysics Data System (ADS)
Ritsher, Jennifer Boyd; Ihle, Eva C.; Kanas, Nick
2005-07-01
Being in space is a powerful experience that can have an enduring, positive impact on the psychological well-being of astronauts and cosmonauts. We sought to examine the frequency, intensity and distribution of such salutogenic experiences among persons who have flown in space, using a questionnaire we developed based on the scientific literature and first person accounts. All participants reported positive effects of being in space, but the degree of change varied widely, and some experiences were particularly common. Three of our five predicted attitude behavior relationships were supported by the data. Response patterns did not vary according to demographics or time in space. Cluster analysis yielded two groups of participants. One group was generally more reactive and also placed a higher priority on perceptions of space than did the other group. We conclude that positive experiences are common among space travelers and seem to cluster into meaningful patterns that may be consequential for Mars missions. We consider the possible selection, training, and monitoring issues raised by our findings.
ERIC Educational Resources Information Center
Rapoport, Amnon
The prediction that two different methods of constructing linear, tree graphs will yield the same formal structure of semantic space and measurement of word proximity was tested by comparing the distribution of node degree, the distribution of the number of pairs of nodes connected y times, and the distribution of adjective degree in trees…
A gravity independent biological grey water treatment system for space applications
NASA Astrophysics Data System (ADS)
Nashashibi, Majda'midhat
2002-09-01
Biological treatment of grey water in space presents serious challenges, stemming mainly from microgravity conditions. The major concerns are phase separation and mass transfer limitations. To overcome solid-liquid phase separation, novel immobilized cell packed bed (ICPB) bioreactors have been developed to treat synthetic grey water. Packed bed bioreactors provide a unique environment for attached microbial growth resulting in high biomass concentrations, which greatly enhance process efficiency with substantial reductions in treatment time and reactor volume. To overcome the gas-liquid phase separation and mass transfer limitations, an oxygenation module equipped with tubular membranes has been developed to deliver bubble-less oxygen under pressure. The selected silicone membranes are hydrophobic, non-porous and oxygen selective. Oxygen dissolves in the walls of the membranes and then diffuses into the water without forming bubbles. Elevated pressures maintain all gaseous by-products in solution and provide high dissolved oxygen concentrations within the system. The packing media are lightweight, inexpensive polyethylene terephthalate (PET) flakes that have large specific surface area, act as a filter for solids and yield highly tortuous flow paths thereby increasing the contact time between the biomass and contaminants. Tests on both pressurized and ambient pressure ICPB bioreactors revealed organic carbon removal efficiencies over 90%. Despite the high ammonia level in the influent, nitrification occured in both the ambient pressure and pressurized nitrification bioreactors at efficiencies of 80% and 60%, respectively. Biomass yield was approximately 0.20 g volatile suspended solids per gram of grey water-COD processed in the pressurized bioreactor. The biomass yield of such novel aerobic ICPB systems is comparable to that of anaerobic processes. These efficient systems produce minimal amounts of biomass compared to other aerobic processes, making them less prone to clogging under long operation periods. The effluent contains low concentration of suspended solids, thus further phase separation may not be necessary. The maintenance requirements are minimal, thereby reducing labor time. The bioreactors could sustain loading and pressure shocks with rapid recovery. An empirical model has been developed for design and scale-up of the pressurized bioreactor for organic carbon and nitrogen conversions. NASA-Johnson Space Center adopted the nitrification bioreactor for prototype testing and potential future use in long duration human space missions.
NASA Technical Reports Server (NTRS)
George, Kerry A.; Rhone, J.; Chappell, L. J.; Cucinotta, F. A.
2011-01-01
To date, cytogenetic damage has been assessed in blood lymphocytes from more than 30 astronauts before and after they participated in long-duration space missions of three months or more on board the International Space Station. Chromosome damage was assessed using fluorescence in situ hybridization whole chromosome analysis techniques. For all individuals, the frequency of chromosome damage measured within a month of return from space was higher than their preflight yield, and biodosimetry estimates were within the range expected from physical dosimetry. Follow up analyses have been performed on most of the astronauts at intervals ranging from around 6 months to many years after flight, and the cytogenetic effects of repeat long-duration missions have so far been assessed in four individuals. Chromosomal aberrations in peripheral blood lymphocytes have been validated as biomarkers of cancer risk and cytogenetic damage can therefore be used to characterize excess health risk incurred by individual crewmembers after their respective missions. Traditional risk assessment models are based on epidemiological data obtained on Earth in cohorts exposed predominantly to acute doses of gamma-rays, and the extrapolation to the space environment is highly problematic, involving very large uncertainties. Cytogenetic damage could play a key role in reducing uncertainty in risk estimation because it is incurred directly in the space environment, using specimens from the astronauts themselves. Relative cancer risks were estimated from the biodosimetry data using the quantitative approach derived from the European Study Group on Cytogenetic Biomarkers and Health database. Astronauts were categorized into low, medium, or high tertiles according to their yield of chromosome damage. Age adjusted tertile rankings were used to estimate cancer risk and results were compared with values obtained using traditional modeling approaches. Individual tertile rankings increased after space flight and analysis of follow up samples indicated that the tertile rankings remained in the high category for more than 50% of the individuals assessed so far. Crewmembers that shift and remain in the high category are projected to have increased life-time cancer risk.
Spares Management : Optimizing Hardware Usage for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Gulbrandsen, K. A.
1999-01-01
The complexity of the Space Shuttle Main Engine (SSME), combined with mounting requirements to reduce operations costs have increased demands for accurate tracking, maintenance, and projections of SSME assets. The SSME Logistics Team is developing an integrated asset management process. This PC-based tool provides a user-friendly asset database for daily decision making, plus a variable-input hardware usage simulation with complex logic yielding output that addresses essential asset management issues. Cycle times on critical tasks are significantly reduced. Associated costs have decreased as asset data quality and decision-making capability has increased.
Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.
Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica
2018-05-01
We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions. Copyright © 2017 Elsevier B.V. All rights reserved.
A Geostatistical Approach to the Trickle Irrigation Design in a Heterogeneous Soil 2. A Field Test
NASA Astrophysics Data System (ADS)
Russo, David
1984-05-01
In a heterogeneous field in which the soil water properties vary under a "deterministic" uniform trickle irrigation system, the midway soil-water pressure head hc and the yield of a crop also differ from place to place. These differences may, in turn, reduce the average (over the field) yield relative to the yield that would be obtained if the soil was uniform throughout the field. A field experiment was conducted to test the hypothesis that this yield reduction may be eliminated by using a spatially variable trickle irrigation system. Twenty-five plots (200 m2 each) were established on a 30-m2 grid. Half of each plot was equipped with a standard trickle irrigation system with constant spacing between emitters of d = 50 cm (control plots), and the other half was equipped with a trickle irrigation system for which the spacing between the emitters was selected by using the pertinent hydraulic properties (the saturated hydraulic conductivity Ks and the soil parameter α) according to the procedure of Bresler (1978) as described in paper 1 (Russo, 1983b). Values of hc measured at different times, as well as the total fruit yield Y of bell pepper (Capsicum frutescens var. "Maor"), were used to estimate the seasonal and the spatial distributions of hc and the spatial distribution of Y and their moments. The variograms of hc and Y were calculated and used to estimate their integral scales. It was found that the use of a spatially variable d relative to the use of a uniform d did not change the seasonal behavior of hc but reduced the spatial variability in hc and Y by 35% and 11%, respectively, and increased the integral scale of hc and Y by 30% and 10%, respectively, but increased the average total fruit yield by only 1.9%. The use of a spatially variable d reduced the dependence of Y on hc. This indicates that when the emitters are properly spaced, it is not the water but other factors that most influence yield. When a constant d was used, the dependence of Y of hc decreased with time. This and the relatively good agreement between the values of hc measured at the initial stages of the growing season and those calculated in paper 1 demonstrate that the concept of hc is important in the early stages of the plant's growth, when the root system is not fully developed. Both the theoretical (paper 1) and the experimental results showed that although Ks and α, as well as hc, varied considerably in the field the spatial variability of the crop yield was relatively small. This explains why the use of a spatially variable d essentially was not an improvement over the fixed d. It is suggested that this study will be considered as a methodological one, which can be adapted to solve practical problems associated with field spatial variability.
NASA Astrophysics Data System (ADS)
Hanum, C.
2018-02-01
Soybean is one of the plants that require much amounts of phosphate. P nutrient, microclimate modification and plant spacing arrangement is the efforts to improve grain yield. The objective of the research was to study the effect of P fertilization, mulching straw and plant spacing on growth, yield and movement of P nutrient on soybean. The study was conducted at Cengkeh Turi Binjai using factorial randomized block design with 3 factors. The first factors was P fertilizer 0, 100, and 200 kg/ha, the second factor was thickness of rice straw mulch 0 and 5 cm, and third factors was plant spacing 30 cm x 15 cm, 40 cm x 20 cm, and 50 cm x 25 cm. The results of the research showed that phosphate fertilizer (200 kg/ha) significantly increased levels of phosphate in the shoot. Plant spacing (50 cm x 25 cm) increased root volume. The interaction of phosphate fertilizer (200 kg/ha) and spacing (50 cm x 25 cm) increased the phosphate level by 93.33% in shoot. Plant spacing (50 cm x 25 cm) produced the largest of 100 grains weight as compared to other plant spacing.
Blending Velocities In Task Space In Computing Robot Motions
NASA Technical Reports Server (NTRS)
Volpe, Richard A.
1995-01-01
Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.
Interacting vector fields in relativity without relativity
NASA Astrophysics Data System (ADS)
Anderson, Edward; Barbour, Julian
2002-06-01
Barbour, Foster and Ó Murchadha have recently developed a new framework, called here the 3-space approach, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of three-dimensional metric-matter configurations. In fact gravity, the universal light-cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity - and more - without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang-Mills fields minimally coupled to gravity.
Using Clustering to Establish Climate Regimes from PCM Output
NASA Technical Reports Server (NTRS)
Oglesby, Robert; Arnold, James E. (Technical Monitor); Hoffman, Forrest; Hargrove, W. W.; Erickson, D.
2002-01-01
A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and time. Any single spot on the globe will exist in one of these climate regimes at any single point in time. By incrementing time, that same spot will trace out a trajectory or orbit between and among these climate regimes (or atmospheric states) in phase (or state) space. When a geographic region enters a state it never previously visited, a climatic change is said to have occurred. Tracing out the entire trajectory of a single spot on the globe yields a 'manifold' in state space representing the shape of its predicted climate occupancy. This sort of analysis enables a researcher to more easily grasp the multivariate behavior of the climate system.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Verification of Experimental Techniques for Flow Surface Determination
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.
1996-01-01
The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).
Cassman, K G
1999-05-25
Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
Optimization of K-shell emission in aluminum z-pinch implosions: Theory versus experiment
NASA Astrophysics Data System (ADS)
Whitney, K. G.; Thornhill, J. W.; Giuliani, J. L.; Davis, J.; Miles, L. A.; Nolting, E. E.; Kenyon, V. L.; Speicer, W. A.; Draper, J. A.; Parsons, C. R.; Dang, P.; Spielman, R. B.; Nash, T. J.; McGurn, J. S.; Ruggles, L. E.; Deeney, C.; Prasad, R. R.; Warren, L.
1994-09-01
Two sets of z-pinch experiments were recently completed at the Saturn and Phoenix facilities of Sandia National Laboratories and the Naval Surface Warfare Center, respectively, using aluminum wire arrays of different wire and array diameters. Measurements of the total x-ray yield from the K shell of aluminum were made. In this paper, a comparison of these measurements is made to both theoretical predictions and to a similar set of earlier measurements that were made at the Double Eagle facility of Physics International Company. These three sets of yield measurements have points of agreement with predicted yields and with each other, but they also show points of mutual disagreement, whose significance is discussed. The data are analyzed using a slightly revised version of a previously published K-shell yield scaling law, and they support the existence of a reasonably well defined region in (load mass)-(implosion velocity) space in which plasma kinetic energy is efficiently converted into K-shell x rays. Furthermore, a correlation is observed between the inferred conversion efficiencies and the times in which the implosions occur relative to the times when each generator's short-circuit current reaches its peak value. Finally, unlike the Double Eagle experiments, the largest measured yields in the new experiments were observed to occur at the upper velocity boundary of the efficient emission region. Moreover, the observed yields are in fairly good quantitative agreement with an earlier scaling law prediction of the maximum K-shell x-ray yield from aluminum as a function of load mass assuming kinetic energy conversion alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahuatzin, G.; Bautista, I.; Hernandez-Lopez, J. A.
A constant antisymmetric 2-tensor can arise in general relativity with spontaneous symmetry breaking or in field theories formulated in a noncommutative space-time. In this work, the one-loop contribution of a nonstandard WW{gamma} vertex on the flavor violating quark transition q{sub i}{yields}q{sub j}{gamma} is studied in the context of the electroweak Yang-Mills sector extended with a Lorentz-violating constant 2-tensor. An exact analytical expression for the on-shell case is presented. It is found that the loop amplitude is gauge independent, electromagnetic gauge invariant, and free of ultraviolet divergences. The dipolar contribution to the b{yields}s{gamma} transition together with the experimental data on themore » B{yields}X{sub s{gamma}} decay is used to derive the constraint {Lambda}{sub LV}>1.96 TeV on the Lorentz-violating scale.« less
NASA Astrophysics Data System (ADS)
Janidarmian, Majid; Fekr, Atena Roshan; Bokharaei, Vahhab Samadi
2011-08-01
Mapping algorithm which means which core should be linked to which router is one of the key issues in the design flow of network-on-chip. To achieve an application-specific NoC design procedure that minimizes the communication cost and improves the fault tolerant property, first a heuristic mapping algorithm that produces a set of different mappings in a reasonable time is presented. This algorithm allows the designers to identify the set of most promising solutions in a large design space, which has low communication costs while yielding optimum communication costs in some cases. Another evaluated parameter, vulnerability index, is then considered as a principle of estimating the fault-tolerance property in all produced mappings. Finally, in order to yield a mapping which considers trade-offs between these two parameters, a linear function is defined and introduced. It is also observed that more flexibility to prioritize solutions within the design space is possible by adjusting a set of if-then rules in fuzzy logic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalise, Roshan, E-mail: plasma.roshan@gmail.com; Khanal, Raju
2015-11-15
We have developed a self-consistent 1d3v (one dimension in space and three dimension in velocity) Kinetic Trajectory Simulation (KTS) model, which can be used for modeling various situations of interest and yields results of high accuracy. Exact ion trajectories are followed, to calculate along them the ion distribution function, assuming an arbitrary injection ion distribution. The electrons, on the other hand, are assumed to have a cut-off Maxwellian velocity distribution at injection and their density distribution is obtained analytically. Starting from an initial guess, the potential profile is iterated towards the final time-independent self-consistent state. We have used it tomore » study plasma sheath region formed in presence of an oblique magnetic field. Our results agree well with previous works from other models, and hence, we expect our 1d3v KTS model to provide a basis for the studying of all types of magnetized plasmas, yielding more accurate results.« less
NASA Astrophysics Data System (ADS)
Cai, Y.
2017-12-01
Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.
Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
Li, Qiang; Wei, Hong; Xu, Hongxing
2015-12-09
The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.
NASA Astrophysics Data System (ADS)
Nakwattanaset, Aeksuwat; Suranuntchai, Surasak
2018-03-01
Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
Practical sliced configuration spaces for curved planar pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacks, E.
1999-01-01
In this article, the author presents a practical configuration-space computation algorithm for pairs of curved planar parts, based on the general algorithm developed by Bajaj and the author. The general algorithm advances the theoretical understanding of configuration-space computation, but is too slow and fragile for some applications. The new algorithm solves these problems by restricting the analysis to parts bounded by line segments and circular arcs, whereas the general algorithm handles rational parametric curves. The trade-off is worthwhile, because the restricted class handles most robotics and mechanical engineering applications. The algorithm reduces run time by a factor of 60 onmore » nine representative engineering pairs, and by a factor of 9 on two human-knee pairs. It also handles common special pairs by specialized methods. A survey of 2,500 mechanisms shows that these methods cover 90% of pairs and yield an additional factor of 10 reduction in average run time. The theme of this article is that application requirements, as well as intrinsic theoretical interest, should drive configuration-space research.« less
NASA Astrophysics Data System (ADS)
Smith, T.; McLaughlin, D.
2017-12-01
Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.
Just-in-time connectivity for large spiking networks.
Lytton, William W; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L
2008-11-01
The scale of large neuronal network simulations is memory limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed: just in time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities, and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON's standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that added items to the queue only when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run.
Just in time connectivity for large spiking networks
Lytton, William W.; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L
2008-01-01
The scale of large neuronal network simulations is memory-limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically-relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed – just-in-time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON’s standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory-limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that only added items to the queue when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run. PMID:18533821
Growth, dry weight yields, and specific gravity of 3-year-old Populus grown under intensive culture.
David H. Dawson; J.G Isebrands; John C. Gordon
1976-01-01
In a nearly optimal cultural environment, Populus 'Tristis #1' grown for 3 years, planted at 9 by 9 inch spacing produced the equivalent of over 4 tons/acre/year of ovendry wood with specific gravity comparable to native aspen wood. Trees planted at wider spacings yielded less.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Jiang, Canping; Flansburg, Lisa; Ghose, Sanchayita; Jorjorian, Paul; Shukla, Abhinav A
2010-12-15
The concept of design space has been taking root under the quality by design paradigm as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot-to-lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi-dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high-molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality. © 2010 Wiley Periodicals, Inc.
Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.
2009-01-01
The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.
Basin-ring spacing on the Moon, Mercury, and Mars
Pike, R.J.; Spudis, P.D.
1987-01-01
Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ?? 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ??) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ?? 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ?? 0.6)0.5D. The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences. ?? 1987 D. Reidel Publishing Company.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nottale, Laurent; Célérier, Marie-Noëlle
One of the main results of scale relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The scale relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamentalmore » two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schrödinger equation can be derived.« less
Liu, Huolong; Galbraith, S C; Ricart, Brendon; Stanton, Courtney; Smith-Goettler, Brandye; Verdi, Luke; O'Connor, Thomas; Lee, Sau; Yoon, Seongkyu
2017-06-15
In this study, the influence of key process variables (screw speed, throughput and liquid to solid (L/S) ratio) of a continuous twin screw wet granulation (TSWG) was investigated using a central composite face-centered (CCF) experimental design method. Regression models were developed to predict the process responses (motor torque, granule residence time), granule properties (size distribution, volume average diameter, yield, relative width, flowability) and tablet properties (tensile strength). The effects of the three key process variables were analyzed via contour and interaction plots. The experimental results have demonstrated that all the process responses, granule properties and tablet properties are influenced by changing the screw speed, throughput and L/S ratio. The TSWG process was optimized to produce granules with specific volume average diameter of 150μm and the yield of 95% based on the developed regression models. A design space (DS) was built based on volume average granule diameter between 90 and 200μm and the granule yield larger than 75% with a failure probability analysis using Monte Carlo simulations. Validation experiments successfully validated the robustness and accuracy of the DS generated using the CCF experimental design in optimizing a continuous TSWG process. Copyright © 2017 Elsevier B.V. All rights reserved.
Secondary light-ion transport from intermediate-energy hadron experiments
NASA Astrophysics Data System (ADS)
Srikrishna, Ashwin P.; Castellanos, Luis A.; McGirl, Natalie A.; Heilbronn, Lawrence H.; Tessas, Chiara La; Rusek, Adam; Sivertz, Michael; Blattnig, Steve; Clowdsley, Martha; Slaba, Tony; Zeitlin, Cary
2017-09-01
The aim of this research is to produce double differential thick target yields, angular distributions and integrated yields for the inclusive production of neutrons, protons, deuterons, tritons, 3He, and 4He from intermediate heavy-ion interactions on thick targets of aluminium, polyethylene and other targets of interest to the radiation shielding program as specified by the National Aeronautics and Space Administration (NASA). In tandem with the experimental research, transport model calculations of these thick target yields were also performed. The first such experimental run was conducted in May 2015, with the expectation of improved experimental results at a following March 2016 run at the NASA Space Radiation Laboratory (NSRL) on the campus of Brookhaven National Laboratory (BNL). The May 2015 commissioning run served to test the electronics of the experimental setup, as well as the various detectors and other equipment under the conditions in which the following measurements will be run. The series of future accelerator-based experiments will rely on the inclusion of two separate upstream and downstream targets. Analysis of the data from both sets of detectors - liquid scintillator and sodium iodide - using both pulse height and time-of-flight methods will allow NASA to perform uncertainty quantification and sensitivity analysis on their transport codes and future shielding studies.
A strategy for investment in space resource utilization
NASA Astrophysics Data System (ADS)
Mendell, Wendell W.
During the first quarter of the next Century, space transportation systems will be capable of routine flights of humans and cargo to the Moon. The general acceptance of permanent human presence in space, as exemplified by at least two manned stations in LEO at that time, will lead to one or more staffed outposts on the Moon. Whether such outposts evolve into sustained, growing settlements will depend, in part, on whether the economic context attracts substantial private investment. A planetary surface provides a material and gravitational environment distinct from that of an orbiting space station and thus provides a setting familiar to non-aerospace sectors of terrestrial industry. Examination of current trends in terms of historical processes which operate on new frontiers suggests that the limited markets and unfamiliar technologies associated with space commercialization today may change dramatically in 20 years when lunar resources are accessible. However, the uncertainty and vagueness of such projections discourages investment at a useful scale unless a strategy for technology development can be implemented which provides tangible and marketable benefits in the intermediate term. At the present time technologies can be identified (a) that will be required (and therefore valuable) at the time of lunar settlement and (b) whose development can be planned to yield marketable intermediate products on Earth. Formation of pre-competitive, collaborative research consortia in the industrial sector could reduce technical and economic risk in the early stages and could promote a favorable political environment for the future growth of space activities.
Declining spatial efficiency of global cropland nitrogen allocation
NASA Astrophysics Data System (ADS)
Mueller, Nathaniel D.; Lassaletta, Luis; Runck, Bryan C.; Billen, Gilles; Garnier, Josette; Gerber, James S.
2017-02-01
Efficiently allocating nitrogen (N) across space maximizes crop productivity for a given amount of N input and reduces N losses to the environment. Here we quantify changes in the global spatial efficiency of cropland N use by calculating historical trade-off frontiers relating N inputs to possible N yield assuming efficient allocation. Time series cropland N budgets from 1961 to 2009 characterize the evolution of N input-yield response functions across 12 regions and are the basis for constructing trade-off frontiers. Improvements in agronomic technology have substantially increased cropping system yield potentials and expanded N-driven crop production possibilities. However, we find that these gains are compromised by the declining spatial efficiency of N use across regions. Since the start of the Green Revolution, N inputs and yields have moved farther from the optimal frontier over time; in recent years (1994-2009), global N surplus has grown to a value that is 69% greater than what is possible with efficient N allocation between regions. To reflect regional pollution and agricultural development goals, we construct scenarios that restrict reallocation, finding that these changes only slightly decrease potential gains in nitrogen use efficiency. Our results are inherently conservative due to the regional unit of analysis, meaning a larger potential exists than is quantified here for cross-scale policies to promote spatially efficient N use.
Models of Small-Scale Patchiness
NASA Technical Reports Server (NTRS)
McGillicuddy, D. J.
2001-01-01
Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. The patchiness problem is fundamentally one of physical-biological-chemical interactions. This interconnection arises from three basic sources: (1) ocean currents continually redistribute dissolved and suspended constituents by advection; (2) space-time fluctuations in the flows themselves impact biological and chemical processes, and (3) organisms are capable of directed motion through the water. This tripartite linkage poses a difficult challenge to understanding oceanic ecosystems: differentiation between the three sources of variability requires accurate assessment of property distributions in space and time, in addition to detailed knowledge of organismal repertoires and the processes by which ambient conditions control the rates of biological and chemical reactions. Various methods of observing the ocean tend to lie parallel to the axes of the space/time domain in which these physical-biological-chemical interactions take place. Given that a purely observational approach to the patchiness problem is not tractable with finite resources, the coupling of models with observations offers an alternative which provides a context for synthesis of sparse data with articulations of fundamental principles assumed to govern functionality of the system. In a sense, models can be used to fill the gaps in the space/time domain, yielding a framework for exploring the controls on spatially and temporally intermittent processes. The following discussion highlights only a few of the multitude of models which have yielded insight into the dynamics of plankton patchiness. In addition, this particular collection of examples is intended to furnish some exposure to the diversity of modeling approaches which can be brought to bear on the problem. These approaches range from abstract theoretical models intended to elucidate specific processes, to complex numerical formulations which can be used to actually simulate observed distributions in detail.
2018-03-12
The first growth test of crops in the Advanced Plant Habitat aboard the International Space Station yielded great results. Arabidopsis seeds – small flowering plants related to cabbage and mustard – grew for about six weeks and the dwarf wheat for five weeks. The APH is now ready to support large plant testing on ISS. APH is a fully enclosed, closed-loop system with an environmentally controlled growth chamber. It uses red, blue and green LED lights, and broad spectrum white LED lights. The system's more than 180 sensors will relay real-time information, including temperature, oxygen content and moisture levels back to the team at Kennedy Space Center.
Quesque, François; Gigliotti, Maria-Francesca; Ott, Laurent; Bruyelle, Jean-Luc
2018-01-01
Peripersonal space is a multisensory representation of the environment around the body in relation to the motor system, underlying the interactions with the physical and social world. Although changing body properties and social context have been shown to alter the functional processing of space, little is known about how changing the value of objects influences the representation of peripersonal space. In two experiments, we tested the effect of modifying the spatial distribution of reward-yielding targets on manual reaching actions and peripersonal space representation. Before and after performing a target-selection task consisting of manually selecting a set of targets on a touch-screen table, participants performed a two-alternative forced-choice reachability-judgment task. In the target-selection task, half of the targets were associated with a reward (change of colour from grey to green, providing 1 point), the other half being associated with no reward (change of colour from grey to red, providing no point). In Experiment 1, the target-selection task was performed individually with the aim of maximizing the point count, and the distribution of the reward-yielding targets was either 50%, 25% or 75% in the proximal and distal spaces. In Experiment 2, the target-selection task was performed in a social context involving cooperation between two participants to maximize the point count, and the distribution of the reward-yielding targets was 50% in the proximal and distal spaces. Results showed that changing the distribution of the reward-yielding targets or introducing the social context modified concurrently the amplitude of self-generated manual reaching actions and the representation of peripersonal space. Moreover, a decrease of the amplitude of manual reaching actions caused a reduction of peripersonal space when resulting from the distribution of reward-yielding targets, while this effect was not observed in a social interaction context. In that case, the decreased amplitude of manual reaching actions was accompanied by an increase of peripersonal space representation, which was not due to the mere presence of a confederate (control experiment). We conclude that reward-dependent modulation of objects values in the environment modifies the representation of peripersonal space, when resulting from either self-generated motor actions or observation of motor actions performed by a confederate. PMID:29771982
Coello, Yann; Quesque, François; Gigliotti, Maria-Francesca; Ott, Laurent; Bruyelle, Jean-Luc
2018-01-01
Peripersonal space is a multisensory representation of the environment around the body in relation to the motor system, underlying the interactions with the physical and social world. Although changing body properties and social context have been shown to alter the functional processing of space, little is known about how changing the value of objects influences the representation of peripersonal space. In two experiments, we tested the effect of modifying the spatial distribution of reward-yielding targets on manual reaching actions and peripersonal space representation. Before and after performing a target-selection task consisting of manually selecting a set of targets on a touch-screen table, participants performed a two-alternative forced-choice reachability-judgment task. In the target-selection task, half of the targets were associated with a reward (change of colour from grey to green, providing 1 point), the other half being associated with no reward (change of colour from grey to red, providing no point). In Experiment 1, the target-selection task was performed individually with the aim of maximizing the point count, and the distribution of the reward-yielding targets was either 50%, 25% or 75% in the proximal and distal spaces. In Experiment 2, the target-selection task was performed in a social context involving cooperation between two participants to maximize the point count, and the distribution of the reward-yielding targets was 50% in the proximal and distal spaces. Results showed that changing the distribution of the reward-yielding targets or introducing the social context modified concurrently the amplitude of self-generated manual reaching actions and the representation of peripersonal space. Moreover, a decrease of the amplitude of manual reaching actions caused a reduction of peripersonal space when resulting from the distribution of reward-yielding targets, while this effect was not observed in a social interaction context. In that case, the decreased amplitude of manual reaching actions was accompanied by an increase of peripersonal space representation, which was not due to the mere presence of a confederate (control experiment). We conclude that reward-dependent modulation of objects values in the environment modifies the representation of peripersonal space, when resulting from either self-generated motor actions or observation of motor actions performed by a confederate.
NASA Astrophysics Data System (ADS)
Levashov, Valentin A.; Morris, James R.; Egami, Takeshi
2012-02-01
Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
NASA Astrophysics Data System (ADS)
Kouletsis, I.; Kuchař, K. V.
2002-06-01
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map
Transformational Systems Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, J. T.; George,P.; Mankins, J. C. (Editor); Christensen, C. B.
2004-01-01
NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Subsystems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and "plug and play" capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
NASA Astrophysics Data System (ADS)
Kurukuri, Srihari; Worswick, Michael J.
2013-12-01
An alternative approach is proposed to utilize symmetric yield functions for modeling the tension-compression asymmetry commonly observed in hcp materials. In this work, the strength differential (SD) effect is modeled by choosing separate symmetric plane stress yield functions (for example, Barlat Yld 2000-2d) for the tension i.e., in the first quadrant of principal stress space, and compression i.e., third quadrant of principal stress space. In the second and fourth quadrants, the yield locus is constructed by adopting interpolating functions between uniaxial tensile and compressive stress states. In this work, different interpolating functions are chosen and the predictive capability of each approach is discussed. The main advantage of this proposed approach is that the yield locus parameters are deterministic and relatively easy to identify when compared to the Cazacu family of yield functions commonly used for modeling SD effect observed in hcp materials.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.
1999-01-01
In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.
A Comparison of Space and Ground Based Facility Environmental Effects for FEP Teflon. Revised
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Kitral, Michael
1998-01-01
Fluorinated Ethylene Propylene (FEP) Teflon is widely used as a thermal control material for spacecraft, however, it is susceptible to erosion, cracking, and subsequent mechanical failure in low Earth orbit. One of the difficulties in determining whether FEP Teflon will survive during a mission is the wide disparity of erosion rates observed for this material in space and in ground based facilities. Each environment contains different levels of atomic oxygen, ions, and vacuum ultraviolet (VUV) radiation in addition to parameters such as the energy of the arriving species and temperature. These variations make it difficult to determine what is causing the observed differences in erosion rates. This paper attempts to narrow down which factors affect the erosion rate of FEP Teflon through attempting to change only one environmental constituent at a time. This was attempted through the use of a single simulation facility (plasma asher) environment with a variety of Faraday cages and VUV transparent windows. Isolating one factor inside of a radio frequency (RF) plasma proved to be very difficult. Two observations could be made. First, it appears that the erosion yield of FEP Teflon with respect to that of polyimide Kapton is not greatly affected by the presence or lack of VUV radiation present in the RF plasma and the relative erosion yield for the FEP Teflon may decrease with increasing fluence. Second, shielding from charged particles appears to lower the relative erosion yield of the FEP to approximately that observed in space, however it is difficult to determine for sure whether ions, electrons, or some other components are causing the enhanced erosion.
Rising temperatures reduce global wheat production
NASA Astrophysics Data System (ADS)
Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; Reynolds, M. P.; Alderman, P. D.; Prasad, P. V. V.; Aggarwal, P. K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A. J.; de Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A. C.; Semenov, M. A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P. J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.
2015-02-01
Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.
Rising Temperatures Reduce Global Wheat Production
NASA Technical Reports Server (NTRS)
Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.;
2015-01-01
Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.
Twenty-year growth of ponderosa pine saplings thinned to five spacings in central Oregon.
Barrett James W.
1982-01-01
Diameter, height, and volume growth and yield are given for plots thinned to 1000, 500, 250, 125, and 62 trees per acre in a 40- to 70-year-old stand of suppressed ponderosa pine (Pinus ponderosa Dougl. ex Laws.) saplings in central Oregon. Trees averaged about 1-inch in diameter and 8 feet in height at the time of thinning. Considerations for...
Spaced-retrieval effects on name-face recognition in older adults with probable Alzheimer's disease.
Hawley, Karri S; Cherry, Katie E
2004-03-01
Six older adults with probable Alzheimer's disease (AD) were trained to recall a name-face association using the spaced-retrieval method. We administered six training sessions over a 2-week period. On each trial, participants selected a target photograph and stated the target name, from eight other photographs, at increasingly longer retention intervals. Results yielded a positive effect of spaced-retrieval training for name-face recognition. All participants were able to select the target photograph and state the target's name for longer periods of time within and across training sessions. A live-person transfer task was administered to determine whether the name-face association, trained by spaced-retrieval, would transfer to a live person. Half of the participants were able to call the live person by the correct name. These data provide initial evidence that spaced-retrieval training can aid older adults with probable AD in recall of a name-face association and in transfer of that association to an actual person.
Building Operations Efficiencies into NASA's Crew Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The U.S. Vision for Space Exploration guides NASA's challenging missions of technological innovation and scientific investigation. With the Agency's commitment to complete the International Space Station (ISS) and to retire the Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for a safer, simpler, more cost efficient launch system that could deliver timely human-rated space transportation capabilities. NASA's finite resources yield discoveries with infinite possibilities. As the Agency begins the process of replacing the Shuttle with new launch vehicles destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo systems for maximum operational efficiencies. This mandate is imperative to reduce the $4.5 billion NASA spends on space transportation each year. This paper gives top-level details of how the follow-on Crew Launch Vehicle (CLV) is being designed for reduced lifecycle costs as a primary catalyst for the expansion of future frontiers.
A Self-organized MIMO-OFDM-based Cellular Network
NASA Astrophysics Data System (ADS)
Grünheid, Rainer; Fellenberg, Christian
2012-05-01
This paper presents a system proposal for a self-organized cellular network, which is based on the MIMO-OFDM transmission technique. Multicarrier transmission, combined with appropriate beamforming concepts, yields high bandwidth-efficiency and shows a robust behavior in multipath radio channels. Moreover, it provides a fine and tuneable granularity of space-time-frequency resources. Using a TDD approach and interference measurements in each cell, the Base Stations (BSs) decide autonomously which of the space-time-frequency resource blocks are allocated to the Mobile Terminals (MTs) in the cell, in order to fulfil certain Quality of Service (QoS) parameters. Since a synchronized Single Frequency Network (SFN), i.e., a re-use factor of one is applied, the resource blocks can be shared adaptively and flexibly among the cells, which is very advantageous in the case of a non-uniform MT distribution.
Fast flux module detection using matroid theory.
Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen
2015-05-01
Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.
NASA Astrophysics Data System (ADS)
Massa, Gioia D.; Chase, Elaine; Santini, Judith B.; Mitchell, Cary A.
2015-04-01
Strawberry (Fragaria x ananassa L.) is a promising candidate crop for space life-support systems with desirable sensory quality and health attributes. Day-neutral cultivars such as 'Seascape' are adaptable to a range of photoperiods, including short days that would save considerable energy for crop lighting without reductions in productivity or yield. Since photoperiod and temperature interact to affect strawberry growth and development, several diurnal temperature regimes were tested under a short photoperiod of 10 h per day for effects on yield and quality attributes of 'Seascape' strawberry during production cycles longer than 270 days. The coolest day/night temperature regime, 16°/8 °C, tended to produce smaller numbers of larger fruit than did the intermediate temperature range of 18°/10 °C or the warmest regime, 20°/12 °C, both of which produced similar larger numbers of smaller fruit. The intermediate temperature regime produced the highest total fresh mass of berries over an entire production cycle. Independent experiments examined either organoleptic or physicochemical quality attributes. Organoleptic evaluation indicated that fruit grown under the coolest temperature regime tended to score the highest for both hedonic preference and descriptive evaluation of sensory attributes related to sweetness, texture, aftertaste, and overall approval. The physicochemical quality attributes Brix, pH, and sugar/acid ratio were highest for fruits harvested from the coolest temperature regime and lower for those from the warmer temperature regimes. The cool-regime fruits also were lowest in titratable acidity. The yield parameters fruit number and size oscillated over the course of a production cycle, with a gradual decline in fruit size under all three temperature regimes. Brix and titratable acidity both decreased over time for all three temperature treatments, but sugar/acid ratio remained highest for the cool temperature regime over the entire production period. Periodic rejuvenation or replacement of strawberry propagules may be needed to maintain both quality and quantity of strawberry yield in space.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.
2014-12-01
Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.
NASA Technical Reports Server (NTRS)
Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.
2015-01-01
Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen Sharing Program. Together, the RR validation flight successfully demonstrates the capability to support long-duration experimentation on the ISS to achieve both basic science and biomedical objectives.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2011-01-01
This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.
Modeling Bird Migration in Changing Habitats: Space-based Ornithology using Satellites and GIS
NASA Technical Reports Server (NTRS)
Smith, James A.; Deppe, Jill L.
2008-01-01
Understanding bird migration and avian biodiversity is one of the most compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties presenting challenges in both geographic space and time. Space based technology, coupled with geographic information systems, yields new opportunities to shed light on the distribution and movement of organisms on the planet and their sensitivity to human disturbances and environmental changes. At NASA, we are creating ecological forecasting tools for science and application users to address the consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration. In our work, we use individual organism biophysical models and drive these models with satellite observations and numerical weather predictions of the spatio-temporal gradients in climate and habitat. Geographic information system technology comprises one component of our overall simulation framework, especially for characterizing the changing habitats and conditions encountered by en-route migratory birds. Simulation provides a tool for studying bird migration across multiple scales and can be linked to mechanistic processes describing the time and energy budget states of migrating birds. Such models yield an understanding of how a migratory flyway and its component habitats function as a whole and link stop-over ecology with biological conservation and management. We present examples of our simulation of shorebirds, principally, pectoral sandpipers, along the central flyways of the United States and Canada from the Gulf of Mexico to Alaska.
the P-wave upper mantle structure beneath an active spreading center: The Gulf of California
NASA Technical Reports Server (NTRS)
Walck, M. C.
1983-01-01
Detailed analysis of short period travel time, and waveform data reveals the upper mantle structure beneath an oceanic ridge to depths of 900 km. More than 1400 digital seismograms from earthquakes in Mexico and central America recorded at SCARLET yield 1753 travel times and 58 direct measurements of short period travel time as well as high quality, stable waveforms. The 29 events combine to form a continuous record section from 9 deg to 40 deg with an average station spacing of less than 5 km. First the travel times are inverted. Further constraints arise from the observed relative amplitudes of mantle phases, which are modeled by trial and error.
Maccani, Andreas; Landes, Nils; Stadlmayr, Gerhard; Maresch, Daniel; Leitner, Christian; Maurer, Michael; Gasser, Brigitte; Ernst, Wolfgang; Kunert, Renate; Mattanovich, Diethard
2014-01-01
Chinese hamster ovary (CHO) cells are currently the workhorse of the biopharmaceutical industry. However, yeasts such as Pichia pastoris are about to enter this field. To compare their capability for recombinant protein secretion, P. pastoris strains and CHO cell lines producing human serum albumin (HSA) and the 3D6 single chain Fv-Fc anti-HIV-1 antibody (3D6scFv-Fc) were cultivated in comparable fed batch processes. In P. pastoris, the mean biomass-specific secretion rate (qp) was 40-fold lower for 3D6scFv-Fc compared to HSA. On the contrary, qp was similar for both proteins in CHO cells. When comparing both organisms, the mean qp of the CHO cell lines was 1011-fold higher for 3D6scFv-Fc and 26-fold higher for HSA. Due to the low qp of the 3D6scFv-Fc producing strain, the space-time yield (STY) was 9.6-fold lower for P. pastoris. In contrast, the STY of the HSA producer was 9.2-fold higher compared to CHO cells because of the shorter process time and higher biomass density. The results indicate that the protein secretion machinery of P. pastoris is much less efficient and the secretion rate strongly depends on the complexity of the recombinant protein. However, process efficiency of the yeast system allows higher STYs for less complex proteins. PMID:24390926
External Surface Changes Observed on the International Space Station (ISS) Through 2012
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
2012-01-01
As the International Space Station (ISS) surpasses 13 years of on-orbit operation, 11 of those years continuously inhabited, external surfaces of the vehicle have shown a wide variety of visible environmental effects. Throughout, the ISS program has maintained a significant effort to routinely document the vehicle external surface condition and to monitor those changes with time. The impacts of micrometeoroids and orbital debris, surface changes from molecular contamination of various sources, and the effects of ultraviolet radiation and atomic oxygen have all been noted. The tremendous size and complexity of the ISS vehicle has yielded a wide variety of observations of interest to the spacecraft materials engineer concerning long-term, low earth orbit (LEO) space environmental effects (SEE). In addition, inadvertent materials substitutions have been identified because of these environmental effects, as well as inadequate contamination control practices likely occurring during hardware manufacture and assembly. Some of the observations from our photography are purely artifacts of the unusual lighting conditions and environments that exist in space. A compilation of ISS on-orbit photography representing all of these aspects is presented, demonstrating the various SEE and their impacts as a function of time in LEO, including interpretations of those effects.
Polarimetric Wavelet Fractal Remote Sensing Principles for Space Materials (Preprint)
2012-06-04
previously introduced 9-10, 28. The combination of polarimetry and wavelet-fractal analysis yields enhanced knowledge of the spatial-temporal-frequency...applications in situations that require analysis over very short time durations or where information is localized, and have been combined with polarimetry ...and D.B. Chenault, “Near Infrared Imaging Polarimetry ”, Proc. SPIE 4481, pp. 30-31, 2001. [8] A.B. Mahler, P. Smith, R. Chipman, G. Smith, N
Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik
2018-05-11
In the present work, we report on the use of organized TiO 2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe 2 O 3 nano-needles in the interspace. These α-Fe 2 O 3 decorated TiO 2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe 2 O 3 . We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm -2 compared to bare spaced NTs with a capacitance of 54 μAh cm -2 , the hierarchical decoration with secondary metal oxide, α-Fe 2 O 3 , remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe 2 O 3 decoration have an areal capacitance of 477 μAh cm -2 , i.e. they have nearly ∼8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe 2 O 3 decoration saturates at 208 μAh cm -2 , i.e. is limited to ∼3 times increase.
NASA Astrophysics Data System (ADS)
Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik
2018-05-01
In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.
Louisiana farm discussion: 8 foot row spacing
USDA-ARS?s Scientific Manuscript database
This year several tests in growers’ fields were used to compare traditional 6-foot row spacing to 8-foot row spacing. Cane is double-drilled in the wider row spacing. The wider row spacing would accommodate John Deere 3522 harvester. Field data indicate the sugarcane yields are very comparable in 8-...
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Lovejoy, Shaun
2013-04-01
The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.
Advanced Range Safety System for High Energy Vehicles
NASA Technical Reports Server (NTRS)
Claxton, Jeffrey S.; Linton, Donald F.
2002-01-01
The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libin, A., E-mail: a_libin@netvision.net.il
2012-12-15
A linear combination of a pair of dual anisotropic decaying Beltrami flows with spatially constant amplitudes (the Trkal solutions) with the same eigenvalue of the curl operator and of a constant velocity orthogonal vector to the Beltrami pair yields a triplet solution of the force-free Navier-Stokes equation. The amplitudes slightly variable in space (large scale perturbations) yield the emergence of a time-dependent phase between the dual Beltrami flows and of the upward velocity, which are unstable at large values of the Reynolds number. They also lead to the formation of large-scale curved prisms of streamlines with edges being the stringsmore » of singular vorticity.« less
Molenaar, Peter C M
2017-01-01
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
Åsli, Magnus; Ofstad, Ragni; Böcker, Ulrike; Jessen, Flemming; Einen, Olai; Mørkøre, Turid
2016-03-15
Negative health effects associated with excessive sodium (Na) intake have increased the demand for tasty low-Na products (<2% NaCl) rather than traditional heavily salted fish products (∼20% NaCl). This study investigates the causes of improved yield and liquid retention of fish muscle brined with a combination of salt (NaCl) and sodium bicarbonate (NaHCO3 ). Water characteristics and microstructure of saithe (Pollachius virens L.) muscle brined in solutions of NaCl and NaHCO3 or NaCl alone were compared using low-field nuclear magnetic resonance (LF-NMR) T2 relaxometry, microscopy, salt content, liquid retention and colorimetric measurements. Saithe muscle was brined for 92 h in 0, 30, 60, 120 or 240 g kg(-1) NaCl or the respective solutions with added 7.5 g kg(-1) NaHCO3 . NaHCO3 inclusion improved the yield in solutions ranging from 0 to 120 g kg(-1) NaCl, with the most pronounced effect being observed at 30 g kg(-1) NaCl. The changes in yield were reflected in water mobility, with significantly shorter T2 relaxation times in all corresponding brine concentrations. Salt-dependent microstructural changes were revealed by light microscopy, where NaHCO3 supplementation resulted in greater intracellular space at 30 and 60 g kg(-1) NaCl. Sodium bicarbonate addition to low-salt solutions can improve yield and flesh quality of fish muscle owing to altered water mobility and wider space between the muscle cells. © 2015 Society of Chemical Industry.
Pre-vector variational inequality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lai-Jiu
1994-12-31
Let X be a Hausdorff topological vector space, (Y, D) be an ordered Hausdorff topological vector space ordered by convex cone D. Let L(X, Y) be the space of all bounded linear operator, E {improper_subset} X be a nonempty set, T : E {yields} L(X, Y), {eta} : E {times} E {yields} E be functions. For x, y {element_of} Y, we denote x {not_lt} y if y - x intD, where intD is the interior of D. We consider the following two problems: Find x {element_of} E such that < T(x), {eta}(y, x) > {not_lt} 0 for all y {element_of}more » E and find x {element_of} E, < T(x), {eta}(y, x) > {not_gt} 0 for all y {element_of} E and < T(x), {eta}(y, x) >{element_of} C{sub p}{sup w+} = {l_brace} {element_of} L(X, Y) {vert_bar}< l, {eta}(x, 0) >{not_lt} 0 for all x {element_of} E{r_brace} where < T(x), y > denotes linear operator T(x) at y, that is T(x), (y). We called Pre-VVIP the Pre-vector variational inequality problem and Pre-VCP complementary problem. If X = R{sup n}, Y = R, D = R{sub +} {eta}(y, x) = y - x, then our problem is the well-known variational inequality first studies by Hartman and Stampacchia. If Y = R, D = R{sub +}, {eta}(y, x) = y - x, our problem is the variational problem in infinite dimensional space. In this research, we impose different condition on T(x), {eta}, X, and < T(x), {eta}(y, x) > and investigate the existences theorem of these problems. As an application of one of our results, we establish the existence theorem of weak minimum of the problem. (P) V - min f(x) subject to x {element_of} E where f : X {yields} Y si a Frechet differentiable invex function.« less
NASA Astrophysics Data System (ADS)
Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.
2014-10-01
High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a
Discrete Fourier transforms of nonuniformly spaced data
NASA Technical Reports Server (NTRS)
Swan, P. R.
1982-01-01
Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.
Emergency cricothyrotomy in confined space airway emergencies: a comparison.
Givens, Gregory C; Shelton, Stephen L; Brown, Eric A
2011-08-01
In confined-space airway emergencies, prehospital personnel may need to perform cricothyrotomy when conventional airway techniques cannot be utilized or have failed. This study is a prospective, cross-over, randomized controlled trial that compares two widely-known techniques using two commercially available kits. Twenty residents at Palmetto Health Richland Department of Emergency Medicine participated in the study. Their performance was assessed using the time required to placement and correctness of placement for each device. The residents performed the procedures on an Air-Man™ manikin that had been situated in a confined space.The residents also indicated which kit they would prefer in a confined-space, emergency airway situation. All of the devices were placed in the airway. The mean time to placement for the Melker™ and Quicktrach™ kits was 108.5 seconds and 23.9 seconds, respectively. This yielded a mean difference of 84.5 seconds, which provided a t-statistic of 8.88 (p < 0.0001).There was no evidence of a carry-over effect (p = 0.292) or a period effect (p = 0.973). All residents preferred using the Quicktrach™ kit. Use of the Quicktrach™ kit resulted in the fastest time to placement, was placed correctly in the airway, and was preferred by each of the residents. Its small, simple,and sturdy design, with few parts and easy manipulation, allow the Quicktrach™ to be a valuable option in prehospital situations involving confined spaces. The Melker™ kit, with its many parts, and need for greater manipulation, is not as easily utilized or preferred in a confined space scenario.
Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.
Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian
2015-01-01
High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During this reporting period, there were three major thrusts in the WVU portion. First, we started a preliminary investigation on the use of a membrane reactor for HAS. Accordingly, the plug-flow reactor which had been isolated from sulfides was substituted by a membrane reactor. The tubular membrane was first characterized in terms of its permeation properties, i.e., the fluxes, permeances and selectivities of the components. After that, a BASF methanol-synthesis catalyst was tested under different conditions on the membrane reactor. The results will be compared with those from a non-permeable stainless steel tubular reactor under the same conditions. Second, wemore » started a detailed study of one of the catalysts tested during the screening runs. Accordingly, a carbon-supported potassium-doped molybdenum-cobalt catalyst was selected to be run in the Rotoberty reactor. Finally, we have started detailed analyses of reaction products from some earlier screening runs in which non-sulfide molybdenum-based catalysts were employed and much more complicated product distributions were generally observed. These products could not hitherto be analyzed using the gas chromatograph which was then available. A Varian gas chromatograph/mass spectrometer (GC/MS) is being used to characterize these liquid products. At UCC, we completed a screening of an Engelhard support impregnated with copper and cesium. We have met or exceeded three of four catalyst development targets. Oxygenate selectivity is our main hurdle. Further, we tested the effect of replacing stainless-steel reactor preheater tubing and fittings with titanium ones. We had hoped to reduce the yield of hydrocarbons which may have been produced at high temperatures due to Fischer-Tropsch catalysis with the iron and nickel in the preheater tube walls. Results showed that total hydrocarbon space time yield was actually increased with the titanium preheater, while total alcohol space time yield was not significantly affected.« less
You, Zhong-Yu; Liu, Zhi-Qiang; Zheng, Yu-Guo
2014-02-01
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg(-1). The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min(-1) mg(-1), respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous-organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3% and e.e. of 99% was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP(+) to (S)-CHBE were 26.5 mmol L(-1) h(-1) g(-1) DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.
NASA Astrophysics Data System (ADS)
Hale, R. L.; Grimm, N. B.; Vorosmarty, C. J.
2014-12-01
An ongoing challenge for society is to harness the benefits of phosphorus (P) while minimizing negative effects on downstream ecosystems. To meet this challenge we must understand the controls on the delivery of anthropogenic P from landscapes to downstream ecosystems. We used a model that incorporates P inputs to watersheds, hydrology, and infrastructure (sewers, waste-water treatment plants, and reservoirs) to reconstruct historic P yields for the northeastern U.S. from 1930 to 2002. At the regional scale, increases in P inputs were paralleled by increased fractional retention, thus P loading to the coast did not increase significantly. We found that temporal variation in regional P yield was correlated with P inputs. Spatial patterns of watershed P yields were best predicted by inputs, but the correlation between inputs and yields in space weakened over time, due to infrastructure development. Although the magnitude of infrastructure effect was small, its role changed over time and was important in creating spatial and temporal heterogeneity in input-yield relationships. We then conducted a hierarchical cluster analysis to identify a typology of anthropogenic P cycling, using data on P inputs (fertilizer, livestock feed, and human food), infrastructure (dams, wastewater treatment plants, sewers), and hydrology (runoff coefficient). We identified 6 key types of watersheds that varied significantly in climate, infrastructure, and the types and amounts of P inputs. Annual watershed P yields and retention varied significantly across watershed types. Although land cover varied significantly across typologies, clusters based on land cover alone did not explain P budget patterns, suggesting that this variable is insufficient to understand patterns of P cycling across large spatial scales. Furthermore, clusters varied over time as patterns of climate, P use, and infrastructure changed. Our results demonstrate that the drivers of P cycles are spatially and temporally heterogeneous, yet they also suggest that a relatively simple typology of watersheds can be useful for understanding regional P cycles and may help inform P management approaches.
Distributing entanglement and single photons through an intra-city, free-space quantum channel.
Resch, K; Lindenthal, M; Blauensteiner, B; Böhm, H; Fedrizzi, A; Kurtsiefer, C; Poppe, A; Schmitt-Manderbach, T; Taraba, M; Ursin, R; Walther, P; Weier, H; Weinfurter, H; Zeilinger, A
2005-01-10
We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27+/-0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based freespace quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.
Symmetry breaking patterns for inflation
NASA Astrophysics Data System (ADS)
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2018-06-01
We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.
Linear laser diode arrays for improvement in optical disk recording
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window.
Onorante, Luca; Raftery, Adrian E
2016-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam's window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods.
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*
Onorante, Luca; Raftery, Adrian E.
2015-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859
Anatomy and dry weight yields of two Populus clones grown under intensive culture.
John B. Crist; David H. Dawson
1975-01-01
Two Populus clones grown for short rotations at three dense planting spacings produced some extremely high yields of material of acceptable quality. However, variation in yields and quality illustrates that selection of genetic material and the cultured regime under which a species is growth are significant factors that must be determined in maximum-yield systems....
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.
An oilspill risk analysis for the Mid-Atlantic Outer Continental Shelf lease area
Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.
1976-01-01
An oilspill risk analysis was conducted to determine relative environmental impacts of developing oil in different regions of the Mid-Atlantic Outer Continental Shelf lease area. The study analyzed probability of spills, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)
Environmental and cultural considerations for growth of potatoes in CELSS
NASA Technical Reports Server (NTRS)
Tibbitts, Theodore W.; Bennett, Susan M.; Morrow, Robert C.
1990-01-01
The white potato (Solanum tuberosum) was evaluated for use in the Closed Ecology Life Support System (CELSS) because of its high ratio of edible to inedible biomass and highly nutritious tuber that consists of readily digestible carbohydrates and proteins. Results are given for conditions that will produce the highest yields. The results, given in tabluar form, indicate the optimum temperatures, irradiance, carbon dioxide concentration, root environment, plant spacing, root and stolen containment, and harvesting times.
Nanopore DNA Sequencing and Genome Assembly on the International Space Station.
Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S
2017-12-21
We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.
ERIC Educational Resources Information Center
Nakata, Tatsuya
2015-01-01
Although expanding spacing is often regarded as the most effective practice schedule, studies comparing equal and expanding spacing have yielded mixed results. The present study set out to examine whether the amount of spacing and the retention interval may influence the effects of expanding and equal spacing on second language (L2) vocabulary…
The Limits of Human Stereopsis in Space and Time
Kane, David; Guan, Phillip
2014-01-01
To encode binocular disparity, the visual system determines the image patches in one eye that yield the highest correlation with patches in the other eye. The computation of interocular correlation occurs after spatiotemporal filtering of monocular signals, which leads to restrictions on disparity variations that can support depth perception. We quantified those restrictions by measuring humans' ability to see disparity variation at a wide range of spatial and temporal frequencies. Lower-disparity thresholds cut off at very low spatiotemporal frequencies, which is consistent with the behavior of V1 neurons. Those thresholds are space–time separable, suggesting that the underlying neural mechanisms are separable. We also found that upper-disparity limits were characterized by a spatiotemporal, disparity-gradient limit; to be visible, disparity variation cannot exceed a fixed amount for a given interval in space–time. Our results illustrate that the disparity variations that humans can see are very restricted compared with the corresponding luminance variations. The results also provide insight into the neural mechanisms underlying depth from disparity, such as why stimuli with long interocular delays can still yield clear depth percepts. PMID:24453329
A strategy for investment in space resource utilization
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1992-01-01
Considerations governing a strategy for investment in the utilization of space resources are discussed. It is suggested on the basis of an examination of current trends in terms of historical processes which operate on new frontiers that the limited markets and unfamiliar technologies associated with space commercialization today may change dramatically in 20 years when lunar resources are accessible. It is argued that the uncertainty of such projections discourages investment at a useful scale unless a strategy for technology development can be implemented which provides tangible and marketable benefits in the intermediate term. At present, technologies can be identified which will be required (and therefore valuable) at the time of lunar settlement, and whose development can be planned to yield marketable intermediate products on earth. It is concluded that the formation of precompetitive collaborative research consortia in the industrial sector could reduce technical and economic risk in the early stages and could promote a favorable political environment for the future growth of space activities.
Common View Time Transfer Using Worldwide GPS and DMA Monitor Stations
NASA Technical Reports Server (NTRS)
Reid, Wilson G.; McCaskill, Thomas B.; Oaks, Orville J.; Buisson, James A.; Warren, Hugh E.
1996-01-01
Analysis of the on-orbit Navstar clocks and the Global Positioning System (GPS) monitor station reference clocks is performed by the Naval Research Laboratory using both broadcast and postprocessed precise ephemerides. The precise ephemerides are produced by the Defense Mapping Agency (DMA) for each of the GPS space vehicles from pseudo-range measurements collected at five GPS and at five DMA monitor stations spaced around the world. Recently, DMA established an additional site co-located with the US Naval Observatory precise time site. The time reference for the new DMA site is the DoD Master Clock. Now, for the first time, it is possible to transfer time every 15 minutes via common view from the DoD Master Clock to the 11 GPS and DMA monitor stations. The estimated precision of a single common-view time transfer measurement taken over a 15-minute interval was between 1.4 and 2.7 nanoseconds. Using the measurements from all Navstar space vehicles in common view during the 15-minute interval, typically 3-7 space vehicles, improved the estimate of the precision to between 0.65 and 1.13 nanoseconds. The mean phase error obtained from closure of the time transfer around the world using the 11 monitor stations and the 25 space vehicle clocks over a period of 4 months had a magnitude of 31 picoseconds. Analysis of the low noise time transfer from the DoD Master Clock to each of the monitor stations yields not only the bias in the time of the reference clock, but also focuses attention on structure in the behaviour of the reference clock not previously seen. Furthermore, the time transfer provides a a uniformly sampled database of 15-minute measurements that make possible, for the first time, the direct and exhaustive computation of the frequency stability of the monitor station reference clocks. To lend perspective to the analysis, a summary is given of the discontinuities in phase and frequency that occurred in the reference clock at the Master Control Station during the period covered by the analysis.
Reading Spaced and Unspaced Chinese Text: Evidence from Eye Movements
ERIC Educational Resources Information Center
Bai, Xuejun; Yan, Guoli; Liversedge, Simon P.; Zang, Chuanli; Rayner, Keith
2008-01-01
Native Chinese readers' eye movements were monitored as they read text that did or did not demark word boundary information. In Experiment 1, sentences had 4 types of spacing: normal unspaced text, text with spaces between words, text with spaces between characters that yielded nonwords, and finally text with spaces between every character. The…
The time-domain behavior of power-law noises. [of many geophysical phenomena
NASA Technical Reports Server (NTRS)
Agnew, Duncan C.
1992-01-01
The power spectra of many geophysical phenomena are well approximated by a power-law dependence on frequency or wavenumber. A simple expression for the root-mean-square variability of a process with such a spectrum over an interval of time or space is derived. The resulting expression yields the powerlaw time dependence characteristic of fractal processes, but can be generalized to give the temporal variability for more general spectral behaviors. The method is applied to spectra of crustal strain (to show what size of strain events can be detected over periods of months to seconds) and of sea level (to show the difficulty of extracting long-term rates from short records).
Parameter-space metric of semicoherent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Pletsch, Holger J.
2010-08-01
Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical “semicoherent” search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.
Pornography classification: The hidden clues in video space-time.
Moreira, Daniel; Avila, Sandra; Perez, Mauricio; Moraes, Daniel; Testoni, Vanessa; Valle, Eduardo; Goldenstein, Siome; Rocha, Anderson
2016-11-01
As web technologies and social networks become part of the general public's life, the problem of automatically detecting pornography is into every parent's mind - nobody feels completely safe when their children go online. In this paper, we focus on video-pornography classification, a hard problem in which traditional methods often employ still-image techniques - labeling frames individually prior to a global decision. Frame-based approaches, however, ignore significant cogent information brought by motion. Here, we introduce a space-temporal interest point detector and descriptor called Temporal Robust Features (TRoF). TRoF was custom-tailored for efficient (low processing time and memory footprint) and effective (high classification accuracy and low false negative rate) motion description, particularly suited to the task at hand. We aggregate local information extracted by TRoF into a mid-level representation using Fisher Vectors, the state-of-the-art model of Bags of Visual Words (BoVW). We evaluate our original strategy, contrasting it both to commercial pornography detection solutions, and to BoVW solutions based upon other space-temporal features from the scientific literature. The performance is assessed using the Pornography-2k dataset, a new challenging pornographic benchmark, comprising 2000 web videos and 140h of video footage. The dataset is also a contribution of this work and is very assorted, including both professional and amateur content, and it depicts several genres of pornography, from cartoon to live action, with diverse behavior and ethnicity. The best approach, based on a dense application of TRoF, yields a classification error reduction of almost 79% when compared to the best commercial classifier. A sparse description relying on TRoF detector is also noteworthy, for yielding a classification error reduction of over 69%, with 19× less memory footprint than the dense solution, and yet can also be implemented to meet real-time requirements. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ko, Yousang; Song, Jinkyung; Lee, Suh-Young; Moon, Jin-Wook; Mo, Eun-Kyung; Park, Ji Young; Kim, Joo-Hee; Park, Sunghoon; Hwang, Yong Il; Jang, Seung Hun; Jhun, Byung Woo; Sim, Yun Su; Shin, Tae Rim; Kim, Dong-Gyu; Hong, Ji Young; Lee, Chang Youl; Lee, Myung Goo; Kim, Cheol-Hong; Hyun, In Gyu; Park, Yong Bum
2017-01-01
Despite recent advances in methods for culturing Mycobacterium tuberculosis (MTB), the diagnostic yield of tuberculous pleural effusion (TBPE) remains unsatisfactory. However, unlike repeated sputum cultures of pulmonary tuberculosis, little is known about the role of repeated pleural cultures. We examined whether repeated pleural cultures are associated with increased MTB yield from TBPE. A multicenter, retrospective cohort study was performed from January 2012 to December 2015 in South Korea. Patients were categorized into two groups: single- or repeated-culture groups. The diagnostic yield of MTB and clinical, radiological, and pleural fluid characteristics were evaluated. Among the 329 patients with TBPE, 77 (23.4%) had repeated cultures and 252 (76.5%) had a single culture. Pleural culture was performed twice in all 77 patients in the repeated-culture group at a 1-day interval (inter-quartile range, 1.0-2.0). In the repeated-culture group, the yield of MTB from the first culture was 31.2%, which was similar to that in the single-culture group (31.2% vs. 29.8%, P = 0.887). However, the yield of MTB from the second culture (10/77, 13.0%) was more than that from the first. These results may be attributable to the insufficient immune clearance for MTB invasion into the pleural space between the first and second cultures. Over time, the yield of the second cultures decreased from 17.4% to 6.7% and then 6.3%. Finally, the overall yield of MTB in the repeated- and single-culture groups was 44.2% and 29.8% respectively (P < 0.001). The results showed that repeated pleural cultures increased MTB yield from TBPE in human immunodeficiency virus-negative individuals. Furthermore, repeated cultures may increase yield when carried out for two consecutive days.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.; Hendy, A. S.; De Staelen, R. H.
2018-03-01
In this work, we investigate a general nonlinear wave equation with Riesz space-fractional derivatives that generalizes various classical hyperbolic models, including the sine-Gordon and the Klein-Gordon equations from relativistic quantum mechanics. A finite-difference discretization of the model is provided using fractional centered differences. The method is a technique that is capable of preserving an energy-like quantity at each iteration. Some computational comparisons against solutions available in the literature are performed in order to assess the capability of the method to preserve the invariant. Our experiments confirm that the technique yields good approximations to the solutions considered. As an application of our scheme, we provide simulations that confirm, for the first time in the literature, the presence of the phenomenon of nonlinear supratransmission in Riesz space-fractional Klein-Gordon equations driven by a harmonic perturbation at the boundary.
Expected antenna utilization and overload
NASA Technical Reports Server (NTRS)
Posner, Edward C.
1991-01-01
The trade-offs between the number of antennas at Deep Space Network (DSN) Deep-Space Communications Complex and the fraction of continuous coverage provided to a set of hypothetical spacecraft, assuming random placement of the space craft passes during the day. The trade-offs are fairly robust with respect to the randomness assumption. A sample result is that a three-antenna complex provides an average of 82.6 percent utilization of facilities and coverage of nine spacecraft that each have 8-hour passes, whereas perfect phasing of the passes would yield 100 percent utilization and coverage. One key point is that sometimes fewer than three spacecraft are visible, so an antenna is idle, while at other times, there aren't enough antennas, and some spacecraft do without service. This point of view may be useful in helping to size the network or to develop a normalization for a figure of merit of DSN coverage.
Renormalization of position space amplitudes in a massless QFT
NASA Astrophysics Data System (ADS)
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Radiation measurements aboard Spacelab 1
NASA Technical Reports Server (NTRS)
Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.
1984-01-01
The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
Chen, Ping; Du, Qing; Liu, Xiaoming; Zhou, Li; Hussain, Sajad; Lei, Lu; Song, Chun; Wang, Xiaochun; Liu, Weiguo; Yang, Feng; Shu, Kai; Liu, Jiang; Du, Junbo; Yang, Wenyu; Yong, Taiwen
2017-01-01
The blind pursuit of high yields via increased fertilizer inputs increases the environmental costs. Relay intercropping has advantages for yield, but a strategy for N management is urgently required to decrease N inputs without yield loss in maize-soybean relay intercropping systems (IMS). Experiments were conducted with three levels of N and three planting patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), competition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop root distribution were investigated. Our results showed that the CR of soybean was greater than 1, and that the change in root distribution in space and time resulted in an interspecific facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared with that under CN. In conclusion, the separation of the root ecological niche contributed to a positive interspecific facilitation, which increased the land productivity. Thus, maize-soybean relay intercropping with reduced N input provides a very useful approach to increase land productivity and avert environmental pollution.
Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)
Szewczyk, N.J.; Tillman, J.; Conley, C.A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.
2008-01-01
Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads. PMID:22146801
Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)
NASA Astrophysics Data System (ADS)
Szewczyk, N. J.; Tillman, J.; Conley, C. A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.
2008-09-01
Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.
Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST).
Szewczyk, N J; Tillman, J; Conley, C A; Granger, L; Segalat, L; Higashitani, A; Honda, S; Honda, Y; Kagawa, H; Adachi, R; Higashibata, A; Fujimoto, N; Kuriyama, K; Ishioka, N; Fukui, K; Baillie, D; Rose, A; Gasset, G; Eche, B; Chaput, D; Viso, M
2008-09-15
Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.
Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn
2015-01-13
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.
Hubble's new view of the cosmos
Villard, R
1996-05-01
Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever?
NASA Technical Reports Server (NTRS)
Bentley, Nicole L.; Thomas, Evan A.; VanWie, Michael; Morrison, Chad; Stinson, Richard G.
2010-01-01
The Total Organic Carbon Analyzer (TOGA) is designed to autonomously determine recovered water quality as a function of TOC. The current TOGA has been on the International Space Station since November 2008. Functional checkout and operations revealed complex operating considerations. Specifically, failure of the hydrogen catalyst resulted in the development of an innovative oxidation analysis method. This method reduces the activation time and limits the hydrogen produced during analysis, while retaining the ability to indicate TOC concentrations within 25% accuracy. Subsequent testing and comparison to archived samples returned from the Station and tested on the ground yield high confidence in this method, and in the quality of the recovered water.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Irwin, Ryan W.; Tinker, Michael L.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors
NASA Technical Reports Server (NTRS)
McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.
2003-01-01
Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.
Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations
NASA Astrophysics Data System (ADS)
Taitano, William
2017-10-01
In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn Initiative of ASC, and the LANL Institutional Computing. This work was performed under the NNSA of the USDOE at LANL under contract DE-AC52-06NA25396.
Goverover, Yael; Basso, Michael; Wood, Hali; Chiaravalloti, Nancy; DeLuca, John
2011-12-01
Forgetfulness occurs commonly in people with multiple sclerosis (MS), but few treatments alleviate this problem. This study examined the combined effect of two cognitive rehabilitation strategies to improve learning and memory in MS: self-generation and spaced learning. The hypothesis was that the combination of spaced learning and self-generation would yield better learning and memory recall performance than spaced learning alone. Using a within groups design, 20 participants with MS and 18 healthy controls (HC) were presented with three tasks (learning names, appointment, and object location), each in three learning conditions (Massed, Spaced Learning, and combination of spaced and generated information). Participants were required to recall the information they learned in each of these conditions immediately and 30 min following the initial presentation. The combination of spaced learning and self-generation yielded better recall than did spaced learning alone. In turn, spaced learning resulted in better recall than the massed rehearsal condition. These findings reveal that the combination of these two learning strategies may possess utility as a cognitive rehabilitation strategy.
NASA Technical Reports Server (NTRS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.
2004-01-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
NASA Astrophysics Data System (ADS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.
2004-05-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
Kreft, Jan-Ulrich
2004-08-01
The origin of altruism is a fundamental problem in evolution, and the maintenance of biodiversity is a fundamental problem in ecology. These two problems combine with the fundamental microbiological question of whether it is always advantageous for a unicellular organism to grow as fast as possible. The common basis for these three themes is a trade-off between growth rate and growth yield, which in turn is based on irreversible thermodynamics. The trade-off creates an evolutionary alternative between two strategies: high growth yield at low growth rate versus high growth rate at low growth yield. High growth yield at low growth rate is a case of an altruistic strategy because it increases the fitness of the group by using resources economically at the cost of decreased fitness, or growth rate, of the individual. The group-beneficial behaviour is advantageous in the long term, whereas the high growth rate strategy is advantageous in the short term. Coexistence of species requires differences between their niches, and niche space is typically divided into four 'axes' (time, space, resources, predators). This neglects survival strategies based on cooperation, which extend the possibilities of coexistence, arguing for the inclusion of cooperation as the fifth 'axis'. Here, individual-based model simulations show that spatial structure, as in, for example, biofilms, is necessary for the origin and maintenance of this 'primitive' altruistic strategy and that the common belief that growth rate but not yield decides the outcome of competition is based on chemostat models and experiments. This evolutionary perspective on life in biofilms can explain long-known biofilm characteristics, such as the structural organization into microcolonies, the often-observed lack of mixing among microcolonies, and the shedding of single cells, as promoting the origin and maintenance of the altruistic strategy. Whereas biofilms enrich altruists, enrichment cultures, microbiology's paradigm for isolating bacteria into pure culture, select for highest growth rate.
Roadmap for In-Space Propulsion Technology
NASA Technical Reports Server (NTRS)
Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.
A study of trends and techniques for space base electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.
1978-01-01
Furnaces and photolithography related equipment were applied to experiments on double layer metal. The double layer metal activity emphasized wet chemistry techniques. By incorporating the following techniques: (1) ultrasonic etching of the vias; (2) premetal clean using a modified buffered hydrogen fluoride; (3) phosphorus doped vapor; and (4) extended sintering, yields of 98 percent were obtained using the standard test pattern. The two dimensional modeling problems have stemmed from, alternately, instability and too much computation time to achieve convergence.
Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1996-01-01
The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.
Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes
Crabtree, Robert H.; Brown, Stephen H.
1988-01-01
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes
Crabtree, R.H.; Brown, S.H.
1988-02-16
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D
2017-09-01
Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.
Remotely Guided Breast Sonography for Long-Term Space Missions: A Case Report and Discussion.
Silva-Martinez, Jackelynne P; Sorice Genaro, Andreia; Wen, Hui Annie; Glauber, Naama; Russomano, Thais
2017-12-01
Space radiation can cause different types of cancers in crewmembers, especially during long-term space missions. To date, a complete bilateral breast ultrasound has not been performed at the International Space Station (ISS). A breast screening imaging technique could be a useful tool for early identification of breast cancer in astronauts. We hypothesized that breast ultrasound performed by a crewmember while being remotely guided by a specialist from the ground could be an essential tool for medical diagnosis in space. This project aimed to test an ultrasound screening protocol for breast tissue using real-time remotely guided telemedicine techniques. One female volunteer, with no previous medical experience, performed a self-scanned bilateral breast ultrasound exam guided by a remote sonographer. Dynamic ultrasound images were collected using a 25 mm broadband linear array transducer. To simulate fluid shift on the volunteer during microgravity, the bed was tilted -6°. Recorded ultrasound images were analyzed by radiologists, comparing the findings with a gold standard. The experiment demonstrated that real-time remotely guided sonography exam is feasible and can yield meaningful clinical results. This case study showed that remotely guided breast ultrasound can be performed and might become an important tool for diagnosis of breast cancer in space missions. The results cannot be generalized based on one subject, and additional research is warranted in this area in addition to its validation on the ISS. This technique, however, has potential for use as part of preventive medicine procedures for long-term space missions at the ISS, and eventually for human settlements on the Moon and Mars.
NASA Astrophysics Data System (ADS)
Quarles, C. C.; Gochberg, D. F.; Gore, J. C.; Yankeelov, T. E.
2009-10-01
Dynamic susceptibility contrast (DSC) MRI methods rely on compartmentalization of the contrast agent such that a susceptibility gradient can be induced between the contrast-containing compartment and adjacent spaces, such as between intravascular and extravascular spaces. When there is a disruption of the blood-brain barrier, as is frequently the case with brain tumors, a contrast agent leaks out of the vasculature, resulting in additional T1, T2 and T*2 relaxation effects in the extravascular space, thereby affecting the signal intensity time course and reducing the reliability of the computed hemodynamic parameters. In this study, a theoretical model describing these dynamic intra- and extravascular T1, T2 and T*2 relaxation interactions is proposed. The applicability of using the proposed model to investigate the influence of relevant MRI pulse sequences (e.g. echo time, flip angle), and physical (e.g. susceptibility calibration factors, pre-contrast relaxation rates) and physiological parameters (e.g. permeability, blood flow, compartmental volume fractions) on DSC-MRI signal time curves is demonstrated. Such a model could yield important insights into the biophysical basis of contrast-agent-extravasastion-induced effects on measured DSC-MRI signals and provide a means to investigate pulse sequence optimization and appropriate data analysis methods for the extraction of physiologically relevant imaging metrics.
Modeling volatility using state space models.
Timmer, J; Weigend, A S
1997-08-01
In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).
Comparison of Highly Resolved Model-Based Exposure ...
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co
Potential for remote sensing of agriculture from the international space station
NASA Astrophysics Data System (ADS)
Morgenthaler, George W.; Khatib, Nader
1999-01-01
Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics, and aerosols), ground water contamination via drain-tile catch from the fields, and Leaf Area Index (LAI). Also, a tethered balloon flight sampled the site's vertical air column and both aerial infrared photography and satellite imagery were acquired. This paper summarizes the 1998 activities in establishing and operating the ``truth'' site. The goal of such a ``truth'' site is to develop and validate precision agriculture predictive models to improve farming practices. ISS sensor testing can greatly accelerate development of such systems.
Using Digital Radiography To Image Liquid Nitrogen in Voids
NASA Technical Reports Server (NTRS)
Cox, Dwight; Blevins, Elana
2007-01-01
Digital radiography by use of (1) a field-portable x-ray tube that emits low-energy x rays and (2) an electronic imaging x-ray detector has been found to be an effective technique for detecting liquid nitrogen inside voids in thermal-insulation panels. The technique was conceived as a means of investigating cryopumping (including cryoingestion) as a potential cause of loss of thermal insulation foam from space-shuttle external fuel tanks. The technique could just as well be used to investigate cryopumping and cryoingestion in other settings. In images formed by use of low-energy x-rays, one can clearly distinguish between voids filled with liquid nitrogen and those filled with gaseous nitrogen or other gases. Conventional film radiography is of some value, but yields only non-real-time still images that do not show time dependences of levels of liquids in voids. In contrast, the present digital radiographic technique yields a succession of images in real time at a rate of about 10 frames per second. The digitized images can be saved for subsequent analysis to extract data on time dependencies of levels of liquids and, hence, of flow paths and rates of filling and draining. The succession of images also amounts to a real-time motion picture that can be used as a guide to adjustment of test conditions.
Deconflicting Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace
NASA Technical Reports Server (NTRS)
Rodionova, Olga; Delahaye, Daniel; Sridhar, Banavar; Ng, Hok K.
2016-01-01
North Atlantic oceanic airspace accommodates more than 1000 flights daily, and is subjected to very strong winds. Flying wind-optimal trajectories yields time and fuel savings for each individual flight. However, when taken together, these trajectories induce a large amount of potential en-route conflicts. This paper analyses the detected conflicts, figuring out conflict distribution in time and space. It further describes an optimization algorithm aimed at reducing the number of conflicts for a daily set of flights on strategic level. Several trajectory modification strategies are discussed, followed with simulation results. Finally, an algorithm improvement is presented aiming at better preserving the trajectory optimality.
Investigations of quantum pendulum dynamics in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
NASA Technical Reports Server (NTRS)
Markopoulos, N.; Calise, A. J.
1993-01-01
The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.
NASA Astrophysics Data System (ADS)
Rasyid, B.
2018-05-01
Soil quality and plant productivity are main issue in agriculture production. The purpose of this research was to obtain sustainable crop management in effort to improve soil quality and increase maize production through collaboration of liquid bio-ameliorant and compost. Field experiment was carried out in two planting season with factorial experimental design replicated three times in 2m x 2m plots. Duncan multiple range test was used to analysis the effect of treatment on all parameters evaluated. The first planting season, treatments were arranged in three factors as: (1) planting space with two spaces, (2) three concentration of liquid bio-ameliorant, and (3) three level of urea fertilizer. The second planting season, treatments were arranged in two factors as: (1) liquid bio-ameliorant (LBA) with four concentrations and (2) compost with four levels. In the first season, result showed in soil quality parameters such as microbial density and soil chemical properties increased approximately 28%. The highest yield of 9.00 ton ha-1 was found in application 300 ml l-1 LBA + urea 240 kg ha-1. In the second season, collaboration treatment of 250 ml l-1 LBA + 10 ton ha-1 compost had the highest yield by 10.47 ton ha-1. This study confirmed that collaboration of liquid bio-ameliorant and compost could be used as fertilizer complement and reducing inorganic fertilizer utilization to sustain crop production and soil quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca
Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less
USU research helps agriculture enter the space age
NASA Technical Reports Server (NTRS)
Salisbury, F. B.
1987-01-01
Research at the Utah State University College of Agriculture that is relevant to the space life sciences is reviewed. Specific programs detailed are gravitropism of dicot stems, maximization of wheat yields for use in space exploration, and plant development processes in wheat in microgravity.
NASA Technical Reports Server (NTRS)
George, Kerry; Wu, Honglu; Willingham, Veronica; Cucinotta, Francis A.
2002-01-01
High-LET radiation is more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after long duration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cells collected at one time point after irradiation, and analysis of chemically-induced PCC may be more accurate since problems with complicated cell-cycle delays are avoided. However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.
Berkovich-Ohana, Aviva; Dor-Ziderman, Yair; Glicksohn, Joseph; Goldstein, Abraham
2013-01-01
Meditation practice can lead to what have been referred to as “altered states of consciousness.”One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space, and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term mindfulness meditation (MM) practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing. The participants were asked to volitionally bring about distinct states of “Timelessness” (outside time) and “Spacelessness” (outside space) while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory, or imagination, we used control states of “Then” (past) and “There” (another place). MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming). Particularly, we searched for similar neural activity hypothesized to underlie both the state of “Timelessness” and “Spacelessness.” The results were mostly confined to the theta band, and showed that: (1) the “Then”/“There” overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule (PPL), right precentral/middle frontal gyrus (MFG), bilateral precuneus); (2) “Timelessness”/“Spacelessness” conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction (TPJ), cerebellum); and (3) phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners within a neurophenomenological setup for scientifically characterizing a self-induced altered sense of time, space and body, as well as the importance of theta activity in relation with these altered states. PMID:24348455
Hinrichs, Saskia; Patten, Nicole L.; Waite, Anya M.
2013-01-01
Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition. PMID:23696848
Hinrichs, Saskia; Patten, Nicole L; Waite, Anya M
2013-01-01
Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition.
Quantum mechanics of hyperbolic orbits in the Kepler problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauh, Alexander; Parisi, Juergen
2011-04-15
The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits. As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies. The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator (pseudo) time includes quantum corrections. In the limit ({h_bar}/2{pi}){yields}0, the time-dependent mean values of position and velocity describe themore » classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the connection between pseudotime and real time comes out in analogy to Kepler's equation for elliptic orbits. The mean-square-root deviations of position and velocity components behave similarly in time to the corresponding ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its contribution to the mean energy is determined with the result that it is negligible except for energy values close to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R{sup 4} which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary criterion is given for the energy interval where the constraint can be approximated by averaging.« less
Simulations of VLBI observations of a geodetic satellite providing co-location in space
NASA Astrophysics Data System (ADS)
Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald
2018-02-01
We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Assessing pretreatment reactor scaling through empirical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Block, Gladys; Davis-Street, Janis E.; DeKerlegand, Diane E.; Fanselow, Stephanie A.; Fesperman, J. Vernell; Gillman, Patricia L.; Nillen, Jeannie I.; Rice, Barbara L.; Smith, Myra D.
2000-01-01
Nutrition is a critical concern for extended-duration space missions (Smith and Lane, 1999). Loss of body weight is a primary consequence of altered nutrition, and is frequently observed during space flight (Smith and Lane; 1999). Other existing dietary concerns for space flight include excessive intakes of sodium and iron, and insufficient intakes of water and vitamin D (Smith and Lane, 1999). Furthermore, dependence on closed or semi-closed food systems increases the likelihood of inadequate intakes of key nutrients. This is a significant concern for extended-duration space missions. Space nutrition research often necessitates detailed recording of all food consumption. While this yields extremely accurate data, it requires considerable time and effort, and thus is not suitable for routine medical monitoring during space flight. To alleviate this problem, a food frequency questionnaire (FFQ) was designed to provide a quick and easy, yet reasonably accurate, method for crewmembers to provide dietary intake information to the ground. We report here a study which was designed to assess nutritional status before, during, and after the 60-d and 91-d chamber stays. An additional goal of the study was to validate a food frequency questionnaire designed specifically for use with space flight food systems.
Discontinuous precipitation in a Cd-6 at.% Ag alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manna, I.; Bala, P.K.; Pabi, S.K.
1996-11-01
Discontinuous precipitation (DP) in a Cd-6 at.% Ag alloy has been investigated for the first time. The precipitate phase maintains a lamellar morphology and statistically constant interlamellar spacing under a given isothermal condition in the temperature range studied (333--523 K). The interlamellar spacing increases with an increase in isothermal temperature. The reaction front velocity registers a typical C-curve variation with the inverse of temperature. The reaction rate is maximum at 470 K. The predicted upper limit of DP occurrence in this alloy is 23 K lower than the concerned equilibrium solvus temperature. Continuous precipitation accompanies DP at all temperatures, especiallymore » beyond a certain time, and adversely affects the growth kinetics of DP colonies by reducing the local chemical driving force and/or posing physical hindrance to the reaction front migration. An extensive kinetic analysis of DP using the models by Turnbull, Aaronson and Liu, and Petermann and Hornbogen has yielded the grain boundary chemical diffusivity data in Cd-6 At.% Ag for the first time, the activation energy of which lies in the range 55--77 kJ/mol.« less
Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D
2016-03-01
Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.
Accelerated 1 H MRSI using randomly undersampled spiral-based k-space trajectories.
Chatnuntawech, Itthi; Gagoski, Borjan; Bilgic, Berkin; Cauley, Stephen F; Setsompop, Kawin; Adalsteinsson, Elfar
2014-07-30
To develop and evaluate the performance of an acquisition and reconstruction method for accelerated MR spectroscopic imaging (MRSI) through undersampling of spiral trajectories. A randomly undersampled spiral acquisition and sensitivity encoding (SENSE) with total variation (TV) regularization, random SENSE+TV, is developed and evaluated on single-slice numerical phantom, in vivo single-slice MRSI, and in vivo three-dimensional (3D)-MRSI at 3 Tesla. Random SENSE+TV was compared with five alternative methods for accelerated MRSI. For the in vivo single-slice MRSI, random SENSE+TV yields up to 2.7 and 2 times reduction in root-mean-square error (RMSE) of reconstructed N-acetyl aspartate (NAA), creatine, and choline maps, compared with the denoised fully sampled and uniformly undersampled SENSE+TV methods with the same acquisition time, respectively. For the in vivo 3D-MRSI, random SENSE+TV yields up to 1.6 times reduction in RMSE, compared with uniform SENSE+TV. Furthermore, by using random SENSE+TV, we have demonstrated on the in vivo single-slice and 3D-MRSI that acceleration factors of 4.5 and 4 are achievable with the same quality as the fully sampled data, as measured by RMSE of reconstructed NAA map, respectively. With the same scan time, random SENSE+TV yields lower RMSEs of metabolite maps than other methods evaluated. Random SENSE+TV achieves up to 4.5-fold acceleration with comparable data quality as the fully sampled acquisition. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
The Astrophysics of Merging Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.
2011-01-01
When two supermassive black holes (SMBHs) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.
Electromagnetic Signatures of SMBH Coalescence
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy
2012-01-01
When two supermassive black holes (SMBHs) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.
Black Hole Coalescence: The Gravitational Wave Driven Phase
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.
2011-01-01
When two supermassive black holes (SMBHS) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.
Acetylcholine-modulated plasticity in reward-driven navigation: a computational study.
Zannone, Sara; Brzosko, Zuzanna; Paulsen, Ole; Clopath, Claudia
2018-06-21
Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.
NASA Technical Reports Server (NTRS)
Baily, N. A.
1975-01-01
A light amplifier for large flat screen fluoroscopy was investigated which will decrease both its size and weight. The work on organ contouring was extended to yield volumes. This is a simple extension since the fluoroscopic image contains density (gray scale) information which can be translated as tissue thickness, integrated, yielding accurate volume data in an on-line situation. A number of devices were developed for analog image processing of video signals, operating on-line in real time, and with simple selection mechanisms. The results show that this approach is feasible and produces are improvement in image quality which should make diagnostic error significantly lower. These are all low cost devices, small and light in weight, thereby making them usable in a space environment, on the Ames centrifuge, and in a typical clinical situation.
Yield physiology of short rotation intensively cultured poplars
J. G. Isebrands; N. D. Nelson; D. I. Dickmann; D. A. Michael
1983-01-01
An integrated research approach is described for studying yield physiology of short rotation intensively cultured (SRIC) poplar plantations. Branch architecture differs with clone and stand density, but the clonal ranking of important branch characteristics does not change with spacing.
PROMAB-GIS: A GIS based Tool for Estimating Runoff and Sediment Yield in running Waters
NASA Astrophysics Data System (ADS)
Jenewein, S.; Rinderer, M.; Ploner, A.; Sönser, T.
2003-04-01
In recent times settlements have expanded, traffic and tourist activities have increased in most alpine regions. As a consequence, on the one hand humans and goods are affected by natural hazard processes more often, while on the other hand the demand for protection by both technical constructions and planning measures carried out by public authorities is growing. This situation results in an ever stronger need of reproducibility, comparability, transparency of all methods applied in modern natural hazard management. As a contribution to a new way of coping this situation Promab-GIS Version 1.0 has been developed. Promab-Gis has been designed as a model for time- and space-dependent determination of both runoff and bedload transport in rivers of small alpine catchment areas. The estimation of the unit hydrograph relies upon the "rational formula" and the time-area curves of the watershed. The time area diagram is a graph of cumulative drainage area contributing to discharge at the watershed outlet within a specified time of travel. The sediment yield is estimated for each cell of the channel network by determining the actual process type (erosion, transport or accumulation). Two types of transport processes are considered, sediment transport and debris flows. All functions of Promab-GIS are integrated in the graphical user interface of ArcView as pull-up menus and tool buttons. Hence the application of Promab-GIS does not rely on a sophisticated knowledge of GIS in general, respectively the ArcView software. However, despite the use of computer assistance, Promab-GIS still is an expert support system. In order to obtain plausible results, the users must be familiar with all the relevant processes controlling runoff and sediment yield in torrent catchments.
MISSE PEACE Polymers Atomic Oxygen Erosion Results
NASA Technical Reports Server (NTRS)
deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.
2006-01-01
Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
NASA Astrophysics Data System (ADS)
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
Self-consistent DFT +U method for real-space time-dependent density functional theory calculations
NASA Astrophysics Data System (ADS)
Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel
2017-12-01
We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.
NASA Astrophysics Data System (ADS)
Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank
2018-06-01
Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.
Observation and Study of the Baryonic B-meson Decays B to D(*) p pbar (pi) (pi)
DOE Office of Scientific and Technical Information (OSTI.GOV)
del Amo Sanchez, P.; Lees, J.P.; Poireau, V.
We present results for B-meson decay modes involving a charm meson, protons, and pions using 455 x 10{sup 6} B{bar B} pairs recorded by the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider. The branching fractions are measured for the following ten decays: {bar B}{sup 0} {yields} D{sup 0}p{bar p}, {bar B}{sup 0} {yields} D*{sup 0}p{bar p}, {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, {bar B}{sup 0} {yields} D*{sup +}p{bar p}{pi}{sup -}, B{sup -} {yields} D{sup 0}p{bar p}{pi}{sup -}, B{sup -} {yields} D*{sup 0}pp{pi}{sup -}, {bar B}{sup 0} {yields} D{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, {bar B}{supmore » 0} {yields} D*{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, B{sup -} {yields} D{sup +}p{bar p}{pi}{sup -}{pi}{sup -}, and B{sup -} {yields} D*{sup +}p{bar p}{pi}{sup -}{pi}{sup -}. The four B{sup -} and the two five-body B{sup 0} modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(p{bar p}) and M(D{sup (*)0}p) invariant mass distributions show enhancements near threshold values. In the four-body mode {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, the M(p{pi}{sup -}) distribution shows a narrow structure of unknown origin near 1.5GeV/c{sup 2}. The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.« less
Fifty-year development of Douglas-fir stands planted at various spacings.
Donald L. Reukema
1979-01-01
A 51-yr record of observations in stands planted at six spacings, ranging from 4 to 12 ft, illustrates clearly the beneficial effects of wide initial spacing and the detrimental effects of carrying too many trees relative to the size to which they will be grown. Not only are trees larger, but yields per acre are greater at wide spacings.
Proxemics in Public: Space Violations as a Function of Dyad Composition.
ERIC Educational Resources Information Center
Lomax, Crystal M.; And Others
A study assessed whether space violations of women occur even when women do not yield their space, and further examined who violated the space of women when it was violated. Two persons of average height and weight (either a male-male, male-female, or female-female combination) were positioned across from each other in a busy hallway such that…
The usefulness of Skylab/EREP S-190 and S-192 imagery in multistage forest surveys
NASA Technical Reports Server (NTRS)
Langley, P. G.; Vanroessel, J. (Principal Investigator)
1976-01-01
The author has identified the following significant results. The RMSE of point location achieved with the annotation system on S190A imagery was 100 m and 90 m in the x and y direction, respectively. Potential gains in sampling precision attributable to space derived imagery ranged from 4.9 to 43.3 percent depending on the image type, interpretation method, time of year, and sampling method applied. Seasonal variation was significant. S190A products obtained in September yielded higher gains than those obtained in June. Using 100 primary sample units as a base under simple random sampling, the revenue made available for incorporating space acquired data into the sample design to estimate timber volume was as high as $39,400.00.
Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert
2018-06-01
Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.
Generalized Gödel universes in higher dimensions and pure Lovelock gravity
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Molina, Alfred; Pons, Josep M.
2017-10-01
The Gödel universe is a homogeneous rotating dust with negative Λ which is a direct product of a three-dimensional pure rotation metric with a line. We would generalize it to higher dimensions for Einstein and pure Lovelock gravity with only one N th-order term. For higher-dimensional generalization, we have to include more rotations in the metric, and hence we shall begin with the corresponding pure rotation odd (d =2 n +1 )-dimensional metric involving n rotations, which eventually can be extended by a direct product with a line or a space of constant curvature for yielding a higher-dimensional Gödel universe. The considerations of n rotations and also of constant curvature spaces is a new line of generalization and is being considered for the first time.
Pair 2-electron reduced density matrix theory using localized orbitals
NASA Astrophysics Data System (ADS)
Head-Marsden, Kade; Mazziotti, David A.
2017-08-01
Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.
Does Access to Green Space Impact the Mental Well-being of Children: A Systematic Review.
McCormick, Rachel
An increasing body of research is showing associations between green space and overall health. Children are spending more time indoors while pediatric mental and behavioral health problems are increasing. A systematic review of the literature was done to examine the association between access to green space and the mental well-being of children. Articles were limited to English language, ages 0-18 years, and publish date 2012-2017. The search yielded 341 articles in Ovid, 81 in Pub Med and 123 in Scopus. Articles that were not original research and that were not a pediatric population were excluded. Twelve articles fit the selection criteria. Twelve articles relating to green space and the mental well-being of children were reviewed. Three articles outside the date criteria were included as they are cited often in the literature as important early research on this topic. Access to green space was associated with improved mental well-being, overall health and cognitive development of children. It promotes attention restoration, memory, competence, supportive social groups, self-discipline, moderates stress, improves behaviors and symptoms of ADHD and was even associated with higher standardized test scores. Scientific evidence demonstrating the mental health benefits of access to nature for children can guide policy and urban planning, while nursing interventions and initiatives can enhance health by promoting outdoor play, educating patients and families, advocating for recess times and green environments at school as well as healing gardens in hospital settings. Copyright © 2017 Elsevier Inc. All rights reserved.
Twistor theory at fifty: from contour integrals to twistor strings
NASA Astrophysics Data System (ADS)
Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J.
2017-10-01
We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.
Twistor theory at fifty: from contour integrals to twistor strings.
Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J
2017-10-01
We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.
[Growth of wheat from seed-to-seed in space flight
NASA Technical Reports Server (NTRS)
Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Podol'skii, I. G.; Padalka, G. I.; Avdeev, S. V.; Bingham, G. E.; Campbell, W. F. (Principal Investigator)
2000-01-01
In our earlier space experiment with super dwarf wheat we found the spikes developed in space to be barren. The cause of the full crop sterility was sensitivity of this wheat species to the ethylene concentration of 0.3-0.8 mg/m3 during the experiment. The follow-up ground experiments were made to identify species of dwarf wheat that could be raised in space greenhouse Svet and are distinguished by partial tolerance of their reproductive organs to elevated ethylene in air. The choice fell on the USU-Apogee cultivar specially developed for planting in growth chambers as an integral part of various bioregenerative life support systems, including the space ones. An experiment with wheat Apogee was performed in greenhouse Svet on board MIR. The period of the full crop vegetation cycle was not significantly altered under the spaceflight conditions. The experiment yielded 508 seeds from 12 plants, i.e. by 38% less than in laboratory experiments and by 69% more as compared with results of growing crops in ethylene-contaminated atmosphere (1 mg/m3). Mass of the space seeds was low if compared with the laboratory crops. This was the first time when the feasibility of gathering seeds from wheat that had passed the whole vegetation cycle in space flight was demonstrated. The experiment will give mightly impetus to the advancement of research on space biological LSS and gravitational biology.
NASA Astrophysics Data System (ADS)
Dian, Brian C.; Florio, Gina M.; Clarkson, Jasper R.; Longarte, Asier; Zwier, Timothy S.
2004-05-01
The conformational isomerization dynamics of melatonin and 5-methoxy N-acetyltryptophan methyl amide (5-methoxy NATMA) have been studied using the methods of IR-UV hole-filling spectroscopy and IR-induced population transfer spectroscopy. Using these techniques, single conformers of melatonin were excited via a well-defined NH stretch fundamental with an IR pump laser. This excess energy was used to drive conformational isomerization. By carrying out the infrared excitation early in a supersonic expansion, the excited molecules were re-cooled into their zero-point levels, partially re-filling the hole created in the ground state population of the excited conformer, and creating gains in population of the other conformers. These changes in population were detected using laser-induced fluorescence downstream in the expansion via an UV probe laser. The isomerization quantum yields for melatonin show some conformation specificity but no hint of vibrational mode specificity. In 5-methoxy NATMA, no isomerization was observed out of the single conformational well populated in the expansion in the absence of the infrared excitation. In order to study the dependence of the isomerization on the cooling rate, the experimental arrangement was modified so that faster cooling conditions could be studied. In this arrangement, the pump and probe lasers were overlapped in space in the high density region of the expansion, and the time dependence of the zero-point level populations of the conformers was probed following selective excitation of a single conformation. The analysis needed to extract isomerization quantum yields from the timing scans was developed and applied to the melatonin timing scans. Comparison between the frequency and time domain isomerization quantum yields under identical experimental conditions produced similar results. Under fast cooling conditions, the product quantum yields were shifted from their values under standard conditions. The results for melatonin are compared with those for N-acetyl tryptophan methyl amide.
NASA Astrophysics Data System (ADS)
Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Effect of vermicompost on soil fertility and crop productivity--beans (Phaseolus vulgaris).
Manivannan, S; Balamurugan, M; Parthasarathi, K; Gunasekaran, G; Ranganathan, L S
2009-03-01
Field experiments were conducted at Sivapuri, Chidambaram, Tamil Nadu to evaluate the efficacy of vermicompost, in comparison to inorganic fertilizers-NPK, on the physio-chemical and biological characteristics of the soils--clay loam soil (CLS) and sandy loam soil (SLS) and on the growth, yield and nutrient content of beans--Phaseolus vulgaris. Results showed that the application of vermicompost @ 5 tonnes ha(-1) had enhanced significantly the pore space (1.09 and 1.02 times), water holding capacity (1.1 and 1.3 times), cation exchange capacity (1.2 and 1.2 times). It reduced particles (1.2 and 1.2 times), and bulk density (1.2 and 1.2 times), pH (1 and 1.02 times) and electrical conductivity (1.4 and 1.2 times) and increased organic carbon (37 and 47 times), micro (Ca 3.07 and 1.9 times, Mg 1.6 and 1.6 times, Na 2.4 and 3.8 times, Fe 7 and 7.6 times, Mn 8.2 and 10.6 times, Zn 50 and 52 times and Cu 14 and 22 times) and macro (N 1.6 and 1.7 times, P 1.5 and 1.7 times, K 1.5 and 1.4 times) nutrients and microbial activity (1.4 and 1.5 times) in both soil types, particularly more in CLS. The growth, yield (1.6 times) and quality (protein (1.05 times) and sugar (1.01 times) content in seed) of bean were enhanced in CLS than SLS. On the other hand, the application of inorganic fertilizers @ 20:80:40 kg ha(-1) has resulted in reduced porosity (1.03 and 1.01 times), organic carbon (1.04 and 9.5 times) and microbial activity (1.02 and 1.03 times) in both soil types.
Li, Kan; Príncipe, José C.
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568
Li, Kan; Príncipe, José C
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.
Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan
NASA Astrophysics Data System (ADS)
Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.
2013-12-01
Forecasting wheat yield in major producer countries early in the growing season allows better planning for harvest deficits and surplus with implications for food security, world market transactions, sustaining adequate grain stocks, policy making and other matters. Remote sensing imagery is well suited for yield forecasting over large areas. The Normalized Difference Vegetation Index (NDVI) has been the most-used spectral index derived from remote sensing imagery for assessing crop condition of major crops and forecasting crop yield. Many authors have found that the highest correlation between NDVI and yield of wheat crops occurs at the height of the growing season when NDVI values and photosynthetic activity of the wheat plants are at their relative maximum. At the same time NDVI saturates in very dense and vigorous (healthy, green) canopies such as wheat fields during the seasonal peak and shows significantly reduced sensitivity to further increases in photosynthetic activity. In this study we compare the performance of different vegetation indices derived from space-borne red and near-infrared spectral reflectance measurements for wheat yield forecasting in the Punjab Province, Pakistan. Areas covered by wheat crop each year were determined using a time series of MODIS 8-day composites at 250 m resolution converted to temporal metrics and classified using a bagged decision tree approach, driven by classified multi-temporal Landsat scenes. Within the wheat areas we analyze and compare wheat yield forecasts derived from three different satellite-based vegetation indices at the peak of the growing season. We regressed in turn NDVI, Wide Dynamic Range Vegetation Index (WDRVI) and the Vegetation Condition Index (VCI) from the four years preceding the wheat growing season 2011/12 against reported yield values and applied the regression equations to forecast wheat yield for the 2011/12 season per district for each of 36 Punjab districts. Yield forecasts overall corresponded well with reported values. NDVI-based forecasts showed high correlations of r squared = 0.881 and RMSE 11%. The VCI performed similarly well with r squared = 0.886 and RMSE 11%. WDRVI performed better than either of the other indices with r squared = 0.909 and RMSE 10%, probably due to the increased sensitivity of the index at high values. Wheat yields in Pakistan show on average a slow but steady annual increase but overall are comparatively stable due to the fact that the majority of fields are irrigated. The next steps in this study will be to compare NDVI- with WDRVI-based yield forecasts in other environments dominated by rain-fed agriculture, such as Ukraine, Australia and the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, D.L.; et al.
The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Assessing the Potential Oleoresin Yields of Slash Pine Progenies at Juvenile Ages
A.E. Squillace; Charles R. Gansel
1968-01-01
The potential oleoresin yields of slash pine progenies can be assessed at juvenile ages, 7 to 8 years earlier than with previous methods. Seeds are sown in peat pots, outplanted shortly after germination at a spacing of 14 by 3 feet, and given intensive cultural treatment. At 26 years from seed, when the trees average about 9 feet tall, their potential yields are...
Epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.
Macromolecular crystallization in microgravity generated by a superconducting magnet.
Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y
2006-09-01
About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.
NASA Astrophysics Data System (ADS)
Park, Suhyung; Park, Jaeseok
2015-05-01
Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k - t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k - t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k - t SPARKS incorporates Kalman-smoother self-calibration in k - t space and sparse signal recovery in x - f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k - t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k - t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors.
Park, Suhyung; Park, Jaeseok
2015-05-07
Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k - t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k - t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k - t SPARKS incorporates Kalman-smoother self-calibration in k - t space and sparse signal recovery in x - f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k - t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k - t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors.
Spacing and slash pine quality timber prodution
Frank A. Bennett
1969-01-01
Cubic volume production as related to spacing in planted slash pine (Pinus etliottii var. elliottii) is well understood. Yield increases as number of surviving trees per acre increases, although at a diminishing rate after a certain point. It is also well known that wider spacings, 200 to 400 trees per acre, are necessary for...
Taste of Super-Dwarf Rice Cultured in Space
NASA Astrophysics Data System (ADS)
Hirai, Hiroaki; Kitaya, Yoshiaki
2016-07-01
The interest of food production for lunar base and manned Mars mission has increased recently. So far, plants cultured long duration in space were leafy vegetables, arabidopsis, wheat, barley and so on. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. Rice symbolizes the rice-eating culture of Japan, is extremely useful as a specific cultured plant candidate of Japan in space. In the previous report, 'Kozo-no-sumika' found from seedlings in raising of seedling was introduced as a super-dwarf rice to culture in space. Considering this rice as food in space, we investigate the taste characteristics of this rice. At present, waxy 'Kozo-no-sumika' and nonwaxy 'Hosetsu dwarf' of super-dwarf rice and 'Nipponbare' of previous standard rice for sensory test are cultured in paddy field. Hereafter, we will harvest rice, investigate yield, evaluate taste.
Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Opal, C. B.
1983-01-01
Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.
Shower disc sampling and the angular resolution of gamma-ray shower detectors
NASA Technical Reports Server (NTRS)
Lambert, A.; Lloyd-Evans, J.
1985-01-01
As part of the design study for the new UHE gamma ray detector being constsructed at Haverah Park, a series of experiments using scintillators operated side-by-side in 10 to the 15th power eV air showers are undertaken. Investigation of the rms sampling fluctuations in the shower disc arrival time yields an upper limit to the intrinsic sampling uncertainty, sigma sub rms = (1.1 + or - 0.1)ns, implying an angular resolution capability 1 deg for an inter-detector spacing of approximately 25 m.
Flow Regime Based Climatologies of Lightning Probabilities for Spaceports and Airports
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Volmer, Matthew; Sharp, David; Spratt, Scott; Lafosse, Richard A.
2007-01-01
Objective: provide forecasters with a "first guess" climatological lightning probability tool (1) Focus on Space Shuttle landings and NWS T AFs (2) Four circles around sites: 5-, 10-, 20- and 30 n mi (4) Three time intervals: hourly, every 3 hr and every 6 hr It is based on: (1) NLDN gridded data (2) Flow regime (3) Warm season months of May-Sep for years 1989-2004 Gridded data and available code yields squares, not circles Over 850 spread sheets converted into manageable user-friendly web-based GUI
Studies on maximum yield of wheat for the controlled environments of space
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1986-01-01
The economic feasibility of using food-producing crop plants in a closed ecological Life-Support System (CELSS) will ultimately depend on the energy and area (or volume) required to provide the nutritional requirements for each person. Energy and area requirements are, to some extent, inversely related; that is, an increased energy input results in a decreased area requirement and vice versa. A major goal of the research effort was to determine the controlled-environment good-production efficiency of wheat per unit area, per unit time, and per unit energy input.
Application of Modern Control Design Methodologies to a Multi-Segmented Deformable Mirror System
1991-05-23
state matrices, and the state equations are X= Ax + Bu (2.3) y = Cm + Du (2.4) The only dynamics modeled are associated with the six segment phasing...relationship between the L 2 and H2 spaces, the vector H2 norm can be found from the application of Parseval’s Theorem to Equation 3.1, yielding V112...of this minimization problem can be found using Riccati equations {1]. ’With a slight abuse of notation, time domain functions and frequency domain
Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks
Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.
2014-01-01
Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145
Crabtree, Robert H.; Brown, Stephen H.
1989-01-01
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Crabtree, R.H.; Brown, S.H.
1989-10-17
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
NASA Astrophysics Data System (ADS)
Wang, Xu; Le, Anh-Thu; Zhou, Zhaoyan; Wei, Hui; Lin, C. D.
2017-08-01
We provide a unified theoretical framework for recently emerging experiments that retrieve fixed-in-space molecular information through time-domain rotational coherence spectroscopy. Unlike a previous approach by Makhija et al. (V. Makhija et al., arXiv:1611.06476), our method can be applied to the retrieval of both real-valued (e.g., ionization yield) and complex-valued (e.g., induced dipole moment) molecular response information. It is also a direct retrieval method without using iterations. We also demonstrate that experimental parameters, such as the fluence of the aligning laser pulse and the rotational temperature of the molecular ensemble, can be quite accurately determined using a statistical method.
Mission Analysis for High Specific Impulse Deep Space Exploration
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Polsgrove, Tara; Brady, Hugh J. (Technical Monitor)
2002-01-01
This paper describes trajectory calculations for high specific impulse engines. Specific impulses on the order of 10,000 to 100,000 sec are predicted in a variety of fusion powered propulsion systems. This paper and its companion paper seek to build on analyses in the literature to yield an analytical routine for determining time of flight and payload fraction to a predetermined destination. The companion paper will compare the results of this analysis to the trajectories determined by several trajectory codes. The major parameters that affect time of flight and payload fraction will be identified and their sensitivities quantified. A review of existing fusion propulsion concepts and their capabilities will also be tabulated.
Network geometry inference using common neighbors
NASA Astrophysics Data System (ADS)
Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri
2015-08-01
We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.
Daidone, Isabella; Amadei, Andrea; Di Nola, Alfredo
2005-05-15
The folding of the amyloidogenic H1 peptide MKHMAGAAAAGAVV taken from the syrian hamster prion protein is explored in explicit aqueous solution at 300 K using long time scale all-atom molecular dynamics simulations for a total simulation time of 1.1 mus. The system, initially modeled as an alpha-helix, preferentially adopts a beta-hairpin structure and several unfolding/refolding events are observed, yielding a very short average beta-hairpin folding time of approximately 200 ns. The long time scale accessed by our simulations and the reversibility of the folding allow to properly explore the configurational space of the peptide in solution. The free energy profile, as a function of the principal components (essential eigenvectors) of motion, describing the main conformational transitions, shows the characteristic features of a funneled landscape, with a downhill surface toward the beta-hairpin folded basin. However, the analysis of the peptide thermodynamic stability, reveals that the beta-hairpin in solution is rather unstable. These results are in good agreement with several experimental evidences, according to which the isolated H1 peptide adopts very rapidly in water beta-sheet structure, leading to amyloid fibril precipitates [Nguyen et al., Biochemistry 1995;34:4186-4192; Inouye et al., J Struct Biol 1998;122:247-255]. Moreover, in this article we also characterize the diffusion behavior in conformational space, investigating its relations with folding/unfolding conditions. Copyright 2005 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Sheridan, Thomas B., Ed.; And Others
This document attempts to identify and promote human factors research that would likely produce results applicable to the evolutionary design of a National Aeronautics and Space Administration (NASA) national space station to be launched in the 1990s. It reports on a symposium designed to yield information applicable to future space systems. The…
Plant productivity in controlled environments
NASA Technical Reports Server (NTRS)
Salisbury, F. B.; Bugbee, B.
1988-01-01
To assess the cost and area/volume requirements of a farm in a space station or Lunar or Martian base, a few laboratories in the United States, the Soviet Union, France, and Japan are studying optimum controlled environments for the production of selected crops. Temperature, light, photoperiod, CO2, humidity, the root-zone environment, and cultivars are the primary factors being manipulated to increase yields and harvest index. Our best wheat yields on a time basis (24 g m-2 day-1 of edible biomass) are five times good field yields and twice the world record. Similar yields have been obtained in other laboratories with potatoes and lettuce; soybeans are also promising. These figures suggest that approximately 30 m2 under continuous production could support an astronaut with sufficient protein and about 2800 kcal day-1. Scientists under Iosif Gitelzon in Krasnoyarsk, Siberia, have lived in a closed system for up to 5 months, producing 80% of their own food. Thirty square meters for crops were allotted to each of the two men taking part in the experiment. A functional controlled-environment life-support system (CELSS) will require the refined application of several disciplines: controlled-environment agriculture, food preparation, waste disposal, and control-systems technology, to list only the broadest categories. It has seemed intuitively evident that ways could be found to prepare food, regenerate plant nutrients from wastes, and even control and integrate several subsystems of a CELSS. But could sufficient food be produced in the limited areas and with the limited energy that might be available? Clearly, detailed studies of food production were necessary.
Plant productivity in controlled environments.
Salisbury, F B; Bugbee, B
1988-04-01
To assess the cost and area/volume requirements of a farm in a space station or Lunar or Martian base, a few laboratories in the United States, the Soviet Union, France, and Japan are studying optimum controlled environments for the production of selected crops. Temperature, light, photoperiod, CO2, humidity, the root-zone environment, and cultivars are the primary factors being manipulated to increase yields and harvest index. Our best wheat yields on a time basis (24 g m-2 day-1 of edible biomass) are five times good field yields and twice the world record. Similar yields have been obtained in other laboratories with potatoes and lettuce; soybeans are also promising. These figures suggest that approximately 30 m2 under continuous production could support an astronaut with sufficient protein and about 2800 kcal day-1. Scientists under Iosif Gitelzon in Krasnoyarsk, Siberia, have lived in a closed system for up to 5 months, producing 80% of their own food. Thirty square meters for crops were allotted to each of the two men taking part in the experiment. A functional controlled-environment life-support system (CELSS) will require the refined application of several disciplines: controlled-environment agriculture, food preparation, waste disposal, and control-systems technology, to list only the broadest categories. It has seemed intuitively evident that ways could be found to prepare food, regenerate plant nutrients from wastes, and even control and integrate several subsystems of a CELSS. But could sufficient food be produced in the limited areas and with the limited energy that might be available? Clearly, detailed studies of food production were necessary.
Spatial cue reliability drives frequency tuning in the barn Owl's midbrain
Cazettes, Fanny; Fischer, Brian J; Pena, Jose L
2014-01-01
The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067
Jet plume injection and combustion system for internal combustion engines
Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.
1993-12-21
An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.
Jet plume injection and combustion system for internal combustion engines
Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.
1993-01-01
An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.
NASA Technical Reports Server (NTRS)
Uman, M. A.; Mclain, D. K.
1972-01-01
The measured electric field intensities of 161 lightning strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the lightning channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of lightning properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of lightning analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.
Exploring the biophysical option space for feeding the world without deforestation.
Erb, Karl-Heinz; Lauk, Christian; Kastner, Thomas; Mayer, Andreas; Theurl, Michaela C; Haberl, Helmut
2016-04-19
Safeguarding the world's remaining forests is a high-priority goal. We assess the biophysical option space for feeding the world in 2050 in a hypothetical zero-deforestation world. We systematically combine realistic assumptions on future yields, agricultural areas, livestock feed and human diets. For each scenario, we determine whether the supply of crop products meets the demand and whether the grazing intensity stays within plausible limits. We find that many options exist to meet the global food supply in 2050 without deforestation, even at low crop-yield levels. Within the option space, individual scenarios differ greatly in terms of biomass harvest, cropland demand and grazing intensity, depending primarily on the quantitative and qualitative aspects of human diets. Grazing constraints strongly limit the option space. Without the option to encroach into natural or semi-natural land, trade volumes will rise in scenarios with globally converging diets, thereby decreasing the food self-sufficiency of many developing regions.
Asteroid age distributions determined by space weathering and collisional evolution models
NASA Astrophysics Data System (ADS)
Willman, Mark; Jedicke, Robert
2011-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.
A framed, 16-image Kirkpatrick–Baez x-ray microscope
Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; ...
2017-09-08
A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less
A framed, 16-image Kirkpatrick–Baez x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.
A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less
Simplified analysis and optimization of space base and space shuttle heat rejection systems
NASA Technical Reports Server (NTRS)
Wulff, W.
1972-01-01
A simplified radiator system analysis was performed to predict steady state radiator system performance. The system performance was found to be describable in terms of five non-dimensional system parameters. The governing differential equations are integrated numerically to yield the enthalpy rejection for the coolant fluid. The simplified analysis was extended to produce the derivatives of the coolant exit temperature with respect to the governing system parameters. A procedure was developed to find the optimum set of system parameters which yields the lowest possible coolant exit temperature for either a given projected area or a given total mass. The process can be inverted to yield either the minimum area or the minimum mass, together with the optimum geometry, for a specified heat rejection rate.
Crop status evaluations and yield predictions
NASA Technical Reports Server (NTRS)
Haun, J. R.
1976-01-01
One phase of the large area crop inventory project is presented. Wheat yield models based on the input of environmental variables potentially obtainable through the use of space remote sensing were developed and demonstrated. By the use of a unique method for visually qualifying daily plant development and subsequent multifactor computer analyses, it was possible to develop practical models for predicting crop development and yield. Development of wheat yield prediction models was based on the discovery that morphological changes in plants are detected and quantified on a daily basis, and that this change during a portion of the season was proportional to yield.
NASA Technical Reports Server (NTRS)
Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.
1997-01-01
Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control (normal gravity) MIC values will be generated by simultaneous inoculation and incubation of a second set of test cards in a laboratory at the launch site. This procedure can provide a safe and compact experiment that should yield new information on the affects of microgravity on the biological activities of various classes of antibiotics.
Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen
2018-05-01
The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hadipriono, Fabian C.; Diaz, Carlos F.; Merritt, Earl S.
1989-01-01
The research project results in a powerful yet user friendly CROPCAST expert system for use by a client to determine the crop yield production of a certain crop field. The study is based on the facts that heuristic assessment and decision making in agriculture are significant and dominate much of agribusiness. Transfer of the expert knowledge concerning remote sensing based crop yield production into a specific expert system is the key program in this study. A knowledge base consisting of a root frame, CROP-YIELD-FORECAST, and four subframes, namely, SATELLITE, PLANT-PHYSIOLOGY, GROUND, and MODEL were developed to accommodate the production rules obtained from the domain expert. The expert system shell Personal Consultant Plus version 4.0. was used for this purpose. An external geographic program was integrated to the system. This project is the first part of a completely built expert system. The study reveals that much effort was given to the development of the rules. Such effort is inevitable if workable, efficient, and accurate rules are desired. Furthermore, abundant help statements and graphics were included. Internal and external display routines add to the visual capability of the system. The work results in a useful tool for the client for making decisions on crop yield production.
AdS/QCD and Applications of Light-Front Holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Cao, Fu-Guang
2012-02-16
Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spinmore » and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less
Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned
NASA Technical Reports Server (NTRS)
Bliss, David A.
2006-01-01
The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.
MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.
2013-01-01
Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.
Demonstration of analyzers for multimode photonic time-bin qubits
NASA Astrophysics Data System (ADS)
Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas
2018-04-01
We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.
Grecca, Fabiana Soares; Rosa, Angela Rezende Gomes; Gomes, Maximiliano Schünke; Parolo, Clarissa Fatturi; Bemfica, Jules Renan Dutra; Frasca, Luis Carlos da Fontoura; Maltz, Marisa
2009-10-01
To evaluate the effect of timing (immediate versus delayed) and technique of post space preparation on the ability of the residual root canal obturation to prevent coronal bacterial leakage. Sixty-six single-rooted teeth were decoronated at the cementoenamel junction. The canals were prepared according to a step-back technique and were filled with thermoplasticized gutta-percha and AH Plus endodontic sealer (Dentsply De Trey). The root segments were randomly assigned to 8 groups. The positive controls (n = 3) were instrumented but not obturated. The negative controls (n = 3) were instrumented, obturated and sealed with Cavit (3M ESPE). In the other 6 groups (n = 10 each), the post space was prepared either immediately after obturation or 7 days later using LA Axxess burs (SybronEndo) (groups 1 and 2), heated pluggers (groups 3 and 4) or solvent delivered with a hand file (groups 5 and 6). The external surface of all roots was rendered waterproof with nail varnish. Custom-made dual-chamber devices were used to evaluate leakage. The coronal third of the prepared root canal was kept in contact with artificial saliva contaminated with Enterococcus faecalis, and the root apex was submerged in tryptic soy agar medium. The root assemblies were stored at 37 degrees C and were monitored daily over a 90-day period. The occurrence of turbidity in the medium was deemed to indicate bacterial leakage, from which failure of the seal was inferred. Throughout the experimental period, there was no significant difference (p = 0.094) among the preparation techniques, either immediate or delayed, in terms of bacterial leakage. Immediate and delayed post space preparation yielded similar outcomes in terms of the canal seal. Regardless of the timing and the technique of post space preparation, coronal bacterial leakage occurred over time.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
Calculations of steady and transient channel flows with a time-accurate L-U factorization scheme
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1991-01-01
Calculations of steady and unsteady, transonic, turbulent channel flows with a time accurate, lower-upper (L-U) factorization scheme are presented. The L-U factorization scheme is formally second-order accurate in time and space, and it is an extension of the steady state flow solver (RPLUS) used extensively to solve compressible flows. A time discretization method and the implementation of a consistent boundary condition specific to the L-U factorization scheme are also presented. The turbulence is described by the Baldwin-Lomax algebraic turbulence model. The present L-U scheme yields stable numerical results with the use of much smaller artificial dissipations than those used in the previous steady flow solver for steady and unsteady channel flows. The capability to solve time dependent flows is shown by solving very weakly excited and strongly excited, forced oscillatory, channel flows.
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.
2016-03-01
Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packetmore » in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.« less
Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas
2016-06-01
Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings. Copyright © 2016. Published by Elsevier B.V.
Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor
NASA Astrophysics Data System (ADS)
Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen
2018-02-01
We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the Voigt configuration. In these nonreciprocal optical phenomena, a "toroidal moment," α ×M , and a "quadrupole moment," αiMj+Miαj , play central roles. These phenomena are strongly enhanced at the spin-split transition edge in the electron band.
Electron Emission Properties of Insulator Materials Pertinent to the International Space Station
NASA Technical Reports Server (NTRS)
Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie
2004-01-01
We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.
Physically weighted approximations of unsteady aerodynamic forces using the minimum-state method
NASA Technical Reports Server (NTRS)
Karpel, Mordechay; Hoadley, Sherwood Tiffany
1991-01-01
The Minimum-State Method for rational approximation of unsteady aerodynamic force coefficient matrices, modified to allow physical weighting of the tabulated aerodynamic data, is presented. The approximation formula and the associated time-domain, state-space, open-loop equations of motion are given, and the numerical procedure for calculating the approximation matrices, with weighted data and with various equality constraints are described. Two data weighting options are presented. The first weighting is for normalizing the aerodynamic data to maximum unit value of each aerodynamic coefficient. The second weighting is one in which each tabulated coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. This weighting yields a better fit of the more important terms, at the expense of less important ones. The resulting approximate yields a relatively low number of aerodynamic lag states in the subsequent state-space model. The formulation forms the basis of the MIST computer program which is written in FORTRAN for use on the MicroVAX computer and interfaces with NASA's Interaction of Structures, Aerodynamics and Controls (ISAC) computer program. The program structure, capabilities and interfaces are outlined in the appendices, and a numerical example which utilizes Rockwell's Active Flexible Wing (AFW) model is given and discussed.
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Donald L. Reukema; J. Harry G. Smith
1987-01-01
Results of five spacing trials on the University of British Columbia Research Forest, covering a range of plantation spacings from 1 to 5 meters, showed that choice of initial spacing is among the most important factors influencing bole and crown development and stand growth and yield. The trials include Douglas-fir (Pseudotsuga menziesi), western...
Summary Report of Mission Acceleration Measurements for STS-89: Launched January 22, 1998
NASA Technical Reports Server (NTRS)
Hrovat, Kenneth; McPherson, Kevin
1999-01-01
Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed q I mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics and Space Administration's John H. Glenn Research Center.
Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it
We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi andmore » the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.« less
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan
2018-02-01
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln f) x and u = 2(ln f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.
NASA Technical Reports Server (NTRS)
Taff, L. G.; Beatty, D. E.; Yakutis, A. J.; Randall, P. M. S.
1985-01-01
The majority of work performed by the Lincoln Laboratory's Space Surveillance Group, at the request of NASA, to define the near-earth population of man-made debris is summarized. Electrooptical devices, each with a 1.2 deg FOV, were employed at the GEODSS facility in New Mexico. Details of the equipment calibration and alignment procedures are discussed, together with implementation of a synchronized time code for computer controlled videotaping of the imagery. Parallax and angular speed data served as bases for distinguishing between man-made debris and meteoroids. The best visibility was obtained in dawn and dusk twilight conditions at elevation ranges of 300-2000 km. Tables are provided of altitudinal density distribution of debris. It is noted that the program also yielded an extensive data base on meteoroid rates.
Spectrally-Based Assessment of Crop Seasonal Performance and Yield
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy
The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates
Theall, Katherine P; Felker-Kantor, Erica; Wallace, Maeve; Zhang, Xiao; Morrison, Christopher N; Wiebe, Douglas J
2018-06-01
Our understanding of how community-level context impacts care of persons living with HIV (PLWH), including antiretroviral therapy (ART) adherence and retention in care, is limited. The objective of this study was to characterize the activity spaces of PLWH from an urban area in Southeastern U.S., where the epidemic is among the nation's highest, and to examine how such activity spaces are associated with daily mood and health behaviors. In this small, pilot study, 11 participants were tracked with a global positioning system (GPS)-enabled application on their smartphones for 2 weeks. Activity spaces were created by connecting GPS points sequentially and adding buffers. Contextual exposure data (e.g., alcohol outlets) were connected to activity spaces. Participants also completed daily diary entry through texts 3 times per day regarding outcomes of substance use behaviors, mood, and medication adherence. This yielded a total of 18,007 GPS polyline records that we aggregated into 258 person-days that captured discrete occasions of exposure to contextual factors and subjects' behaviors and moods. On average, the participants spent 19% of their time awake during the 2-week periods in their residential census tract. Exposure to social and built environment factors such as alcohol outlets was greater when participants were outside versus inside their residential census tract. Exposures on daily routes were also significantly associated with ART adherence, alcohol consumption, and mood. Findings suggest substantial differences between activity spaces and residential contexts. Activity spaces are relevant for PLWH and may impact HIV care and behavioral outcomes such as ART adherence and substance use. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon
2016-05-01
The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.
Evolution of Space Shuttle Range Safety (RS) Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan D.
2011-01-01
Ascent flight envelopes are trajectories that define the normal operating region of a space vehicle s position from liftoff until the end of powered flight. They fulfill part of the RS data requirements imposed by the Air Force s 45th Space Wing (45SW) on space vehicles launching from the Eastern Range (ER) in Florida. The 45SW is chartered to protect the public by minimizing risks associated with the inherent hazards of launching a vehicle into space. NASA s Space Shuttle program has launched 130+ manned missions over a 30 year period from the ER. Ascent envelopes were delivered for each of those missions. The 45SW envelope requirements have remained largely unchanged during this time. However, the methodology and design processes used to generate the envelopes have evolved over the years to support mission changes, maintain high data quality, and reduce costs. The evolution of the Shuttle envelope design has yielded lessons learned that can be applied to future endevours. There have been numerous Shuttle ascent design enhancements over the years that have caused the envelope methodology to evolve. One of these Shuttle improvements was the introduction of onboard flight software changes implemented to improve launch probability. This change impacted the preflight nominal ascent trajectory, which is a key element in the RS envelope design. While the early Shuttle nominal trajectories were designed preflight using a representative monthly mean wind, the new software changes involved designing a nominal ascent trajectory on launch day using real-time winds. Because the actual nominal trajectory position was not known until launch day, the envelope analysis had to be customized to account for this nominal trajectory variation in addition to the other envelope components.
Biospecimen Retrieval from NASA's Rodent Research-1: Maximizing Science Return from Flight Missions
NASA Technical Reports Server (NTRS)
Choi, S. Y.; Chen, Y.- C.; Reyes, A.; Verma, V.; Dinh, M.; Globus, R. K.
2016-01-01
Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed to support long duration missions on the International Space Station. After 37 days in microgravity twenty mice were euthanized and frozen on orbit. Upon return to Earth the carcasses were dissected and yielded 32 different types of tissues from each mouse and over 3200 tissue aliquots. Many tissues were distributed to the Space Life and Physical Sciences (SLPS) Biospecimen Sharing Program (BSP) Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). A second round of dissections was performed to collect additional tissues from the remaining carcasses thawed for a second time for additional BSP PIs. Tissues retrieved included vaginal walls, aorta, pelvis, brown adipose tissue, tail, spine and forearms. Although the analyses are still in progress, some of the PIs have reported that the quality of the tissues was acceptable for their study. In a separate experiment we tested the RNA quality of the tissues that were dissected from frozen carcasses that were subjected to euthanasia, freezing, first and second thaw dissections. Timelines simulated the on-orbit RR-1 procedures to assess the quality of the tissues retrieved from the second thaw dissections. We analyzed the RIN values of select tissues including kidney, brain, white adipose tissue (WAT) and brown adipose tissue (BAT). Overall the RIN values from the second thaw were lower compared to those from the first by about a half unit; however, the tissues yielded RNA that are acceptable quality for some quantitative gene expression assays. Interestingly, RIN values of brain tissues were 8.4+/-0.6 and 7.9+/-0.7 from first and second round dissections, respectively (n=5). Kidney and WAT yielded RIN values less than 8 but they can still be used for qPCR. BAT yielded higher quality RNA (8.2+/-0.5) than WAT (5.22+/-0.9), possibly due to the high fat content. Together, these data show that select tissues can be utilized for gene expression studies even if they are retrieved from carcasses that were subjected to at least two freezing and thawing processes; this further expands science return from valuable and infrequent rodent experiments in space.
Biospecimen Retrieval from NASA's Rodent Research-1: Maximizing Science Return from Flight Missions
NASA Technical Reports Server (NTRS)
Choi, Sungshin Y.; Chen, Yi-Chun; Reyes, America; Verma, Vandana; Dinh, Marie; Globus, Ruth K.
2016-01-01
Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed to support long duration missions on the International Space Station. After 37 days in microgravity twenty mice were euthanized and frozen on orbit. Upon return to Earth the carcasses were dissected and yielded 32 different types of tissues from each mouse and over 3200 tissue aliquots. Many tissues were distributed to the Space Life and Physical Sciences (SLPS) Biospecimen Sharing Program (BSP) Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). A second round of dissections was performed to collect additional tissues from the remaining carcasses thawed for a second time for additional BSP PIs. Tissues retrieved included vaginal walls, aorta, pelvis, brown adipose tissue, tail, spine and forearms. Although the analyses are still in progress, some of the PIs have reported that the quality of the tissues was acceptable for their study. In a separate experiment we tested the RNA quality of the tissues that were dissected from frozen carcasses that were subjected to euthanasia, freezing, first and second thaw dissections. Timelines simulated the on-orbit RR-1 procedures to assess the quality of the tissues retrieved from the second thaw dissections. We analyzed the RIN values of select tissues including kidney, brain, white adipose tissue (WAT) and brown adipose tissue (BAT). Overall the RIN values from the second thaw were lower compared to those from the first by about a half unit; however, the tissues yielded RNA that are acceptable quality for some quantitative gene expression assays. Interestingly, RIN values of brain tissues were 8.4+/-0.6 and 7.9+/-0.7 from first and second round dissections, respectively (n5). Kidney and WAT yielded RIN values less than 8 but they can still be used for qPCR. BAT yielded higher quality RNA (8.2+/-0.5) than WAT (5.2+/-20.9), possibly due to the high fat content. Together, these data show that select tissues can be utilized for gene expression studies even if they are retrieved from carcasses that were subjected to at least two freezing and thawing processes; this further expands science return from valuable and infrequent rodent experiments in space.
Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft
NASA Technical Reports Server (NTRS)
Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.
2002-01-01
Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.
Propagative selection of tilted array patterns in directional solidification
NASA Astrophysics Data System (ADS)
Song, Younggil; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Karma, Alain
2018-05-01
We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional solidification of a binary alloy when a preferred-growth crystal axis is misoriented with respect to the temperature gradient. In situ experimental observations and phase-field simulations in thin samples reveal the existence of a propagative source-sink mechanism of array spacing selection that operates on larger space and time scales than the competitive growth at play during the initial solidification transient. For tilted arrays, tertiary branching at the diverging edge of the sample acts as a source of new cells with a spacing that can be significantly larger than the initial average spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields a uniform spacing everywhere, selected independently of the initial conditions, except in a small region near the converging edge of the sample, which acts as a sink of cells. We propose a discrete geometrical model that describes the large-scale evolution of the spatial spacing profile based on the local dependence of the cell drift velocity on the spacing. We also derive a nonlinear advection equation that predicts the invasion velocity of the large-spacing domain, and sheds light on the fundamental nature of this process. The models also account for more complex spacing modulations produced by an irregular dynamics at the source, in good quantitative agreement with both phase-field simulations and experiments. This basic knowledge provides a theoretical basis to improve the processing of single crystals or textured polycrystals for advanced materials.
Wavelet analysis of stellar differential rotation. III. The Sun in white light
NASA Astrophysics Data System (ADS)
Hempelmann, A.
2003-02-01
Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.
A proposal for epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.
NASA Astrophysics Data System (ADS)
Chaves, E. J.; Lay, T.; Voytan, D. P.
2017-12-01
On 3 September 2017, the Republic of North Korea conducted the sixth and largest declared underground nuclear test at the Punggye-ri test site. Estimates of yield (W) based on magnitude-yield calibrations for other test sites result in a wide range of yield estimates for the North Korean tests, due to uncertainty in the effects of site-specific coupling, likely overburial of the events, and poorly constrained crustal and mantle attenuation for the test site. The event produced good signal-to-noise broadband (BB) teleseismic P wave recordings at hundreds of stations along with high quality regional recordings. When using teleseismic data, robust estimation of W and depth of burial (DOB) must account for the biasing effects of laterally varying upper mantle attenuation (t*) on P waves, so we empirically determine a best choice of average t* by modeling remote observations. We assume a Mueller-Murphy source model for a granite medium to address the coupling issue. We compute synthetic Reduced Velocity Potential (RVP) seismograms for varying combinations of W and DOB for the 2017 event for a simple half-space case to account for possible overburial effects. RVPs are convolved with Futterman, constant operators, corrected for geometric spreading and receiver function, and then compared with teleseismic P wave displacement records from 435 BB seismic stations, pre-stacked in 26 azimuth and distance bins to suppress station effects. Our preliminary results for half-space modeling give high average cross-correlations and low waveform misfit errors between synthetic and observed waveforms for W of 110-130 kt with DOB 700-800 m and a preferred t* = 0.98 s. For the Mueller-Murphy model we find that frequency-dependent absorption band models are not preferred for this test site. Ongoing analysis is exploring effects of receiver crustal layering. Furthermore, we characterize the explosion source time function using the vertical component Pn-waves from regional BB recordings. We correct for attenuation, site and path effects using the lower yield nuclear tests carried out in 2016, 2013 and 2009 as empirical Green's functions. The deconvolved relative source functions exhibit a complex time sequence, with a second peak possibly related to a deviatoric source activated during the large explosion.
Probability Forecasting Using Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Duncan, M.; Frisbee, J.; Wysack, J.
2014-09-01
Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a collision probability distribution given known, predicted uncertainty. This paper presents the details of the collision probability forecasting method. We examine various conjunction event scenarios and numerically demonstrate the utility of this approach in typical event scenarios. We explore the utility of a probability-based track scenario simulation that models expected tracking data frequency as the tasking levels are increased. The resulting orbital uncertainty is subsequently used in the forecasting algorithm.
NASA Technical Reports Server (NTRS)
Johnson, James E.; Conley, Cassie; Siegel, Bette
2015-01-01
As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.
Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta
2016-01-01
In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi). PMID:27227880
Ten-Year Results in a Cottonwood Plantation Spacing Study
R. M. Krinard; Robert L. Johnson
1975-01-01
During the first 10 years, unthinned cottonwood planted at four spacings grew from 2.8 to 3.4 cords per acre per year in trees 5.0 inches in d.b.h. and larger. Two basal area controlled thinning treatments did not increase yields. Initial spacings were 4 by 9, 8 by 9, 12 by 12, and 16 by 18 feet on Commerce-Convent soils. Only trees at the widest spacing averaged an...
2D DOST based local phase pattern for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.
3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna
2012-06-01
We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177 and 12328.
Sweetpotato vine management for confined food production in a space life-support system
NASA Astrophysics Data System (ADS)
Massa, Gioia D.; Mitchell, Cary A.
2012-01-01
Sweetpotato (Ipomea batatas L.) 'Whatley-Loretan' was developed for space life support by researchers at Tuskegee University for its highly productive, nutritious storage roots. This promising candidate space life-support crop has a sprawling habit and aggressive growth rate in favorable environments that demands substantial growing area. Shoot pruning is not a viable option for vine control because removal of the main shoot apex drastically inhibits storage-root initiation and development, and chemical growth retardants typically are not cleared for use with food crops. As part of a large effort by the NASA Specialized Center of Research and Training in Advanced Life Support to reduce equivalent system mass (ESM) for food production in space, the dilemma of vine management for sweetpotato was addressed in effort to conserve growth area without compromising root yield. Root yields from unbranched vines trained spirally around wire frames configured either in the shapes of cones or cylinders were similar to those from vines trained horizontally along the bench, but occupying only a small fraction of the bench area. This finding indicates that sweetpotato is highly adaptable to a variety of vine-training architectures. Planting a second plant in the growth container and training the two vines in opposite directions around frames enhanced root yield and number, but had little effect on average length of each vine or bench area occupied. Once again, root yields were similar for both configurations of wire support frames. The 3-4-month crop-production cycles for sweetpotato in the greenhouse spanned all seasons of multiple years during the course of the study, and although electric lighting was used for photoperiod control and to supplement photosynthetic light during low-light seasons, there still were differences in total light available across seasons. Light variations and other environmental differences among experiments in the greenhouse had more effects on vine length than on root yield. Average vine length correlated positively with total hours of daylight received across seasons, and responses for one plant per container were higher above a threshold duration of solar exposure, suggesting that the vines of two plants per container compete for available light. In addition to the adaptability of sweetpotato to various vine-training architectures and across seasons in terms of maintaining root productivity, the open, interior volumes of the support frames tested in this study will provide future opportunity to enhance sweetpotato root yield in space by adding novel interior lighting, such as from intracanopy arrays of light-emitting diodes. This work was sponsored by NASA grant NAG 5 1286.
NASA Technical Reports Server (NTRS)
Lupton, J. E.
1972-01-01
An analytic solution was obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events were observed with solar and galactic cosmic ray experiment aboard OGO 6. Detailed comparisons of the predictions of the solution with observations of 1 to 70 MeV protons show that the model adequately describes both the rise and decay times. The solution also yields a time evolution for the vector anisotropy which agrees well with reported observations.
Coherent spin transport through a 350 micron thick silicon wafer.
Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian
2007-10-26
We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.
Acceleration of pH variation in cloudy apple juice using electrodialysis with bipolar membranes.
Lam Quoc, A; Lamarche, F; Makhlouf, J
2000-06-01
The purpose of this study was to accelerate pH variation in cloudy apple juice using electrodialysis (ED). The testing was conducted using two ED configurations. The bipolar and cationic membrane configuration showed that reducing the spacing from 8 to 0.75 mm had little effect on treatment time, whereas stacking eight bipolar membranes reduced acidification time by 30%, although the treatment still took too long (21 min). Furthermore, it was not possible to acidify apple juice to a pH of 2.0 to completely inhibit enzymatic browning. The bipolar and anionic membrane configuration helped to accelerate the acidification step by a factor of 3, increasing the yield from 3.3 to 10 L of juice/m(2) membrane/min. Moreover, treatment time was inversely proportional to the size of the membrane stack. The speed at which the pH of acidified juice returned to its initial value was, however, 4 times slower than the speed of acidification, giving a yield of 2.5 L of juice/m(2) membrane/min. By accelerating the acidification step, ED treatment with bipolar and anionic membranes results in more effective polyphenol oxidase activity and more rapid control of juice browning at pH 2.0. Also, the treatment has very little effect on the chemical composition and organoleptic quality of apple juice.
On the diffusion of sound in an auditorium
NASA Astrophysics Data System (ADS)
Harris, Cyril M.
2005-09-01
A condition of perfect diffusion of sound is said to exist in an auditorium if, at any point within it, the reverberant sound travels in all directions with equal probability, and if the level of the reflected sound is everywhere equal. In deriving the reverberation time formula, which predicts how long sound will bounce around an enclosed space after the source has stopped, W.C. Sabine assumed perfect diffusion within it. When this is not the case, his formula may predict inaccurate results. For example, the Sabine equation will not give correct results in an auditorium with poor diffusion, as when there is a large overhanging balcony, or if one of the dimensions of the enclosed space is very much greater than the other dimensions, or if the auditorium is divided into spaces having different acoustical properties. An auditorium with excellent diffusion beneficially affects the uniformity of decay of sound within the space and pleases the listener's ear. Among techniques that contribute to good diffusion are the surface irregularities found in the elaborate styles of architecture of the past. Illustrations will be presented showing some approaches within the modern architectural idiom that have yielded successful results.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Main, M L; Foltz, D; Firstenberg, M S; Bobinsky, E; Bailey, D; Frantz, B; Pleva, D; Baldizzi, M; Meyers, D P; Jones, K; Spence, M C; Freeman, K; Morehead, A; Thomas, J D
2000-08-01
With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.
NASA Technical Reports Server (NTRS)
Main, M. L.; Foltz, D.; Firstenberg, M. S.; Bobinsky, E.; Bailey, D.; Frantz, B.; Pleva, D.; Baldizzi, M.; Meyers, D. P.; Jones, K.;
2000-01-01
With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. METHODS: We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. RESULTS: At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. CONCLUSIONS: Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.
Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories.
Vitalis, Andreas; Caflisch, Amedeo
2012-03-13
The coarse-graining of data from molecular simulations yields conformational space networks that may be used for predicting the system's long time scale behavior, to discover structural pathways connecting free energy basins in the system, or simply to represent accessible phase space regions of interest and their connectivities in a two-dimensional plot. In this contribution, we present a tree-based algorithm to partition conformations of biomolecules into sets of similar microstates, i.e., to coarse-grain trajectory data into mesostates. On account of utilizing an architecture similar to that of established tree-based algorithms, the proposed scheme operates in near-linear time with data set size. We derive expressions needed for the fast evaluation of mesostate properties and distances when employing typical choices for measures of similarity between microstates. Using both a pedagogically useful and a real-word application, the algorithm is shown to be robust with respect to tree height, which in addition to mesostate threshold size is the main adjustable parameter. It is demonstrated that the derived mesostate networks can preserve information regarding the free energy basins and barriers by which the system is characterized.
Examination of time series through randomly broken windows. [space observations from earth
NASA Technical Reports Server (NTRS)
Sturrock, P. A.
1980-01-01
The effect of irregular interruption of data collection (the breaking of the window function) on the spectrum determination of a time series is investigated. It is assumed that there is a uniform probability p that each interval of length tau, of the total interval of length T = tau, yields no data. For the linear case (Fourier transform) it is found that the noise to signal ratio has a (one sigma) value less than epsilon if N exceeds p(-1) (1-p) epsilon (-2). For the quadratic case, the same requirement is met by the less restrictive requirement that N exceed p(-1) (1-p) epsilon (-1). It appears that, if four observatories spaced around the Earth were to operate for 25 days, each for six hours a day (N = 100), and if the probability of cloud cover at any site on any day is 20% (p = 0.8), the r.m.s. noise to signal ratio is 0.25% for frequencies displaced from a sharp strong signal by 15 micro Hz. The noise to signal ratio drops off rapidly if the frequency offset exceeds 15 micro Hz.
Detrending the realized volatility in the global FX market
NASA Astrophysics Data System (ADS)
Schmidt, Anatoly B.
2009-05-01
There has been growing interest in realized volatility (RV) of financial assets that is calculated using intra-day returns. The choice of optimal time grid for these calculations is not trivial and generally requires analysis of RV dependence on the grid spacing (so-called RV signature). Typical RV signatures have a maximum at the finest time grid spacing available, which is attributed to the microstructure effects. This maximum decays into a plateau at lower frequencies, which implies (almost) stationary return variance. We found that the RV signatures in the modern global FX market may have no plateau or even have a maximum at lower frequencies. Simple averaging methods used to address the microstructure effects in equities have no practical effect on the FX RV signatures. We show that local detrending of the high-frequency FX rate samples yields RV signatures with a pronounced plateau. This implies that FX rates can be described with a Brownian motion having non-stationary trend and stationary variance. We point at a role of algorithmic trading as a possible cause of micro-trends in FX rates.
The dissimilarity of species interaction networks.
Poisot, Timothée; Canard, Elsa; Mouillot, David; Mouquet, Nicolas; Gravel, Dominique
2012-12-01
In a context of global changes, and amidst the perpetual modification of community structure undergone by most natural ecosystems, it is more important than ever to understand how species interactions vary through space and time. The integration of biogeography and network theory will yield important results and further our understanding of species interactions. It has, however, been hampered so far by the difficulty to quantify variation among interaction networks. Here, we propose a general framework to study the dissimilarity of species interaction networks over time, space or environments, allowing both the use of quantitative and qualitative data. We decompose network dissimilarity into interactions and species turnover components, so that it is immediately comparable to common measures of β-diversity. We emphasise that scaling up β-diversity of community composition to the β-diversity of interactions requires only a small methodological step, which we foresee will help empiricists adopt this method. We illustrate the framework with a large dataset of hosts and parasites interactions and highlight other possible usages. We discuss a research agenda towards a biogeographical theory of species interactions. © 2012 Blackwell Publishing Ltd/CNRS.
Space experiments with particle accelerators
NASA Technical Reports Server (NTRS)
Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Roberts, W. T.; Chappell, C. R.; Reasoner, D. L.; Garriott, O. K.;
1984-01-01
Electron and plasma beams and neutral gas plumes were injected into the space environment by instruuments on Spacelab 1, and various diagnostic measurements including television camera observations were performed. The results yield information on vehicle charging and neutralization, beam-plasma interactions, and ionization enhancement by neutral beam injection.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Groh, Kim De; Kneubel, Christian A.
2014-01-01
A space experiment flown as part of the Materials International Space Station Experiment 6B (MISSE 6B) was designed to compare the atomic oxygen erosion yield (Ey) of layers of Kapton H polyimide with no spacers between layers with that of layers of Kapton H with spacers between layers. The results were compared to a solid Kapton H (DuPont, Wilmington, DE) sample. Monte Carlo computational modeling was performed to optimize atomic oxygen interaction parameter values to match the results of both the MISSE 6B multilayer experiment and the undercut erosion profile from a crack defect in an aluminized Kapton H sample flown on the Long Duration Exposure Facility (LDEF). The Monte Carlo modeling produced credible agreement with space results of increased Ey for all samples with spacers as well as predicting the space-observed enhancement in erosion near the edges of samples due to scattering from the beveled edges of the sample holders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, M.; McLeod, R.; Young, Q.
Pneumocystis pneumonia presented in a homosexual with fever, a normal chest radiograph, and pulmonary gallium uptake. Bronchial washings yielded Mycobaterium tuberculosis, but despite antituberculosis therapy he remained febrile, and gallium uptake in the lung increased. Subsequently, silver stain of transbronchial lung biopsy obtained 2 months earlier at the time that tuberculosis was diagnosed showed many Pneumocystis cysts in alveolar spaces. In contrast to Pneumocystis cysts in infected lung tissue from other humans, our patient's Pneumocystis cysts reacted more avidly with antiserum to rat Pneumocystis than with antiserum to human pneumocystis, raising the possibility that organisms that infect humans may havemore » varied surface antigenic properties.« less
NASA Technical Reports Server (NTRS)
Baker, V. R.
1985-01-01
Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.
Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space
NASA Technical Reports Server (NTRS)
Davidson, R. E.
1972-01-01
A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
Further two-dimensional code development for Stirling space engine components
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
Sounding rockets shot from the Shuttle
NASA Technical Reports Server (NTRS)
Cruddace, R.; Fritz, G.; Glaab, J.; Shrewsberry, D.
1985-01-01
The Space Shuttle-launched sounding rocket Spartan-1 will map the structure of two extended X-ray sources: the hot gas pervading the Perseus cluster of galaxies, and the central core of the Milky Way. Spartan-1 contains two large X-ray proportional counter detectors sensitive to the 1-15 A wavelength range. A new generation of instruments destined for X-ray telescope focal planes will yield high resolution imaging and spectroscopy, over observation times sometimes exceeding one day/source, in the course of a long-term Spartan research program that will encompass planetary, solar, and UV astronomy missions.
Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, inmore » an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.« less
Proton Form Factors Measurements in the Time-Like Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anulli, F.; /Frascati
2007-10-22
I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related tomore » the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.« less
[Effect of space flight on yield of Monascus purpureus].
Yin, Hong; Xie, Shen-yi; Zhang, Guang-ming; Xie, Shen-meng
2003-10-01
To select high Lovastatin-producing microbial breed by space flight. Monascus purpureus species was carried into space by the recoverable spaceship, "Shenzhou 3". After flight, the strain was rejuvenized, segregated and selected. The content of Lovastatin produced in the solid fermentation was examined. Mutants with high productivity of Lovastatin were obtained. A series of tests showed that the acquired character of the mutants was stable. Space flight is an effective method for the selection of fine strains.
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.
Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel
2018-06-01
A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.
Super Dwarf Wheat for Growth in Confined Spaces
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2011-01-01
USU-Perigee is a dwarf red spring wheat that is a hybrid of a high-yield early tall wheat (USU-Apogee) and a low-yield, extremely short wheat that has poor agronomic characteristics. USU-Perigee was selected for its extremely short height (.0.3 m) and high yield . characteristics that make it suitable for growth in confined spaces in controlled environments. Other desirable characteristics include rapid development and resistance to a leaf-tip necrosis, associated with calcium deficiency, that occurs in other wheat cultivars under rapid-growth conditions (particularly, continuous light). Heads emerge after only 21 days of growth in continuous light at a constant temperature of 25 C. In tests, USU-Perigee was found to outyield other full dwarf (defined as <0.4 m tall) wheat cultivars: The yield advantage at a constant temperature of 23 C was found to be about 30 percent. Originally intended as a candidate food crop to be grown aboard spacecraft on long missions, this cultivar could also be grown in terrestrial growth chambers and could be useful for plant-physiology and -pathology studies.
NASA Astrophysics Data System (ADS)
Elfasi, Roei; Elimelech, Yossef; Gat, Amir D.
2018-04-01
This work examines the effect of hydrodynamic interaction between two closely spaced waving elastic filaments on the propulsion and maneuvering of an artificial microswimmer. The filaments are actuated by a forced oscillation of the slope at their clamped end and are free at the opposite end. We obtain an expression for the interaction force and apply an asymptotic expansion based on a small parameter representing the ratio between the elastic deflections and the distance between the filaments. The leading-order interaction forces yield asymmetric oscillation patterns at the two frequencies (ω1,ω2 ) in which the filaments are actuated. Higher orders oscillate at frequencies which are combinations of the actuation frequencies, where the first order includes the 2 ω1,2 ω2,ω1+ω2 , and ω1-ω2 harmonics. For configurations with ω1≈ω2 , the ω1-ω2 mode represents the dominant first-order interaction effect due to significantly smaller effective Sperm number. For in-phase actuation with ω1=ω2 , the deflection dynamics are identical to an isolated filament with a modified Sperm number. Phase difference between the filaments is shown to have significant effect on the time-averaged forces. Optimal Sperm numbers for in-phase and antiphase actuation are calculated. Turning moments due to phase difference between the filaments are presented, yielding optimal maneuvering for phase of 90∘. Calculation of the effect of hydrodynamic interaction on the propulsive forces yielded that antiphase beating is more efficient than the in-phase scenario, in contrast with the commonly used assumption of maximal efficiency of the synchronized state. Experiments are conducted to verify and illustrate some of the theoretical predictions.
Pattern Formation in Complex Fluids
NASA Astrophysics Data System (ADS)
Shelley, Michael
2000-03-01
Classical fluid instabilities -- such as the Saffman-Taylor instability in a Hele-Shaw cell -- are dramatically modified by using complex fluids. For example, polymeric liquids driven in a Hele-Shaw cell yield "dendritic" patterns with an apparent directional anisotropy. The dynamics of complex liquids can also lead to new instabilities and patterns, such as space-filling patterns formed by successive bucklings of growing "elastica" seen in the phase transition of a liquid crystalline material. Understanding such problems requires an interplay between physical modeling, mathematical analysis, and sophisticated nonlinear simulation. For the first problem, I will discuss a non-Newtonian version of Darcy's law for Hele-Shaw flow. This yields a free-boundary problem for the pattern formation, and requires the solution of a nonlinear elliptic equation in a time-dependent domain. This is pushing the development of adaptive grid methods that represent the geometry accurately and efficiently. Our simulations yield insight into how shear-thinning, as is evinced by polymeric liquids, can produce patterns reminiscent of experiment, with "dendritic fingers", side-branching, and reduced tip-splitting. In the second problem, a long filament in a smectic-A phase grows within an isotropic fluid. The splay deformation of the material gives this filament an elastic response. The macroscopic model describes the dynamics of a growing, elastic filament immersed in a Stokesian fluid. The model marries filament elasticity and tensile forces with a numerically tractable nonlocal slender-body theory. Analysis shows that growth of the filament, despite fluid drag, produces a buckling instability. When coupled to a nonlocal hydrodynamic self-interaction, our fully nonlinear simulations show that such instabilities iterate along the filament, and give "space-filling" patterns.
Cartesian control of redundant robots
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1989-01-01
A Cartesian-space position/force controller is presented for redundant robots. The proposed control structure partitions the control problem into a nonredundant position/force trajectory tracking problem and a redundant mapping problem between Cartesian control input F is a set member of the set R(sup m) and robot actuator torque T is a set member of the set R(sup n) (for redundant robots, m is less than n). The underdetermined nature of the F yields T map is exploited so that the robot redundancy is utilized to improve the dynamic response of the robot. This dynamically optimal F yields T map is implemented locally (in time) so that it is computationally efficient for on-line control; however, it is shown that the map possesses globally optimal characteristics. Additionally, it is demonstrated that the dynamically optimal F yields T map can be modified so that the robot redundancy is used to simultaneously improve the dynamic response and realize any specified kinematic performance objective (e.g., manipulability maximization or obstacle avoidance). Computer simulation results are given for a four degree of freedom planar redundant robot under Cartesian control, and demonstrate that position/force trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed controller.
Liu, Zhi-Qiang; Hu, Zhong-Liang; Zhang, Xiao-Jian; Tang, Xiao-Ling; Cheng, Feng; Xue, Ya-Ping; Wang, Ya-Jun; Wu, Lin; Yao, Dan-Kai; Zhou, Yi-Teng; Zheng, Yu-Guo
2017-05-01
To biosynthesize the (3R,5S)-CDHH in an industrial scale, a newly synthesized stereoselective short chain carbonyl reductase (SCR) was successfully cloned and expressed in Escherichia coli. The fermentation of recombinant E. coli harboring SCR was carried out in 500 L and 5000 L fermenters, with biomass and specific activity of 9.7 g DCW/L, 15749.95 U/g DCW, and 10.97 g DCW/L, 19210.12 U/g DCW, respectively. The recombinant SCR was successfully applied for efficient production of (3R,5S)-CDHH. The scale-up synthesis of (3R,5S)-CDHH was performed in 5000 L bioreactor with 400 g/L of (S)-CHOH at 30°C, resulting in a space-time yield of 13.7 mM/h/g DCW, which was the highest ever reported. After isolation and purification, the yield and d.e. of (3R,5S)-CDHH reached 97.5% and 99.5%, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:612-620, 2017. © 2017 American Institute of Chemical Engineers.
Quantitative Assessment of the CCMC's Experimental Real-time SWMF-Geospace Results
NASA Astrophysics Data System (ADS)
Liemohn, Michael; Ganushkina, Natalia; De Zeeuw, Darren; Welling, Daniel; Toth, Gabor; Ilie, Raluca; Gombosi, Tamas; van der Holst, Bart; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz
2016-04-01
Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst, in particular the daily minimum value of Dst to quantify the ability of the model to capture storms. Contingency tables are presented, showing that the run with the inner magnetosphere model is much better at reproducing storm-time values. For disturbances with a minimum Dst lower than -50 nT, this version yields a probability of event detection of 0.86 and a Heidke Skill Score of 0.60. In the other version of the SWMF, without the inner magnetospheric module included, the modeled Dst never dropped below -50 nT during the examined epoch.
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao
2018-02-01
Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.
Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen
2011-01-01
An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797
Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen
2011-10-01
An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.
Real-Time Mapping Spectroscopy on the Ground, in the Air, and in Space
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Allwood, A.; Chien, S.; Green, R. O.; Wettergreen, D. S.
2016-12-01
Real-time data interpretation can benefit both remote in situ exploration and remote sensing. Basic analyses at the sensor can monitor instrument performance and reveal invisible science phenomena in real time. This promotes situational awareness for remote robotic explorers or campaign decision makers, enabling adaptive data collection, reduced downlink requirements, and coordinated multi-instrument observations. Fast analysis is ideal for mapping spectrometers providing unambiguous, quantitative geophysical measurements. This presentation surveys recent computational advances in real-time spectroscopic analysis for Earth science and planetary exploration. Spectral analysis at the sensor enables new operations concepts that significantly improve science yield. Applications include real-time detection of fugitive greenhouse emissions by airborne monitoring, real-time cloud screening and mineralogical mapping by orbital spectrometers, and adaptive measurement by the PIXL instrument on the Mars 2020 rover. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Mohammad; Botter, Gianluca; Foufoula-Georgiou, Efi
2017-05-01
Lack of hydro-bio-chemical data at subcatchment scales necessitates adopting an aggregated system approach for estimating water and solute transport properties, such as residence and travel time distributions, at the catchment scale. In this work, we show that within-catchment spatial heterogeneity, as expressed in spatially variable discharge-storage relationships, can be appropriately encapsulated within a lumped time-varying stochastic Lagrangian formulation of transport. This time (variability) for space (heterogeneity) substitution yields mean travel times (MTTs) that are not significantly biased to the aggregation of spatial heterogeneity. Despite the significant variability of MTT at small spatial scales, there exists a characteristic scale above which the MTT is not impacted by the aggregation of spatial heterogeneity. Extensive simulations of randomly generated river networks reveal that the ratio between the characteristic scale and the mean incremental area is on average independent of river network topology and the spatial arrangement of incremental areas.
Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy
NASA Astrophysics Data System (ADS)
Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.
Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.
1997-11-15
The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center
Multicriteria evaluation of simulated logging scenarios in a tropical rain forest.
Huth, Andreas; Drechsler, Martin; Köhler, Peter
2004-07-01
Forest growth models are useful tools for investigating the long-term impacts of logging. In this paper, the results of the rain forest growth model FORMIND were assessed by a multicriteria decision analysis. The main processes covered by FORMIND include tree growth, mortality, regeneration and competition. Tree growth is calculated based on a carbon balance approach. Trees compete for light and space; dying large trees fall down and create gaps in the forest. Sixty-four different logging scenarios for an initially undisturbed forest stand at Deramakot (Malaysia) were simulated. The scenarios differ regarding the logging cycle, logging method, cutting limit and logging intensity. We characterise the impacts with four criteria describing the yield, canopy opening and changes in species composition. Multicriteria decision analysis was used for the first time to evaluate the scenarios and identify the efficient ones. Our results plainly show that reduced-impact logging scenarios are more 'efficient' than the others, since in these scenarios forest damage is minimised without significantly reducing yield. Nevertheless, there is a trade-off between yield and achieving a desired ecological state of logged forest; the ecological state of the logged forests can only be improved by reducing yields and enlarging the logging cycles. Our study also demonstrates that high cutting limits or low logging intensities cannot compensate for the high level of damage caused by conventional logging techniques.
Agribusiness and space: No limits to growth
NASA Technical Reports Server (NTRS)
Montgomery, O. L.; Paludan, C. T. N.
1984-01-01
Technological developments responding to world food needs are examined. It is noted that agribusiness technology has become more space-related in recent years. Although crops forecasting and improvements in yield (the green revolution) were developed prior to the space era, it would be unthinkable today to ignore the contributions of operational meteorological and communications satellites and experimental Earth observation satellites in agribusiness. Space-driven communications now permit national agribusiness database management networks, with a significant portion of the data being space-derived. In demonstration experiments, space communications were shown to improve those aspects of the food problem related to education and communications.
Ten Billion Years of Brightest Cluster Galaxy Alignments
NASA Astrophysics Data System (ADS)
West, Michael J.
2017-07-01
Astronomers long assumed that galaxies are randomly oriented in space. However, it's now clear that some have preferred orientations with respect to their surroundings. Chief among these are the giant ellipticals found at the centers of rich galaxy clusters, whose major axes are often aligned with those of their host clusters - a remarkable coherence of structures over millions of light years. A better understanding of these alignments can yield new insights into the processes that have shaped galaxies over the history of the universe. Using Hubble Space Telescope observations of high-redshift galaxy clusters, we show for the first time that such alignments are seen at epochs when the universe was only one-third its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
Investigating human cognitive performance during spaceflight
NASA Astrophysics Data System (ADS)
Pattyn, Nathalie; Migeotte, Pierre-Francois; Demaeseleer, Wim; Kolinsky, Regine; Morais, Jose; Zizi, Martin
2005-08-01
Although astronauts' subjective self-evaluation of cognitive functioning often reports impairments, to date most studies of human higher cognitive functions in space never yielded univocal results. Since no golden standard exists to evaluate the higher cognitive functions, we proposed to assess astronaut's cognitive performance through a novel series of tests combined with the simultaneous recording of physiological parameters. We report here the validation of our methodology and the cognitive results of this testing on the cosmonauts from the 11 days odISSsea mission to the ISS (2002) and on a control group of pilots, carefully matched to the characteristics of the subjects. For the first time, we show a performance decrement in higher cognitive functions during space flight. Our results show a significant performance decrement for inflight measurement, as well as measurable variations in executive control of cognitive functions. Taken together, our data establish the validity of our methodology and the presence of a different information processing in operational conditions.
Gauge invariance for a whole Abelian model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauca, J.; Doria, R.; Soares, W.
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less
Practical application of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Phelps, R. A.
1975-01-01
Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John; Schmitz, Eric; Hoff, William
1991-01-01
This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.
Peracetic acid as an alternative disinfection technology for wet weather flows.
Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M
2014-08-01
Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection.
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie
2004-01-01
In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.
2015-01-01
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442
NASA Astrophysics Data System (ADS)
Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.
2018-04-01
The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to capture the high variability in tropical streamflow. Taken together, results indicate that declines in MAR can have contrasting effects on hydrological processes in tropical watersheds, with consequences for instream ecology, downstream water users, and nearshore habitat.
Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon
2016-01-01
In this paper, we present an extended data-driven haptic rendering method capable of reproducing force responses during pushing and sliding interaction on a large surface area. The main part of the approach is a novel input variable set for the training of an interpolation model, which incorporates the position of a proxy - an imaginary contact point on the undeformed surface. This allows us to estimate friction in both sliding and sticking states in a unified framework. Estimating the proxy position is done in real-time based on simulation using a sliding yield surface - a surface defining a border between the sliding and sticking regions in the external force space. During modeling, the sliding yield surface is first identified via an automated palpation procedure. Then, through manual palpation on a target surface, input data and resultant force data are acquired. The data are used to build a radial basis interpolation model. During rendering, this input-output mapping interpolation model is used to estimate force responses in real-time in accordance with the interaction input. Physical performance evaluation demonstrates that our approach achieves reasonably high estimation accuracy. A user study also shows plausible perceptual realism under diverse and extensive exploration.
Toward a New Brewing Control Chart for the 21st Century.
Melrose, John; Roman-Corrochano, Borja; Montoya-Guerra, Marcela; Bakalis, Serafim
2018-04-23
This paper describes new results from a base model of brewing from a bed of packed coffee grains. The model solves for the diffusion of soluble species out of a distribution of particles into the flow through the bed pore space. It requires a limited set of input parameters. It gives a simple picture of the basic physics of coffee brewing and sets out a set of reduced variables for this process. The importance of bed extraction efficiency is elucidated. A coffee brewing control chart has been widely used to describe the region of ideal coffee brewing for some 50 years. A new chart is needed, however, one that connects actual brewing conditions (weight, flow rate, brew time, grind, etc.) to the yield and strength of brews. The paper shows a new approach to brewing control charts, including brew time and bed extraction efficiency as control parameters. Using the base model, an example chart will be given for a particular grind ratio of coarse to fine particles, and an "espresso regime" will be picked out. From such a chart yield, volume and strength of a brew can be read off at will.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehghani, M.H.; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Perimeter Institute for Theoretical Physics, 35 Caroline Street North, Waterloo, Ontario
We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions withmore » nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.« less
Multiple Beam Torus Antenna Study. Volume 2
1977-03-01
matezal around the feed horn aperture yields 60Amin - (2 - 4 OHP (5-36) The minimum beam spacing for the front-fed MBTA as a function of D/X with -10- and...members were included. Secondly, the structural stresses on mem - bers at the survival loads were checked. Any member exceeding the yield stress limit...or buckling stress criteria was stiffened accordingly. The yield stress for the backup truss and support mem - bers was azsnad to be 36,000 psi for A36
Twistor theory at fifty: from contour integrals to twistor strings
Atiyah, Michael; Mason, Lionel J.
2017-01-01
We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space–time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold—the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics—anti-self-duality equations on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang–Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose’s proposal for a role of gravity in quantum collapse of a wave function. PMID:29118667
An age-colour relationship for main-belt S-complex asteroids.
Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario
2004-05-20
Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1984-01-01
A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1981-01-01
A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.
International collaboration on Russian spacecraft and the case for free flyer biosatellites
NASA Technical Reports Server (NTRS)
Grindeland, Richard E.; Ilyin, Eugene A.; Holley, Daniel C.; Skidmore, Michael G.
2005-01-01
Animal research has been critical to the initiation and progress of space exploration. Animals were the original explorers of "space" two centuries ago and have played a crucial role by demonstrating that the space environment, with precautions, is compatible with human survival. Studies of mammals have yielded much of our knowledge of space physiology. As spaceflights to other planets are anticipated, animal research will continue to be essential to further reveal space physiology and to enable the longer missions. Much of the physiology data collected from space was obtained from the Cosmos (Bion) spaceflights, a series of Russian (Soviet)-International collaborative flights, over a 22 year period, which employed unmanned, free flyer biosatellites. Begun as a Soviet-only program, after the second flight the Russians invited American and other foreign scientists to participate. This program filled the 10 year hiatus between the last US biosatellite and the first animal experiments on the shuttles. Of the 11 flights in the Cosmos program nine of them were international; the flights continued over the years regardless of political differences between the Soviet Union and the Western world. The science evolved from sharing tissues to joint international planning and development, and from rat postmortem tissue analysis to in vivo measurements of a host of monkey physiological parameters during flight. Many types of biological specimens were carried on the modified Vostok spacecraft, but only the mammalian studies are discussed herein. The types of studies done encompass the full range of physiology and have begun to answer "critical" questions of space physiology posed by various ad hoc committees. The studies have not only yielded a prodigious and significant body of data, they have also introduced some new perspectives in physiology. A number of the physiological insights gained are relevant to physiology on Earth. The Cosmos flights also added significantly to flight-related technology, some of which also has application on our planet. In summary, the Cosmos biosatellite flights were extremely productive and of low cost. The Bion vehicles are versatile in that they can be placed into a variety of orbits and altitudes, and can carry radiation sources or other hazardous material which cannot be carried on manned vehicles. With recent advances in sensor, robotic, and data processing technology, future free flyers will be even more productive, and will largely preclude the need to fly animal experiments on manned vehicles. Currently, mammalian researchers do not have access to space for an unknown time, seriously impeding the advancement and understanding of space physiology during long duration missions. Initiation of a new, international program of free flyer biosatellites is critical to our further understanding of space physiology, and essential to continued human exploration of space.
Criteria for Yielding of Dispersion-Strengthened Alloys
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Lenel, F. V.
1960-01-01
A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.
Kinematic hardening of a porous limestone
NASA Astrophysics Data System (ADS)
Cheatham, J. B.; Allen, M. B.; Celle, C. C.
1984-10-01
A concept for a kinematic hardening yield surface in stress space for Cordova Cream limestone (Austin Chalk) developed by Celle and Cheatham (1981) has been improved using Ziegler's modification of Prager's hardening rule (Ziegler, 1959). Data to date agree with the formulated concepts. It is shown how kinematic hardening can be used to approximate the yield surface for a wide range of stress states past the initial yield surface. The particular difficulty of identifying the yield surface under conditions of unloading or extension is noted. A yield condition and hardening rule which account for the strain induced anisotropy in Cordova Cream Limestone were developed. Although the actual yield surface appears to involve some change of size and shape, it is concluded that true kinematic hardening provides a basis for engineering calculations.
NASA Astrophysics Data System (ADS)
Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.
2008-09-01
Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space. We analysed the hourly changes and the daily light/dark trend in the maximum quantum yield of PSII photochemistry, Fv/Fm (Fig.2). Some physiological parameters that characterize the post-flight effect on algae viability and photosynthetic performance were also determined. The dose and particle flux during Foton-M3 flight were monitored in real time by the active spectrum-dosimeter Liulin- Photo, mounted on the top of Photo-II fluorimeter (Fig.2). Liulin-Photo measurements provided information on the amount of the energy released on the samples and the quality of the incident ionizing radiation [3]. The space flight results in relationship with the ground control simulation are discussed.
NASA Astrophysics Data System (ADS)
Foster, B. K.; Beese, A. M.; Keist, J. S.; McHale, E. T.; Palmer, T. A.
2017-09-01
Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.
Hyperconnectivity, Attribute-Space Connectivity and Path Openings: Theoretical Relationships
NASA Astrophysics Data System (ADS)
Wilkinson, Michael H. F.
In this paper the relationship of hyperconnected filters with path openings and attribute-space connected filters is studied. Using a recently developed axiomatic framework based on hyperconnectivity operators, which are the hyperconnected equivalents of connectivity openings, it is shown that path openings are a special case of hyperconnected area openings. The new axiomatics also yield insight into the relationship between hyperconnectivity and attribute-space connectivity. It is shown any hyperconnectivity is an attribute-space connectivity, but that the reverse is not true.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
Exploration of complex visual feature spaces for object perception
Leeds, Daniel D.; Pyles, John A.; Tarr, Michael J.
2014-01-01
The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation. PMID:25309408
The N.E.X.T. Thing for Space Travel
2013-07-26
The NASA Evolutionary Xenon Thruster or NEXT is an advanced Ion propulsion system developed at Glenn Research Center. Its unmatched fuel efficiency could give a real boost to future deep space exploration missions -- extending the reach of NASA science missions and yielding a higher return on scientific research.
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
NASA Astrophysics Data System (ADS)
Gerten, Dieter; Jägermeyr, Jonas; Heck, Vera
2016-04-01
Staying within the safe and just operating space as defined by multiple planetary boundaries will be a major challenge especially in view of anticipated future increases in food demand, the potential need for balancing climate change (e.g. through terrestrial carbon dioxide removal) and its impacts, and the water and land demand associated with these goals and measures. This presentation will show simulation results from a comprehensive model-based study on the global potentials of diverse crop management options considered as opportunities to stay within the planetary boundaries for human freshwater use and land-system change. The quantified on-farm options include rainwater harvesting, soil conservation and more efficient irrigation, all of which are designed to use neither more water nor more land for agriculture than is presently the case. Results show that irrigation efficiency improvements could save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ambitious scenario), and if rerouted to irrigate neighbouring rainfed systems, could at the same time boost kilocalorie production by 26% globally. Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, such ambitious yet achievable integrated water management strategies could increase global kcal production by 41% and close the water-related yield gap by 62%. Global climate change would have adverse effects on crop yields in many regions, but the improvements in water management quantified here could buffer such effects to a significant degree. Thus, a substantial amount of anticipated future needs for food production could be fulfilled without further approaching / transgressing planetary boundaries. In addition, it will be shown how large-scale biomass plantations for the purpose of terrestrial CO2 removal (climate engineering, potentially implemented should the planetary boundary for climate change be further transgressed) would impact on land and water resources and, thus, how such measures would compromise attempts to stay within the safe operating space. In conclusion, this presentation provides new quantitative evidence for significant interactions and tradeoffs among different planetary boundaries.
Optimal design criteria - prediction vs. parameter estimation
NASA Astrophysics Data System (ADS)
Waldl, Helmut
2014-05-01
G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.
Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz
2012-01-01
Background The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Materials and methods Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. Results The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. Discussion These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement. PMID:22044958
Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz
2012-01-01
The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement.
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
Higher dimensional Taub-NUT spaces and applications
NASA Astrophysics Data System (ADS)
Stelea, Cristian Ionut
In the first part of this thesis we discuss classes of new exact NUT-charged solutions in four dimensions and higher, while in the remainder of the thesis we make a study of their properties and their possible applications. Specifically, in four dimensions we construct new families of axisymmetric vacuum solutions using a solution-generating technique based on the hidden SL(2,R) symmetry of the effective action. In particular, using the Schwarzschild solution as a seed we obtain the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all the above solutions. In higher dimensions we present new classes of NUT-charged spaces, generalising the previously known even-dimensional solutions to odd and even dimensions, as well as to spaces with multiple NUT-parameters. We also find the most general form of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been shown to yield counter-examples to some of the conjectures advanced in the still elusive dS/CFT paradigm (such as the maximal mass conjecture and Bousso's entropic N-bound). One important application of NUT-charged spaces is to construct higher dimensional generalisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional Kaluza-Klein soliton. Another interesting application involves a study of time-dependent higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-dualities, new interesting time-dependent solutions in string theory. Finally, we construct and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories, generalising the known Reissner-Nordstrom solutions.
A finite state projection algorithm for the stationary solution of the chemical master equation
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
Katzir, Tami; Hershko, Shirley; Halamish, Vered
2013-01-01
Research on reading development has focused on the linguistic, cognitive, and recently, metacognitive skills children must master in order to learn to read. Less focus has been devoted to how the text itself, namely the perceptual features of the words, affects children’s learning and comprehension. In this study, we manipulated perceptual properties of text by presenting reading passages in different font sizes, line lengths, and line spacing to 100 children in the second and fifth grades. For second graders (Experiment 1), decreasing font size, as well as increasing line length, yielded significantly lower comprehension scores. Line spacing had no effect on performance. For fifth graders (Experiment 2), decreasing font size yielded higher comprehension scores, yet there were no effects for line length and line spacing. Results are discussed within a "desirable difficulty" approach to reading development. PMID:24069266
Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra
NASA Technical Reports Server (NTRS)
Spanos, P. D.; Mushung, L. J.
1990-01-01
High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.
Superconducting micro-resonator arrays with ideal frequency spacing
NASA Astrophysics Data System (ADS)
Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.
2017-12-01
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.
NASA Astrophysics Data System (ADS)
Mahata, Avik; Mukhopadhyay, Tanmoy; Adhikari, Sondipon
2016-03-01
Nano-twinned structures are mechanically stronger, ductile and stable than its non-twinned form. We have investigated the effect of varying twin spacing and twin boundary width (TBW) on the yield strength of the nano-twinned copper in a probabilistic framework. An efficient surrogate modelling approach based on polynomial chaos expansion has been proposed for the analysis. Effectively utilising 15 sets of expensive molecular dynamics simulations, thousands of outputs have been obtained corresponding to different sets of twin spacing and twin width using virtual experiments based on the surrogates. One of the major outcomes of this work is that there exists an optimal combination of twin boundary spacing and twin width until which the strength can be increased and after that critical point the nanowires weaken. This study also reveals that the yield strength of nano-twinned copper is more sensitive to TBW than twin spacing. Such robust inferences have been possible to be drawn only because of applying the surrogate modelling approach, which makes it feasible to obtain results corresponding to 40 000 combinations of different twin boundary spacing and twin width in a computationally efficient framework.
Nanowire growth process modeling and reliability models for nanodevices
NASA Astrophysics Data System (ADS)
Fathi Aghdam, Faranak
Nowadays, nanotechnology is becoming an inescapable part of everyday life. The big barrier in front of its rapid growth is our incapability of producing nanoscale materials in a reliable and cost-effective way. In fact, the current yield of nano-devices is very low (around 10 %), which makes fabrications of nano-devices very expensive and uncertain. To overcome this challenge, the first and most important step is to investigate how to control nano-structure synthesis variations. The main directions of reliability research in nanotechnology can be classified either from a material perspective or from a device perspective. The first direction focuses on restructuring materials and/or optimizing process conditions at the nano-level (nanomaterials). The other direction is linked to nano-devices and includes the creation of nano-electronic and electro-mechanical systems at nano-level architectures by taking into account the reliability of future products. In this dissertation, we have investigated two topics on both nano-materials and nano-devices. In the first research work, we have studied the optimization of one of the most important nanowire growth processes using statistical methods. Research on nanowire growth with patterned arrays of catalyst has shown that the wire-to-wire spacing is an important factor affecting the quality of resulting nanowires. To improve the process yield and the length uniformity of fabricated nanowires, it is important to reduce the resource competition between nanowires during the growth process. We have proposed a physical-statistical nanowire-interaction model considering the shadowing effect and shared substrate diffusion area to determine the optimal pitch that would ensure the minimum competition between nanowires. A sigmoid function is used in the model, and the least squares estimation method is used to estimate the model parameters. The estimated model is then used to determine the optimal spatial arrangement of catalyst arrays. This work is an early attempt that uses a physical-statistical modeling approach to studying selective nanowire growth for the improvement of process yield. In the second research work, the reliability of nano-dielectrics is investigated. As electronic devices get smaller, reliability issues pose new challenges due to unknown underlying physics of failure (i.e., failure mechanisms and modes). This necessitates new reliability analysis approaches related to nano-scale devices. One of the most important nano-devices is the transistor that is subject to various failure mechanisms. Dielectric breakdown is known to be the most critical one and has become a major barrier for reliable circuit design in nano-scale. Due to the need for aggressive downscaling of transistors, dielectric films are being made extremely thin, and this has led to adopting high permittivity (k) dielectrics as an alternative to widely used SiO2 in recent years. Since most time-dependent dielectric breakdown test data on bilayer stacks show significant deviations from a Weibull trend, we have proposed two new approaches to modeling the time to breakdown of bi-layer high-k dielectrics. In the first approach, we have used a marked space-time self-exciting point process to model the defect generation rate. A simulation algorithm is used to generate defects within the dielectric space, and an optimization algorithm is employed to minimize the Kullback-Leibler divergence between the empirical distribution obtained from the real data and the one based on the simulated data to find the best parameter values and to predict the total time to failure. The novelty of the presented approach lies in using a conditional intensity for trap generation in dielectric that is a function of time, space and size of the previous defects. In addition, in the second approach, a k-out-of-n system framework is proposed to estimate the total failure time after the generation of more than one soft breakdown.
NASA Astrophysics Data System (ADS)
Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.
2017-05-01
Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.
Robustness, evolvability, and the logic of genetic regulation.
Payne, Joshua L; Moore, Jason H; Wagner, Andreas
2014-01-01
In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene's cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: For the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield identical gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, so that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype.
HST/COS Detection of the Spectrum of the Subdwarf Companion of KOI-81
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Quinn, Samuel N.; Buchhave, Lars A.; Latham, David W.; Howell, Steve B.; Rowe, Jason F.
2015-06-01
KOI-81 is a totally eclipsing binary discovered by the Kepler mission that consists of a rapidly rotating B-type star and a small, hot companion. The system was forged through large-scale mass transfer that stripped the mass donor of its envelope and spun up the mass gainer star. We present an analysis of UV spectra of KOI-81 that were obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope that reveal for the first time the spectral features of the faint, hot companion. We present a double-lined spectroscopic orbit for the system that yields mass estimates of 2.92 {{M}⊙ } and 0.19 {{M}⊙ } for the B-star and hot subdwarf, respectively. We used a Doppler tomography algorithm to reconstruct the UV spectra of the components, and a comparison of the reconstructed and model spectra yields effective temperatures of 12 and 19-27 kK for the B-star and hot companion, respectively. The B-star is pulsating, and we identified a number of peaks in the Fourier transform of the light curve, including one that may indicate an equatorial rotation period of 11.5 hr. The B-star has an equatorial velocity that is 74% of the critical velocity where centrifugal and gravitational accelerations balance at the equator, and we fit the transit light curve by calculating a rotationally distorted model for the photosphere of the B-star. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #12288.
Robustness, Evolvability, and the Logic of Genetic Regulation
Moore, Jason H.; Wagner, Andreas
2014-01-01
In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene’s cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: for the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield idential gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, such that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype. PMID:23373974
Chronomics and ``Glocal'' (Combined Globaland Local) Assessment of Human Life
NASA Astrophysics Data System (ADS)
Otsuka, K.; Cornélissen, G.; Norboo, T.; Takasugi, E.; Halberg, F.
Most organisms, from cyanobacteria to mammals, are known to use circadian mechanisms to coordinate their activities with the natural 24-hour light/dark cycle and/or interacting socio-ecologic schedules. When the human clock gene was discovered in 1997, it was surprising to see that it was very similar in all earthly life. Recent findings suggest that organisms which evolved on Earth acquired many of the visible and invisible cycles of their habitat and/or of their cosmos. While circadian systems are well documented both time-macroscopically and time-microscopically, the temporal organization of physiological function is much more extensive. Long-term physiological quasi-ambulatory monitoring of blood pressure and heart rate, among other variables, such as those of the ECG and other tools of the neuroendocrinologic armamentarium, have already yielded information, among others, on circaseptan (about 7-day), transyears and cisyears (with periods slightly longer or shorter tha n one year, respectively), and circadecennian (about 10-year) cycles; the nervous system displays rhythms, chaos and trends, mapped as chronomes. Chronomes are time structures consisting of multifrequency rhythms covering frequencies over 18 orders of magnitude, elements of chaos, trends in chaotic and rhythmic endpoints, and other, as-yet unresolved variability. These resolvable time structures, chronomes, in us have counterparts around us, also consisting of rhythms, trends and chaos, as is increasingly being recognized. In 2000, we began a community-based study, relying on 7-day/24-hour monitoring of blood pressure as a public service. Our goal was the prevention of stroke and myocardial infarction and of the decline in cognitive function of the elderly in a community. Chronomic detection of elevated illness-risks aim at the prevention of diseases of individuals, such as myocardial infarctions and strokes, and, equally important, chronomics resolves illness of societies, such as crime and war, all exhibiting some already mapped cycles, that are indispensable for the study of underlying mechanisms. A variety of cognitive, neurobehavioral and neuropsychological as well as cardiovascular functions will need to be investigated to more precisely map their chronomes in space and time, in order to understand chronoastrobiology, based on both the system times and time horizons yielded by chronomes assessed in communities worldwide. Thus, we critically introduce a preventive health care, while keeping the flow of data for the assessment of space weather and its consequences in the evolution thus far of terrestrial life.
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Parker, Joel J. K.; Welch, Bryan; Enderle, Werner
2017-01-01
For over two decades, researchers, space users, Global Navigation Satellite System (GNSS) service providers, and international policy makers have been working diligently to expand the space-borne use of the Global Positioning System (GPS) and, most recently, to employ the full complement of GNSS constellations to increase spacecraft navigation performance. Space-borne Positioning, Navigation, and Timing (PNT) applications employing GNSS are now ubiquitous in Low Earth Orbit (LEO). GNSS use in space is quickly expanding into the Space Service Volume (SSV), the signal environment in the volume surrounding the Earth that enables real-time PNT measurements from GNSS systems at altitudes of 3000 km and above. To support the current missions and planned future missions within the SSV, initiatives are being conducted in the United States and internationally to ensure that GNSS signals are available, robust, and yield precise navigation performance. These initiatives include the Interagency Forum for Operational Requirements (IFOR) effort in the United States, to support GPS SSV signal robustness through future design changes, and the United Nations-sponsored International Committee on GNSS (ICG), to coordinate SSV development across all international GNSS constellations and regional augmentations. The results of these efforts have already proven fruitful, enabling new missions through radically improved navigation and timing performance, ensuring quick recovery from trajectory maneuvers, improving space vehicle autonomy and making GNSS signals more resilient from potential disruptions. Missions in the SSV are operational now and have demonstrated outstanding PNT performance characteristics; much better than what was envisioned less than a decade ago. The recent launch of the first in a series of US weather satellites will employ the use of GNSS in the SSV to substantially improve weather prediction and public-safety situational awareness of fast moving events, including hurricanes, flash floods, severe storms, tornados and wildfires. Thus, the benefits of the GNSS expansion and use into the SSV are tremendous, resulting in orders of magnitude return in investment to national governments and extraordinary societal benefits, including lives saved and critical infrastructure and property protected. However, this outstanding success is tempered by dual challenges: that for GPS, the current SSV specifications do not adequately protect SSV future use; and that for GNSS, the capabilities that are currently available are not protected in the future by specifications.
Digital communication constraints in prior space missions
NASA Technical Reports Server (NTRS)
Yassine, Nathan K.
2004-01-01
Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.
Herweg, Elena; Schöpping, Marie; Rohr, Katja; Siemen, Anna; Frank, Oliver; Hofmann, Thomas; Deppenmeier, Uwe; Büchs, Jochen
2018-07-01
Sweeteners improve the dietary properties of many foods. A candidate for a new natural sweetener is 5-ketofructose. In this study a fed-batch process for the production of 5-ketofructose was developed. A Gluconobacter oxydans strain overexpressing a fructose dehydrogenase from G. japonicus was used and the sensory properties of 5-ketofructose were analyzed. The compound showed an identical sweet taste quality as fructose and a similar intrinsic sweet threshold concentration of 16.4 mmol/L. The production of 5-ketofructose was characterized online by monitoring of the respiration activity in shake flasks. Pulsed and continuous fructose feeding was realized in 2 L stirred tank reactors and maximum fructose consumption rates were determined. 5-Ketofructose concentrations of up to 489 g/L, product yields up to 0.98 g 5-KF /g fructose and space time yields up to 8.2 g/L/h were reached highlighting the potential of the presented process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrolysis kinetics of tulip tree xylan in hot compressed water.
Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo
2016-08-01
Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.
Exercise Countermeasures on ISS: Summary and Future Directions.
Loerch, Linda H
2015-12-01
The first decade of the International Space Station Program (ISS) yielded a wealth of knowledge regarding the health and performance of crewmembers living in microgravity for extended periods of time. The exercise countermeasures hardware suite evolved during the last decade to provide enhanced capabilities that were previously unavailable to support human spaceflight, resulting in attenuation of cardiovascular, muscle, and bone deconditioning. The ability to protect crew and complete mission tasks in the autonomous exploration environment will be a critical component of any decision to proceed with manned exploration initiatives.The next decade of ISS habitation promises to be a period of great scientific utilization that will yield both the tools and technologies required to safely explore the solar system. Leading countermeasure candidates for exploration class missions must be studied methodically on ISS over the next decade to ensure protocols and systems are highly efficient, effective, and validated. Lessons learned from the ISS experience to date are being applied to the future, and international cooperation enables us to maximize this exceptional research laboratory.
Hypertriton production in relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Ko, Che Ming
2018-05-01
Based on the phase-space distributions of freeze-out nucleons and Λ hyperons from a blast-wave model, we study hypertriton production in the coalescence model. Including both the coalescence of Λ with proton and neutron as well as with deuteron, which is itself formed from the coalescence of proton and neutron, we study how the production of hypertriton is affected if nucleons and deuterons are allowed to stream freely after freeze-out. Using central Pb+Pb collisions at √{sNN } = 2.76 as an example, we find that this only reduces slightly the hypertriton yield, which has a value consistent with the experimental data, even if the volume of the system has expanded to a size similar to the freeze-out volume for a hyertriton if its dissociation cross section by pions in the system is given by its geometric size. Our results thus suggest that the hypertriton yield in relativistic heavy ion collisions is essentially determined at the time when nucleons and deuterons freeze out, although it still undergoes reactions with pions.
A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation
NASA Technical Reports Server (NTRS)
Plante, Ianik; Wu, Honglu
2014-01-01
Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.
Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan
2017-04-01
L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1 day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.
Flavor condensates in brane models and dark energy
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.; Sarkar, Sarben; Tarantino, Walter
2009-10-01
In the context of a microscopic model of string-inspired foam, in which foamy structures are provided by brany pointlike defects (D-particles) in space-time, we discuss flavor mixing as a result of flavor nonpreserving interactions of (low-energy) fermionic stringy matter excitations with the defects. Such interactions involve splitting and capture of the matter string state by the defect, and subsequent re-emission. As a result of charge conservation, only electrically neutral matter can interact with the D-particles. Quantum fluctuations of the D-particles induce a nontrivial space-time background; in some circumstances, this could be akin to a cosmological Friedman-Robertson-Walker expanding-universe, with weak (but nonzero) particle production. Furthermore, the D-particle medium can induce an Mikheyev-Smirnov-Wolfenstein-type effect. We have argued previously, in the context of bosons, that the so-called flavor vacuum is the appropriate state to be used, at least for low-energy excitations, with energies/momenta up to a dynamically determined cutoff scale. Given the intriguing mass scale provided by neutrino flavor mass differences from the point of view of dark energy, we evaluate the flavor-vacuum expectation value (condensate) of the stress-energy tensor of the 1/2-spin fields with mixing in an effective-low-energy quantum field theory in this foam-induced curved space-time. We demonstrate, at late epochs of the Universe, that the fermionic vacuum condensate behaves as a fluid with negative pressure and positive energy; however, the equation of state has wfermion>-1/3 and so the contribution of the fermion-fluid flavor vacuum alone could not yield accelerating universes. Such contributions to the vacuum energy should be considered as (algebraically) additive to the flavored boson contributions, evaluated in our previous works; this should be considered as natural from (broken) target-space supersymmetry that characterizes realistic superstring/supermembrane models of space-time foam. The boson fluid is also characterized by positive energy and negative pressure, but its equation of state is, for late eras, close to wboson→-1, and hence overall the D-foam universe appears accelerating at late eras.
The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N. A., E-mail: gromov@dm.komisc.r
2009-05-15
More than forty years ago R.I. Pimenov introduced a new geometry-semi-Riemannian one-as a set of geometrical objects consistent with a fibering pr: M{sub n} {yields} M{sub m}. He suggested the heuristic principle according to which the physically different quantities (meter, second, Coulomb, etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple-fibered semi-Riemannian geometry is the most appropriate one for the treatment of more than three different physical quantities as unified geometrical field theory. Semi-Euclideanmore » geometry {sup 3}R{sub 5}{sup 4} with 1-dimensional fiber x{sup 5} and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry {sup 3}V{sub 5}{sup 4} with the general relativity pseudo-Riemannian space-time {sup 3}V{sub 4}, and 1-dimensional fiber x{sup 5}, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the fifth coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise.« less
NASA Technical Reports Server (NTRS)
Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue
1993-01-01
A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.
NASA Astrophysics Data System (ADS)
Nielsen, E.; Schmidt, W.
2014-03-01
In January 1977 a new type of radar aurora experiment named STARE (Scandinavian Twin Aurora Radar Experiment) commenced operation in northern Scandinavia. The purpose of the experiment was two-fold: to make observations of the nature of radar auroras, and to contribute to the study of solar-terrestrial relationships (or space weather). The experiment was designed for automatic continuous operation, and for nearly two and a half decades it provided estimates of electron flows with good spatial coverage and resolution and good time resolution. It was a successful experiment that yielded a wealth of observations and results, pertaining to, and based on, the observed time variations of the electron flows and to the spatial flow pattern observed at any given time. This radar system inspired the creation of a similar system, SABRE (Sweden And Britain Radar Experiment), which increased the field of view towards the southwest of STARE. This system commenced operation in 1982.
Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC.
Tsukui, A; Santos Júnior, H M; Oigman, S S; de Souza, R O M A; Bizzo, H R; Rezende, C M
2014-12-01
The microwave-assisted extraction (MAE) of 13 different green coffee beans (Coffea arabica L.) was compared to Soxhlet extraction for oil obtention. The full factorial design applied to the microwave-assisted extraction (MAE), related to time and temperature parameters, allowed to develop a powerful fast and smooth methodology (10 min at 45°C) compared to a 4h Soxhlet extraction. The quantification of cafestol and kahweol diterpenes present in the coffee oil was monitored by HPLC/UV and showed satisfactory linearity (R(2)=0.9979), precision (CV 3.7%), recovery (<93%), limit of detection (0.0130 mg/mL), and limit of quantification (0.0406 mg/mL). The space-time yield calculated on the diterpenes content for sample AT1 (Arabica green coffee) showed a six times higher value compared to the traditional Soxhlet method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Time-dependent buoyant puff model for explosive sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kansa, E.J.
1997-01-01
Several models exist to predict the time dependent behavior of bouyant puffs that result from explosions. This paper presents a new model that is derived from the strong conservative form of the conservation partial differential equations that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations. This model permits the cloud to evolve from an intial spherical shape not an ellipsoidal shape. It ignores the Boussinesq approximation, and treats the turbulence that is generated by the puff itself and the ambient atmospheric tubulence as separate mechanisms in determining the puff history. The puffmore » cloud rise history was found to depend no only on the mass and initial temperature of the explosion, but also upon the stability conditions of the ambient atmosphere. This model was calibrated by comparison with the Roller Coaster experiments.« less
Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A.; Yagi, M.
2016-06-15
To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electronmore » generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.« less
Discrimination of coherent features in turbulent boundary layers by the entropy method
NASA Technical Reports Server (NTRS)
Corke, T. C.; Guezennec, Y. G.
1984-01-01
Entropy in information theory is defined as the expected or mean value of the measure of the amount of self-information contained in the ith point of a distribution series x sub i, based on its probability of occurrence p(x sub i). If p(x sub i) is the probability of the ith state of the system in probability space, then the entropy, E(X) = - sigma p(x sub i) logp (x sub i), is a measure of the disorder in the system. Based on this concept, a method was devised which sought to minimize the entropy in a time series in order to construct the signature of the most coherent motions. The constrained minimization was performed using a Lagrange multiplier approach which resulted in the solution of a simultaneous set of non-linear coupled equations to obtain the coherent time series. The application of the method to space-time data taken by a rake of sensors in the near-wall region of a turbulent boundary layer was presented. The results yielded coherent velocity motions made up of locally decelerated or accelerated fluid having a streamwise scale of approximately 100 nu/u(tau), which is in qualitative agreement with the results from other less objective discrimination methods.
Analysis of Chromosomal Aberrations in the Blood Lymphocytes of Astronauts after Space Flight
NASA Technical Reports Server (NTRS)
George, K.; Kim, M. Y.; Elliott, T.; Cucinotta, F. A.
2007-01-01
It is a NASA requirement that biodosimetry analysis be performed on all US astronauts who participate in long duration missions of 3 months or more onboard the International Space Station. Cytogenetic analysis of blood lymphocytes is the most sensitive and reliable biodosimetry method available at present, especially if chromosome damage is assessed before as well as after space flight. Results provide a direct measurement of space radiation damage in vivo that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present data obtained from all twenty-five of the crewmembers who have participated in the biodosimetry program so far. The yield of chromosome exchanges, measured using fluorescence in situ hybridization (FISH) technique with chromosome painting probes, increased after space flight for all these individuals. In vivo dose was derived from frequencies of chromosome exchanges using preflight calibration curves of in vitro exposed cells from the same individual, and RBE was compared with individually measured physically absorbed dose and projected organ dose equivalents. Biodosimetry estimates using samples collected within a few weeks of return from space lie within the range expected from physical dosimetry. For some of these individuals chromosome aberrations were assessed again several months after their respective missions and a temporal decline in stable exchanges was observed in some cases, suggesting that translocations are unstable with time after whole body exposure to space radiation. This may indicate complications with the use of translocations for retrospective dose reconstruction. Data from one crewmember who has participated in two separate long duration space missions and has been followed up for over 10 years provides limited data on the effect of repeat flights and shows a possible adaptive response to space radiation exposure.
The Role of Space Medicine in Management of Risk in Spaceflight
NASA Technical Reports Server (NTRS)
Clark, Jonathan B.
2001-01-01
The purpose of Space Medicine is to ensure mission success by providing quality and comprehensive health care throughout all mission phases to optimize crew health and performance and to prevent negative long-term health consequences. Space flight presents additional hazards and associated risks to crew health, performance, and safety. With an extended human presence in space it is expected that illness and injury will occur on orbit, which may present a significant threat to crew health and performance and to mission success. Maintaining crew health, safety and performance and preventing illness and injury are high priorities necessary for mission success and agency goals. Space flight health care should meet the standards of practice of evidence based clinical medicine. The function of Space Medicine is expected to meet the agency goals as stated in the 1998 NASA Strategic Plan and the priorities established by the Critical Path Roadmap Project. The Critical Path Roadmap Project is an integrated NASA cross-disciplinary strategy to assess, understand, mitigate, and manage the risks associated with long-term exposure to the space flight environment. The evidence based approach to space medicine should be standardized, objective process yielding expected results and establishing clinical practice standards while balancing individual risk with mission (programmatic) risk. The ability to methodically apply available knowledge and expertise to individual and mission health issues will ensure appropriate priorities are assigned and resources are allocated. NASA Space Medicine risk management process is a combined clinical and engineering approach. Competition for weight, power, volume, cost, and crew time must be balanced in making decisions about the care of individual crew with competing agency resources.
A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s
NASA Technical Reports Server (NTRS)
Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.
1989-01-01
The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.
[Value of MR imaging and MR angiography in the differential diagnosis of carotid space tumour].
Liu, Pei-fang; Li, Xin; Bao, Run-xian; Liu, Jing-zu; Ge, Zheng-jin
2004-04-01
To determine the imaging features of magnetic resonance imaging (MRI) and 2D time of flight (TOF) MR angiography (MRA) and study the value in the differential diagnosis and surgical planning for carotid space tumors. Twenty-six patients with suspected pulsatile carotid space mass were imaged by MRI and 2D TOF MRA from 1996 to 2003. Its characteristic findings were analyzed for lesion shape, margin, signal intensity, angle of common carotid bifurcation, and the relationship between the great vessels and carotid space mass. Of the 26 patients, 22 were verified histopathologically, including 15 carotid body tumors (1 patient had bilateral carotid body tumors), 4 carotid artery aneurysms, 3 schwannomas, and 1 metastatic carcinoma. The rest four patients had clinical pseudomasses proved by MRI and MRA as considerable dilated or tortuous carotid artery as compared with the contralateral one. Combined MRI and MRA assessment of carotid body tumors and carotid artery aneurysm yielded an accuracy of 100%. It was also revealed that the anatomy shown on the MRI and axial MRA source images was consistent with that found by surgery. MRI in combination with MRA is considered as non-invasive imaging technique for the evaluation of carotid space tumor showing superiority to other modalities in the differential diagnosis between vascular versus non-vascular tumours. This method may take the place of traumatic carotid angiography.
State of Art in space weather observational activities and data management in Europe
NASA Astrophysics Data System (ADS)
Stanislawska, Iwona
One of the primary scientific and technical goals of space weather is to produce data in order to investigate the Sun impact on the Earth and its environment. Studies based on data mining philosophy yield increase the knowledge of space weather physical properties, modelling capabilities and gain applications of various procedures in space weather monitoring and forecasting. Exchanging tailored individually and/or jointly data between different entities, storing of the databases and making data accessible for the users is the most important task undertaken by investigators. National activities spread over Europe is currently consolidated pursuant to the terms of effectiveness and individual contributions embedded in joint integrated efforts. The role of COST 724 Action in animation of such a movement is essential. The paper focuses on the analysis of the European availability in the Internet near-real time and historical collections of the European ground based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The structure of the content is supplied according to the following selection: (1) observations, raw and/or corrected, updated data, (2) resolution, availability of real-time and historical data, (3) products, as the results of models and theory including (a) maps, forecasts and alerts, (b) resolution, availability of real-time and historical data, (4) platforms to deliver data. Characterization of the networking of stations, observatories and space related monitoring systems of data collections is integrated part of the paper. According to these provisions operational systems developed for these purposes is presented and analysed. It concerns measurements, observations and parameters from the theory and models referred to local, regional collections, European and worldwide networks. Techniques used by these organizations to generate the digital content are identified. As the reference pan-European and some national data centres and bases are described and compared with currently available data information provided worldwide and by relevant entities outside Europe. Current, follow up and expected future European space weather observational activities and data management perspectives in respect to European main lines of policy is the subject of the conclusions.
Jet Noise Physics and Modeling Using First-principles Simulations
NASA Technical Reports Server (NTRS)
Freund, Jonathan B.
2003-01-01
An extensive analysis of our jet DNS database has provided for the first time the complex correlations that are the core of many statistical jet noise models, including MGBK. We have also for the first time explicitly computed the noise from different components of a commonly used noise source as proposed in many modeling approaches. Key findings are: (1) While two-point (space and time) velocity statistics are well-fitted by decaying exponentials, even for our low-Reynolds-number jet, spatially integrated fourth-order space/retarded-time correlations, which constitute the noise "source" in MGBK, are instead well-fitted by Gaussians. The width of these Gaussians depends (by a factor of 2) on which components are considered. This is counter to current modeling practice, (2) A standard decomposition of the Lighthill source is shown by direct evaluation to be somewhat artificial since the noise from these nominally separate components is in fact highly correlated. We anticipate that the same will be the case for the Lilley source, and (3) The far-field sound is computed in a way that explicitly includes all quadrupole cancellations, yet evaluating the Lighthill integral for only a small part of the jet yields a far-field noise far louder than that from the whole jet due to missing nonquadrupole cancellations. Details of this study are discussed in a draft of a paper included as appendix A.
Process control, energy recovery and cost savings in acetic acid wastewater treatment.
Vaiopoulou, E; Melidis, P; Aivasidis, A
2011-02-28
An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m(3) d) and high space time yield (30-35 kg COD/m(3) d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO(2) contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO(2) content during biogas combustion is minimized and usage of other acidifying agents is omitted. Copyright © 2010 Elsevier B.V. All rights reserved.
Spacecraft Attitude Maneuver Planning Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Kornfeld, Richard P.
2004-01-01
A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; Garland, James T.; Lauer, Tod R.; Zurek, David; Baltz, Edward A.; Goerl, Ariel; Kovetz, Attay; Machac, Tamara; Madrid, Juan P.; Mikołajewska, Joanna; Neill, J. D.; Prialnik, Dina; Welch, D. L.; Yaron, Ofer
2018-02-01
Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here, we demonstrate that a modified Buscombe-de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 per cent with the above calibrations.
Estimation for general birth-death processes
Crawford, Forrest W.; Minin, Vladimir N.; Suchard, Marc A.
2013-01-01
Birth-death processes (BDPs) are continuous-time Markov chains that track the number of “particles” in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution. PMID:25328261
Estimation for general birth-death processes.
Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A
2014-04-01
Birth-death processes (BDPs) are continuous-time Markov chains that track the number of "particles" in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution.
Radiation Transmission Properties of In-Situ Materials
NASA Technical Reports Server (NTRS)
Heilbronn, L.; Townsend, L. W.; Cucinotta, F.; Kim, M. Y.; Miller, J.; Singleterry, R.; Thibeault, S.; Wilson, J.; Zeitlin, C. J.
2001-01-01
The development of a permanent human presence in space is a key element of NASA's strategic plan for the Human Exploration and Development of Space (HEDS). The habitation of the International Space Station (ISS) is one near-term HEDS objective; the exploration and settlement of the moon and Mars are long-term goals of that plan. Achieving these goals requires maintaining the health and safety of personnel involved in such space operations at a high level, while at the same time reducing the cost of those operations to a reasonable level. Among the limiting factors to prolonged human space operations are the health risks from exposure to the space ionizing radiation environment. In order to keep the risk of radiation induced cancer at acceptable levels, it is necessary to provide adequate shielding from the ionizing radiation environment. The research presented here is theoretical and ground-based experimental study of the neutron production from interactions of GCR-like particles in various shielding components. An emphasis is placed here on research that will aid in the development of in-situ resource utilization. The primary goal of the program is to develop an accurate neutron-production model that is relevant to the NASA HEDS program of designing technologies that will be used in the development of effective shielding countermeasures. A secondary goal of the program is the development of an experimental data base of neutron production cross sections and thick-target yields which will aid model development.
ERIC Educational Resources Information Center
Chang, C.-J.; Chang, M.-H.; Liu, C.-C.; Chiu, B.-C.; Fan Chiang, S.-H.; Wen, C.-T.; Hwang, F.-K.; Chao, P.-Y.; Chen, Y.-L.; Chai, C.-S.
2017-01-01
Researchers have indicated that the collaborative problem-solving space afforded by the collaborative systems significantly impact the problem-solving process. However, recent investigations into collaborative simulations, which allow a group of students to jointly manipulate a problem in a shared problem space, have yielded divergent results…
A Characterization of Banach Spaces Containing l1
Rosenthal, Haskell P.
1974-01-01
It is proved that a Banach space contains a subspace isomorphic to l1 if (and only if) it has a bounded sequence with no weak-Cauchy subsequence. The proof yields that a sequence of subsets of a given set has a subsequence that is either convergent or Boolean independent. PMID:16592162
Adaptive Reuse: Alternative to Vacant Schools. Cincinnati: The Midas Touch.
ERIC Educational Resources Information Center
Carroll, Charles W.
1984-01-01
Two dozen schools in Cincinnati, Ohio, were closed over a period of 3 years. Property sales yielded over $1 million; one property, considered an architectural gem, is now a health facility with office spaces and four others are leased. The leases can be cancelled if the district needs school space. (MLF)
Semel, J D; Goldin, H
1996-11-01
We performed a study to determine how often patients with cellulitis of the lower extremities in the absence of trauma, peripheral vascular disease, or chronic open ulcers have ipsilateral interdigital athlete's foot and whether cultures of samples from the involved interdigital spaces would yield potentially pathogenic bacteria. Athlete's foot was present in 20 (83%) of 24 episodes of cellulitis that were studied. Cultures of samples from interdigital spaces yielded Beta-hemolytic streptococci in 17 (85%) of 20 cases, Staphylococcus aureus in 9 (45%) of 20 cases, and gram-negative rods in 7 (35%) of 20 cases. Only Beta-hemolytic streptococci were recovered significantly more often from patients than from a group of controls with athlete's foot who did not have cellulitis (P < .01). Athlete's foot may be a common predisposing condition for cellulitis of the lower extremities. In comparison with attempts at microbiological diagnosis such as aspiration and/or biopsy of the area of cellulitis, cultures of samples from the interdigital spaces combined with serial determinations of antistreptolysin titers may offer a simpler noninvasive method of microbiological diagnosis.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu
2015-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.
Fay, Lindsey; Carll-White, Allison; Schadler, Aric; Isaacs, Kathy B; Real, Kevin
2017-10-01
The focus of this research was to analyze the impact of decentralized and centralized hospital design layouts on the delivery of efficient care and the resultant level of caregiver satisfaction. An interdisciplinary team conducted a multiphased pre- and postoccupancy evaluation of a cardiovascular service line in an academic hospital that moved from a centralized to decentralized model. This study examined the impact of walkability, room usage, allocation of time, and visibility to better understand efficiency in the care environment. A mixed-methods data collection approach was utilized, which included pedometer measurements of staff walking distances, room usage data, time studies in patient rooms and nurses' stations, visibility counts, and staff questionnaires yielding qualitative and quantitative results. Overall, the data comparing the centralized and decentralized models yielded mixed results. This study's centralized design was rated significantly higher in its ability to support teamwork and efficient patient care with decreased staff walking distances. The decentralized unit design was found to positively influence proximity to patients in a larger design footprint and contribute to increased visits to and time spent in patient rooms. Among the factors contributing to caregiver efficiency and satisfaction are nursing station design, an integrated team approach, and the overall physical layout of the space on walkability, allocation of caregiver time, and visibility. However, unit design alone does not solely impact efficiency, suggesting that designers must consider the broader implications of a culture of care and processes.
NASA Technical Reports Server (NTRS)
Elachi, Charles
1993-01-01
The advent of the capability to conduct space-based measurements has revolutionized the study of the Earth, the planetary system and the astrophysical universe. The resultant knowledge has yielded insights into the management of our planet's resources and provides intellectual enrichment for our civilization. New investigation techniques hold promise for extending the scope of space science to address topics in fundamental physics such as gravitational waves and certain aspects of Einstein's Theory of General Relativity.
Dimpled ball grid array process development for space flight applications
NASA Technical Reports Server (NTRS)
Barr, S. L.; Mehta, A.
2000-01-01
A 472 dimpled ball grid array (D-BGA) package has not been used in past space flight environments, therefore it was necessary to develop a process that would yield robust and reliable solder joints. The process developing assembly, inspection and rework techniques, were verified by conducting environmental tests. Since the 472 D-BGA packages passed the above environmental tests within the specifications, the process was successfully developed for space flight electronics.
Analysis of Fluorinated Polyimides Flown on the Materials International Space Station Experiment
NASA Technical Reports Server (NTRS)
Finckenor, M. M.; Rodman, L.; Farmer, B.
2015-01-01
This Technical Memorandum documents the results from the Materials on International Space Station Experiment (MISSE) series involving fluorinated polyimide films analyzed at NASA Marshall Space Flight Center. These films may be used in thermal control, sunshield, solar sail, solar concentrator, and other lightweight polymer film applications. Results include postflight structural integrity, visual observations, determination of atomic oxygen erosion yield, and optical property changes as compared to preflight values.
Growth and Yields of 5-Year-Old Planted Hardwoods On Sharkey Clay Soil
Roger M. Krinard; Harvey E. Kennedy
1981-01-01
Yields of five hardwood species at age 5, planted at 10- by 10-foot spacing on Sharkey clay soil, were ranked cottonwood>sycamore>green ash>sweet-gum~Nuttall oak. By species, per acre volume of stemwood ranged from 29 to 446 cubic feet and total above-ground dry tree weight ranged from 1.08 to 7.68 tons.
True fir spacing and yield trials—20-year update
Robert O. Curtis
2013-01-01
This report updates data and comparisons from previous reports (Curtis and others 2000, Curtis 2008) on a series of precommercial thinning and yield trials in high-elevation true firâhemlock stands, using data from the 12 replicates for which 20-year data are now available. The stands were varying mixtures of Pacific silver fir (Abies amabilis (Douglas ex Loudon)...
Five-Year-Old Cottonwood Plantation on a Clay Site: Growth, Yield, and Soil Properties
R. M. Krinard; H. E. Kennedy
1980-01-01
A random sample of Stoneville select cottonwood (Populus deltoides Bartr.) clones planted on recent old-field clay soils at 12- by 12- foot spacing averaged 75-percent survival after five years. The growth and yield was about half that expected from planted cottonwood on medium-textured soils. Soil moisture analysis showed more height growth in years...
Commercial aspects of epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.
Computational Material Processing in Microgravity
NASA Technical Reports Server (NTRS)
2005-01-01
Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.
Spectral interpolation - Zero fill or convolution. [image processing
NASA Technical Reports Server (NTRS)
Forman, M. L.
1977-01-01
Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.
An evaluation of space acquired data as a tool for management to wildlife habitat in Alaska
NASA Technical Reports Server (NTRS)
Vantries, B. J.
1973-01-01
The Bureau of Sport Fisheries and Wildlife ERTS experiment in Alaska attempts to yield information useful for three primary functions in the State. They are: (1) to test the feasibility of using ERTS data, in conjunction with aircraft acquired multispectral photography, to develop effective stratified sampling techniques, (2) to provide near real time assessment and evaluation of the quantity, quality, and distribution of waterfowl breeding habitat through frequent ERTS measurements of hydrologic, phenological and vegetational parameters, and (3) to provide basic mapping of vegetation and terrain in certain remote areas of the State for which little or no biological data now exist.
An on-chip colloidal magneto-optical grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikockis, M.; Wijesinghe, H.; Chen, A.
2016-04-18
Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni{sub 0.8} Fe{sub 0.2}) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.
Noncommuting observables in quantum detection and estimation theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1972-01-01
Basing decisions and estimates on simultaneous approximate measurements of noncommuting observables in a quantum receiver is shown to be equivalent to measuring commuting projection operators on a larger Hilbert space than that of the receiver itself. The quantum-mechanical Cramer-Rao inequalities derived from right logarithmic derivatives and symmetrized logarithmic derivatives of the density operator are compared, and it is shown that the latter give superior lower bounds on the error variances of individual unbiased estimates of arrival time and carrier frequency of a coherent signal. For a suitably weighted sum of the error variances of simultaneous estimates of these, the former yield the superior lower bound under some conditions.
Modeling of the First Layers in the Fly's Eye
NASA Technical Reports Server (NTRS)
Moya, J. A.; Wilcox, M. J.; Donohoe, G. W.
1997-01-01
Increased autonomy of robots would yield significant advantages in the exploration of space. The shortfalls of computer vision can, however, pose significant limitations on a robot's potential. At the same time, simple insects which are largely hard-wired have effective visual systems. The understanding of insect vision systems thus may lead to improved approaches to visual tasks. A good starting point for the study of a vision system is its eye. In this paper, a model of the sensory portion of the fly's eye is presented. The effectiveness of the model is briefly addressed by a comparison of its performance to experimental data.
Dynamic control of photosynthetic photon flux for lettuce production in CELSS
NASA Technical Reports Server (NTRS)
Chun, C.; Mitchell, C. A.
1996-01-01
A new dynamic control of photosynthetic photon flux (PPF) was tested using lettuce canopies growing in the Minitron II plant-growth/canopy gas-exchange system. Canopy photosynthetic rates (Pn) were measured in real time and fedback for further environment control. Pn can be manipulated by changing PPF, which is a good environmental parameter for dynamic control of crop production in a Controlled Ecological Life-Support Systems CELSS. Decision making that combines empirical mathematical models with rule sets developed from recent experimental data was tested. With comparable yield indices and potential for energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.
Quantum key distribution with 1.25 Gbps clock synchronization.
Bienfang, J; Gross, A; Mink, A; Hershman, B; Nakassis, A; Tang, X; Lu, R; Su, D; Clark, Charles; Williams, Carl; Hagley, E; Wen, Jesse
2004-05-03
We have demonstrated the exchange of sifted quantum cryptographic key over a 730 meter free-space link at rates of up to 1.0 Mbps, two orders of magnitude faster than previously reported results. A classical channel at 1550 nm operates in parallel with a quantum channel at 845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps enable quantum transmission at up to the clock rate. System performance is currently limited by the timing resolution of our silicon avalanche photodiode detectors. With improved detector resolution, our technique will yield another order of magnitude increase in performance, with existing technology.
Improving Satellite Compatible Microdevices to Study Biology in Space
NASA Technical Reports Server (NTRS)
Kalkus, Trevor; Snyder, Jessica; Paulino-Lima, Ivan; Rothschild, Lynn
2017-01-01
The technology for biology in space lags far behind the gold standard for biological experiments on Earth. To remedy this disparity, the Rothschild lab works on proof of concept, prototyping, and developing of new sensors and devices to further the capabilities of biology research on satellites. One such device is the PowerCell Payload System. One goal for synthetic biology in aiding space travel and colonization is to genetically engineer living cells to produce biochemicals in space. However, such farming in space presupposes bacteria retain their functionality post-launch, bombarded by radiation, and without the 1G of Earth. Our questions is, does a co-culture of cyanobacteria and protein-synthesizing bacteria produce Earth-like yields of target proteins? Is the yield sensitive to variable gravitational forces? To answer these questions, a PowerCell Payload System will spend 1 year aboard the German Aerospace Center's Euglena and Combined Regenerative Organic-food Production In Space (Eu:CROPIS) mission satellite. The PowerCell system is a pair of two 48-well microfluidic cards, each well seeded with bacteria. The system integrates fluidic, thermal, optical, electronic, and control systems to germinate bacteria spores, then measure the protein synthesized for comparison to parallel experiments conducted on the Earth. In developing the PowerCell Payload, we gained insight into the shortcomings of biology experiments on satellites. To address these issues, we have started three new prototyping projects: 1) The development of an extremely stable and radiation resistant cell-free system, allowing for the construction of proteins utilizing only cell components instead of living cells. This can be lyophilized on a substrate, like paper. (2) Using paper as a microfluidic platform that is flexible, stable, cheap, and wicking. The capillary action eliminates the need for pumps, reducing volume, mass, and potential failing points. Electrodes can be printed on the paper to sense for biochemicals. (3) Developing a modular, semi-autonomous microfluidic device that can be easily adapted for a variety of common biological experiments. This versatility will allow for quicker and cheaper experimentation. These improvements to satellite experiment platforms have the potential to radically increase the return from NASA's biological and field studies with reduced development time, mass, and cost with increased robustness data and interpretation.
Measuring 3D point configurations in pictorial space
Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J
2011-01-01
We propose a novel method to probe the depth structure of the pictorial space evoked by paintings. The method involves an exocentric pointing paradigm that allows one to find the slope of the geodesic connection between any pair of points in pictorial space. Since the locations of the points in the picture plane are known, this immediately yields the depth difference between the points. A set of depth differences between all pairs of points from an N-point (N > 2) configuration then yields the configuration in depth up to an arbitrary depth offset. Since an N-point configuration implies N(N−1) (ordered) pairs, the number of observations typically far exceeds the number of inferred depths. This yields a powerful check on the geometrical consistency of the results. We report that the remaining inconsistencies are fully accounted for by the spread encountered in repeated observations. This implies that the concept of ‘pictorial space’ indeed has an empirical significance. The method is analyzed and empirically verified in considerable detail. We report large quantitative interobserver differences, though the results of all observers agree modulo a certain affine transformation that describes the basic cue ambiguities. This is expected on the basis of a formal analysis of monocular optical structure. The method will prove useful in a variety of potential applications. PMID:23145227
Vischer, J
1999-01-01
Northern Oil is moving offices, and CEO Fritz Schumacher wants to make the most of the move in this fictional case study. He believes that adopting an open-plan work space will reinvent how the company works, not to mention cut costs. Facilities manager Sasha Pasternak also supports the open plan. Her job would be easier, and her budget would stretch further, if Northern had standardized workstations and used partitions, not walls. And she likes the way the new design flattens the organization: everyone has the same amount of space and the same ergonomically sound furniture. The new building would have more conference rooms and just-in-time work spaces for employees who worked mostly off-site. And although she knew that initial meetings between the architects and Northern employees hadn't yielded much support for open space--people were attached to their private offices--she expected that people would warm to the idea. But when the new design was unveiled, employees were less than enthusiastic. They hurled questions like, How will workers concentrate if they can't shut their office doors? How will people have confidential meetings with their boss? And why would people stay at Northern when the competition offers them private offices? There was even talk of circulating a petition refusing to move to the new space. A week later, the architect presented revised plans to the project group. The new options would add costs and reduce the amount of space savings, but offering a choice to employees might make them feel less threatened. What should the project team do? Five commentators offer advice.
Quantization of Space-like States in Lorentz-Violating Theories
NASA Astrophysics Data System (ADS)
Colladay, Don
2018-01-01
Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.
Revised estimates for ozone reduction by shuttle operation
NASA Technical Reports Server (NTRS)
Potter, A. E.
1978-01-01
Previous calculations by five different modeling groups of the effect of space shuttle operations on the ozone layer yielded an estimate of 0.2 percent ozone reduction for the Northern Hemisphere at 60 launches per year. Since these calculations were made, the accepted rate constant for the reaction between hydroperoxyl and nitric oxide to yield hydroxyl and nitrogen dioxide, HO2 + NO yields OH + NO2, was revised upward by more than an order of magnitude, with a resultant increase in the predicted ozone reduction for chlorofluoromethanes by a factor of approximately 2. New calculations of the shuttle effect were made with use of the new rate constant data, again by five different modeling groups. The new value of the shuttle effect on the ozone layer was found to be 0.25 percent. The increase resulting from the revised rate constant is considerably less for space shuttle operations than for chlorofluoromethane production, because the new rate constant also increases the calculated rate of downward transport of shuttle exhaust products out of the stratosphere.
NASA Astrophysics Data System (ADS)
Guthrey, Pierson Tyler
The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications. High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase. The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL) argument requires. The maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work, we overcome this difficulty by introducing a novel time-stepping strategy: the regionally-implicit discontinuous Galerkin (RIDG) method. The RIDG is method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent (for linear constant coefficient problems) to a predictor-corrector approach, where the prediction is computed by a space-time DG method (STDG). The corrector is an explicit method that uses the space-time reconstructed solution from the predictor step. In this work, we modify the predictor to include not just local information, but also neighboring information. With this modification, we show that the stability is greatly enhanced; we show that we can remove the polynomial degree dependence of the maximum time-step and show vastly improved time-steps in multiple spatial dimensions. Upon the development of the general RIDG method, we apply it to the non-relativistic 1D1V Vlasov-Poisson equations and the relativistic 1D2V Vlasov-Maxwell equations. For each we validate the high-order method on several test cases. In the final test case, we demonstrate the ability of the method to simulate the acceleration of electrons to relativistic speeds in a simplified test case.
Trifan, Adriana; Aprotosoaie, Ana Clara; Spac, A; Hăncianu, Monica; Miron, Anca; Stănescu, Ursula
2011-01-01
Coriandrum sativum L. (Apiaceae) is a well known herb, native to the Mediterranean region, also intensively cultivated in Romania. The essential oil obtained from Coriandri fructus posseses antimicrobial, antioxidant and anxiolytic effects. Many parameters such as genetic and climatic factors or agronomical practices can influence the yield and composition of the volatile fraction. Plant density is an important factor for the microenvironment in coriander field. In order to study the effect of planting density on the yield of the essential oil and its composition, a bifactorial experiment was carried out on coriander plants (Sandra cultivar). The experiment was performed with three plant densities on the row (0, 15 and 20 cm); the distance between plant rows was 12.5, 25 and 50 cm, respectively. So, it resulted nine experimental variants. The essential oils obtained by hydrodistillation from fruits have been characterized using gas chromatography and mass spectroscopy analysis (GC-MS). The highest yield (7.9866 kg/ha) was obtained for the plants spaced at 20 cm in between and 25 cm row spacing. The highest content of monoterpene alcohols (50.96%) was obtained with 25 cm row spacing and plant spaced at 0 cm on the row. The main components in all oils were monoterpene alcohols (40.75% - 50.96%) and monoterpenes (32.43-38.44%). The essential oil of coriander fruits (Sandra cultivar) does not meet the requirements of the European Pharmacopoeia, especially concerning the content in linalool. Nevertheless, the high content in monoterpene alcohols and monoterpenes recommends the use of the essential oil as immunomodulatory, analgesic and antiinflammatory agent in rheumatology and also as an antibacterial and antiviral agent. Consequently, the changes in yield and composition of the essential oil of Sandra coriander should be assesed during several periods of vegetation in order to conclude on its pharmaceutical quality.
Forecasting Geomagnetic Activity Using Kalman Filters
NASA Astrophysics Data System (ADS)
Veeramani, T.; Sharma, A.
2006-05-01
The coupling of energy from the solar wind to the magnetosphere leads to the geomagnetic activity in the form of storms and substorms and are characterized by indices such as AL, Dst and Kp. The geomagnetic activity has been predicted near-real time using local linear filter models of the system dynamics wherein the time series of the input solar wind and the output magnetospheric response were used to reconstruct the phase space of the system by a time-delay embedding technique. Recently, the radiation belt dynamics have been studied using a adaptive linear state space model [Rigler et al. 2004]. This was achieved by assuming a linear autoregressive equation for the underlying process and an adaptive identification of the model parameters using a Kalman filter approach. We use such a model for predicting the geomagnetic activity. In the case of substorms, the Bargatze et al [1985] data set yields persistence like behaviour when a time resolution of 2.5 minutes was used to test the model for the prediction of the AL index. Unlike the local linear filters, which are driven by the solar wind input without feedback from the observations, the Kalman filter makes use of the observations as and when available to optimally update the model parameters. The update procedure requires the prediction intervals to be long enough so that the forecasts can be used in practice. The time resolution of the data suitable for such forecasting is studied by taking averages over different durations.