Sample records for space vector based

  1. Bundles over nearly-Kahler homogeneous spaces in heterotic string theory

    NASA Astrophysics Data System (ADS)

    Klaput, Michael; Lukas, Andre; Matti, Cyril

    2011-09-01

    We construct heterotic vacua based on six-dimensional nearly-Kahler homogeneous manifolds and non-trivial vector bundles thereon. Our examples are based on three specific group coset spaces. It is shown how to construct line bundles over these spaces, compute their properties and build up vector bundles consistent with supersymmetry and anomaly cancelation. It turns out that the most interesting coset is SU(3)/U(1)2. This space supports a large number of vector bundles which lead to consistent heterotic vacua, some of them with three chiral families.

  2. A vector space model approach to identify genetically related diseases.

    PubMed

    Sarkar, Indra Neil

    2012-01-01

    The relationship between diseases and their causative genes can be complex, especially in the case of polygenic diseases. Further exacerbating the challenges in their study is that many genes may be causally related to multiple diseases. This study explored the relationship between diseases through the adaptation of an approach pioneered in the context of information retrieval: vector space models. A vector space model approach was developed that bridges gene disease knowledge inferred across three knowledge bases: Online Mendelian Inheritance in Man, GenBank, and Medline. The approach was then used to identify potentially related diseases for two target diseases: Alzheimer disease and Prader-Willi Syndrome. In the case of both Alzheimer Disease and Prader-Willi Syndrome, a set of plausible diseases were identified that may warrant further exploration. This study furthers seminal work by Swanson, et al. that demonstrated the potential for mining literature for putative correlations. Using a vector space modeling approach, information from both biomedical literature and genomic resources (like GenBank) can be combined towards identification of putative correlations of interest. To this end, the relevance of the predicted diseases of interest in this study using the vector space modeling approach were validated based on supporting literature. The results of this study suggest that a vector space model approach may be a useful means to identify potential relationships between complex diseases, and thereby enable the coordination of gene-based findings across multiple complex diseases.

  3. The SAMEX Vector Magnetograph: A Design Study for a Space-Based Solar Vector Magnetograph

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gary, G. A.; West, E. A.

    1988-01-01

    This report presents the results of a pre-phase A study performed by the Marshall Space Flight Center (MSFC) for the Air Force Geophysics Laboratory (AFGL) to develop a design concept for a space-based solar vector magnetograph and hydrogen-alpha telescope. These are two of the core instruments for a proposed Air Force mission, the Solar Activities Measurement Experiments (SAMEX). This mission is designed to study the processes which give rise to activity in the solar atmosphere and to develop techniques for predicting solar activity and its effects on the terrestrial environment.

  4. Exploratory Model Analysis of the Space Based Infrared System (SBIRS) Low Global Scheduler Problem

    DTIC Science & Technology

    1999-12-01

    solution. The non- linear least squares model is defined as Y = f{e,t) where: 0 =M-element parameter vector Y =N-element vector of all data t...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXPLORATORY MODEL ANALYSIS OF THE SPACE BASED INFRARED SYSTEM (SBIRS) LOW GLOBAL SCHEDULER...December 1999 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE EXPLORATORY MODEL ANALYSIS OF THE SPACE BASED INFRARED SYSTEM

  5. Modeling Musical Context With Word2Vec

    NASA Astrophysics Data System (ADS)

    Herremans, Dorien; Chuan, Ching-Hua

    2017-05-01

    We present a semantic vector space model for capturing complex polyphonic musical context. A word2vec model based on a skip-gram representation with negative sampling was used to model slices of music from a dataset of Beethoven's piano sonatas. A visualization of the reduced vector space using t-distributed stochastic neighbor embedding shows that the resulting embedded vector space captures tonal relationships, even without any explicit information about the musical contents of the slices. Secondly, an excerpt of the Moonlight Sonata from Beethoven was altered by replacing slices based on context similarity. The resulting music shows that the selected slice based on similar word2vec context also has a relatively short tonal distance from the original slice.

  6. Manifolds for pose tracking from monocular video

    NASA Astrophysics Data System (ADS)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  7. NUDTSNA at TREC 2015 Microblog Track: A Live Retrieval System Framework for Social Network based on Semantic Expansion and Quality Model

    DTIC Science & Technology

    2015-11-20

    between tweets and profiles as follow, • TFIDF Score, which calculates the cosine similarity between a tweet and a profile in vector space model with...TFIDF weight of terms. Vector space model is a model which represents a document as a vector. Tweets and profiles can be expressed as vectors, ~ T = (t...gain(Tr i ) (13) where Tr is the returned tweet sets, gain() is the score func- tion for a tweet. Not interesting, spam/ junk tweets receive a gain of 0

  8. Knowledge Space: A Conceptual Basis for the Organization of Knowledge

    ERIC Educational Resources Information Center

    Meincke, Peter P. M.; Atherton, Pauline

    1976-01-01

    Proposes a new conceptual basis for visualizing the organization of information, or knowledge, which differentiates between the concept "vectors" for a field of knowledge represented in a multidimensional space, and the state "vectors" for a person based on his understanding of these concepts, and the representational…

  9. A Vector Approach to Euclidean Geometry: Inner Product Spaces, Euclidean Geometry and Trigonometry, Volume 2. Teacher's Edition.

    ERIC Educational Resources Information Center

    Vaughan, Herbert E.; Szabo, Steven

    This is the teacher's edition of a text for the second year of a two-year high school geometry course. The course bases plane and solid geometry and trigonometry on the fact that the translations of a Euclidean space constitute a vector space which has an inner product. Congruence is a geometric topic reserved for Volume 2. Volume 2 opens with an…

  10. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  12. Vectoring of parallel synthetic jets: A parametric study

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram

    2016-11-01

    The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).

  13. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  14. Time-based self-spacing techniques using cockpit display of traffic information during approach to landing in a terminal area vectoring environment

    NASA Technical Reports Server (NTRS)

    Williams, D. H.

    1983-01-01

    A simulation study was undertaken to evaluate two time-based self-spacing techniques for in-trail following during terminal area approach. An electronic traffic display was provided in the weather radarscope location. The displayed self-spacing cues allowed the simulated aircraft to follow and to maintain spacing on another aircraft which was being vectored by air traffic control (ATC) for landing in a high-density terminal area. Separation performance data indicate the information provided on the traffic display was adequate for the test subjects to accurately follow the approach path of another aircraft without the assistance of ATC. The time-based technique with a constant-delay spacing criterion produced the most satisfactory spacing performance. Pilot comments indicate the workload associated with the self-separation task was very high and that additional spacing command information and/or aircraft autopilot functions would be desirable for operational implementational of the self-spacing task.

  15. Enhanced secure 4-D modulation space optical multi-carrier system based on joint constellation and Stokes vector scrambling.

    PubMed

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2018-03-19

    This paper proposes and demonstrates an enhanced secure 4-D modulation optical generalized filter bank multi-carrier (GFBMC) system based on joint constellation and Stokes vector scrambling. The constellation and Stokes vectors are scrambled by using different scrambling parameters. A multi-scroll Chua's circuit map is adopted as the chaotic model. Large secure key space can be obtained due to the multi-scroll attractors and independent operability of subcarriers. A 40.32Gb/s encrypted optical GFBMC signal with 128 parallel subcarriers is successfully demonstrated in the experiment. The results show good resistance against the illegal receiver and indicate a potential way for the future optical multi-carrier system.

  16. Principal fiber bundle description of number scaling for scalars and vectors: application to gauge theory

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2015-05-01

    The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.

  17. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  18. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.

  19. A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis

    PubMed Central

    Rahman, M. M.; Antani, S. K.; Thoma, G. R.

    2011-01-01

    We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350

  20. Secure coherent optical multi-carrier system with four-dimensional modulation space and Stokes vector scrambling.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun

    2015-06-15

    A secure enhanced coherent optical multi-carrier system based on Stokes vector scrambling is proposed and experimentally demonstrated. The optical signal with four-dimensional (4D) modulation space has been scrambled intra- and inter-subcarriers, where a multi-layer logistic map is adopted as the chaotic model. An experiment with 61.71-Gb/s encrypted multi-carrier signal is successfully demonstrated with the proposed method. The results indicate a promising solution for the physical secure optical communication.

  1. Aspects of mutually unbiased bases in odd-prime-power dimensions

    NASA Astrophysics Data System (ADS)

    Chaturvedi, S.

    2002-04-01

    We rephrase the Wootters-Fields construction [W. K. Wootters and B. C. Fields, Ann. Phys. 191, 363 (1989)] of a full set of mutually unbiased bases in a complex vector space of dimensions N=pr, where p is an odd prime, in terms of the character vectors of the cyclic group G of order p. This form may be useful in explicitly writing down mutually unbiased bases for N=pr.

  2. Fundamental Principles of Classical Mechanics: a Geometrical Perspectives

    NASA Astrophysics Data System (ADS)

    Lam, Kai S.

    2014-07-01

    Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...

  3. A simple map-based localization strategy using range measurements

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.; Kutiyanawala, Aliasgar; Chandrasekharan, Madhumita

    2005-05-01

    In this paper we present a map-based approach to localization. We consider indoor navigation in known environments based on the idea of a "vector cloud" by observing that any point in a building has an associated vector defining its distance to the key structural components (e.g., walls, ceilings, etc.) of the building in any direction. Given a building blueprint we can derive the "ideal" vector cloud at any point in space. Then, given measurements from sensors on the robot we can compare the measured vector cloud to the possible vector clouds cataloged from the blueprint, thus determining location. We present algorithms for implementing this approach to localization, using the Hamming norm, the 1-norm, and the 2-norm. The effectiveness of the approach is verified by experiments on a 2-D testbed using a mobile robot with a 360° laser range-finder and through simulation analysis of robustness.

  4. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  5. A Bag of Concepts Approach for Biomedical Document Classification Using Wikipedia Knowledge.

    PubMed

    Mouriño-García, Marcos A; Pérez-Rodríguez, Roberto; Anido-Rifón, Luis E

    2017-01-01

    The ability to efficiently review the existing literature is essential for the rapid progress of research. This paper describes a classifier of text documents, represented as vectors in spaces of Wikipedia concepts, and analyses its suitability for classification of Spanish biomedical documents when only English documents are available for training. We propose the cross-language concept matching (CLCM) technique, which relies on Wikipedia interlanguage links to convert concept vectors from the Spanish to the English space. The performance of the classifier is compared to several baselines: a classifier based on machine translation, a classifier that represents documents after performing Explicit Semantic Analysis (ESA), and a classifier that uses a domain-specific semantic an- notator (MetaMap). The corpus used for the experiments (Cross-Language UVigoMED) was purpose-built for this study, and it is composed of 12,832 English and 2,184 Spanish MEDLINE abstracts. The performance of our approach is superior to any other state-of-the art classifier in the benchmark, with performance increases up to: 124% over classical machine translation, 332% over MetaMap, and 60 times over the classifier based on ESA. The results have statistical significance, showing p-values < 0.0001. Using knowledge mined from Wikipedia to represent documents as vectors in a space of Wikipedia concepts and translating vectors between language-specific concept spaces, a cross-language classifier can be built, and it performs better than several state-of-the-art classifiers. Schattauer GmbH.

  6. A Bag of Concepts Approach for Biomedical Document Classification Using Wikipedia Knowledge*. Spanish-English Cross-language Case Study.

    PubMed

    Mouriño-García, Marcos A; Pérez-Rodríguez, Roberto; Anido-Rifón, Luis E

    2017-10-26

    The ability to efficiently review the existing literature is essential for the rapid progress of research. This paper describes a classifier of text documents, represented as vectors in spaces of Wikipedia concepts, and analyses its suitability for classification of Spanish biomedical documents when only English documents are available for training. We propose the cross-language concept matching (CLCM) technique, which relies on Wikipedia interlanguage links to convert concept vectors from the Spanish to the English space. The performance of the classifier is compared to several baselines: a classifier based on machine translation, a classifier that represents documents after performing Explicit Semantic Analysis (ESA), and a classifier that uses a domain-specific semantic annotator (MetaMap). The corpus used for the experiments (Cross-Language UVigoMED) was purpose-built for this study, and it is composed of 12,832 English and 2,184 Spanish MEDLINE abstracts. The performance of our approach is superior to any other state-of-the art classifier in the benchmark, with performance increases up to: 124% over classical machine translation, 332% over MetaMap, and 60 times over the classifier based on ESA. The results have statistical significance, showing p-values < 0.0001. Using knowledge mined from Wikipedia to represent documents as vectors in a space of Wikipedia concepts and translating vectors between language-specific concept spaces, a cross-language classifier can be built, and it performs better than several state-of-the-art classifiers.

  7. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer

    NASA Astrophysics Data System (ADS)

    Milione, Giovanni; Lavery, Martin P. J.; Huang, Hao; Ren, Yongxiong; Xie, Guodong; Nguyen, Thien An; Karimi, Ebrahim; Marrucci, Lorenzo; Nolan, Daniel A.; Alfano, Robert R.; Willner, Alan E.

    2015-05-01

    Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. They can produce smaller spot sizes and stronger longitudinal polarization components upon focusing. As a result, they are used for many applications, including optical trapping and nanoscale imaging. In this work, vector modes are used to increase the information capacity of free space optical communication via the method of optical communication referred to as mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal technology referred to as a q-plate is introduced. As a proof of principle, using the mode (de)multiplexer four vector modes each carrying a 20 Gbit/s quadrature phase shift keying signal on a single wavelength channel (~1550nm), comprising an aggregate 80 Gbit/s, were transmitted ~1m over the lab table with <-16.4 dB (<2%) mode crosstalk. Bit error rates for all vector modes were measured at the forward error correction threshold with power penalties < 3.41dB.

  8. Multiscale vector fields for image pattern recognition

    NASA Technical Reports Server (NTRS)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  9. On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.

    PubMed

    Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba

    2013-01-01

    Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L 2 -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.

  10. On A Nonlinear Generalization of Sparse Coding and Dictionary Learning

    PubMed Central

    Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba

    2013-01-01

    Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝd, and the dictionary is learned from the training data using the vector space structure of ℝd and its Euclidean L2-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis. PMID:24129583

  11. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  12. An improved approach to infer protein-protein interaction based on a hierarchical vector space model.

    PubMed

    Zhang, Jiongmin; Jia, Ke; Jia, Jinmeng; Qian, Ying

    2018-04-27

    Comparing and classifying functions of gene products are important in today's biomedical research. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most widely used indicators for protein interaction. Among the various approaches proposed, those based on the vector space model are relatively simple, but their effectiveness is far from satisfying. We propose a Hierarchical Vector Space Model (HVSM) for computing semantic similarity between different genes or their products, which enhances the basic vector space model by introducing the relation between GO terms. Besides the directly annotated terms, HVSM also takes their ancestors and descendants related by "is_a" and "part_of" relations into account. Moreover, HVSM introduces the concept of a Certainty Factor to calibrate the semantic similarity based on the number of terms annotated to genes. To assess the performance of our method, we applied HVSM to Homo sapiens and Saccharomyces cerevisiae protein-protein interaction datasets. Compared with TCSS, Resnik, and other classic similarity measures, HVSM achieved significant improvement for distinguishing positive from negative protein interactions. We also tested its correlation with sequence, EC, and Pfam similarity using online tool CESSM. HVSM showed an improvement of up to 4% compared to TCSS, 8% compared to IntelliGO, 12% compared to basic VSM, 6% compared to Resnik, 8% compared to Lin, 11% compared to Jiang, 8% compared to Schlicker, and 11% compared to SimGIC using AUC scores. CESSM test showed HVSM was comparable to SimGIC, and superior to all other similarity measures in CESSM as well as TCSS. Supplementary information and the software are available at https://github.com/kejia1215/HVSM .

  13. Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad Tawfik

    We study the non-lightlike ruled surfaces in Minkowski 3-space with non-lightlike base curve c(s) =∫(αt + βn + γb)ds, where t, n, b are the tangent, principal normal and binormal vectors of an arbitrary timelike curve Γ(s). Some important results of flat, minimal, II-minimal and II-flat non-lightlike ruled surfaces are studied. Finally, the following interesting theorem is proved: the only non-zero constant mean curvature (CMC) non-lightlike ruled surface is developable timelike ruled surface generated by binormal vector.

  14. Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams.

    PubMed

    Li, Chun-Fang

    2007-12-15

    A unified description of free-space cylindrical vector beams is presented that is an integral transformation solution to the vector Helmholtz equation and the transversality condition. In the paraxial condition, this solution not only includes the known J(1) Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations but also predicts two kinds of vector beam, called a modified Bessel-Gaussian vector beam.

  15. A space-efficient quantum computer simulator suitable for high-speed FPGA implementation

    NASA Astrophysics Data System (ADS)

    Frank, Michael P.; Oniciuc, Liviu; Meyer-Baese, Uwe H.; Chiorescu, Irinel

    2009-05-01

    Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they can handle, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we describe the design and empirical space/time complexity measurements of a working software prototype of a quantum computer simulator that avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype our design on a standard FPGA development board.

  16. Optical/Infrared Signatures for Space-Based Remote Sensing

    DTIC Science & Technology

    2007-11-01

    Vanderbilt et al., 1985a, 1985b]. So, first linear polarization was introduced, followed by progress toward a full vector theory of polarization ...radiance profiles taken 30 s apart in a view direction orthogonal to the velocity vector , showing considerable structure due to radiance layers in the...6 Figure 3. The northern polar region and locations of the MSX

  17. Computation of Surface Integrals of Curl Vector Fields

    ERIC Educational Resources Information Center

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  18. A robust variant of block Jacobi-Davidson for extracting a large number of eigenpairs: Application to grid-based real-space density functional theory

    NASA Astrophysics Data System (ADS)

    Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.

    2017-09-01

    In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.

  19. A robust variant of block Jacobi-Davidson for extracting a large number of eigenpairs: Application to grid-based real-space density functional theory.

    PubMed

    Lee, M; Leiter, K; Eisner, C; Breuer, A; Wang, X

    2017-09-21

    In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.

  20. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  1. Feature-space-based FMRI analysis using the optimal linear transformation.

    PubMed

    Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S

    2010-09-01

    The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.

  2. Pure state consciousness and its local reduction to neuronal space

    NASA Astrophysics Data System (ADS)

    Duggins, A. J.

    2013-01-01

    The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.

  3. Use of digital control theory state space formalism for feedback at SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himel, T.; Hendrickson, L.; Rouse, F.

    The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allowsmore » simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs.« less

  4. An algebraic hypothesis about the primeval genetic code architecture.

    PubMed

    Sánchez, Robersy; Grau, Ricardo

    2009-09-01

    A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D,A,C,G,U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G identical with C and A=U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B(3))(N) of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.

  5. Generalized sidelobe canceller beamforming method for ultrasound imaging.

    PubMed

    Wang, Ping; Li, Na; Luo, Han-Wu; Zhu, Yong-Kun; Cui, Shi-Gang

    2017-03-01

    A modified generalized sidelobe canceller (IGSC) algorithm is proposed to enhance the resolution and robustness against the noise of the traditional generalized sidelobe canceller (GSC) and coherence factor combined method (GSC-CF). In the GSC algorithm, weighting vector is divided into adaptive and non-adaptive parts, while the non-adaptive part does not block all the desired signal. A modified steer vector of the IGSC algorithm is generated by the projection of the non-adaptive vector on the signal space constructed by the covariance matrix of received data. The blocking matrix is generated based on the orthogonal complementary space of the modified steer vector and the weighting vector is updated subsequently. The performance of IGSC was investigated by simulations and experiments. Through simulations, IGSC outperformed GSC-CF in terms of spatial resolution by 0.1 mm regardless there is noise or not, as well as the contrast ratio respect. The proposed IGSC can be further improved by combining with CF. The experimental results also validated the effectiveness of the proposed algorithm with dataset provided by the University of Michigan.

  6. Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images

    PubMed Central

    Srivastava, Anuj

    2010-01-01

    We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692

  7. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  8. The potential of latent semantic analysis for machine grading of clinical case summaries.

    PubMed

    Kintsch, Walter

    2002-02-01

    This paper introduces latent semantic analysis (LSA), a machine learning method for representing the meaning of words, sentences, and texts. LSA induces a high-dimensional semantic space from reading a very large amount of texts. The meaning of words and texts can be represented as vectors in this space and hence can be compared automatically and objectively. A generative theory of the mental lexicon based on LSA is described. The word vectors LSA constructs are context free, and each word, irrespective of how many meanings or senses it has, is represented by a single vector. However, when a word is used in different contexts, context appropriate word senses emerge. Several applications of LSA to educational software are described, involving the ability of LSA to quickly compare the content of texts, such as an essay written by a student and a target essay. An LSA-based software tool is sketched for machine grading of clinical case summaries written by medical students.

  9. The Vector Space as a Unifying Concept in School Mathematics.

    ERIC Educational Resources Information Center

    Riggle, Timothy Andrew

    The purpose of this study was to show how the concept of vector space can serve as a unifying thread for mathematics programs--elementary school to pre-calculus college level mathematics. Indicated are a number of opportunities to demonstrate how emphasis upon the vector space structure can enhance the organization of the mathematics curriculum.…

  10. Exclusive vector meson production with leading neutrons in a saturation model for the dipole amplitude in mixed space

    NASA Astrophysics Data System (ADS)

    Amaral, J. T.; Becker, V. M.

    2018-05-01

    We investigate ρ vector meson production in e p collisions at HERA with leading neutrons in the dipole formalism. The interaction of the dipole and the pion is described in a mixed-space approach, in which the dipole-pion scattering amplitude is given by the Marquet-Peschanski-Soyez saturation model, which is based on the traveling wave solutions of the nonlinear Balitsky-Kovchegov equation. We estimate the magnitude of the absorption effects and compare our results with a previous analysis of the same process in full coordinate space. In contrast with this approach, the present study leads to absorption K factors in the range of those predicted by previous theoretical studies on semi-inclusive processes.

  11. Solution of the determinantal assignment problem using the Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Karcanias, Nicos; Leventides, John

    2016-02-01

    The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.

  12. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  13. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.

  14. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Fault Detection of Bearing Systems through EEMD and Optimization Algorithm

    PubMed Central

    Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2017-01-01

    This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772

  16. Thyra Abstract Interface Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A.

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilities to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Codemore » also currently exists for testing objects and providing composite objects such as product vectors.« less

  17. Professor Herman Burger (1893-1965), eminent teacher and scientist, who laid the theoretical foundations of vectorcardiography--and electrocardiography.

    PubMed

    van Herpen, Gerard

    2014-01-01

    Einthoven not only designed a high quality instrument, the string galvanometer, for recording the ECG, he also shaped the conceptual framework to understand it. He reduced the body to an equilateral triangle and the cardiac electric activity to a dipole, represented by an arrow (i.e. a vector) in the triangle's center. Up to the present day the interpretation of the ECG is based on the model of a dipole vector being projected on the various leads. The model is practical but intuitive, not physically founded. Burger analysed the relation between heart vector and leads according to the principles of physics. It then follows that an ECG lead must be treated as a vector (lead vector) and that the lead voltage is not simply proportional to the projection of the vector on the lead, but must be multiplied by the value (length) of the lead vector, the lead strength. Anatomical lead axis and electrical lead axis are different entities and the anatomical body space must be distinguished from electrical space. Appreciation of these underlying physical principles should contribute to a better understanding of the ECG. The development of these principles by Burger is described, together with some personal notes and a sketch of the personality of this pioneer of medical physics. Copyright © 2014. Published by Elsevier Inc.

  18. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin

    2011-12-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.

  19. New Term Weighting Formulas for the Vector Space Method in Information Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, E.; Kolda, T.G.

    The goal in information retrieval is to enable users to automatically and accurately find data relevant to their queries. One possible approach to this problem i use the vector space model, which models documents and queries as vectors in the term space. The components of the vectors are determined by the term weighting scheme, a function of the frequencies of the terms in the document or query as well as throughout the collection. We discuss popular term weighting schemes and present several new schemes that offer improved performance.

  20. Extended vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Procamore » theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.« less

  1. Reasoning with Vectors: A Continuous Model for Fast Robust Inference.

    PubMed

    Widdows, Dominic; Cohen, Trevor

    2015-10-01

    This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behavior of more traditional deduction engines such as theorem provers. The paper explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this paper include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type-inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values. The algorithms and techniques described in this paper are all publicly released and freely available in the Semantic Vectors open-source software package.

  2. Reasoning with Vectors: A Continuous Model for Fast Robust Inference

    PubMed Central

    Widdows, Dominic; Cohen, Trevor

    2015-01-01

    This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behavior of more traditional deduction engines such as theorem provers. The paper explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this paper include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type-inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values. The algorithms and techniques described in this paper are all publicly released and freely available in the Semantic Vectors open-source software package.1 PMID:26582967

  3. Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases

    PubMed Central

    Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.

    2007-01-01

    The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403

  4. Field Computation and Nonpropositional Knowledge.

    DTIC Science & Technology

    1987-09-01

    field computer It is based on xeneralization of Taylor’s theorem to continuous dimensional vector spaces. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21...generalization of Taylor’s theorem to continuous dimensional vector -5paces A number of field computations are illustrated, including several Lransforma...paradigm. The "old" Al has been quite successful in performing a number of difficult tasks, such as theorem prov- ing, chess playing, medical diagnosis and

  5. DYMAFLEX: DYnamic Manipulation FLight EXperiment

    DTIC Science & Technology

    2013-09-03

    thrust per nozzle and minimize propellant mass and tank mass. This study compared carbon dioxide, nitrous oxide, and R134-A. These results were...equations of mo- tion of a space manipulator, showing their top- level, matrix- vector representation to be of iden- tical form to those of a fixed-base...the system inertia matrix, q is the po- sition state vector (consisting of the manipulator joint angles θ, spacecraft attitude quaternion, and

  6. Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest

    PubMed Central

    Ma, Suliang; Wu, Jianwen; Wang, Yuhao; Jia, Bowen; Jiang, Yuan

    2018-01-01

    Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and random forest algorithm, an effective identification system was developed in this paper. First, compared with the incomplete description of Shannon entropy, the wavelet packet time-frequency energy rate (WTFER) was adopted as the input vector for the classifier model in the feature selection procedure. Then, a random forest classifier was used to diagnose the HVCB fault, assess the importance of the feature variable and optimize the feature space. Finally, the approach was verified based on actual HVCB vibration signals by considering six typical fault classes. The comparative experiment results show that the classification accuracy of the proposed method with the origin feature space reached 93.33% and reached up to 95.56% with optimized input feature vector of classifier. This indicates that feature optimization procedure is successful, and the proposed diagnosis algorithm has higher efficiency and robustness than traditional methods. PMID:29659548

  7. Left ventricular hypertrophy index based on a combination of frontal and transverse planes in the ECG and VCG: Diagnostic utility of cardiac vectors

    NASA Astrophysics Data System (ADS)

    Bonomini, Maria Paula; Juan Ingallina, Fernando; Barone, Valeria; Antonucci, Ricardo; Valentinuzzi, Max; Arini, Pedro David

    2016-04-01

    The changes that left ventricular hypertrophy (LVH) induces in depolarization and repolarization vectors are well known. We analyzed the performance of the electrocardiographic and vectorcardiographic transverse planes (TP in the ECG and XZ in the VCG) and frontal planes (FP in the ECG and XY in the VCG) to discriminate LVH patients from control subjects. In an age-balanced set of 58 patients, the directions and amplitudes of QRS-complexes and T-wave vectors were studied. The repolarization vector significantly decreased in modulus from controls to LVH in the transverse plane (TP: 0.45±0.17mV vs. 0.24±0.13mV, p<0.0005 XZ: 0.43±0.16mV vs. 0.26±0.11mV, p<0.005) while the depolarization vector significantly changed in angle in the electrocardiographic frontal plane (Controls vs. LVH, FP: 48.24±33.66° vs. 46.84±35.44°, p<0.005, XY: 20.28±35.20° vs. 19.35±12.31°, NS). Several LVH indexes were proposed combining such information in both ECG and VCG spaces. A subset of all those indexes with AUC values greater than 0.7 was further studied. This subset comprised four indexes, with three of them belonging to the ECG space. Two out of the four indexes presented the best ROC curves (AUC values: 0.78 and 0.75, respectively). One index belonged to the ECG space and the other one to the VCG space. Both indexes showed a sensitivity of 86% and a specificity of 70%. In conclusion, the proposed indexes can favorably complement LVH diagnosis

  8. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  9. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  10. NASA Marshall Space Flight Center Solar Observatory report, July - December 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    A summary is given of the solar vector magnetic field, H-alpha, and white light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of observation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f-13, 30 cm Cassegrain system with a 3.5 cm image of the Sun housed on top of a 12.8 meter tower, a 12.5 cm Razdow H-alpha telescope housed at the base of the tower, an 18 cm Questar telescope with a full aperture white-light filter mounted at the base of the tower, a 30 cm Cassegrain telescope located in a second metal dome, and a 16.5 cm H-alpha telescope mounted on the side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  11. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    NASA Astrophysics Data System (ADS)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  12. Expression of short hairpin RNAs using the compact architecture of retroviral microRNA genes.

    PubMed

    Burke, James M; Kincaid, Rodney P; Aloisio, Francesca; Welch, Nicole; Sullivan, Christopher S

    2017-09-29

    Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    PubMed Central

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  14. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  15. On orthogonal expansions of the space of vector functions which are square-summable over a given domain and the vector analysis operators

    NASA Technical Reports Server (NTRS)

    Bykhovskiy, E. B.; Smirnov, N. V.

    1983-01-01

    The Hilbert space L2(omega) of vector functions is studied. A breakdown of L2(omega) into orthogonal subspaces is discussed and the properties of the operators for projection onto these subspaces are investigated from the standpoint of preserving the differential properties of the vectors being projected. Finally, the properties of the operators are examined.

  16. Dual Vector Spaces and Physical Singularities

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  17. Space-Based Remote Sensing of Atmospheric Aerosols: The Multi-Angle Spectro-Polarimetric Frontier

    NASA Technical Reports Server (NTRS)

    Kokhanovsky, A. A.; Davis, A. B.; Cairns, B.; Dubovik, O.; Hasekamp, O. P.; Sano, I.; Mukai, S.; Rozanov, V. V.; Litvinov, P.; Lapyonok, T.; hide

    2015-01-01

    The review of optical instrumentation, forward modeling, and inverse problem solution for the polarimetric aerosol remote sensing from space is presented. The special emphasis is given to the description of current airborne and satellite imaging polarimeters and also to modern satellite aerosol retrieval algorithms based on the measurements of the Stokes vector of reflected solar light as detected on a satellite. Various underlying surface reflectance models are discussed and evaluated.

  18. Elementary properties of triangle in normed spaces

    NASA Astrophysics Data System (ADS)

    Triana, Deri; Yunus, Mahmud

    2018-03-01

    Based on concepts of trigonometric on plane, In this paper we generalized those concept in normed spaces. About the orthogonality concept between two vectors already well known, we are interested to develop elementary properties of triangle, especially the properties of its angle. We propose a non-linear (Wilson) functional to define an angle and explore its properties.

  19. Neurophysiological Study of Vector Responses to Repellents.

    DTIC Science & Technology

    1980-08-01

    vector organisms and of the relationship between the physiologic condition of the organisms and the generation and trans- mission of sensory... hemolymph space at the tip of the antenna and connected to ground. A similar recording electrode was inserted through the cuticle at the base of a...pieces of filter paper of uniform size and placed them in glass tubes, through which the airstream was passed, rather than in the gas bubbler flask

  20. Ontology-based vector space model and fuzzy query expansion to retrieve knowledge on medical computational problem solutions.

    PubMed

    Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos

    2007-01-01

    Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.

  1. Reduced multiple empirical kernel learning machine.

    PubMed

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.

  2. Multiclass Reduced-Set Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Tang, Benyang; Mazzoni, Dominic

    2006-01-01

    There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.

  3. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    DOEpatents

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  4. Effects of OCR Errors on Ranking and Feedback Using the Vector Space Model.

    ERIC Educational Resources Information Center

    Taghva, Kazem; And Others

    1996-01-01

    Reports on the performance of the vector space model in the presence of OCR (optical character recognition) errors in information retrieval. Highlights include precision and recall, a full-text test collection, smart vector representation, impact of weighting parameters, ranking variability, and the effect of relevance feedback. (Author/LRW)

  5. Handy elementary algebraic properties of the geometry of entanglement

    NASA Astrophysics Data System (ADS)

    Blair, Howard A.; Alsing, Paul M.

    2013-05-01

    The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.

  6. Development and Characterization of a High Throughput Screen to investigate the delayed Effects of Radiations Commonly Encountered in Space

    NASA Astrophysics Data System (ADS)

    Morgan, W. F.

    Astronauts based on the space station or on long-term space missions will be exposed to high Z radiations in the cosmic environment In order to evaluate the potentially deleterious effects of exposure to radiations commonly encountered in space we have developed and characterized a high throughput assay to detect mutation deletion events and or hyperrecombination in the progeny of exposed cells This assay is based on a plasmid vector containing a green fluorescence protein reporter construct We have shown that after stable transfection of the vector into human or hamster cells this construct can identify mutations specifically base changes and deletions as well as recombination events e g gene conversion or homologous recombination occurring as a result of exposure to ionizing radiation Our focus has been on those events occurring in the progeny of an irradiated cell that are potentially associated with radiation induced genomic instability rather than the more conventional assays that evaluate the direct immediate effects of radiation exposure Considerable time has been spent automating analysis of surviving colonies as a function of time after irradiation in order to determine when delayed instability is induced and the consequences of this delayed instability The assay is now automated permitting the evaluation of potentially rare events associated with low dose low dose rate radiations commonly encountered in space

  7. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less

  8. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    DOE PAGES

    None, None

    2016-11-21

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less

  9. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  10. L'espace articulaire de la Robotique Industrielle est un espace vectorielIndustrial Robotics joint space is a vector space

    NASA Astrophysics Data System (ADS)

    Tondu, Bertrand

    2003-05-01

    The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws. To cite this article: B. Tondu, C. R. Mecanique 331 (2003).

  11. Developing a New Similarity Measure from Two Different Perspectives.

    ERIC Educational Resources Information Center

    Zhang, Jin; Rasmussen, Edie M.

    2001-01-01

    Compares two similarity measures for information retrieval in a document vector space, the distance-based and the angle-based, and presents a newly developed similarity measure based on both the distance and angle strengths of two compared objects. Introduces the concept of the iso-extent contour and then compares all three similarity measures.…

  12. Querying and Ranking XML Documents.

    ERIC Educational Resources Information Center

    Schlieder, Torsten; Meuss, Holger

    2002-01-01

    Discussion of XML, information retrieval, precision, and recall focuses on a retrieval technique that adopts the similarity measure of the vector space model, incorporates the document structure, and supports structured queries. Topics include a query model based on tree matching; structured queries and term-based ranking; and term frequency and…

  13. Sample-space-based feature extraction and class preserving projection for gene expression data.

    PubMed

    Wang, Wenjun

    2013-01-01

    In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.

  14. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  15. Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor

    PubMed Central

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  16. Climate impacts on environmental risks evaluated from space: a conceptual approach to the case of Rift Valley Fever in Senegal.

    PubMed

    Tourre, Yves M; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle

    2009-11-11

    Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds' dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes' bites. This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide.

  17. Vector and Raster Data Storage Based on Morton Code

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Pan, Q.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Liu, X.

    2018-05-01

    Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.

  18. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. HERO: a space based low frequency interferometric observatory for heliophysicsenabled by novel vector sensor technology

    DTIC Science & Technology

    2017-04-07

    considerations. Experimental Astronomy , 2015.304 Dicke, R. H. The Measurement of Thermal Radiation at Microwave Frequencies. Review305 of Scientific Instruments...17, 7, 268, 1946.306 12 M. Knapp et al. Ellingson, S. W. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy .307 IEEE Transactions on...Morris, M. Silver, S. Klein, and314 S. Seager. Vector antenna and maximum likelihood imaging for radio astronomy . In315 IEEE Aerospace Conference

  20. Stable and Efficient Gene Transfer into the Retina Using an HIV-Based Lentiviral Vector

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hiroyuki; Takahashi, Masayo; Gage, Fred H.; Verma, Inder M.

    1997-09-01

    The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.

  1. Climate-based models for West Nile Culex mosquito vectors in the Northeastern US

    NASA Astrophysics Data System (ADS)

    Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

    2011-05-01

    Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

  2. Propagation and wavefront ambiguity of linear nondiffracting beams

    NASA Astrophysics Data System (ADS)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  3. Learning with LOGO: Logo and Vectors.

    ERIC Educational Resources Information Center

    Lough, Tom; Tipps, Steve

    1986-01-01

    This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)

  4. Managing the resilience space of the German energy system - A vector analysis.

    PubMed

    Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich

    2018-07-15

    The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Tiled vector data model for the geographical features of symbolized maps.

    PubMed

    Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang

    2017-01-01

    Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.

  6. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    PubMed

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Theoretical and numerical difficulties in 3-D vector potential methods in finite element magnetostatic computations

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.

    1990-01-01

    This paper describes the results of application of three well known 3D magnetic vector potential (MVP) based finite element formulations for computation of magnetostatic fields in electrical devices. The three methods were identically applied to three practical examples, the first of which contains only one medium (free space), while the second and third examples contained a mix of free space and iron. The first of these methods is based on the unconstrained curl-curl of the MVP, while the second and third methods are predicated upon constraining the divergence of the MVP 10 zero (Coulomb's Gauge). It was found that the two latter methods cease to give useful and meaningful results when the global solution region contains a mix of media of high and low permeabilities. Furthermore, it was found that their results do not achieve the intended zero constraint on the divergence of the MVP.

  8. Parametric State Space Structuring

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Tilgner, Marco

    1997-01-01

    Structured approaches based on Kronecker operators for the description and solution of the infinitesimal generator of a continuous-time Markov chains are receiving increasing interest. However, their main advantage, a substantial reduction in the memory requirements during the numerical solution, comes at a price. Methods based on the "potential state space" allocate a probability vector that might be much larger than actually needed. Methods based on the "actual state space", instead, have an additional logarithmic overhead. We present an approach that realizes the advantages of both methods with none of their disadvantages, by partitioning the local state spaces of each submodel. We apply our results to a model of software rendezvous, and show how they reduce memory requirements while, at the same time, improving the efficiency of the computation.

  9. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    PubMed

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  10. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    PubMed

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  11. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    NASA Astrophysics Data System (ADS)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel

    2017-12-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.

  12. Mechanism of competitive grain growth in a curvilinear channel of crystal-sorter during the orientational solidification of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Monastyrskiy, V. P.; Pozdnyakov, A. N.; Ershov, M. Yu.; Monastyrskiy, A. V.

    2017-07-01

    Using numerical simulation in the ProCAST program complex, the conditions of the solidification of heat-resistant nickel alloy in curvilinear channels of a ceramic mold have been investigated. It has been shown that, in practically important cases, the vector of the temperature gradient is oriented along the axis of the curvilinear channel. In a spiral crystal selector, a cyclic change in the preferred direction of growth occurs because of the cyclic change in the direction of the vector of the temperature gradient. The fact that the vector of the temperature gradient is almost always directed along the axis of the curvilinear channel makes it possible to govern the orientation of the vector of the temperature gradient in space and, therefore, to obtain a grain with the preferred crystallographic orientation. Based on the results of this investigation, a method of the grain selection with a desired azimuthal orientation is proposed.

  13. Assessing semantic similarity of texts - Methods and algorithms

    NASA Astrophysics Data System (ADS)

    Rozeva, Anna; Zerkova, Silvia

    2017-12-01

    Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.

  14. Cross-entropy embedding of high-dimensional data using the neural gas model.

    PubMed

    Estévez, Pablo A; Figueroa, Cristián J; Saito, Kazumi

    2005-01-01

    A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a Newton-Raphson method. The new approach is compared with Sammon's non-linear mapping (NLM) and the hierarchical approach of combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of the topology preservation measure q(m).

  15. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  16. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  17. Estimation of the chemical rank for the three-way data: a principal norm vector orthogonal projection approach.

    PubMed

    Hong-Ping, Xie; Jian-Hui, Jiang; Guo-Li, Shen; Ru-Qin, Yu

    2002-01-01

    A new approach for estimating the chemical rank of the three-way array called the principal norm vector orthogonal projection method has been proposed. The method is based on the fact that the chemical rank of the three-way data array is equal to one of the column space of the unfolded matrix along the spectral or chromatographic mode. A vector with maximum Frobenius norm is selected among all the column vectors of the unfolded matrix as the principal norm vector (PNV). A transformation is conducted for the column vectors with an orthogonal projection matrix formulated by PNV. The mathematical rank of the column space of the residual matrix thus obtained should decrease by one. Such orthogonal projection is carried out repeatedly till the contribution of chemical species to the signal data is all deleted. At this time the decrease of the mathematical rank would equal that of the chemical rank, and the remaining residual subspace would entirely be due to the noise contribution. The chemical rank can be estimated easily by using an F-test. The method has been used successfully to the simulated HPLC-DAD type three-way data array and two real excitation-emission fluorescence data sets of amino acid mixtures and dye mixtures. The simulation with added relatively high level noise shows that the method is robust in resisting the heteroscedastic noise. The proposed algorithm is simple and easy to program with quite light computational burden.

  18. A demonstration of a transportable radio interferometric surveying system with 3-cm accuracy on a 307-m base line

    NASA Technical Reports Server (NTRS)

    Ong, K. M.; Macdoran, P. F.; Thomas, J. B.; Fliegel, H. F.; Skjerve, L. J.; Spitzmesser, D. J.; Batelaan, P. D.; Paine, S. R.; Newsted, M. G.

    1976-01-01

    A precision geodetic measurement system (Aries, for Astronomical Radio Interferometric Earth Surveying) based on the technique of very long base line interferometry has been designed and implemented through the use of a 9-m transportable antenna and the NASA 64-m antenna of the Deep Space Communications Complex at Goldstone, California. A series of experiments designed to demonstrate the inherent accuracy of a transportable interferometer was performed on a 307-m base line during the period from December 1973 to June 1974. This short base line was chosen in order to obtain a comparison with a conventional survey with a few-centimeter accuracy and to minimize Aries errors due to transmission media effects, source locations, and earth orientation parameters. The base-line vector derived from a weighted average of the measurements, representing approximately 24 h of data, possessed a formal uncertainty of about 3 cm in all components. This average interferometry base-line vector was in good agreement with the conventional survey vector within the statistical range allowed by the combined uncertainties (3-4 cm) of the two techniques.

  19. Projective mappings and dimensions of vector spaces of three types of Killing-Yano tensors on pseudo Riemannian manifolds of constant curvature

    NASA Astrophysics Data System (ADS)

    Mikeš, Josef; Stepanov, Sergey; Hinterleitner, Irena

    2012-07-01

    In our paper we have determined the dimension of the space of conformal Killing-Yano tensors and the dimensions of its two subspaces of closed conformal Killing-Yano and Killing-Yano tensors on pseudo Riemannian manifolds of constant curvature. This result is a generalization of well known results on sharp upper bounds of the dimensions of the vector spaces of conformal Killing-Yano, Killing-Yano and concircular vector fields on pseudo Riemannian manifolds of constant curvature.

  20. Energy Dissipation of Rayleigh Waves due to Absorption Along the Path by the Use of Finite Element Method

    DTIC Science & Technology

    1979-07-31

    3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is

  1. The Sequential Implementation of Array Processors when there is Directional Uncertainty

    DTIC Science & Technology

    1975-08-01

    University of Washington kindly supplied office space and ccputing facilities. -The author hat, benefited greatly from discussions with several other...if i Q- inverse of Q I L general observation space R general vector of observation _KR general observation vector of dimension K Exiv] "Tf -- ’ -"-T’T...7" i ’i ’:"’ - ’ ; ’ ’ ’ ’ ’ ’" ’"- Glossary of Symbols (continued) R. ith observation 1 Rm real vector space of dimension m R(T) autocorrelation

  2. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.

    PubMed

    Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A

    2014-01-01

    Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).

  3. Capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather

    NASA Astrophysics Data System (ADS)

    Avdyushev, V.; Banshchikova, M.; Chuvashov, I.; Kuzmin, A.

    2017-09-01

    In the paper are presented capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather. The software "Vector-M" is developed by the celestial mechanics and astrometry department of Tomsk State University in collaboration with Space Research Institute (Moscow) and Central Aerological Observatory of Russian Federal Service for Hydrometeorology and Environmental Monitoring. The software "Vector-M" is intended for calculation of attendant geophysical and astronomical information for the centre of mass of the spacecraft and the space of observations in the experiment with auroral imager Aurovisor-VIS/MP in the orbit of the perspective Meteor-MP spacecraft.

  4. A Distributed Wireless Camera System for the Management of Parking Spaces.

    PubMed

    Vítek, Stanislav; Melničuk, Petr

    2017-12-28

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces.

  5. Trends in space activities in 2014: The significance of the space activities of governments

    NASA Astrophysics Data System (ADS)

    Paikowsky, Deganit; Baram, Gil; Ben-Israel, Isaac

    2016-01-01

    This article addresses the principal events of 2014 in the field of space activities, and extrapolates from them the primary trends that can be identified in governmental space activities. In 2014, global space activities centered on two vectors. The first was geopolitical, and the second relates to the matrix between increasing commercial space activities and traditional governmental space activities. In light of these two vectors, the article outlines and analyzes trends of space exploration, human spaceflights, industry and technology, cooperation versus self-reliance, and space security and sustainability. It also reviews the space activities of the leading space-faring nations.

  6. Climate impacts on environmental risks evaluated from space: a conceptual approach to the case of Rift Valley Fever in Senegal

    PubMed Central

    Tourre, Yves M.; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle

    2009-01-01

    Background Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. Objectives To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Design Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Results Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds’ dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes’ bites. Conclusions This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide. PMID:20052381

  7. Gradient-based controllers for timed continuous Petri nets

    NASA Astrophysics Data System (ADS)

    Lefebvre, Dimitri; Leclercq, Edouard; Druaux, Fabrice; Thomas, Philippe

    2015-07-01

    This paper is about control design for timed continuous Petri nets that are described as piecewise affine systems. In this context, the marking vector is considered as the state space vector, weighted marking of place subsets are defined as the model outputs and the model inputs correspond to multiplicative control actions that slow down the firing rate of some controllable transitions. Structural and functional sensitivity of the outputs with respect to the inputs are discussed in terms of Petri nets. Then, gradient-based controllers (GBC) are developed in order to adapt the control actions of the controllable transitions according to desired trajectories of the outputs.

  8. A malaria transmission-directed model of mosquito life cycle and ecology

    PubMed Central

    2011-01-01

    Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664

  9. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.

  10. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  11. Investigations on the hierarchy of reference frames in geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.

    1979-01-01

    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).

  12. Singular reduction of resonant Hamiltonians

    NASA Astrophysics Data System (ADS)

    Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2018-06-01

    We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

  13. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  14. Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia

    1998-04-01

    Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.

  15. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  16. Transformation to equivalent dimensions—a new methodology to study earthquake clustering

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw

    2014-05-01

    A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.

  17. Combined-probability space and certainty or uncertainty relations for a finite-level quantum system

    NASA Astrophysics Data System (ADS)

    Sehrawat, Arun

    2017-08-01

    The Born rule provides a probability vector (distribution) with a quantum state for a measurement setting. For two settings, we have a pair of vectors from the same quantum state. Each pair forms a combined-probability vector that obeys certain quantum constraints, which are triangle inequalities in our case. Such a restricted set of combined vectors, called the combined-probability space, is presented here for a d -level quantum system (qudit). The combined space is a compact convex subset of a Euclidean space, and all its extreme points come from a family of parametric curves. Considering a suitable concave function on the combined space to estimate the uncertainty, we deliver an uncertainty relation by finding its global minimum on the curves for a qudit. If one chooses an appropriate concave (or convex) function, then there is no need to search for the absolute minimum (maximum) over the whole space; it will be on the parametric curves. So these curves are quite useful for establishing an uncertainty (or a certainty) relation for a general pair of settings. We also demonstrate that many known tight certainty or uncertainty relations for a qubit can be obtained with the triangle inequalities.

  18. A Feature Mining Based Approach for the Classification of Text Documents into Disjoint Classes.

    ERIC Educational Resources Information Center

    Nieto Sanchez, Salvador; Triantaphyllou, Evangelos; Kraft, Donald

    2002-01-01

    Proposes a new approach for classifying text documents into two disjoint classes. Highlights include a brief overview of document clustering; a data mining approach called the One Clause at a Time (OCAT) algorithm which is based on mathematical logic; vector space model (VSM); and comparing the OCAT to the VSM. (Author/LRW)

  19. On the Prognostic Efficiency of Topological Descriptors for Magnetograms of Active Regions

    NASA Astrophysics Data System (ADS)

    Knyazeva, I. S.; Urtiev, F. A.; Makarenko, N. G.

    2017-12-01

    Solar flare prediction remains an important practical task of space weather. An increase in the amount and quality of observational data and the development of machine-learning methods has led to an improvement in prediction techniques. Additional information has been retrieved from the vector magnetograms; these have been recently supplemented by traditional line-of-sight (LOS) magnetograms. In this work, the problem of the comparative prognostic efficiency of features obtained on the basis of vector data and LOS magnetograms is discussed. Invariants obtained from a topological analysis of LOS magnetograms are used as complexity characteristics of magnetic patterns. Alternatively, the so-called SHARP parameters were used; they were calculated by the data analysis group of the Stanford University Laboratory on the basis of HMI/SDO vector magnetograms and are available online at the website (http://jsoc.stanford.edu/) with the solar dynamics observatory (SDO) database for the entire history of SDO observations. It has been found that the efficiency of large-flare prediction based on topological descriptors of LOS magnetograms in epignosis mode is at least s no worse than the results of prognostic schemes based on vector features. The advantages of the use of topological invariants based on LOS data are discussed.

  20. O Electromagnetic Power Waves and Power Density Components.

    NASA Astrophysics Data System (ADS)

    Petzold, Donald Wayne

    1980-12-01

    On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward and reverse power density vectors and which will be shown to be associated with the total electric and magnetic field energy densities existing at a local point will also be introduced. These local forward and reverse power density vectors may be integrated over a surface to determine the forward and reverse powers and from these results problems related to maximum power transfer or efficiency of electromagnetic energy transmission in space may be studied in a manner similar to that presently being done with transmission lines, wave guides, and more recently with two port multiport lumped parameter systems. These new forward and reverse power density vectors at a point in space are analogous to the forward and revoltages or currents and power waves as used with the transmission line, waveguide, or port. These power wave vectors in space are a generalization of the power waves as developed by Penfield, Youla, and Kurokawa and used with the scattering parameters associated with transmission lines, waveguides and ports.

  1. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches

    NASA Astrophysics Data System (ADS)

    Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.

    2014-09-01

    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.

  2. Efficiency Evaluation of Nozawa-Style Black Light Trap for Control of Anopheline Mosquitoes

    PubMed Central

    Lee, Hee Il; Seo, Bo Youl; Shin, E-Hyun; Burkett, Douglas A.; Lee, Jong-Koo

    2009-01-01

    House-residual spraying and insecticide-treated bed nets have achieved some success in controlling anthropophilic and endophagic vectors. However, these methods have relatively low efficacy in Korea because Anopheles sinensis, the primary malaria vector, is highly zoophilic and exophilic. So, we focused our vector control efforts within livestock enclosures using ultraviolet black light traps as a mechanical control measure. We found that black light traps captured significantly more mosquitoes at 2 and 2.5 m above the ground (P < 0.05). We also evaluated the effectiveness of trap spacing within the livestock enclosure. In general, traps spaced between 4 and 7 m apart captured mosquitoes more efficiently than those spaced closer together (P > 0.05). Based on these findings, we concluded that each black light trap in the livestock enclosures killed 7,586 female mosquitoes per trap per night during the peak mosquito season (July-August). In May-August 2003, additional concurrent field trials were conducted in Ganghwa county. We got 74.9% reduction (P < 0.05) of An. sinensis in human dwellings and 61.5% reduction (P > 0.05) in the livestock enclosures. The black light trap operation in the livestock enclosures proved to be an effective control method and should be incorporated into existing control strategies in developed countries. PMID:19488423

  3. Human action classification using procrustes shape theory

    NASA Astrophysics Data System (ADS)

    Cho, Wanhyun; Kim, Sangkyoon; Park, Soonyoung; Lee, Myungeun

    2015-02-01

    In this paper, we propose new method that can classify a human action using Procrustes shape theory. First, we extract a pre-shape configuration vector of landmarks from each frame of an image sequence representing an arbitrary human action, and then we have derived the Procrustes fit vector for pre-shape configuration vector. Second, we extract a set of pre-shape vectors from tanning sample stored at database, and we compute a Procrustes mean shape vector for these preshape vectors. Third, we extract a sequence of the pre-shape vectors from input video, and we project this sequence of pre-shape vectors on the tangent space with respect to the pole taking as a sequence of mean shape vectors corresponding with a target video. And we calculate the Procrustes distance between two sequences of the projection pre-shape vectors on the tangent space and the mean shape vectors. Finally, we classify the input video into the human action class with minimum Procrustes distance. We assess a performance of the proposed method using one public dataset, namely Weizmann human action dataset. Experimental results reveal that the proposed method performs very good on this dataset.

  4. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Interoperability Policy Roadmap

    DTIC Science & Technology

    2010-01-01

    Retrieval – SMART The technique developed by Dr. Gerard Salton for automated information retrieval and text analysis is called the vector-space... Salton , G., Wong, A., Yang, C.S., “A Vector Space Model for Automatic Indexing”, Commu- nications of the ACM, 18, 613-620. [10] Salton , G., McGill

  6. Hemispheric Patterns in Electric Current Helicity of Solar Magnetic Fields During Solar Cycle 24: Results from SOLIS, SDO and Hinode

    NASA Astrophysics Data System (ADS)

    Gusain, S.

    2017-12-01

    We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.

  7. Two-dimensional PCA-based human gait identification

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  8. Relevance of Web Documents:Ghosts Consensus Method.

    ERIC Educational Resources Information Center

    Gorbunov, Andrey L.

    2002-01-01

    Discusses how to improve the quality of Internet search systems and introduces the Ghosts Consensus Method which is free from the drawbacks of digital democracy algorithms and is based on linear programming tasks. Highlights include vector space models; determining relevant documents; and enriching query terms. (LRW)

  9. The DTW-based representation space for seismic pattern classification

    NASA Astrophysics Data System (ADS)

    Orozco-Alzate, Mauricio; Castro-Cabrera, Paola Alexandra; Bicego, Manuele; Londoño-Bonilla, John Makario

    2015-12-01

    Distinguishing among the different seismic volcanic patterns is still one of the most important and labor-intensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias by using automatic classification techniques. In this context, a core but often overlooked issue is the choice of an appropriate representation of the data to be classified. Recently, it has been suggested that using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the relational information contained in the dissimilarities to derive highly discriminant vector spaces, where any classifier can be used. According to that motivation, this paper investigates the suitability of a dynamic time warping (DTW) dissimilarity-based vector representation for the classification of seismic patterns. Results show the usefulness of such a representation in the seismic pattern classification scenario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm such as the proper selection of representation sets and the combination of different dissimilarity representations that might be available for the same data.

  10. Approach to fitting parameters and clustering for characterising measured voltage dips based on two-dimensional polarisation ellipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, E.

    An alternative approach to characterise real voltage dips is proposed and evaluated in this study. The proposed methodology is based on voltage-space vector solutions, identifying parameters for ellipses trajectories by using the least-squares algorithm applied on a sliding window along the disturbance. The most likely patterns are then estimated through a clustering process based on the k-means algorithm. The objective is to offer an efficient and easily implemented alternative to characterise faults and visualise the most likely instantaneous phase-voltage evolution during events through their corresponding voltage-space vector trajectories. This novel solution minimises the data to be stored but maintains extensivemore » information about the dips including starting and ending transients. The proposed methodology has been applied satisfactorily to real voltage dips obtained from intensive field-measurement campaigns carried out in a Spanish wind power plant up to a time period of several years. A comparison to traditional minimum root mean square-voltage and time-duration classifications is also included in this study.« less

  11. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  12. Gyrokinetic equations and full f solution method based on Dirac's constrained Hamiltonian and inverse Kruskal iteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikkinen, J. A.; Nora, M.

    2011-02-15

    Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J= as one of the averaging coordinates in phase space, provides an alternative to the standard gyrokinetics. Within second order in gyrokinetic parameter, the new equations do not show explicit ponderomotivelike or polarizationlike terms. Pullback of particle information with an iterated gyrophase and field dependent gyroradius function from the gyrocenter position defined by gyroaveraged coordinates allowsmore » direct numerical integration of the gyrokinetic equations in particle simulation of the field and particles with full distribution function. As an example, gyrokinetic systems with polarization drift either present or absent in the equations of motion are considered.« less

  13. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.

  14. State-Dependent Pseudo-Linear Filter for Spacecraft Attitude and Rate Estimation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2001-01-01

    This paper presents the development and performance of a special algorithm for estimating the attitude and angular rate of a spacecraft. The algorithm is a pseudo-linear Kalman filter, which is an ordinary linear Kalman filter that operates on a linear model whose matrices are current state estimate dependent. The nonlinear rotational dynamics equation of the spacecraft is presented in the state space as a state-dependent linear system. Two types of measurements are considered. One type is a measurement of the quaternion of rotation, which is obtained from a newly introduced star tracker based apparatus. The other type of measurement is that of vectors, which permits the use of a variety of vector measuring sensors like sun sensors and magnetometers. While quaternion measurements are related linearly to the state vector, vector measurements constitute a nonlinear function of the state vector. Therefore, in this paper, a state-dependent linear measurement equation is developed for the vector measurement case. The state-dependent pseudo linear filter is applied to simulated spacecraft rotations and adequate estimates of the spacecraft attitude and rate are obtained for the case of quaternion measurements as well as of vector measurements.

  15. Application of Hyperspectal Techniques to Monitoring & Management of Invasive Plant Species Infestation

    DTIC Science & Technology

    2008-01-09

    The image data as acquired from the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data... The color of a material is defined by the direction of its unit vector in n- dimensional spectral space . The length of the vector relates only to how...to n- dimensional space . SAM determines the similarity

  16. Development of a NEW Vector Magnetograph at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Hagyard, Mona; Gary, Allen; Smith, James; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the Experimental Vector Magnetograph that has been developed at the Marshall Space Flight Center (MSFC). This instrument was designed to improve linear polarization measurements by replacing electro-optic and rotating waveplate modulators with a rotating linear analyzer. Our paper will describe the motivation for developing this magnetograph, compare this instrument with traditional magnetograph designs, and present a comparison of the data acquired by this instrument and original MSFC vector magnetograph.

  17. A Support Vector Machine-Based Gender Identification Using Speech Signal

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  18. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin

    2017-07-01

    Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.

  19. An Inter-Personal Information Sharing Model Based on Personalized Recommendations

    NASA Astrophysics Data System (ADS)

    Kamei, Koji; Funakoshi, Kaname; Akahani, Jun-Ichi; Satoh, Tetsuji

    In this paper, we propose an inter-personal information sharing model among individuals based on personalized recommendations. In the proposed model, we define an information resource as shared between people when both of them consider it important --- not merely when they both possess it. In other words, the model defines the importance of information resources based on personalized recommendations from identifiable acquaintances. The proposed method is based on a collaborative filtering system that focuses on evaluations from identifiable acquaintances. It utilizes both user evaluations for documents and their contents. In other words, each user profile is represented as a matrix of credibility to the other users' evaluations on each domain of interests. We extended the content-based collaborative filtering method to distinguish other users to whom the documents should be recommended. We also applied a concept-based vector space model to represent the domain of interests instead of the previous method which represented them by a term-based vector space model. We introduce a personalized concept-base compiled from each user's information repository to improve the information retrieval in the user's environment. Furthermore, the concept-spaces change from user to user since they reflect the personalities of the users. Because of different concept-spaces, the similarity between a document and a user's interest varies for each user. As a result, a user receives recommendations from other users who have different view points, achieving inter-personal information sharing based on personalized recommendations. This paper also describes an experimental simulation of our information sharing model. In our laboratory, five participants accumulated a personal repository of e-mails and web pages from which they built their own concept-base. Then we estimated the user profiles according to personalized concept-bases and sets of documents which others evaluated. We simulated inter-personal recommendation based on the user profiles and evaluated the performance of the recommendation method by comparing the recommended documents to the result of the content-based collaborative filtering.

  20. A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Goldberg, Hirsh; Nasrabadi, Nasser M.

    2007-04-01

    In this paper we implement various linear and nonlinear subspace-based anomaly detectors for hyperspectral imagery. First, a dual window technique is used to separate the local area around each pixel into two regions - an inner-window region (IWR) and an outer-window region (OWR). Pixel spectra from each region are projected onto a subspace which is defined by projection bases that can be generated in several ways. Here we use three common pattern classification techniques (Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST)) to generate projection vectors. In addition to these three algorithms, the well-known Reed-Xiaoli (RX) anomaly detector is also implemented. Each of the four linear methods is then implicitly defined in a high- (possibly infinite-) dimensional feature space by using a nonlinear mapping associated with a kernel function. Using a common machine-learning technique known as the kernel trick all dot products in the feature space are replaced with a Mercer kernel function defined in terms of the original input data space. To determine how anomalous a given pixel is, we then project the current test pixel spectra and the spectral mean vector of the OWR onto the linear and nonlinear projection vectors in order to exploit the statistical differences between the IWR and OWR pixels. Anomalies are detected if the separation of the projection of the current test pixel spectra and the OWR mean spectra are greater than a certain threshold. Comparisons are made using receiver operating characteristics (ROC) curves.

  1. A Distributed Wireless Camera System for the Management of Parking Spaces

    PubMed Central

    Melničuk, Petr

    2017-01-01

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces. PMID:29283371

  2. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  3. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  4. Color TV: total variation methods for restoration of vector-valued images.

    PubMed

    Blomgren, P; Chan, T F

    1998-01-01

    We propose a new definition of the total variation (TV) norm for vector-valued functions that can be applied to restore color and other vector-valued images. The new TV norm has the desirable properties of 1) not penalizing discontinuities (edges) in the image, 2) being rotationally invariant in the image space, and 3) reducing to the usual TV norm in the scalar case. Some numerical experiments on denoising simple color images in red-green-blue (RGB) color space are presented.

  5. An integrated use of topography with RSI in gully mapping, Shandong Peninsula, China.

    PubMed

    He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo

    2014-01-01

    Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed.

  6. An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China

    PubMed Central

    He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo

    2014-01-01

    Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed. PMID:25302333

  7. Orientation Modeling for Amateur Cameras by Matching Image Line Features and Building Vector Data

    NASA Astrophysics Data System (ADS)

    Hung, C. H.; Chang, W. C.; Chen, L. C.

    2016-06-01

    With the popularity of geospatial applications, database updating is getting important due to the environmental changes over time. Imagery provides a lower cost and efficient way to update the database. Three dimensional objects can be measured by space intersection using conjugate image points and orientation parameters of cameras. However, precise orientation parameters of light amateur cameras are not always available due to their costliness and heaviness of precision GPS and IMU. To automatize data updating, the correspondence of object vector data and image may be built to improve the accuracy of direct georeferencing. This study contains four major parts, (1) back-projection of object vector data, (2) extraction of image feature lines, (3) object-image feature line matching, and (4) line-based orientation modeling. In order to construct the correspondence of features between an image and a building model, the building vector features were back-projected onto the image using the initial camera orientation from GPS and IMU. Image line features were extracted from the imagery. Afterwards, the matching procedure was done by assessing the similarity between the extracted image features and the back-projected ones. Then, the fourth part utilized line features in orientation modeling. The line-based orientation modeling was performed by the integration of line parametric equations into collinearity condition equations. The experiment data included images with 0.06 m resolution acquired by Canon EOS Mark 5D II camera on a Microdrones MD4-1000 UAV. Experimental results indicate that 2.1 pixel accuracy may be reached, which is equivalent to 0.12 m in the object space.

  8. A Functional Central Limit Theorem for the Becker-Döring Model

    NASA Astrophysics Data System (ADS)

    Sun, Wen

    2018-04-01

    We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.

  9. SIC-POVMS and MUBS: Geometrical Relationships in Prime Dimension

    NASA Astrophysics Data System (ADS)

    Appleby, D. M.

    2009-03-01

    The paper concerns Weyl-Heisenberg covariant SIC-POVMs (symmetric informationally complete positive operator valued measures) and full sets of MUBs (mutually unbiased bases) in prime dimension. When represented as vectors in generalized Bloch space a SIC-POVM forms a d2-1 dimensional regular simplex (d being the Hilbert space dimension). By contrast, the generalized Bloch vectors representing a full set of MUBs form d+1 mutually orthogonal d-1 dimensional regular simplices. In this paper we show that, in the Weyl-Heisenberg case, there are some simple geometrical relationships between the single SIC-POVM simplex and the d+1 MUB simplices. We go on to give geometrical interpretations of the minimum uncertainty states introduced by Wootters and Sussman, and by Appleby, Dang and Fuchs, and of the fiduciality condition given by Appleby, Dang and Fuchs.

  10. Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer

    DTIC Science & Technology

    2016-12-01

    Proving Ground, MD 21005-5068 This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional space ( 3D ) and a Rotation...class for performing rotations of vectors in 3D . Each class is self-contained in a single header file (Vector.h and Rotation.h) so that a C...vector, rotation, 3D , quaternion, C++ tools, rotation sequence, Euler angles, yaw, pitch, roll, orientation 98 Richard Saucier 410-278-6721Unclassified

  11. Pushing Memory Bandwidth Limitations Through Efficient Implementations of Block-Krylov Space Solvers on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, M. A.; Strelchenko, Alexei; Vaquero, Alejandro

    Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations.more » Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.« less

  12. Observation of Polarization Vortices in Momentum Space

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  13. Observation of Polarization Vortices in Momentum Space.

    PubMed

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-04

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  14. Analysis of structural response data using discrete modal filters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1991-01-01

    The application of reciprocal modal vectors to the analysis of structural response data is described. Reciprocal modal vectors are constructed using an existing experimental modal model and an existing frequency response matrix of a structure, and can be assembled into a matrix that effectively transforms the data from the physical space to a modal space within a particular frequency range. In other words, the weighting matrix necessary for modal vector orthogonality (typically the mass matrix) is contained within the reciprocal model matrix. The underlying goal of this work is mostly directed toward observing the modal state responses in the presence of unknown, possibly closed loop forcing functions, thus having an impact on both operating data analysis techniques and independent modal space control techniques. This study investigates the behavior of reciprocol modal vectors as modal filters with respect to certain calculation parameters and their performance with perturbed system frequency response data.

  15. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  16. [HSV-1 based vector mediated IL-1Rα gene for knee osteoarthritis in rabbits].

    PubMed

    Wu, Yi; Li, Jianming; Kong, Ying; Chen, Ding; Liu, Bo; Wang, Wanchun

    2013-06-01

    To investigate the effect and mechanism of herpes simplex virus type 1 (HSV-1) based vector mediated interlukin-1 receptor antagonist (IL-1Rα) gene for knee osteoarthritis in rabbits. HSV-1 vectors containing IL-1Rα genes were constructed and injected into the joint space of the osteoarthritis knee in rabbits for 4 weeks. The rabbits were sacrificed, and the knees were lavaged, dissected and the effect of transgene expression was analyzed. Levels of IL-1Rα and IL-1 expression in the recovered lavage fluids were measured with a cytokine ELISA kit. Cartilage from the lesion areas of medial femoral condyle and synovium were observed with hematoxylin and eosin (cartilage and synovium) and toluidine blue (cartilage). The blank control group was injected pHSV-LacZ vector into rabbit knees. Intra-articular delivery of pHSV-IL-1Rα-LacZ resulted in a significant inhibition of IL-1 level and cartilage degradation compared with those in the blank control group (P<0.05). pHSV-LacZ is an ideal vector to mediate intra-articular gene delivery in the rabbit model of osteoarthritis. Continuous intra-articular expression of IL-1Rα can treat knee osteoarthritis by inhibiting IL-1.

  17. Linear time relational prototype based learning.

    PubMed

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  18. Inertial navigation system using three TDF gyroscopic sensors not jointly mounted on a stable platform

    NASA Technical Reports Server (NTRS)

    Stieler, B.

    1971-01-01

    An inertial navigation system is described and analyzed based on two two-degree-of-freedom Schuler-gyropendulums and one two-degree-of-freedom azimuth gyro. The three sensors, each base motion isolated about its two input axes, are mounted on a common base, strapped down to the vehicle. The up and down pointing spin vectors of the two properly tuned gyropendulums track the vertical and indicate physically their velocity with respect to inertial space. The spin vector of the azimuth gyro is pointing northerly parallel to the earth axis. The system can be made self-aligning on a stationary base. If external measurements for the north direction and the vertical are available, initial disturbance torques can be measured and easily biased out. The error analysis shows that the system is practicable with today's technology.

  19. Semantic Search of Web Services

    ERIC Educational Resources Information Center

    Hao, Ke

    2013-01-01

    This dissertation addresses semantic search of Web services using natural language processing. We first survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a vector space model based service…

  20. Introducing Relativity into Quantum Chemistry

    ERIC Educational Resources Information Center

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  1. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  2. A note on φ-analytic conformal vector fields

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sharief; Bin Turki, Nasser

    2017-09-01

    Taking clue from the analytic vector fields on a complex manifold, φ-analytic conformal vector fields are defined on a Riemannian manifold (Deshmukh and Al-Solamy in Colloq. Math. 112(1):157-161, 2008). In this paper, we use φ-analytic conformal vector fields to find new characterizations of the n-sphere Sn(c) and the Euclidean space (Rn,<,> ).

  3. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

    PubMed Central

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246

  4. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    PubMed

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  5. Stable computations with flat radial basis functions using vector-valued rational approximations

    NASA Astrophysics Data System (ADS)

    Wright, Grady B.; Fornberg, Bengt

    2017-02-01

    One commonly finds in applications of smooth radial basis functions (RBFs) that scaling the kernels so they are 'flat' leads to smaller discretization errors. However, the direct numerical approach for computing with flat RBFs (RBF-Direct) is severely ill-conditioned. We present an algorithm for bypassing this ill-conditioning that is based on a new method for rational approximation (RA) of vector-valued analytic functions with the property that all components of the vector share the same singularities. This new algorithm (RBF-RA) is more accurate, robust, and easier to implement than the Contour-Padé method, which is similarly based on vector-valued rational approximation. In contrast to the stable RBF-QR and RBF-GA algorithms, which are based on finding a better conditioned base in the same RBF-space, the new algorithm can be used with any type of smooth radial kernel, and it is also applicable to a wider range of tasks (including calculating Hermite type implicit RBF-FD stencils). We present a series of numerical experiments demonstrating the effectiveness of this new method for computing RBF interpolants in the flat regime. We also demonstrate the flexibility of the method by using it to compute implicit RBF-FD formulas in the flat regime and then using these for solving Poisson's equation in a 3-D spherical shell.

  6. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  7. Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

    NASA Astrophysics Data System (ADS)

    Cheng, C. H. Arthur; Shkoller, Steve

    2017-09-01

    We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field u are prescribed in an open, bounded, Sobolev-class domain {Ω \\subseteq R^n}, and either the normal component {{u} \\cdot {N}} or the tangential components of the vector field {{u} × {N}} are prescribed on the boundary {partial Ω}. For {k > n/2}, we prove that u is in the Sobolev space {H^k+1(Ω)} if {Ω} is an {H^k+1}-domain, and the divergence, curl, and either the normal or tangential trace of u has sufficient regularity. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients, and with a rather general set of Dirichlet and Neumann boundary conditions. The resulting regularity theory for the vector u is fundamental in the analysis of free-boundary and moving interface problems in fluid dynamics.

  8. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    PubMed Central

    Barrios, José Miguel; Verstraeten, Willem W.; Maes, Piet; Aerts, Jean-Marie; Farifteh, Jamshid; Coppin, Pol

    2012-01-01

    The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases. PMID:23202882

  9. Using the gravity model to estimate the spatial spread of vector-borne diseases.

    PubMed

    Barrios, José Miguel; Verstraeten, Willem W; Maes, Piet; Aerts, Jean-Marie; Farifteh, Jamshid; Coppin, Pol

    2012-11-30

    The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  10. Vector analysis of chemical variation in the lavas of Parícutin volcano, Mexico

    USGS Publications Warehouse

    Miesch, A.T.

    1979-01-01

    Compositional variations in the lavas of Parícutin volcano, Mexico, have been examined by an extended method of Q-mode factor analysis. Each sample composition is treated as a vector projected from an original eight-dimensional space into a vector system of three dimensions. The compositions represented by the vectors after projection are closely similar to the original compositions except for Na2Oand Fe2O3.The vectors in the three-dimensional system cluster about three different planes that represent three stages of compositional change in the Parícutin lavas. Because chemical data on the compositions of the minerals in the lavas are presently lacking, interpretations of the mineral phases that may have been involved in fractional crystallization are based on CIPW norm calculations. Changes during the first stage are attributed largely to the fractional crystallization of plagioclase and olivine. Changes during the second stage can be explained by the separation of plagioclase and pyroxene. Changes during the final stage may have resulted mostly from the assimilation of a granitic material, as previously proposed by R. E. Wilcox.

  11. An introduction to kernel-based learning algorithms.

    PubMed

    Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B

    2001-01-01

    This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

  12. Current harmonics elimination control method for six-phase PM synchronous motor drives.

    PubMed

    Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei

    2015-11-01

    To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. An Elementary Treatment of General Inner Products

    ERIC Educational Resources Information Center

    Graver, Jack E.

    2011-01-01

    A typical first course on linear algebra is usually restricted to vector spaces over the real numbers and the usual positive-definite inner product. Hence, the proof that dim(S)+ dim(S[perpendicular]) = dim("V") is not presented in a way that is generalizable to non-positive?definite inner products or to vector spaces over other fields. In this…

  14. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand

    PubMed Central

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-01-01

    Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236

  15. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand.

    PubMed

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-12-01

    Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.

  16. Path planning for assembly of strut-based structures. Thesis

    NASA Technical Reports Server (NTRS)

    Muenger, Rolf

    1991-01-01

    A path planning method with collision avoidance for a general single chain nonredundant or redundant robot is proposed. Joint range boundary overruns are also avoided. The result is a sequence of joint vectors which are passed to a trajectory planner. A potential field algorithm in joint space computes incremental joint vectors delta-q = delta-q(sub a) + delta-q(sub c) + delta-q(sub r). Adding delta-q to the robot's current joint vector leads to the next step in the path. Delta-q(sub a) is obtained by computing the minimum norm solution of the underdetermined linear system J delta-q(sub a) = x(sub a) where x(sub a) is a translational and rotational force vector that attracts the robot to its goal position and orientation. J is the manipulator Jacobian. Delta-q(sub c) is a collision avoidance term encompassing collisions between the robot (links and payload) and obstacles in the environment as well as collisions among links and payload of the robot themselves. It is obtained in joint space directly. Delta-q(sub r) is a function of the current joint vector and avoids joint range overruns. A higher level discrete search over candidate safe positions is used to provide alternatives in case the potential field algorithm encounters a local minimum and thus fails to reach the goal. The best first search algorithm A* is used for graph search. Symmetry properties of the payload and equivalent rotations are exploited to further enlarge the number of alternatives passed to the potential field algorithm.

  17. Data-driven probability concentration and sampling on manifold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu

    2016-09-15

    A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less

  18. The maximum vector-angular margin classifier and its fast training on large datasets using a core vector machine.

    PubMed

    Hu, Wenjun; Chung, Fu-Lai; Wang, Shitong

    2012-03-01

    Although pattern classification has been extensively studied in the past decades, how to effectively solve the corresponding training on large datasets is a problem that still requires particular attention. Many kernelized classification methods, such as SVM and SVDD, can be formulated as the corresponding quadratic programming (QP) problems, but computing the associated kernel matrices requires O(n2)(or even up to O(n3)) computational complexity, where n is the size of the training patterns, which heavily limits the applicability of these methods for large datasets. In this paper, a new classification method called the maximum vector-angular margin classifier (MAMC) is first proposed based on the vector-angular margin to find an optimal vector c in the pattern feature space, and all the testing patterns can be classified in terms of the maximum vector-angular margin ρ, between the vector c and all the training data points. Accordingly, it is proved that the kernelized MAMC can be equivalently formulated as the kernelized Minimum Enclosing Ball (MEB), which leads to a distinctive merit of MAMC, i.e., it has the flexibility of controlling the sum of support vectors like v-SVC and may be extended to a maximum vector-angular margin core vector machine (MAMCVM) by connecting the core vector machine (CVM) method with MAMC such that the corresponding fast training on large datasets can be effectively achieved. Experimental results on artificial and real datasets are provided to validate the power of the proposed methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Robust stability of second-order systems

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1993-01-01

    A feedback linearization technique is used in conjunction with passivity concepts to design robust controllers for space robots. It is assumed that bounded modeling uncertainties exist in the inertia matrix and the vector representing the coriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space robots. Closed-loop simulation results are illustrated for a simple case of a single link planar manipulator with freely floating base.

  20. Vector-based navigation using grid-like representations in artificial agents.

    PubMed

    Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan

    2018-05-01

    Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.

  1. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.

    PubMed

    Klamt, Steffen; Regensburger, Georg; Gerstl, Matthias P; Jungreuthmayer, Christian; Schuster, Stefan; Mahadevan, Radhakrishnan; Zanghellini, Jürgen; Müller, Stefan

    2017-04-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.

  2. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    PubMed Central

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  3. Wigner functions on non-standard symplectic vector spaces

    NASA Astrophysics Data System (ADS)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  4. Lovelock vacua with a recurrent null vector field

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello

    2018-02-01

    Vacuum solutions of Lovelock gravity in the presence of a recurrent null vector field (a subset of Kundt spacetimes) are studied. We first discuss the general field equations, which constrain both the base space and the profile functions. While choosing a "generic" base space puts stronger constraints on the profile, in special cases there also exist solutions containing arbitrary functions (at least for certain values of the coupling constants). These and other properties (such as the p p - waves subclass and the overlap with VSI, CSI and universal spacetimes) are subsequently analyzed in more detail in lower dimensions n =5 , 6 as well as for particular choices of the base manifold. The obtained solutions describe various classes of nonexpanding gravitational waves propagating, e.g., in Nariai-like backgrounds M2×Σn -2. An Appendix contains some results about general (i.e., not necessarily Kundt) Lovelock vacua of Riemann type III/N and of Weyl and traceless-Ricci type III/N. For example, it is pointed out that for theories admitting a triply degenerate maximally symmetric vacuum, all the (reduced) field equations are satisfied identically, giving rise to large classes of exact solutions.

  5. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.

    PubMed

    Demartines, P; Herault, J

    1997-01-01

    We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.

  6. Effective Numerical Methods for Solving Elliptical Problems in Strengthened Sobolev Spaces

    NASA Technical Reports Server (NTRS)

    D'yakonov, Eugene G.

    1996-01-01

    Fourth-order elliptic boundary value problems in the plane can be reduced to operator equations in Hilbert spaces G that are certain subspaces of the Sobolev space W(sub 2)(exp 2)(Omega) is identical with G(sup (2)). Appearance of asymptotically optimal algorithms for Stokes type problems made it natural to focus on an approach that considers rot w is identical with (D(sub 2)w - D(sub 1)w) is identical with vector of u as a new unknown vector-function, which automatically satisfies the condition div vector of u = 0. In this work, we show that this approach can also be developed for an important class of problems from the theory of plates and shells with stiffeners. The main mathematical problem was to show that the well-known inf-sup condition (normal solvability of the divergence operator) holds for special Hilbert spaces. This result is also essential for certain hydrodynamics problems.

  7. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, Paul

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  9. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  10. Graph-state formalism for mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Spengler, Christoph; Kraus, Barbara

    2013-11-01

    A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one basis and an arbitrary element of the other basis coincide. In case the dimension, d, of the considered Hilbert space is a power of a prime number, complete sets of d+1 mutually unbiased bases (MUBs) exist. Here we present a method based on the graph-state formalism to construct such sets of MUBs. We show that for n p-level systems, with p being prime, one particular graph suffices to easily construct a set of pn+1 MUBs. In fact, we show that a single n-dimensional vector, which is associated with this graph, can be used to generate a complete set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.

  11. Data-driven Model of the ICME Propagation through the Solar Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Yalim, M. S.; Pogorelov, N.; Singh, T.; Liu, Y.

    2017-12-01

    The solar wind (SW) emerging from the Sun is the main driving mechanism of solar events which may lead to geomagnetic storms that are the primary causes of space weather disturbances that affect the magnetic environment of Earth and may have hazardous effects on the space-borne and ground-based technological systems as well as human health. Therefore, accurate modeling of the SW is very important to understand the underlying mechanisms of such storms.Getting ready for the Parker Solar Probe mission, we have developed a data-driven magnetohydrodynamic (MHD) model of the global solar corona which utilizes characteristic boundary conditions implemented within the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) - a collection of problem oriented routines incorporated into the Chombo adaptive mesh refinement framework developed at Lawrence Berkeley National Laboratory. Our global solar corona model can be driven by both synoptic and synchronic vector magnetogram data obtained by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) and the horizontal velocity data on the photosphere obtained by applying the Differential Affine Velocity Estimatorfor Vector Magnetograms (DAVE4VM) method on the HMI-observed vector magnetic fields.Our CME generation model is based on Gibson-Low-type flux ropes the parameters of which are determined from analysis of observational data from STEREO/SECCHI, SDO/AIA and SOHO/LASCO, and by applying the Graduate Cylindrical Shell model for the flux rope reconstruction.In this study, we will present the results of three-dimensional global simulations of ICME propagation through our characteristically-consistent MHD model of the background SW from the Sun to Earth driven by HMI-observed vector magnetic fields and validate our results using multiple spacecraft data at 1 AU.

  12. A new local-global approach for classification.

    PubMed

    Peres, R T; Pedreira, C E

    2010-09-01

    In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Space Based Satellite Tracking and Characterization Utilizing Non-Imaging Passive Sensors

    DTIC Science & Technology

    2008-03-01

    vary from only slightly here. The classical orbital elements are: a - The Semimajor Axis e - Eccentricity i - Inclination Ω - Right Ascension of the...Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ~h Axis normal to orbital plane . . . . . . . . . . . . . . . . . 7 Ω Right ascension of...transistion matrix . . . . . . . . . . . . . . . . . . . 27 i Orbital inclination . . . . . . . . . . . . . . . . . . . . . . 28 Ẑ Unit vector in ECI frame

  14. An Introductory Course: The Vector Space Theory of Matter

    ERIC Educational Resources Information Center

    Matsen, F. A.

    1972-01-01

    A course for superior freshmen for both science and liberal arts majors that satisfies the freshman chemistry requirement is discussed. It has been taught for six years and utilizes the new math'' which is based on the elementary concept of a set. A syllabus for the two semesters is included. (DF)

  15. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less

  16. A regularized approach for geodesic-based semisupervised multimanifold learning.

    PubMed

    Fan, Mingyu; Zhang, Xiaoqin; Lin, Zhouchen; Zhang, Zhongfei; Bao, Hujun

    2014-05-01

    Geodesic distance, as an essential measurement for data dissimilarity, has been successfully used in manifold learning. However, most geodesic distance-based manifold learning algorithms have two limitations when applied to classification: 1) class information is rarely used in computing the geodesic distances between data points on manifolds and 2) little attention has been paid to building an explicit dimension reduction mapping for extracting the discriminative information hidden in the geodesic distances. In this paper, we regard geodesic distance as a kind of kernel, which maps data from linearly inseparable space to linear separable distance space. In doing this, a new semisupervised manifold learning algorithm, namely regularized geodesic feature learning algorithm, is proposed. The method consists of three techniques: a semisupervised graph construction method, replacement of original data points with feature vectors which are built by geodesic distances, and a new semisupervised dimension reduction method for feature vectors. Experiments on the MNIST, USPS handwritten digit data sets, MIT CBCL face versus nonface data set, and an intelligent traffic data set show the effectiveness of the proposed algorithm.

  17. Selection vector filter framework

    NASA Astrophysics Data System (ADS)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  18. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  19. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  20. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  1. On Anholonomic Deformation, Geometry, and Differentiation

    DTIC Science & Technology

    2013-02-01

    αβχ are not necessarily Levi - Civita connection coefficients). The vector cross product × obeys, for two vectors V and W and two covectors α and β , V...three-dimensional space. 2.2.5. Euclidean space. Let GAB(X ) = GA · GB be the metric tensor of the space. The Levi - Civita connection coefficients of GAB...curvature tensor of the Levi - Civita connection vanishes identically: G R A BCD = 2 ( ∂[B G A C]D + G A[B|E|G EC]D ) = 0. (43) In n

  2. Differential Calculus on h-Deformed Spaces

    NASA Astrophysics Data System (ADS)

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  3. Evolution of Lamb Vector as a Vortex Breaking into Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Lu, X. Y.

    1996-11-01

    In an incompressible flow, either laminar or turbulent, the Lamb vector is solely responsible to nonlinear interactions. While its longitudinal part is balanced by stagnation enthalpy, its transverse part is the unique source (as an external forcing in spectral space) that causes the flow to evolve. Moreover, in Reynolds-averaged flows the turbulent force can be derived exclusively from the Lamb vector instead of the full Reynolds stress tensor. Therefore, studying the evolution of the Lamb vector itself (both longitudinal and transverse parts) is of great interest. We have numerically examined this problem, taking the nonlinear distabilization of a viscous vortex as an example. In the later stage of this evolution we introduced a forcing to keep a statistically steady state, and observed the Lamb vector behavior in the resulting fine turbulence. The result is presented in both physical and spectral spaces.

  4. Optoelectronic Inner-Product Neural Associative Memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1993-01-01

    Optoelectronic apparatus acts as artificial neural network performing associative recall of binary images. Recall process is iterative one involving optical computation of inner products between binary input vector and one or more reference binary vectors in memory. Inner-product method requires far less memory space than matrix-vector method.

  5. Geometry of matrix product states: Metric, parallel transport, and curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haegeman, Jutho, E-mail: jutho.haegeman@gmail.com; Verstraete, Frank; Faculty of Physics and Astronomy, University of Ghent, Krijgslaan 281 S9, 9000 Gent

    2014-02-15

    We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold,more » which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.« less

  6. Human pose tracking from monocular video by traversing an image motion mapped body pose manifold

    NASA Astrophysics Data System (ADS)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2010-01-01

    Tracking human pose from monocular video sequences is a challenging problem due to the large number of independent parameters affecting image appearance and nonlinear relationships between generating parameters and the resultant images. Unlike the current practice of fitting interpolation functions to point correspondences between underlying pose parameters and image appearance, we exploit the relationship between pose parameters and image motion flow vectors in a physically meaningful way. Change in image appearance due to pose change is realized as navigating a low dimensional submanifold of the infinite dimensional Lie group of diffeomorphisms of the two dimensional sphere S2. For small changes in pose, image motion flow vectors lie on the tangent space of the submanifold. Any observed image motion flow vector field is decomposed into the basis motion vector flow fields on the tangent space and combination weights are used to update corresponding pose changes in the different dimensions of the pose parameter space. Image motion flow vectors are largely invariant to style changes in experiments with synthetic and real data where the subjects exhibit variation in appearance and clothing. The experiments demonstrate the robustness of our method (within +/-4° of ground truth) to style variance.

  7. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects the molecular machinery of polar auxin transport. It results in the changes of auxin gradients in plant organs and tissues, which modulate all cellular mechanisms of polarity via multiple feedback loops. The understanding of the mechanisms of plant organism orientation relative to the gravity vector will allow us to develop efficient technologies for plant growing in microgravity conditions at orbital space stations and during long piloted space flights. This work was supported by the grant of Russian Foundation for Basic Research (N 14-04-01-624) and by the grant of St.-Petersburg State University (N 1.38.233.2014).

  8. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Preliminary ascent knowledge requirements

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    The preliminary version of expert knowledge for the Onboard Navigation (ONAV) Ground Based Expert Trainer Ascent system for the space shuttle is presented. Included is some brief background information along with the information describing the knowledge the system will contain. Information is given on rules and heuristics, telemetry status, landing sites, inertial measurement units, and a high speed trajectory determinator (HSTD) state vector.

  9. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme.

    PubMed

    Espinosa, Manuel O; Polop, Francisco; Rotela, Camilo H; Abril, Marcelo; Scavuzzo, Carlos M

    2016-11-21

    The main objective of this study was to obtain and analyse the space-time dynamics of Aedes aegypti breeding sites in Clorinda City, Formosa Province, Argentina coupled with landscape analysis using the maximum entropy approach in order to generate a dengue vector niche model. In urban areas, without vector control activities, 12 entomologic (larval) samplings were performed during three years (October 2011 to October 2014). The entomologic surveillance area represented 16,511 houses. Predictive models for Aedes distribution were developed using vector breeding abundance data, density analysis, clustering and geoprocessing techniques coupled with Earth observation satellite data. The spatial analysis showed a vector spatial distribution pattern with clusters of high density in the central region of Clorinda with a well-defined high-risk area in the western part of the city. It also showed a differential temporal behaviour among different areas, which could have implications for risk models and control strategies at the urban scale. The niche model obtained for Ae. aegypti, based on only one year of field data, showed that 85.8% of the distribution of breeding sites is explained by the percentage of water supply (48.2%), urban distribution (33.2%), and the percentage of urban coverage (4.4%). The consequences for the development of control strategies are discussed with reference to the results obtained using distribution maps based on environmental variables.

  10. Tensor manifold-based extreme learning machine for 2.5-D face recognition

    NASA Astrophysics Data System (ADS)

    Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin

    2018-01-01

    We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.

  11. A unified development of several techniques for the representation of random vectors and data sets

    NASA Technical Reports Server (NTRS)

    Bundick, W. T.

    1973-01-01

    Linear vector space theory is used to develop a general representation of a set of data vectors or random vectors by linear combinations of orthonormal vectors such that the mean squared error of the representation is minimized. The orthonormal vectors are shown to be the eigenvectors of an operator. The general representation is applied to several specific problems involving the use of the Karhunen-Loeve expansion, principal component analysis, and empirical orthogonal functions; and the common properties of these representations are developed.

  12. Difference-based ridge-type estimator of parameters in restricted partial linear model with correlated errors.

    PubMed

    Wu, Jibo

    2016-01-01

    In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.

  13. A unified approach to χ2 discriminators for searches of gravitational waves from compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Dhurandhar, Sanjeev; Gupta, Anuradha; Gadre, Bhooshan; Bose, Sukanta

    2017-11-01

    We describe a general mathematical framework for χ2 discriminators in the context of the compact binary coalescence (CBC) search. We show that with any χ2 is associated a vector bundle over the signal manifold, that is, the manifold traced out by the signal waveforms in the function space of data segments. The χ2 is then defined as the square of the L2 norm of the data vector projected onto a finite-dimensional subspace (the fibre) of the Hilbert space of data trains and orthogonal to the signal waveform. Any such fibre leads to a χ2 discriminator, and the full vector bundle comprising the subspaces and the base manifold constitute the χ2 discriminator. We show that the χ2 discriminators used so far in the CBC searches correspond to different fibre structures constituting different vector bundles on the same base manifold, namely, the parameter space. Several benefits accrue from this general formulation. It most importantly shows that there are a plethora of χ2's available and further gives useful insights into the vetoing procedure. It indicates procedures to formulate new χ2's that could be more effective in discriminating against commonly occurring glitches in the data. It also shows that no χ2 with a reasonable number of degrees of freedom is foolproof. It could also shed light on understanding why the traditional χ2 works so well. We show how to construct a generic χ2 given an arbitrary set of vectors in the function space of data segments. These vectors could be chosen such that glitches have maximum projection on them. Further, for glitches that can be modeled, we are able to quantify the efficiency of a given χ2 discriminator by a probability. Second, we propose a family of ambiguity χ2 discriminators that is an alternative to the traditional one [B. Allen, Phys. Rev. D 71, 062001 (2005), 10.1103/PhysRevD.71.062001, B. Allen et al., Phys. Rev. D 85, 122006 (2012)., 10.1103/PhysRevD.85.122006]. Any such ambiguity χ2 makes use of the filtered output of the template bank, thus adding negligible cost to the overall search. It is termed so because it makes significant use of the ambiguity function. We first describe the formulation with the help of the Newtonian waveform, apply the ambiguity χ2 to the spinless TaylorF2 waveforms, and test it on simulated data. We show that the ambiguity χ2 essentially gives a clean separation between glitches and signals. We indicate how the ambiguity χ2 can be generalized to detector networks for coherent observations. The effects of mismatch between signal and templates on a χ2 discriminator using general arguments and the geometrical framework are also investigated.

  14. A new theory of phylogeny inference through construction of multidimensional vector space.

    PubMed

    Kitazoe, Y; Kurihara, Y; Narita, Y; Okuhara, Y; Tominaga, A; Suzuki, T

    2001-05-01

    Here, a new theory of molecular phylogeny is developed in a multidimensional vector space (MVS). The molecular evolution is represented as a successive splitting of branch vectors in the MVS. The end points of these vectors are the extant species and indicate the specific directions reflected by their individual histories of evolution in the past. This representation makes it possible to infer the phylogeny (evolutionary histories) from the spatial positions of the end points. Search vectors are introduced to draw out the groups of species distributed around them. These groups are classified according to the nearby order of branches with them. A law of physics is applied to determine the species positions in the MVS. The species are regarded as the particles moving in time according to the equation of motion, finally falling into the lowest-energy state in spite of their randomly distributed initial condition. This falling into the ground state results in the construction of an MVS in which the relative distances between two particles are equal to the substitution distances. The species positions are obtained prior to the phylogeny inference. Therefore, as the number of species increases, the species vectors can be more specific in an MVS of a larger size, such that the vector analysis gives a more stable and reliable topology. The efficacy of the present method was examined by using computer simulations of molecular evolution in which all the branch- and end-point sequences of the trees are known in advance. In the phylogeny inference from the end points with 100 multiple data sets, the present method consistently reconstructed the correct topologies, in contrast to standard methods. In applications to 185 vertebrates in the alpha-hemoglobin, the vector analysis drew out the two lineage groups of birds and mammals. A core member of the mammalian radiation appeared at the base of the mammalian lineage. Squamates were isolated from the bird lineage to compose the outgroup, while the other living reptilians were directly coupled with birds without forming any sister groups. This result is in contrast to the morphological phylogeny and is also different from those of recent molecular analyses.

  15. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.

    PubMed

    Hayat, Maqsood; Tahir, Muhammad

    2015-08-01

    Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.

  16. A new Bayesian recursive technique for parameter estimation

    NASA Astrophysics Data System (ADS)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  17. A low-cost vector processor boosting compute-intensive image processing operations

    NASA Technical Reports Server (NTRS)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  18. Genetic algorithm and graph theory based matrix factorization method for online friend recommendation.

    PubMed

    Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning

    2014-01-01

    Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.

  19. Local effects of redundant terrestrial and GPS-based tie vectors in ITRF-like combinations

    NASA Astrophysics Data System (ADS)

    Abbondanza, Claudio; Altamimi, Zuheir; Sarti, Pierguido; Negusini, Monia; Vittuari, Luca

    2009-11-01

    Tie vectors (TVs) between co-located space geodetic instruments are essential for combining terrestrial reference frames (TRFs) realised using different techniques. They provide relative positioning between instrumental reference points (RPs) which are part of a global geodetic network such as the international terrestrial reference frame (ITRF). This paper gathers the set of very long baseline interferometry (VLBI)-global positioning system (GPS) local ties performed at the observatory of Medicina (Northern Italy) during the years 2001-2006 and discusses some important aspects related to the usage of co-location ties in the combinations of TRFs. Two measurement approaches of local survey are considered here: a GPS-based approach and a classical approach based on terrestrial observations (i.e. angles, distances and height differences). The behaviour of terrestrial local ties, which routinely join combinations of space geodetic solutions, is compared to that of GPS-based local ties. In particular, we have performed and analysed different combinations of satellite laser ranging (SLR), VLBI and GPS long term solutions in order to (i) evaluate the local effects of the insertion of the series of TVs computed at Medicina, (ii) investigate the consistency of GPS-based TVs with respect to space geodetic solutions, (iii) discuss the effects of an imprecise alignment of TVs from a local to a global reference frame. Results of ITRF-like combinations show that terrestrial TVs originate the smallest residuals in all the three components. In most cases, GPS-based TVs fit space geodetic solutions very well, especially in the horizontal components (N, E). On the contrary, the estimation of the VLBI RP Up component through GPS technique appears to be awkward, since the corresponding post fit residuals are considerably larger. Besides, combination tests including multi-temporal TVs display local effects of residual redistribution, when compared to those solutions where Medicina TVs are added one at a time. Finally, the combination of TRFs turns out to be sensitive to the orientation of the local tie into the global frame.

  20. Computational model of a vector-mediated epidemic

    NASA Astrophysics Data System (ADS)

    Dickman, Adriana Gomes; Dickman, Ronald

    2015-05-01

    We discuss a lattice model of vector-mediated transmission of a disease to illustrate how simulations can be applied in epidemiology. The population consists of two species, human hosts and vectors, which contract the disease from one another. Hosts are sedentary, while vectors (mosquitoes) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied.

  1. Support Vector Data Description Model to Map Specific Land Cover with Optimal Parameters Determined from a Window-Based Validation Set.

    PubMed

    Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang

    2017-04-26

    This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.

  2. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.

  3. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  4. Modeling Interferometric Structures with Birefringent Elements: A Linear Vector-Space Formalism

    DTIC Science & Technology

    2013-11-12

    Annapolis, Maryland ViNceNt J. Urick FraNk BUcholtz Photonics Technology Branch Optical Sciences Division i REPORT DOCUMENTATION PAGE Form...a Linear Vector-Space Formalism Nicholas J. Frigo,1 Vincent J. Urick , and Frank Bucholtz Naval Research Laboratory, Code 5650 4555 Overlook Avenue, SW...Annapolis, MD Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 29 Vincent J. Urick (202) 767-9352 Coupled mode

  5. On the n-symplectic structure of faithful irreducible representations

    NASA Astrophysics Data System (ADS)

    Norris, L. K.

    2017-04-01

    Each faithful irreducible representation of an N-dimensional vector space V1 on an n-dimensional vector space V2 is shown to define a unique irreducible n-symplectic structure on the product manifold V1×V2 . The basic details of the associated Poisson algebra are developed for the special case N = n2, and 2n-dimensional symplectic submanifolds are shown to exist.

  6. A phenomenological calculus of Wiener description space.

    PubMed

    Richardson, I W; Louie, A H

    2007-10-01

    The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.

  7. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  8. Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon.

    PubMed

    AlDahlawi, Ismail; Prasad, Dheerendra; Podgorsak, Matthew B

    2017-05-01

    The Gamma Knife Icon comes with an integrated cone-beam CT (CBCT) for image-guided stereotactic treatment deliveries. The CBCT can be used for defining the Leksell stereotactic space using imaging without the need for the traditional invasive frame system, and this allows also for frameless thermoplastic mask stereotactic treatments (single or fractionated) with the Gamma Knife unit. In this study, we used an in-house built marker tool to evaluate the stability of the CBCT-based stereotactic space and its agreement with the standard frame-based stereotactic space. We imaged the tool with a CT indicator box using our CT-simulator at the beginning, middle, and end of the study period (6 weeks) for determining the frame-based stereotactic space. The tool was also scanned with the Icon's CBCT on a daily basis throughout the study period, and the CBCT images were used for determining the CBCT-based stereotactic space. The coordinates of each marker were determined in each CT and CBCT scan using the Leksell GammaPlan treatment planning software. The magnitudes of vector difference between the means of each marker in frame-based and CBCT-based stereotactic space ranged from 0.21 to 0.33 mm, indicating good agreement of CBCT-based and frame-based stereotactic space definition. Scanning 4-month later showed good prolonged stability of the CBCT-based stereotactic space definition. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Where Am I? A Change of Basis Project

    ERIC Educational Resources Information Center

    Selby, Christina

    2016-01-01

    Linear algebra students are typically introduced to the problem of how to convert from one coordinate system to another in a very abstract way. Often, two bases for a given vector space are provided, and students are taught how to determine a transition matrix to be used for changing coordinates. If students are successful in memorizing this…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berres, Anne Sabine

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  11. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  12. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    PubMed Central

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  13. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE PAGES

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-11-21

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  14. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.

    PubMed

    Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2016-11-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.

  15. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    PubMed Central

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  16. Electricity load forecasting using support vector regression with memetic algorithms.

    PubMed

    Hu, Zhongyi; Bao, Yukun; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

  17. Vectors in Use in a 3D Juggling Game Simulation

    ERIC Educational Resources Information Center

    Kynigos, Chronis; Latsi, Maria

    2006-01-01

    The new representations enabled by the educational computer game the "Juggler" can place vectors in a central role both for controlling and measuring the behaviours of objects in a virtual environment simulating motion in three-dimensional spaces. The mathematical meanings constructed by 13 year-old students in relation to vectors as…

  18. [Orthogonal Vector Projection Algorithm for Spectral Unmixing].

    PubMed

    Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li

    2015-12-01

    Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.

  19. Computing the modal mass from the state space model in combined experimental-operational modal analysis

    NASA Astrophysics Data System (ADS)

    Cara, Javier

    2016-05-01

    Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.

  20. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  1. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

    PubMed

    Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-15

    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Machine Learning-based Prediction of Seizure-inducing Action as an Adverse Drug Effect].

    PubMed

    Gao, Mengxuan; Sato, Motoshige; Ikegaya, Yuji

    2018-01-01

     During the preclinical research period of drug development, animal testing is widely used to help screen out a drug's dangerous side effects. However, it remains difficult to predict side effects within the central nervous system. Here, we introduce a machine learning-based in vitro system designed to detect seizure-inducing side effects before clinical trial. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices that were bath-perfused with each of 14 different drugs, and at 5 different concentrations of each drug. For each of these experimental conditions, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events, and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which have indeed been reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to pre-clinically detect seizure-inducing side effects of drugs.

  3. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds.

    PubMed

    Gao, Mengxuan; Igata, Hideyoshi; Takeuchi, Aoi; Sato, Kaoru; Ikegaya, Yuji

    2017-02-01

    Various biological factors have been implicated in convulsive seizures, involving side effects of drugs. For the preclinical safety assessment of drug development, it is difficult to predict seizure-inducing side effects. Here, we introduced a machine learning-based in vitro system designed to detect seizure-inducing side effects. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices, while 14 drugs were bath-perfused at 5 different concentrations each. For each experimental condition, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which indeed were reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to detect the seizure-inducing side effects of preclinical drugs. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Close range fault tolerant noncontacting position sensor

    DOEpatents

    Bingham, D.N.; Anderson, A.A.

    1996-02-20

    A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.

  5. Dengue Fever Occurrence and Vector Detection by Larval Survey, Ovitrap and MosquiTRAP: A Space-Time Clusters Analysis

    PubMed Central

    de Melo, Diogo Portella Ornelas; Scherrer, Luciano Rios; Eiras, Álvaro Eduardo

    2012-01-01

    The use of vector surveillance tools for preventing dengue disease requires fine assessment of risk, in order to improve vector control activities. Nevertheless, the thresholds between vector detection and dengue fever occurrence are currently not well established. In Belo Horizonte (Minas Gerais, Brazil), dengue has been endemic for several years. From January 2007 to June 2008, the dengue vector Aedes (Stegomyia) aegypti was monitored by ovitrap, the sticky-trap MosquiTRAP™ and larval surveys in an study area in Belo Horizonte. Using a space-time scan for clusters detection implemented in SaTScan software, the vector presence recorded by the different monitoring methods was evaluated. Clusters of vectors and dengue fever were detected. It was verified that ovitrap and MosquiTRAP vector detection methods predicted dengue occurrence better than larval survey, both spatially and temporally. MosquiTRAP and ovitrap presented similar results of space-time intersections to dengue fever clusters. Nevertheless ovitrap clusters presented longer duration periods than MosquiTRAP ones, less acuratelly signalizing the dengue risk areas, since the detection of vector clusters during most of the study period was not necessarily correlated to dengue fever occurrence. It was verified that ovitrap clusters occurred more than 200 days (values ranged from 97.0±35.35 to 283.0±168.4 days) before dengue fever clusters, whereas MosquiTRAP clusters preceded dengue fever clusters by approximately 80 days (values ranged from 65.5±58.7 to 94.0±14. 3 days), the former showing to be more temporally precise. Thus, in the present cluster analysis study MosquiTRAP presented superior results for signaling dengue transmission risks both geographically and temporally. Since early detection is crucial for planning and deploying effective preventions, MosquiTRAP showed to be a reliable tool and this method provides groundwork for the development of even more precise tools. PMID:22848729

  6. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.

    PubMed

    Yan, Kang K; Zhao, Hongyu; Pang, Herbert

    2017-12-06

    High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.

  7. High-quality and interactive animations of 3D time-varying vector fields.

    PubMed

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  8. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  9. Metrics for comparing neuronal tree shapes based on persistent homology.

    PubMed

    Li, Yanjie; Wang, Dingkang; Ascoli, Giorgio A; Mitra, Partha; Wang, Yusu

    2017-01-01

    As more and more neuroanatomical data are made available through efforts such as NeuroMorpho.Org and FlyCircuit.org, the need to develop computational tools to facilitate automatic knowledge discovery from such large datasets becomes more urgent. One fundamental question is how best to compare neuron structures, for instance to organize and classify large collection of neurons. We aim to develop a flexible yet powerful framework to support comparison and classification of large collection of neuron structures efficiently. Specifically we propose to use a topological persistence-based feature vectorization framework. Existing methods to vectorize a neuron (i.e, convert a neuron to a feature vector so as to support efficient comparison and/or searching) typically rely on statistics or summaries of morphometric information, such as the average or maximum local torque angle or partition asymmetry. These simple summaries have limited power in encoding global tree structures. Based on the concept of topological persistence recently developed in the field of computational topology, we vectorize each neuron structure into a simple yet informative summary. In particular, each type of information of interest can be represented as a descriptor function defined on the neuron tree, which is then mapped to a simple persistence-signature. Our framework can encode both local and global tree structure, as well as other information of interest (electrophysiological or dynamical measures), by considering multiple descriptor functions on the neuron. The resulting persistence-based signature is potentially more informative than simple statistical summaries (such as average/mean/max) of morphometric quantities-Indeed, we show that using a certain descriptor function will give a persistence-based signature containing strictly more information than the classical Sholl analysis. At the same time, our framework retains the efficiency associated with treating neurons as points in a simple Euclidean feature space, which would be important for constructing efficient searching or indexing structures over them. We present preliminary experimental results to demonstrate the effectiveness of our persistence-based neuronal feature vectorization framework.

  10. Metrics for comparing neuronal tree shapes based on persistent homology

    PubMed Central

    Li, Yanjie; Wang, Dingkang; Ascoli, Giorgio A.; Mitra, Partha

    2017-01-01

    As more and more neuroanatomical data are made available through efforts such as NeuroMorpho.Org and FlyCircuit.org, the need to develop computational tools to facilitate automatic knowledge discovery from such large datasets becomes more urgent. One fundamental question is how best to compare neuron structures, for instance to organize and classify large collection of neurons. We aim to develop a flexible yet powerful framework to support comparison and classification of large collection of neuron structures efficiently. Specifically we propose to use a topological persistence-based feature vectorization framework. Existing methods to vectorize a neuron (i.e, convert a neuron to a feature vector so as to support efficient comparison and/or searching) typically rely on statistics or summaries of morphometric information, such as the average or maximum local torque angle or partition asymmetry. These simple summaries have limited power in encoding global tree structures. Based on the concept of topological persistence recently developed in the field of computational topology, we vectorize each neuron structure into a simple yet informative summary. In particular, each type of information of interest can be represented as a descriptor function defined on the neuron tree, which is then mapped to a simple persistence-signature. Our framework can encode both local and global tree structure, as well as other information of interest (electrophysiological or dynamical measures), by considering multiple descriptor functions on the neuron. The resulting persistence-based signature is potentially more informative than simple statistical summaries (such as average/mean/max) of morphometric quantities—Indeed, we show that using a certain descriptor function will give a persistence-based signature containing strictly more information than the classical Sholl analysis. At the same time, our framework retains the efficiency associated with treating neurons as points in a simple Euclidean feature space, which would be important for constructing efficient searching or indexing structures over them. We present preliminary experimental results to demonstrate the effectiveness of our persistence-based neuronal feature vectorization framework. PMID:28809960

  11. A straightforward characterization of non-modal effects from the evolution of linear dynamical systems

    NASA Astrophysics Data System (ADS)

    Arratia, Cristobal

    2014-11-01

    A simple construction will be shown, which reveals a general property satisfied by the evolution in time of a state vector composed by a superposition of orthogonal eigenmodes of a linear dynamical system. This property results from the conservation of the inner product between such state vectors evolving forward and backwards in time, and it can be simply evaluated from the state vector and its first and second time derivatives. This provides an efficient way to characterize, instantaneously along any specific phase-space trajectory of the linear system, the relevance of the non-normality of the linearized Navier-Stokes operator on the energy (or any other norm) gain or decay of small perturbations. Examples of this characterization applied to stationary or time dependent base flows will be shown. CONICYT, Concurso de Apoyo al Retorno de Investigadores del Extranjero, folio 821320055.

  12. Vector and Tensor Analyzing Powers in Deuteron-Proton Breakup

    NASA Astrophysics Data System (ADS)

    Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepał, I.; Deltuva, A.; Eslami-Kalantari, M.; Fonseca, A. C.; Gasparić, I.; Golak, J.; Jamróz, B.; Joulaeizadeh, L.; Kamada, H.; Kiš, M.; Kłos, B.; Kozela, A.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J.; Micherdzińska, A.; Moeini, H.; Nogga, A.; Ramazani-Moghaddam-Arani, A.; Skibiński, R.; Sworst, R.; Witała, H.; Zejma, J.

    2011-05-01

    High precision data for vector and tensor analyzing powers of the {^1{H}({d},{{pp}}){n}} breakup reaction at 130 and 100 MeV deuteron beam energies have been measured in a large fraction of the phase space. They are compared to the theoretical predictions based on various approaches to describe the three nucleon (3N) system dynamics. Theoretical predictions describe very well the vector analyzing power data, with no need to include any three-nucleon force effects for these observables. Tensor analyzing powers can be also very well reproduced by calculations in most of the studied region, but locally certain discrepancies are observed. At 130 MeV for A xy such discrepancies usually appear, or are enhanced, when model 3N forces are included. Predicted effects of 3NFs are much lower at 100 MeV and at this energy equally good consistency between the data and the calculations is obtained with or without 3NFs.

  13. Adaptive Hybrid Picture Coding. Volume 2.

    DTIC Science & Technology

    1985-02-01

    ooo5 V.a Measurement Vector ..eho..............57 V.b Size Variable o .entroi* Vector .......... .- 59 V * c Shape Vector .Ř 0-60o oe 6 I V~d...the Program for the Adaptive Line of Sight Method .i.. 18.. o ... .... .... 1 B Details of the Feature Vector FormationProgram .. o ...oo..-....- .122 C ...shape recognition is analogous to recognition of curves in space. Therefore, well known concepts and theorems from differential geometry can be 34 . o

  14. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  15. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  16. A geometric approach to problems in birational geometry.

    PubMed

    Chi, Chen-Yu; Yau, Shing-Tung

    2008-12-02

    A classical set of birational invariants of a variety are its spaces of pluricanonical forms and some of their canonically defined subspaces. Each of these vector spaces admits a typical metric structure which is also birationally invariant. These vector spaces so metrized will be referred to as the pseudonormed spaces of the original varieties. A fundamental question is the following: Given two mildly singular projective varieties with some of the first variety's pseudonormed spaces being isometric to the corresponding ones of the second variety's, can one construct a birational map between them that induces these isometries? In this work, a positive answer to this question is given for varieties of general type. This can be thought of as a theorem of Torelli type for birational equivalence.

  17. The next 25 years: Industrialization of space - Rationale for planning

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1977-01-01

    A methodology for planning the industralization of space is discussed. The suggested approach combines the extrapolative ('push') approach, in which alternative futures are projected on the basis of past and current trends and tendencies, with the normative ('pull') view, in which an ideal state in the far future is postulated and policies and decisions are directed toward its attainment. Time-reversed vectors of the future are tied to extrapolated, trend-oriented vectors of the quasi-present to identify common plateaus or stepping stones in technological development. Important steps in the industrialization of space to attain the short-range goals of production of space-derived energy, goods and services and the long-range goal of space colonization are discussed.

  18. Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector

    NASA Astrophysics Data System (ADS)

    Garfinkle, David; Glass, E. N.

    2013-03-01

    Methods are presented for finding Killing-Yano tensors, conformal Killing-Yano tensors, and conformal Killing vectors in spacetimes with a hypersurface orthogonal Killing vector. These methods are similar to a method developed by the authors for finding Killing tensors. In all cases one decomposes both the tensor and the equation it satisfies into pieces along the Killing vector and pieces orthogonal to the Killing vector. Solving the separate equations that result from this decomposition requires less computing than integrating the original equation. In each case, examples are given to illustrate the method.

  19. Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition

    PubMed Central

    Cheng, Yujie; Zhou, Bo; Lu, Chen; Yang, Chao

    2017-01-01

    Fault diagnosis for rolling bearings has attracted increasing attention in recent years. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper introduces a fault diagnosis method for rolling bearings under variable conditions based on visual cognition. The proposed method includes the following steps. First, the vibration signal data are transformed into a recurrence plot (RP), which is a two-dimensional image. Then, inspired by the visual invariance characteristic of the human visual system (HVS), we utilize speed up robust feature to extract fault features from the two-dimensional RP and generate a 64-dimensional feature vector, which is invariant to image translation, rotation, scaling variation, etc. Third, based on the manifold perception characteristic of HVS, isometric mapping, a manifold learning method that can reflect the intrinsic manifold embedded in the high-dimensional space, is employed to obtain a low-dimensional feature vector. Finally, a classical classification method, support vector machine, is utilized to realize fault diagnosis. Verification data were collected from Case Western Reserve University Bearing Data Center, and the experimental result indicates that the proposed fault diagnosis method based on visual cognition is highly effective for rolling bearings under variable conditions, thus providing a promising approach from the cognitive computing field. PMID:28772943

  20. Embedding of multidimensional time-dependent observations.

    PubMed

    Barnard, J P; Aldrich, C; Gerber, M

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  1. Embedding of multidimensional time-dependent observations

    NASA Astrophysics Data System (ADS)

    Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  2. Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.

  3. Student Solution Manual for Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.

  4. Lorentz symmetric n-particle systems without ``multiple times''

    NASA Astrophysics Data System (ADS)

    Smith, Felix

    2013-05-01

    The need for multiple times in relativistic n-particle dynamics is a consequence of Minkowski's postulated symmetry between space and time coordinates in a space-time s = [x1 , . . ,x4 ] = [ x , y , z , ict ] , Eq. (1). Poincaré doubted the need for this space-time symmetry, believing Lorentz covariance could also prevail in some geometries with a three-dimensional position space and a quite different time coordinate. The Hubble expansion observed later justifies a specific geometry of this kind, a negatively curved position 3-space expanding with time at the Hubble rate lH (t) =lH , 0 + cΔt (F. T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005) and 35, 395 (2010)). Its position 4-vector is not s but q = [x1 , . . ,x4 ] = [ x , y , z , ilH (t) ] , and shows no 4-space symmetry. What is observed is always a difference 4-vector Δq = [ Δx , Δy , Δz , icΔt ] , and this displays the structure of Eq. (1) perfectly. Thus we find the standard 4-vector of special relativity in a geometry that does not require a Minkowski space-time at all, but a quite different geometry with a expanding 3-space symmetry and an independent time. The same Lorentz symmetry with but a single time extends to 2 and n-body systems.

  5. Fast metabolite identification with Input Output Kernel Regression.

    PubMed

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-06-15

    An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Fast metabolite identification with Input Output Kernel Regression

    PubMed Central

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-01-01

    Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628

  7. A link between torse-forming vector fields and rotational hypersurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Bang-Yen; Verstraelen, Leopold

    Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.

  8. Dissipative N-point-vortex Models in the Plane

    NASA Astrophysics Data System (ADS)

    Shashikanth, Banavara N.

    2010-02-01

    A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.

  9. Pattern-histogram-based temporal change detection using personal chest radiographs

    NASA Astrophysics Data System (ADS)

    Ugurlu, Yucel; Obi, Takashi; Hasegawa, Akira; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-05-01

    An accurate and reliable detection of temporal changes from a pair of images has considerable interest in the medical science. Traditional registration and subtraction techniques can be applied to extract temporal differences when,the object is rigid or corresponding points are obvious. However, in radiological imaging, loss of the depth information, the elasticity of object, the absence of clearly defined landmarks and three-dimensional positioning differences constraint the performance of conventional registration techniques. In this paper, we propose a new method in order to detect interval changes accurately without using an image registration technique. The method is based on construction of so-called pattern histogram and comparison procedure. The pattern histogram is a graphic representation of the frequency counts of all allowable patterns in the multi-dimensional pattern vector space. K-means algorithm is employed to partition pattern vector space successively. Any differences in the pattern histograms imply that different patterns are involved in the scenes. In our experiment, a pair of chest radiographs of pneumoconiosis is employed and the changing histogram bins are visualized on both of the images. We found that the method can be used as an alternative way of temporal change detection, particularly when the precise image registration is not available.

  10. The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: vector fields and transport barriers from movies.

    PubMed

    Santitissadeekorn, N; Bollt, E M

    2007-06-01

    In this paper, we present an approach to approximate the Frobenius-Perron transfer operator from a sequence of time-ordered images, that is, a movie dataset. Unlike time-series data, successive images do not provide a direct access to a trajectory of a point in a phase space; more precisely, a pixel in an image plane. Therefore, we reconstruct the velocity field from image sequences based on the infinitesimal generator of the Frobenius-Perron operator. Moreover, we relate this problem to the well-known optical flow problem from the computer vision community and we validate the continuity equation derived from the infinitesimal operator as a constraint equation for the optical flow problem. Once the vector field and then a discrete transfer operator are found, then, in addition, we present a graph modularity method as a tool to discover basin structure in the phase space. Together with a tool to reconstruct a velocity field, this graph-based partition method provides us with a way to study transport behavior and other ergodic properties of measurable dynamical systems captured only through image sequences.

  11. Fractal planetary rings: Energy inequalities and random field model

    NASA Astrophysics Data System (ADS)

    Malyarenko, Anatoliy; Ostoja-Starzewski, Martin

    2017-12-01

    This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.

  12. Constrained multibody system dynamics: An automated approach

    NASA Technical Reports Server (NTRS)

    Kamman, J. W.; Huston, R. L.

    1982-01-01

    The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. The closed loop problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. The modifications is based upon a solution of the constraint equations obtained through a zero eigenvalues theorem, is a contraction of the dynamical equations. For a system with n-generalized coordinates and m-constraint equations, the coefficients in the constraint equations may be viewed as constraint vectors in n-dimensional space. In this setting the system itself is free to move in the n-m directions which are orthogonal to the constraint vectors.

  13. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  14. Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin

    2018-05-01

    The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.

  15. Action Direction of Muscle Synergies in Three-Dimensional Force Space

    PubMed Central

    Hagio, Shota; Kouzaki, Motoki

    2015-01-01

    Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. Subjects performed isometric force generation in the three-dimensional force space. The muscle-weighting vectors of muscle synergies and their activation traces across different trials were extracted from electromyogram data using decomposing technique. We then estimated mechanical contribution of muscle synergies across each trial based on cross-correlation analysis. The contributing vectors were averaged for all trials, and the averaging was defined as action direction (AD) of muscle synergies. As a result, we extracted approximately five muscle synergies. The ADs of muscle synergies mainly depended on the anatomical functions of their weighting muscles. Furthermore, the AD of each muscle indicated the synchronous activation of muscles, which composed of the same muscle synergy. These results provide the spatiotemporal characteristics of muscle synergies as neural basis. PMID:26618156

  16. Action Direction of Muscle Synergies in Three-Dimensional Force Space.

    PubMed

    Hagio, Shota; Kouzaki, Motoki

    2015-01-01

    Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. Subjects performed isometric force generation in the three-dimensional force space. The muscle-weighting vectors of muscle synergies and their activation traces across different trials were extracted from electromyogram data using decomposing technique. We then estimated mechanical contribution of muscle synergies across each trial based on cross-correlation analysis. The contributing vectors were averaged for all trials, and the averaging was defined as action direction (AD) of muscle synergies. As a result, we extracted approximately five muscle synergies. The ADs of muscle synergies mainly depended on the anatomical functions of their weighting muscles. Furthermore, the AD of each muscle indicated the synchronous activation of muscles, which composed of the same muscle synergy. These results provide the spatiotemporal characteristics of muscle synergies as neural basis.

  17. Geometric Implications of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2015-03-01

    Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.

  18. The canonical Lagrangian approach to three-space general relativity

    NASA Astrophysics Data System (ADS)

    Shyam, Vasudev; Venkatesh, Madhavan

    2013-07-01

    We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.

  19. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses.

    PubMed

    Ye, Jun

    2015-03-01

    In pattern recognition and medical diagnosis, similarity measure is an important mathematical tool. To overcome some disadvantages of existing cosine similarity measures of simplified neutrosophic sets (SNSs) in vector space, this paper proposed improved cosine similarity measures of SNSs based on cosine function, including single valued neutrosophic cosine similarity measures and interval neutrosophic cosine similarity measures. Then, weighted cosine similarity measures of SNSs were introduced by taking into account the importance of each element. Further, a medical diagnosis method using the improved cosine similarity measures was proposed to solve medical diagnosis problems with simplified neutrosophic information. The improved cosine similarity measures between SNSs were introduced based on cosine function. Then, we compared the improved cosine similarity measures of SNSs with existing cosine similarity measures of SNSs by numerical examples to demonstrate their effectiveness and rationality for overcoming some shortcomings of existing cosine similarity measures of SNSs in some cases. In the medical diagnosis method, we can find a proper diagnosis by the cosine similarity measures between the symptoms and considered diseases which are represented by SNSs. Then, the medical diagnosis method based on the improved cosine similarity measures was applied to two medical diagnosis problems to show the applications and effectiveness of the proposed method. Two numerical examples all demonstrated that the improved cosine similarity measures of SNSs based on the cosine function can overcome the shortcomings of the existing cosine similarity measures between two vectors in some cases. By two medical diagnoses problems, the medical diagnoses using various similarity measures of SNSs indicated the identical diagnosis results and demonstrated the effectiveness and rationality of the diagnosis method proposed in this paper. The improved cosine measures of SNSs based on cosine function can overcome some drawbacks of existing cosine similarity measures of SNSs in vector space, and then their diagnosis method is very suitable for handling the medical diagnosis problems with simplified neutrosophic information and demonstrates the effectiveness and rationality of medical diagnoses. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  1. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  2. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  3. Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gáliková, Veronika; Kováčik, Samuel; Prešnajder, Peter

    2013-12-15

    The main point of this paper is to examine a “hidden” dynamical symmetry connected with the conservation of Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of non-commutative quantum mechanics (NCQM). The basic features of NCQM will be introduced to the reader, the key one being the fact that the notion of a point, or a zero distance in the considered configuration space, is abandoned and replaced with a “fuzzy” structure in such a way that the rotational invariance is preserved. The main facts about the conservation of LRL vector in both classical and quantum theory willmore » be reviewed. Finally, we will search for an analogy in the NCQM, provide our results and their comparison with the QM predictions. The key notions we are going to deal with are non-commutative space, Coulomb-Kepler problem, and symmetry.« less

  4. Adjustable vector Airy light-sheet single optical tweezers: negative radiation forces on a subwavelength spheroid and spin torque reversal

    NASA Astrophysics Data System (ADS)

    Mitri, Farid G.

    2018-01-01

    Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell's equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.

  5. Distance between RBS and AUG plays an important role in overexpression of recombinant proteins.

    PubMed

    Berwal, Sunil K; Sreejith, R K; Pal, Jayanta K

    2010-10-15

    The spacing between ribosome binding site (RBS) and AUG is crucial for efficient overexpression of genes when cloned in prokaryotic expression vectors. We undertook a brief study on the overexpression of genes cloned in Escherichia coli expression vectors, wherein the spacing between the RBS and the start codon was varied. SDS-PAGE and Western blot analysis indicated a high level of protein expression only in constructs where the spacing between RBS and AUG was approximately 40 nucleotides or more, despite the synthesis of the transcripts in the representative cases investigated. Copyright 2010 Elsevier Inc. All rights reserved.

  6. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less

  7. Algebraic and radical potential fields. Stability domains in coordinate and parametric space

    NASA Astrophysics Data System (ADS)

    Uteshev, Alexei Yu.

    2018-05-01

    A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ∈ ℝn and parameters A ∈ ℝm. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝm such that for any parameter vector specialization A ∈ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain 𝕊 ⊂ ℝn such that any point X* ∈ 𝕊 could be made a stable equilibrium by a suitable specialization of the parameter vector A.

  8. Optical design of transmitter lens for asymmetric distributed free space optical networks

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is examined, showing perfect agreement with expectations.

  9. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  10. Terrorism/Criminalogy/Sociology via Magnetism-Hamiltonian ``Models''?!: Black Swans; What Secrets Lie Buried in Magnetism?; ``Magnetism Will Conquer the Universe?''(Charles Middleton, aka ``His Imperial Majesty The Emperior Ming `The Merciless!!!''

    NASA Astrophysics Data System (ADS)

    Carrott, Anthony; Siegel, Edward Carl-Ludwig; Hoover, John-Edgar; Ness, Elliott

    2013-03-01

    Terrorism/Criminalogy//Sociology : non-Linear applied-mathematician (``nose-to-the grindstone / ``gearheadism'') ''modelers'': Worden,, Short, ...criminologists/counter-terrorists/sociologists confront [SIAM Conf. on Nonlinearity, Seattle(12); Canadian Sociology Conf,. Burnaby(12)]. ``The `Sins' of the Fathers Visited Upon the Sons'': Zeno vs Ising vs Heisenberg vs Stoner vs Hubbard vs Siegel ''SODHM''(But NO Y!!!) vs ...??? Magntism and it turn are themselves confronted BY MAGNETISM,via relatively magnetism/metal-insulator conductivity / percolation-phase-transitions critical-phenomena -illiterate non-linear applied-mathematician (nose-to-the-grindstone/ ``gearheadism'')''modelers''. What Secrets Lie Buried in Magnetism?; ``Magnetism Will Conquer the Universe!!!''[Charles Middleton, aka ``His Imperial Majesty The Emperior Ming `The Merciless!!!']'' magnetism-Hamiltonian phase-transitions percolation-``models''!: Zeno(~2350 BCE) to Peter the Pilgrim(1150) to Gilbert(1600) to Faraday(1815-1820) to Tate (1870-1880) to Ewing(1882) hysteresis to Barkhausen(1885) to Curie(1895)-Weiss(1895) to Ising-Lenz(r-space/Localized-Scalar/ Discrete/1911) to Heisenberg(r-space/localized-vector/discrete/1927) to Priesich(1935) to Stoner (electron/k-space/ itinerant-vector/discrete/39) to Stoner-Wohlfarth (technical-magnetism hysteresis /r-space/ itinerant-vector/ discrete/48) to Hubbard-Longuet-Higgins (k-space versus r-space/

  11. Space Science

    NASA Image and Video Library

    1990-10-01

    Using the Solar Vector Magnetograph, a solar observation facility at NASA's Marshall Space Flight Center (MSFC), scientists from the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama, are monitoring the explosive potential of magnetic areas of the Sun. This effort could someday lead to better prediction of severe space weather, a phenomenon that occurs when blasts of particles and magnetic fields from the Sun impact the magnetosphere, the magnetic bubble around the Earth. When massive solar explosions, known as coronal mass ejections, blast through the Sun's outer atmosphere and plow toward Earth at speeds of thousands of miles per second, the resulting effects can be harmful to communication satellites and astronauts outside the Earth's magnetosphere. Like severe weather on Earth, severe space weather can be costly. On the ground, the magnetic storm wrought by these solar particles can knock out electric power. The researchers from MSFC and NSSTC's solar physics group develop instruments for measuring magnetic fields on the Sun. With these instruments, the group studies the origin, structure, and evolution of the solar magnetic field and the impact it has on Earth's space environment. This photograph shows the Solar Vector Magnetograph and Dr. Mona Hagyard of MSFC, the director of the observatory who leads the development, operation and research program of the Solar Vector Magnetograph.

  12. The organization of conspecific face space in nonhuman primates

    PubMed Central

    Parr, Lisa A.; Taubert, Jessica; Little, Anthony C.; Hancock, Peter J. B.

    2013-01-01

    Humans and chimpanzees demonstrate numerous cognitive specializations for processing faces, but comparative studies with monkeys suggest that these may be the result of recent evolutionary adaptations. The present study utilized the novel approach of face space, a powerful theoretical framework used to understand the representation of face identity in humans, to further explore species differences in face processing. According to the theory, faces are represented by vectors in a multidimensional space, the centre of which is defined by an average face. Each dimension codes features important for describing a face’s identity, and vector length codes the feature’s distinctiveness. Chimpanzees and rhesus monkeys discriminated male and female conspecifics’ faces, rated by humans for their distinctiveness, using a computerized task. Multidimensional scaling analyses showed that the organization of face space was similar between humans and chimpanzees. Distinctive faces had the longest vectors and were the easiest for chimpanzees to discriminate. In contrast, distinctiveness did not correlate with the performance of rhesus monkeys. The feature dimensions for each species’ face space were visualized and described using morphing techniques. These results confirm species differences in the perceptual representation of conspecific faces, which are discussed within an evolutionary framework. PMID:22670823

  13. VectorBase: a home for invertebrate vectors of human pathogens

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  14. Some Applications Of Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2009-11-01

    An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.

  15. Quantum Bundle Description of Quantum Projective Spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2012-12-01

    We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.

  16. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach

    NASA Astrophysics Data System (ADS)

    Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal

    2018-06-01

    Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.

  17. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations

    PubMed Central

    2016-01-01

    Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140

  18. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    PubMed

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (p<.001) for the predicate-based (80%) than for the keyword-based (71%) approach. Relevance was almost doubled with the predicate-based approach-2.1 versus 1.6 without rank order adjustment (p<.001) and 1.34 versus 0.98 with rank order adjustment (p<.001) for predicate--versus keyword-based approach respectively. Predicates can support more precise searching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD).

    PubMed

    Bermúdez Ordoñez, Juan Carlos; Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando

    2018-05-16

    A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ 1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain.

  20. Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)

    PubMed Central

    Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando

    2018-01-01

    A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain. PMID:29772731

  1. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    NASA Astrophysics Data System (ADS)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.

  2. Applications of Aerodynamic Forces for Spacecraft Orbit Maneuverability in Operationally Responsive Space and Space Reconstitution Needs

    DTIC Science & Technology

    2012-03-01

    observation re = the radius of the Earth at the equator Pn = the Legendre polynomial 26 L = the geocentric latitude, sin The acceleration can then...atmospheric density at an altitude above an %% oblate earth given the position vector in the Geocentric Equatorial %% frame. The position vector is in...Diff between Delta and Geocentric lat rad %% GeoDtLat - Geodetic Latitude -Pi/2 to Pi/2 rad %% GeoCnLat

  3. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  4. Illustrating dynamical symmetries in classical mechanics: The Laplace-Runge-Lenz vector revisited

    NASA Astrophysics Data System (ADS)

    O'Connell, Ross C.; Jagannathan, Kannan

    2003-03-01

    The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton-Jacobi method.

  5. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Gravity Research on Plants: Use of Single-Cell Experimental Models

    PubMed Central

    Chebli, Youssef; Geitmann, Anja

    2011-01-01

    Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598

  7. Free-space optical polarization demultiplexing and multiplexing by means of conical refraction.

    PubMed

    Turpin, Alex; Loiko, Yurii; Kalkandjiev, Todor K; Mompart, Jordi

    2012-10-15

    Polarization demultiplexing and multiplexing by means of conical refraction is proposed to increase the channel capacity for free-space optical communication applications. The proposed technique is based on the forward-backward optical transform occurring when a light beam propagates consecutively along the optic axes of two identical biaxial crystals with opposite orientations of their conical refraction characteristic vectors. We present an experimental proof of usefulness of the conical refraction demultiplexing and multiplexing technique by increasing in one order of magnitude the channel capacity at optical frequencies in a propagation distance of 4 m.

  8. Development of optical modulators for measurements of solar magnetic fields

    NASA Technical Reports Server (NTRS)

    West, E. A.; Smith, J. E.

    1987-01-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  9. Complex network construction based on user group attention sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Gaowei; Xu, Lingyu; Wang, Lei

    2018-04-01

    In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.

  10. Planning collision free paths for two cooperating robots using a divide-and-conquer C-space traversal heuristic

    NASA Technical Reports Server (NTRS)

    Weaver, Johnathan M.

    1993-01-01

    A method was developed to plan feasible and obstacle-avoiding paths for two spatial robots working cooperatively in a known static environment. Cooperating spatial robots as referred to herein are robots which work in 6D task space while simultaneously grasping and manipulating a common, rigid payload. The approach is configuration space (c-space) based and performs selective rather than exhaustive c-space mapping. No expensive precomputations are required. A novel, divide-and-conquer type of heuristic is used to guide the selective mapping process. The heuristic does not involve any robot, environment, or task specific assumptions. A technique was also developed which enables solution of the cooperating redundant robot path planning problem without requiring the use of inverse kinematics for a redundant robot. The path planning strategy involves first attempting to traverse along the configuration space vector from the start point towards the goal point. If an unsafe region is encountered, an intermediate via point is identified by conducting a systematic search in the hyperplane orthogonal to and bisecting the unsafe region of the vector. This process is repeatedly applied until a solution to the global path planning problem is obtained. The basic concept behind this strategy is that better local decisions at the beginning of the trouble region may be made if a possible way around the 'center' of the trouble region is known. Thus, rather than attempting paths which look promising locally (at the beginning of a trouble region) but which may not yield overall results, the heuristic attempts local strategies that appear promising for circumventing the unsafe region.

  11. Investigation into Text Classification With Kernel Based Schemes

    DTIC Science & Technology

    2010-03-01

    Document Matrix TDMs Term-Document Matrices TMG Text to Matrix Generator TN True Negative TP True Positive VSM Vector Space Model xxii THIS PAGE...are represented as a term-document matrix, common evaluation metrics, and the software package Text to Matrix Generator ( TMG ). The classifier...AND METRICS This chapter introduces the indexing capabilities of the Text to Matrix Generator ( TMG ) Toolbox. Specific attention is placed on the

  12. Deorbit targeting

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1973-01-01

    The navigation and control of the space shuttle during atmospheric entry are discussed. A functional flow diagram presenting the basic approach to the deorbit targeting problem is presented. The major inputs to be considered are: (1) vehicle state vector, (2) landing site location, (3) entry interface parameters, (4) earliest desired time of landing, and (5) maximum cross range. Mathematical models of the navigational procedures based on controlled thrust times are developed.

  13. Unitary Operators on the Document Space.

    ERIC Educational Resources Information Center

    Hoenkamp, Eduard

    2003-01-01

    Discusses latent semantic indexing (LSI) that would allow search engines to reduce the dimension of the document space by mapping it into a space spanned by conceptual indices. Topics include vector space models; singular value decomposition (SVD); unitary operators; the Haar transform; and new algorithms. (Author/LRW)

  14. Hypercyclic subspaces for Frechet space operators

    NASA Astrophysics Data System (ADS)

    Petersson, Henrik

    2006-07-01

    A continuous linear operator is hypercyclic if there is an such that the orbit {Tnx} is dense, and such a vector x is said to be hypercyclic for T. Recent progress show that it is possible to characterize Banach space operators that have a hypercyclic subspace, i.e., an infinite dimensional closed subspace of, except for zero, hypercyclic vectors. The following is known to hold: A Banach space operator T has a hypercyclic subspace if there is a sequence (ni) and an infinite dimensional closed subspace such that T is hereditarily hypercyclic for (ni) and Tni->0 pointwise on E. In this note we extend this result to the setting of Frechet spaces that admit a continuous norm, and study some applications for important function spaces. As an application we also prove that any infinite dimensional separable Frechet space with a continuous norm admits an operator with a hypercyclic subspace.

  15. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less

  16. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  17. State space model approach for forecasting the use of electrical energy (a case study on: PT. PLN (Persero) district of Kroya)

    NASA Astrophysics Data System (ADS)

    Kurniati, Devi; Hoyyi, Abdul; Widiharih, Tatik

    2018-05-01

    Time series data is a series of data taken or measured based on observations at the same time interval. Time series data analysis is used to perform data analysis considering the effect of time. The purpose of time series analysis is to know the characteristics and patterns of a data and predict a data value in some future period based on data in the past. One of the forecasting methods used for time series data is the state space model. This study discusses the modeling and forecasting of electric energy consumption using the state space model for univariate data. The modeling stage is began with optimal Autoregressive (AR) order selection, determination of state vector through canonical correlation analysis, estimation of parameter, and forecasting. The result of this research shows that modeling of electric energy consumption using state space model of order 4 with Mean Absolute Percentage Error (MAPE) value 3.655%, so the model is very good forecasting category.

  18. Next-generation bidirectional Triple-play services using RSOA based WDM Radio on Free-Space Optics PON

    NASA Astrophysics Data System (ADS)

    Mandal, Gour Chandra; Mukherjee, Rahul; Das, Binoy; Patra, Ardhendu Sekhar

    2018-03-01

    An innovative low cost reflective semiconductor amplifier (RSOA) based bidirectional Triple-play services (TPS) using wavelength division multiplexed radio on free-space-optics passive optical network (WDM-RoFSO-PON) is proposed and experimentally demonstrated to transmit data, voice and video services simultaneously. In this paper, the TPS (10 Gb/s data/voice and 1.49 Gb/s HDTV signal) are successfully transmitted over a 500 m free-space link in downstream and RSOA is utilized at the receiving site to broadcast 1.25 Gb/s data/voice signal over same free-space link in upstream by reusing the carrier, that makes the system cost-effective. High receiver sensitivity and signal-to-noise ratio (SNR), low bit-error-rate (BER) and low error vector magnitude (EVM), and excellent eye-diagrams in our proposed network build the system more reliable and stable with acceptable performance. Therefore, proposed WDM-RoFSO-PON could be the viable solution for future ubiquitous multiservice wireless network in the scenario of TPS.

  19. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  20. Closedness of orbits in a space with SU(2) Poisson structure

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad

    2014-06-01

    The closedness of orbits of central forces is addressed in a three-dimensional space in which the Poisson bracket among the coordinates is that of the SU(2) Lie algebra. In particular it is shown that among problems with spherically symmetric potential energies, it is only the Kepler problem for which all bounded orbits are closed. In analogy with the case of the ordinary space, a conserved vector (apart from the angular momentum) is explicitly constructed, which is responsible for the orbits being closed. This is the analog of the Laplace-Runge-Lenz vector. The algebra of the constants of the motion is also worked out.

  1. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.

    PubMed

    Li, Zhan-Chao; Zhou, Xi-Bin; Dai, Zong; Zou, Xiao-Yong

    2009-07-01

    A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou's pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246-255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.

  2. Vector representation of lithium and other mica compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1991-01-01

    In contrast to mathematics, where a vector of one component defines a line, in chemical petrology a one-component system is a point, and two components are needed to define a line, three for a plane, and four for a space. Here, an attempt is made to show how these differences in the definition of a component can be resolved, with lithium micas used as an example. In particular, the condensed composition space theoretically accessible to Li-Fe-Al micas is shown to be an irregular three-dimensional polyhedron, rather than the triangle Al(3+)-Fe(2+)-Li(+), used by some researchers. This result is demonstrated starting with the annite composition and using exchange operators graphically as vectors that generate all of the other mica compositions.

  3. Derivation of formulas for root-mean-square errors in location, orientation, and shape in triangulation solution of an elongated object in space

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1974-01-01

    Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.

  4. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    PubMed

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  5. Covariance estimation in Terms of Stokes Parameters with Application to Vector Sensor Imaging

    DTIC Science & Technology

    2016-12-15

    S. Klein, “HF Vector Sensor for Radio Astronomy : Ground Testing Results,” in AIAA SPACE 2016, ser. AIAA SPACE Forum, American Institute of... astronomy ,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–17. doi: 10.1109/ AERO.2016.7500688. [4] K.-C. Ho, K.-C. Tan, and B. T. G. Tan, “Estimation of...Statistical Imaging in Radio Astronomy via an Expectation-Maximization Algorithm for Structured Covariance Estimation,” in Statistical Methods in Imaging: IN

  6. Lie theory and control systems defined on spheres

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.

    1972-01-01

    It is shown that in constructing a theory for the most elementary class of control problems defined on spheres, some results from the Lie theory play a natural role. To understand controllability, optimal control, and certain properties of stochastic equations, Lie theoretic ideas are needed. The framework considered here is the most natural departure from the usual linear system/vector space problems which have dominated control systems literature. For this reason results are compared with those previously available for the finite dimensional vector space case.

  7. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  8. Using trees to compute approximate solutions to ordinary differential equations exactly

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.

  9. Local Gram-Schmidt and covariant Lyapunov vectors and exponents for three harmonic oscillator problems

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2012-02-01

    We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  10. Sensitivity analysis of the space shuttle to ascent wind profiles

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Austin, L. D., Jr.

    1982-01-01

    A parametric sensitivity analysis of the space shuttle ascent flight to the wind profile is presented. Engineering systems parameters are obtained by flight simulations using wind profile models and samples of detailed (Jimsphere) wind profile measurements. The wind models used are the synthetic vector wind model, with and without the design gust, and a model of the vector wind change with respect to time. From these comparison analyses an insight is gained on the contribution of winds to ascent subsystems flight parameters.

  11. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  12. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    NASA Astrophysics Data System (ADS)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  13. Novel strategy to implement active-space coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Rolik, Zoltán; Kállay, Mihály

    2018-03-01

    A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.

  14. Clustering Tree-structured Data on Manifold

    PubMed Central

    Lu, Na; Miao, Hongyu

    2016-01-01

    Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696

  15. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  16. Utilizing the Structure and Content Information for XML Document Clustering

    NASA Astrophysics Data System (ADS)

    Tran, Tien; Kutty, Sangeetha; Nayak, Richi

    This paper reports on the experiments and results of a clustering approach used in the INEX 2008 document mining challenge. The clustering approach utilizes both the structure and content information of the Wikipedia XML document collection. A latent semantic kernel (LSK) is used to measure the semantic similarity between XML documents based on their content features. The construction of a latent semantic kernel involves the computing of singular vector decomposition (SVD). On a large feature space matrix, the computation of SVD is very expensive in terms of time and memory requirements. Thus in this clustering approach, the dimension of the document space of a term-document matrix is reduced before performing SVD. The document space reduction is based on the common structural information of the Wikipedia XML document collection. The proposed clustering approach has shown to be effective on the Wikipedia collection in the INEX 2008 document mining challenge.

  17. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-moa; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.

  18. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  19. Feature selection using probabilistic prediction of support vector regression.

    PubMed

    Yang, Jian-Bo; Ong, Chong-Jin

    2011-06-01

    This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.

  20. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  1. Spatial extent of a hydrothermal system at Kilauea Volcano, Hawaii, determined from array analyses of shallow long-period seismicity 1. Method

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.

    2001-01-01

    We present a probabilistic method to locate the source of seismic events using seismic antennas. The method is based on a comparison of the event azimuths and slownesses derived from frequency-slowness analyses of array data, with a slowness vector model. Several slowness vector models are considered including both homogeneous and horizontally layered half-spaces and also a more complex medium representing the actual topography and three-dimensional velocity structure of the region under study. In this latter model the slowness vector is obtained from frequency-slowness analyses of synthetic signals. These signals are generated using the finite difference method and include the effects of topography and velocity structure to reproduce as closely as possible the behavior of the observed wave fields. A comparison of these results with those obtained with a homogeneous half-space demonstrates the importance of structural and topographic effects, which, if ignored, lead to a bias in the source location. We use synthetic seismograms to test the accuracy and stability of the method and to investigate the effect of our choice of probability distributions. We conclude that this location method can provide the source position of shallow events within a complex volcanic structure such as Kilauea Volcano with an error of ??200 m. Copyright 2001 by the American Geophysical Union.

  2. Topic detection using paragraph vectors to support active learning in systematic reviews.

    PubMed

    Hashimoto, Kazuma; Kontonatsios, Georgios; Miwa, Makoto; Ananiadou, Sophia

    2016-08-01

    Systematic reviews require expert reviewers to manually screen thousands of citations in order to identify all relevant articles to the review. Active learning text classification is a supervised machine learning approach that has been shown to significantly reduce the manual annotation workload by semi-automating the citation screening process of systematic reviews. In this paper, we present a new topic detection method that induces an informative representation of studies, to improve the performance of the underlying active learner. Our proposed topic detection method uses a neural network-based vector space model to capture semantic similarities between documents. We firstly represent documents within the vector space, and cluster the documents into a predefined number of clusters. The centroids of the clusters are treated as latent topics. We then represent each document as a mixture of latent topics. For evaluation purposes, we employ the active learning strategy using both our novel topic detection method and a baseline topic model (i.e., Latent Dirichlet Allocation). Results obtained demonstrate that our method is able to achieve a high sensitivity of eligible studies and a significantly reduced manual annotation cost when compared to the baseline method. This observation is consistent across two clinical and three public health reviews. The tool introduced in this work is available from https://nactem.ac.uk/pvtopic/. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Space-based IR tracking bias removal using background star observations

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2009-05-01

    This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.

  4. Mapping the Indonesian territory, based on pollution, social demography and geographical data, using self organizing feature map

    NASA Astrophysics Data System (ADS)

    Hernawati, Kuswari; Insani, Nur; Bambang S. H., M.; Nur Hadi, W.; Sahid

    2017-08-01

    This research aims to mapping the 33 (thirty-three) provinces in Indonesia, based on the data on air, water and soil pollution, as well as social demography and geography data, into a clustered model. The method used in this study was unsupervised method that combines the basic concept of Kohonen or Self-Organizing Feature Maps (SOFM). The method is done by providing the design parameters for the model based on data related directly/ indirectly to pollution, which are the demographic and social data, pollution levels of air, water and soil, as well as the geographical situation of each province. The parameters used consists of 19 features/characteristics, including the human development index, the number of vehicles, the availability of the plant's water absorption and flood prevention, as well as geographic and demographic situation. The data used were secondary data from the Central Statistics Agency (BPS), Indonesia. The data are mapped into SOFM from a high-dimensional vector space into two-dimensional vector space according to the closeness of location in term of Euclidean distance. The resulting outputs are represented in clustered grouping. Thirty-three provinces are grouped into five clusters, where each cluster has different features/characteristics and level of pollution. The result can used to help the efforts on prevention and resolution of pollution problems on each cluster in an effective and efficient way.

  5. Dengue vector control: present status and future prospects.

    PubMed

    Yap, H H; Chong, N L; Foo, A E; Lee, C Y

    1994-12-01

    Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) have been the most common urban diseases in Southeast Asia since the 1950s. More recently, the diseases have spread to Central and South America and are now considered as worldwide diseases. Both Aedes aegypti and Aedes albopictus are involved in the transmission of DF/DHF in Southeast Asian region. The paper discusses the present status and future prospects of Aedes control with reference to the Malaysian experience. Vector control approaches which include source reduction and environmental management, larviciding with the use of chemicals (synthetic insecticides and insect growth regulators and microbial insecticide), and adulticiding which include personal protection measures (household insecticide products and repellents) for long-term control and space spray (both thermal fogging and ultra low volume sprays) as short-term epidemic measures are discussed. The potential incorporation of IGRs and Bacillus thuringiensis-14 (Bti) as larvicides in addition to insecticides (temephos) is discussed. The advantages of using water-based spray over the oil-based (diesel) spray and the use of spray formulation which provide both larvicidal and adulticidal effects that would consequently have greater impact on the overall vector and disease control in DF/DHF are highlighted.

  6. Multi-view L2-SVM and its multi-view core vector machine.

    PubMed

    Huang, Chengquan; Chung, Fu-lai; Wang, Shitong

    2016-03-01

    In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ring polymer dynamics in curved spaces

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Curotto, E.

    2012-07-01

    We formulate an extension of the ring polymer dynamics approach to curved spaces using stereographic projection coordinates. We test the theory by simulating the particle in a ring, {T}^1, mapped by a stereographic projection using three potentials. Two of these are quadratic, and one is a nonconfining sinusoidal model. We propose a new class of algorithms for the integration of the ring polymer Hamilton equations in curved spaces. These are designed to improve the energy conservation of symplectic integrators based on the split operator approach. For manifolds, the position-position autocorrelation function can be formulated in numerous ways. We find that the position-position autocorrelation function computed from configurations in the Euclidean space {R}^2 that contains {T}^1 as a submanifold has the best statistical properties. The agreement with exact results obtained with vector space methods is excellent for all three potentials, for all values of time in the interval simulated, and for a relatively broad range of temperatures.

  8. Automated vector selection of SIVQ and parallel computing integration MATLAB™: Innovations supporting large-scale and high-throughput image analysis studies.

    PubMed

    Cheng, Jerome; Hipp, Jason; Monaco, James; Lucas, David R; Madabhushi, Anant; Balis, Ulysses J

    2011-01-01

    Spatially invariant vector quantization (SIVQ) is a texture and color-based image matching algorithm that queries the image space through the use of ring vectors. In prior studies, the selection of one or more optimal vectors for a particular feature of interest required a manual process, with the user initially stochastically selecting candidate vectors and subsequently testing them upon other regions of the image to verify the vector's sensitivity and specificity properties (typically by reviewing a resultant heat map). In carrying out the prior efforts, the SIVQ algorithm was noted to exhibit highly scalable computational properties, where each region of analysis can take place independently of others, making a compelling case for the exploration of its deployment on high-throughput computing platforms, with the hypothesis that such an exercise will result in performance gains that scale linearly with increasing processor count. An automated process was developed for the selection of optimal ring vectors to serve as the predicate matching operator in defining histopathological features of interest. Briefly, candidate vectors were generated from every possible coordinate origin within a user-defined vector selection area (VSA) and subsequently compared against user-identified positive and negative "ground truth" regions on the same image. Each vector from the VSA was assessed for its goodness-of-fit to both the positive and negative areas via the use of the receiver operating characteristic (ROC) transfer function, with each assessment resulting in an associated area-under-the-curve (AUC) figure of merit. Use of the above-mentioned automated vector selection process was demonstrated in two cases of use: First, to identify malignant colonic epithelium, and second, to identify soft tissue sarcoma. For both examples, a very satisfactory optimized vector was identified, as defined by the AUC metric. Finally, as an additional effort directed towards attaining high-throughput capability for the SIVQ algorithm, we demonstrated the successful incorporation of it with the MATrix LABoratory (MATLAB™) application interface. The SIVQ algorithm is suitable for automated vector selection settings and high throughput computation.

  9. Recent Developments In Theory Of Balanced Linear Systems

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek

    1994-01-01

    Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.

  10. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan.

    PubMed

    Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham

    2005-12-15

    In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.

  11. Computing approximate random Delta v magnitude probability densities. [for spacecraft trajectory correction

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1984-01-01

    This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.

  12. Vector intensity reconstruction using the data completion method.

    PubMed

    Langrenne, Christophe; Garcia, Alexandre

    2013-04-01

    This paper presents an application of the data completion method (DCM) for vector intensity reconstructions. A mobile array of 36 pressure-pressure probes (72 microphones) is used to perform measurements near a planar surface. Nevertheless, since the proposed method is based on integral formulations, DCM can be applied with any kind of geometry. This method requires the knowledge of Cauchy data (pressure and velocity) on a part of the boundary of an empty domain in order to evaluate pressure and velocity on the remaining part of the boundary. Intensity vectors are calculated in the interior domain surrounded by the measurement array. This inverse acoustic problem requires the use of a regularization method to obtain a realistic solution. An experiment in a closed wooden car trunk mock-up excited by a shaker and two loudspeakers is presented. In this case, where the volume of the mock-up is small (0.61 m(3)), standing-waves and fluid structure interactions appear and show that DCM is a powerful tool to identify sources in a confined space.

  13. On the estimation of the domain of attraction for discrete-time switched and hybrid nonlinear systems

    NASA Astrophysics Data System (ADS)

    Kit Luk, Chuen; Chesi, Graziano

    2015-11-01

    This paper addresses the estimation of the domain of attraction for discrete-time nonlinear systems where the vector field is subject to changes. First, the paper considers the case of switched systems, where the vector field is allowed to arbitrarily switch among the elements of a finite family. Second, the paper considers the case of hybrid systems, where the state space is partitioned into several regions described by polynomial inequalities, and the vector field is defined on each region independently from the other ones. In both cases, the problem consists of computing the largest sublevel set of a Lyapunov function included in the domain of attraction. An approach is proposed for solving this problem based on convex programming, which provides a guaranteed inner estimate of the sought sublevel set. The conservatism of the provided estimate can be decreased by increasing the size of the optimisation problem. Some numerical examples illustrate the proposed approach.

  14. Color image segmentation with support vector machines: applications to road signs detection.

    PubMed

    Cyganek, Bogusław

    2008-08-01

    In this paper we propose efficient color segmentation method which is based on the Support Vector Machine classifier operating in a one-class mode. The method has been developed especially for the road signs recognition system, although it can be used in other applications. The main advantage of the proposed method comes from the fact that the segmentation of characteristic colors is performed not in the original but in the higher dimensional feature space. By this a better data encapsulation with a linear hypersphere can be usually achieved. Moreover, the classifier does not try to capture the whole distribution of the input data which is often difficult to achieve. Instead, the characteristic data samples, called support vectors, are selected which allow construction of the tightest hypersphere that encloses majority of the input data. Then classification of a test data simply consists in a measurement of its distance to a centre of the found hypersphere. The experimental results show high accuracy and speed of the proposed method.

  15. Color digital halftoning taking colorimetric color reproduction into account

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi

    1996-01-01

    Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.

  16. A comparison of linear approaches to filter out environmental effects in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Deraemaeker, A.; Worden, K.

    2018-05-01

    This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while allowing detection of all damaged cases.

  17. Searching for transcription factor binding sites in vector spaces

    PubMed Central

    2012-01-01

    Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338

  18. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    NASA Astrophysics Data System (ADS)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any converter. This conceivably aids the sizing and design of output passive filters. An analytical estimation method has been presented to achieve this purpose for am IMC. Knowledge of the fundamental component in output voltage can be utilized to calculate its Total Harmonic Distortion (THD). The effectiveness of the proposed SVPWM algorithms and the analytical estimation technique is substantiated by simulations in MATLAB / Simulink and experiments on a laboratory prototype of the IMC. Proper comparison plots have been provided to contrast the performance of the proposed methods with the conventional SVPWM method. The behavior of output voltage distortion and CMV with variation in operating parameters like modulation index and output frequency has also been analyzed.

  19. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    PubMed Central

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-01-01

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271

  20. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    NASA Technical Reports Server (NTRS)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  1. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  2. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  3. Teleoperator and robotics system analysis

    NASA Technical Reports Server (NTRS)

    Teoh, William

    1987-01-01

    The Orbital Maneuvering Vehicle (OMV) was designed to operate as a remotely controlled space teleoperator. The design and implementation of OMM (a mathematical model of the OMV) are discussed. The State Vector Transformation Module (SVX), an interface between the OMV simulation model and the mobile base (TOM-B) of the flat floor simulation system is described. A summary of testing procedures and conclusions are presented together with the test data obtained.

  4. Geometrization of quantum physics

    NASA Astrophysics Data System (ADS)

    Ol'Khov, O. A.

    2009-12-01

    It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.

  5. 3D reconstruction of the optic nerve head using stereo fundus images for computer-aided diagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.

    2010-03-01

    The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.

  6. Pose Invariant Face Recognition Based on Hybrid Dominant Frequency Features

    NASA Astrophysics Data System (ADS)

    Wijaya, I. Gede Pasek Suta; Uchimura, Keiichi; Hu, Zhencheng

    Face recognition is one of the most active research areas in pattern recognition, not only because the face is a human biometric characteristics of human being but also because there are many potential applications of the face recognition which range from human-computer interactions to authentication, security, and surveillance. This paper presents an approach to pose invariant human face image recognition. The proposed scheme is based on the analysis of discrete cosine transforms (DCT) and discrete wavelet transforms (DWT) of face images. From both the DCT and DWT domain coefficients, which describe the facial information, we build compact and meaningful features vector, using simple statistical measures and quantization. This feature vector is called as the hybrid dominant frequency features. Then, we apply a combination of the L2 and Lq metric to classify the hybrid dominant frequency features to a person's class. The aim of the proposed system is to overcome the high memory space requirement, the high computational load, and the retraining problems of previous methods. The proposed system is tested using several face databases and the experimental results are compared to a well-known Eigenface method. The proposed method shows good performance, robustness, stability, and accuracy without requiring geometrical normalization. Furthermore, the purposed method has low computational cost, requires little memory space, and can overcome retraining problem.

  7. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization

    DOE PAGES

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...

    2016-01-01

    This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less

  8. Using latent semantic analysis and the predication algorithm to improve extraction of meanings from a diagnostic corpus.

    PubMed

    Jorge-Botana, Guillermo; Olmos, Ricardo; León, José Antonio

    2009-11-01

    There is currently a widespread interest in indexing and extracting taxonomic information from large text collections. An example is the automatic categorization of informally written medical or psychological diagnoses, followed by the extraction of epidemiological information or even terms and structures needed to formulate guiding questions as an heuristic tool for helping doctors. Vector space models have been successfully used to this end (Lee, Cimino, Zhu, Sable, Shanker, Ely & Yu, 2006; Pakhomov, Buntrock & Chute, 2006). In this study we use a computational model known as Latent Semantic Analysis (LSA) on a diagnostic corpus with the aim of retrieving definitions (in the form of lists of semantic neighbors) of common structures it contains (e.g. "storm phobia", "dog phobia") or less common structures that might be formed by logical combinations of categories and diagnostic symptoms (e.g. "gun personality" or "germ personality"). In the quest to bring definitions into line with the meaning of structures and make them in some way representative, various problems commonly arise while recovering content using vector space models. We propose some approaches which bypass these problems, such as Kintsch's (2001) predication algorithm and some corrections to the way lists of neighbors are obtained, which have already been tested on semantic spaces in a non-specific domain (Jorge-Botana, León, Olmos & Hassan-Montero, under review). The results support the idea that the predication algorithm may also be useful for extracting more precise meanings of certain structures from scientific corpora, and that the introduction of some corrections based on vector length may increases its efficiency on non-representative terms.

  9. A Parallel Vector Machine for the PM Programming Language

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2016-04-01

    PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.

  10. Cosmology in generalized Proca theories

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-06-01

    We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.

  11. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint.

    PubMed

    Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong

    2015-12-02

    For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  12. Ranked centroid projection: a data visualization approach with self-organizing maps.

    PubMed

    Yen, G G; Wu, Z

    2008-02-01

    The self-organizing map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, the clustering and visualization capabilities of the SOM, especially in the analysis of textual data, i.e., document collections, are reviewed and further developed. A novel clustering and visualization approach based on the SOM is proposed for the task of text mining. The proposed approach first transforms the document space into a multidimensional vector space by means of document encoding. Afterwards, a growing hierarchical SOM (GHSOM) is trained and used as a baseline structure to automatically produce maps with various levels of detail. Following the GHSOM training, the new projection method, namely the ranked centroid projection (RCP), is applied to project the input vectors to a hierarchy of 2-D output maps. The RCP is used as a data analysis tool as well as a direct interface to the data. In a set of simulations, the proposed approach is applied to an illustrative data set and two real-world scientific document collections to demonstrate its applicability.

  13. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  14. Vectorcardiographic results from Skylab medical experiment M092: Lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Hoffler, G. W.; Johnson, R. L.; Nicogossian, A. E.; Bergman, S. A., Jr.; Jackson, M. M.

    1974-01-01

    Vectorcardiograms were recorded via a modified Frank lead system from all crewmen of the three Skylab missions in conjuction with the Lower Body Negative Pressure - M092 Experiment. Data were analyzed by a specially developed computer program (VECTAN). Design of the test sequences allowed direct comparisons of supine resting, Earth based (reference) vectorcardiograms with those taken during lower body negative pressure stress and those obtained at rest in orbit, as well as combinations of these conditions. Results revealed several statistically significant space flight related changes; namely, increased testing and lower body negative pressure stressed heart rates, modestly increased PR interval and corrected QTC interval, and greatly increased P and QPS loop maximal amplitudes. In addition, orientation changes in the QRS maximum vector and the J-vector at rest in space seem quite consistent among crewmen and different from those caused by the application of lower body negative pressure. No clinical abnormalities were observed. Etiology of these findings is conjectured to be, at least in part, related to fluid mass shifts occurring in weightlessness and attendant alterations in cardiovascular dynamics and myocardial autonomic control mechanisms.

  15. Disease Prediction based on Functional Connectomes using a Scalable and Spatially-Informed Support Vector Machine

    PubMed Central

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-01-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268

  16. A novel double fine guide sensor design on space telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-xu; Yin, Da-yi

    2018-02-01

    To get high precision attitude for space telescope, a double marginal FOV (field of view) FGS (Fine Guide Sensor) is proposed. It is composed of two large area APS CMOS sensors and both share the same lens in main light of sight. More star vectors can be get by two FGS and be used for high precision attitude determination. To improve star identification speed, the vector cross product in inter-star angles for small marginal FOV different from traditional way is elaborated and parallel processing method is applied to pyramid algorithm. The star vectors from two sensors are then used to attitude fusion with traditional QUEST algorithm. The simulation results show that the system can get high accuracy three axis attitudes and the scheme is feasibility.

  17. National Positioning, Navigation, and Timing Architecture Study

    NASA Astrophysics Data System (ADS)

    van Dyke, K.; Vicario, J.; Hothem, L.

    2007-12-01

    The purpose of the National Positioning, Navigation and Timing (PNT) Architecture effort is to help guide future PNT system-of-systems investment and implementation decisions. The Assistant Secretary of Defense for Networks and Information Integration and the Under Secretary of Transportation for Policy sponsored a National PNT Architecture study to provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services. U.S. Space-Based PNT Policy states that the U.S. must continue to improve and maintain GPS, augmentations to GPS, and back-up capabilities to meet growing national, homeland, and economic security needs. PNT touches almost every aspect of people´s lives today. PNT is essential for Defense and Civilian applications ranging from the Department of Defense´s Joint network centric and precision operations to the transportation and telecommunications sectors, improving efficiency, increasing safety, and being more productive. Absence of an approved PNT architecture results in uncoordinated research efforts, lack of clear developmental paths, potentially wasteful procurements and inefficient deployment of PNT resources. The national PNT architecture effort evaluated alternative future mixes of global (space and non space-based) and regional PNT solutions, PNT augmentations, and autonomous PNT capabilities to address priorities identified in the DoD PNT Joint Capabilities Document (JCD) and civil equivalents. The path to achieving the Should-Be architecture is described by the National PNT Architecture's Guiding Principles, representing an overarching Vision of the US' role in PNT, an architectural Strategy to fulfill that Vision, and four Vectors which support the Strategy. The National PNT Architecture effort has developed nineteen recommendations. Five foundational recommendations are tied directly to the Strategy while the remaining fourteen individually support one of the Vectors, as will be described in this presentation. The results of this effort will support future decisions of bodies such as the DoD PNT and Civil Pos/Nav Executive Committees, as well as the National Space-Based PNT Executive Committee (EXCOM).

  18. Detecting Spatial Patterns of Natural Hazards from the Wikipedia Knowledge Base

    NASA Astrophysics Data System (ADS)

    Fan, J.; Stewart, K.

    2015-07-01

    The Wikipedia database is a data source of immense richness and variety. Included in this database are thousands of geotagged articles, including, for example, almost real-time updates on current and historic natural hazards. This includes usercontributed information about the location of natural hazards, the extent of the disasters, and many details relating to response, impact, and recovery. In this research, a computational framework is proposed to detect spatial patterns of natural hazards from the Wikipedia database by combining topic modeling methods with spatial analysis techniques. The computation is performed on the Neon Cluster, a high performance-computing cluster at the University of Iowa. This work uses wildfires as the exemplar hazard, but this framework is easily generalizable to other types of hazards, such as hurricanes or flooding. Latent Dirichlet Allocation (LDA) modeling is first employed to train the entire English Wikipedia dump, transforming the database dump into a 500-dimension topic model. Over 230,000 geo-tagged articles are then extracted from the Wikipedia database, spatially covering the contiguous United States. The geo-tagged articles are converted into an LDA topic space based on the topic model, with each article being represented as a weighted multidimension topic vector. By treating each article's topic vector as an observed point in geographic space, a probability surface is calculated for each of the topics. In this work, Wikipedia articles about wildfires are extracted from the Wikipedia database, forming a wildfire corpus and creating a basis for the topic vector analysis. The spatial distribution of wildfire outbreaks in the US is estimated by calculating the weighted sum of the topic probability surfaces using a map algebra approach, and mapped using GIS. To provide an evaluation of the approach, the estimation is compared to wildfire hazard potential maps created by the USDA Forest service.

  19. Production of transgenic Korean native cattle expressing enhanced green fluorescent protein using a FIV-based lentiviral vector injected into MII oocytes.

    PubMed

    Xu, Yong-Nan; Uhm, Sang-Jun; Koo, Bon-Chul; Kwon, Mo-Sun; Roh, Ji-Yeol; Yang, Jung-Seok; Choi, Hyun-Yong; Heo, Young-Tae; Cui, Xiang-Shun; Yoon, Joon-Ho; Ko, Dae-Hwan; Kim, Teoan; Kim, Nam-Hyung

    2013-01-20

    The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5%±2.2% v.s. 22.9%±2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells. Copyright © 2013. Published by Elsevier Ltd.

  20. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  1. VectorBase: a data resource for invertebrate vector genomics

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2009-01-01

    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744

  2. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  3. CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  4. Perceptual distortion analysis of color image VQ-based coding

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  5. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-01

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  6. ProSEDS Telemetry System Utilization of GPS Position Data for Transmitter Cycling

    NASA Technical Reports Server (NTRS)

    Kennedy, Paul; Sims, Herb

    2000-01-01

    NASA Marshall Space Flight Center will launch the Propulsive Small Expendable Deployer System (ProSEDS) space experiment in late 2000. ProSEDS will demonstrate the use of an electrodynamic tether propulsion system and will utilize a conducting wire tether to generate limited spacecraft power. This paper will provide an overview of the ProSEDS mission and will discuss the design, development and test of the spacecraft telemetry system which utilizes a custom designed GPS subsystem to determine spacecraft position relative to ground station location and to control transmitter on/off cycling based on spacecraft state vector and ground station visibility.

  7. Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.

    PubMed

    Alonso, Miguel A

    2004-11-01

    New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.

  8. The pre-image problem in kernel methods.

    PubMed

    Kwok, James Tin-yau; Tsang, Ivor Wai-hung

    2004-11-01

    In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.

  9. A Heisenberg Algebra Bundle of a Vector Field in Three-Space and its Weyl Quantization

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; Pods, Sonja

    2006-01-01

    In these notes we associate a natural Heisenberg group bundle Ha with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group HX∞. A representation of the C*-group algebra of HX∞ is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chern class of a canonical complex line bundle inside Ha.

  10. Vector boson fusion in the inert doublet model

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Palacio, Guillermo; Restrepo, Diego; Ruiz-Álvarez, José D.

    2018-03-01

    In this paper we probe the inert Higgs doublet model at the LHC using vector boson fusion (VBF) search strategy. We optimize the selection cuts and investigate the parameter space of the model and we show that the VBF search has a better reach when compared with the monojet searches. We also investigate the Drell-Yan type cuts and show that they can be important for smaller charged Higgs masses. We determine the 3 σ reach for the parameter space using these optimized cuts for a luminosity of 3000 fb-1 .

  11. Dual-scale topology optoelectronic processor.

    PubMed

    Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H

    1991-12-15

    The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.

  12. Evolving discriminators for querying video sequences

    NASA Astrophysics Data System (ADS)

    Iyengar, Giridharan; Lippman, Andrew B.

    1997-01-01

    In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.

  13. Kernel PLS-SVC for Linear and Nonlinear Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan

    2003-01-01

    A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.

  14. Gradient-based adaptation of general gaussian kernels.

    PubMed

    Glasmachers, Tobias; Igel, Christian

    2005-10-01

    Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.

  15. A weather-driven model of malaria transmission.

    PubMed

    Hoshen, Moshe B; Morse, Andrew P

    2004-09-06

    Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts.

  16. Subspace-based interference removal methods for a multichannel biomagnetic sensor array.

    PubMed

    Sekihara, Kensuke; Nagarajan, Srikantan S

    2017-10-01

    In biomagnetic signal processing, the theory of the signal subspace has been applied to removing interfering magnetic fields, and a representative algorithm is the signal space projection algorithm, in which the signal/interference subspace is defined in the spatial domain as the span of signal/interference-source lead field vectors. This paper extends the notion of this conventional (spatial domain) signal subspace by introducing a new definition of signal subspace in the time domain. It defines the time-domain signal subspace as the span of row vectors that contain the source time course values. This definition leads to symmetric relationships between the time-domain and the conventional (spatial-domain) signal subspaces. As a review, this article shows that the notion of the time-domain signal subspace provides useful insights over existing interference removal methods from a unified perspective. Main results and significance. Using the time-domain signal subspace, it is possible to interpret a number of interference removal methods as the time domain signal space projection. Such methods include adaptive noise canceling, sensor noise suppression, the common temporal subspace projection, the spatio-temporal signal space separation, and the recently-proposed dual signal subspace projection. Our analysis using the notion of the time domain signal space projection reveals implicit assumptions these methods rely on, and shows that the difference between these methods results only from the manner of deriving the interference subspace. Numerical examples that illustrate the results of our arguments are provided.

  17. Subspace-based interference removal methods for a multichannel biomagnetic sensor array

    NASA Astrophysics Data System (ADS)

    Sekihara, Kensuke; Nagarajan, Srikantan S.

    2017-10-01

    Objective. In biomagnetic signal processing, the theory of the signal subspace has been applied to removing interfering magnetic fields, and a representative algorithm is the signal space projection algorithm, in which the signal/interference subspace is defined in the spatial domain as the span of signal/interference-source lead field vectors. This paper extends the notion of this conventional (spatial domain) signal subspace by introducing a new definition of signal subspace in the time domain. Approach. It defines the time-domain signal subspace as the span of row vectors that contain the source time course values. This definition leads to symmetric relationships between the time-domain and the conventional (spatial-domain) signal subspaces. As a review, this article shows that the notion of the time-domain signal subspace provides useful insights over existing interference removal methods from a unified perspective. Main results and significance. Using the time-domain signal subspace, it is possible to interpret a number of interference removal methods as the time domain signal space projection. Such methods include adaptive noise canceling, sensor noise suppression, the common temporal subspace projection, the spatio-temporal signal space separation, and the recently-proposed dual signal subspace projection. Our analysis using the notion of the time domain signal space projection reveals implicit assumptions these methods rely on, and shows that the difference between these methods results only from the manner of deriving the interference subspace. Numerical examples that illustrate the results of our arguments are provided.

  18. Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge.

    PubMed

    Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2015-01-26

    This paper is devoted to the analysis and visualization in 2-dimensional space of large data sets of millions of compounds using the incremental version of generative topographic mapping (iGTM). The iGTM algorithm implemented in the in-house ISIDA-GTM program was applied to a database of more than 2 million compounds combining data sets of 36 chemicals suppliers and the NCI collection, encoded either by MOE descriptors or by MACCS keys. Taking advantage of the probabilistic nature of GTM, several approaches to data analysis were proposed. The chemical space coverage was evaluated using the normalized Shannon entropy. Different views of the data (property landscapes) were obtained by mapping various physical and chemical properties (molecular weight, aqueous solubility, LogP, etc.) onto the iGTM map. The superposition of these views helped to identify the regions in the chemical space populated by compounds with desirable physicochemical profiles and the suppliers providing them. The data sets similarity in the latent space was assessed by applying several metrics (Euclidean distance, Tanimoto and Bhattacharyya coefficients) to data probability distributions based on cumulated responsibility vectors. As a complementary approach, data sets were compared by considering them as individual objects on a meta-GTM map, built on cumulated responsibility vectors or property landscapes produced with iGTM. We believe that the iGTM methodology described in this article represents a fast and reliable way to analyze and visualize large chemical databases.

  19. Ares I Static Tests Design

    NASA Technical Reports Server (NTRS)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.

    2009-01-01

    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  20. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  1. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES

    PubMed Central

    GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT

    2016-01-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939

  2. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES.

    PubMed

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2016-10-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.

  3. A hypothetical learning trajectory for conceptualizing matrices as linear transformations

    NASA Astrophysics Data System (ADS)

    Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle

    2017-08-01

    In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the 'Italicizing N' task sequence, in which students work to generate, compose, and invert matrices that correspond to geometric transformations specified within the problem context. In particular, we describe the ways in which the students develop local transformation views of matrix multiplication (focused on individual mappings of input vectors to output vectors) and extend these local views to more global views in which matrices are conceptualized in terms of how they transform a space in a coordinated way.

  4. Maxwell Equations and the Redundant Gauge Degree of Freedom

    ERIC Educational Resources Information Center

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  5. Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=({+-}1,0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Christoph

    We show that there is exact dragging of the axis directions of local inertial frames by a weighted average of the cosmological energy currents via gravitomagnetism for all linear perturbations of all Friedmann-Robertson-Walker (FRW) universes and of Einstein's static closed universe, and for all energy-momentum-stress tensors and in the presence of a cosmological constant. This includes FRW universes arbitrarily close to the Milne Universe and the de Sitter universe. Hence the postulate formulated by Ernst Mach about the physical cause for the time-evolution of inertial axes is shown to hold in general relativity for linear perturbations of FRW universes. -more » The time-evolution of local inertial axes (relative to given local fiducial axes) is given experimentally by the precession angular velocity {omega}-vector{sub gyro} of local gyroscopes, which in turn gives the operational definition of the gravitomagnetic field: B-vector{sub g}{identical_to}-2{omega}-vector{sub gyro}. The gravitomagnetic field is caused by energy currents J-vector{sub {epsilon}} via the momentum constraint, Einstein's G{sup 0-}circumflex{sub i-circumflex} equation, (-{delta}+{mu}{sup 2})A-vector{sub g}=-16{pi}G{sub N}J-vector{sub {epsilon}} with B-vector{sub g}=curl A-vector{sub g}. This equation is analogous to Ampere's law, but it holds for all time-dependent situations. {delta} is the de Rham-Hodge Laplacian, and {delta}=-curl curl for the vorticity sector in Riemannian 3-space. - In the solution for an open universe the 1/r{sup 2}-force of Ampere is replaced by a Yukawa force Y{sub {mu}}(r)=(-d/dr)[(1/R)exp(-{mu}r)], form-identical for FRW backgrounds with K=(-1,0). Here r is the measured geodesic distance from the gyroscope to the cosmological source, and 2{pi}R is the measured circumference of the sphere centered at the gyroscope and going through the source point. The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, dot is the derivative with respect to cosmic time, and {mu}{sup 2}=-4(dH/dt). Analogous results hold in closed FRW universes and in Einstein's closed static universe.--We list six fundamental tests for the principle formulated by Mach: all of them are explicitly fulfilled by our solutions.--We show that only energy currents in the toroidal vorticity sector with l=1 can affect the precession of gyroscopes. We show that the harmonic decomposition of toroidal vorticity fields in terms of vector spherical harmonics X-vector{sub lm}{sup -} has radial functions which are form-identical for the 3-sphere, the hyperbolic 3-space, and Euclidean 3-space, and are form-identical with the spherical Bessel-, Neumann-, and Hankel functions. - The Appendix gives the de Rham-Hodge Laplacian on vorticity fields in Riemannian 3-spaces by equations connecting the calculus of differential forms with the curl notation. We also give the derivation the Weitzenboeck formula for the difference between the de Rham-Hodge Laplacian {delta} and the ''rough'' Laplacian {nabla}{sup 2} on vector fields.« less

  6. High speed data transmission coaxial-cable in the space communication system

    NASA Astrophysics Data System (ADS)

    Su, Haohang; Huang, Jing

    2018-01-01

    An effective method is proved based on the scattering parameter of high speed 8-core coaxial-cable measured by vector network analyzer, and the semi-physical simulation is made to receive the eye diagram at different data transmission rate. The result can be apply to analysis decay and distortion of the signal through the coaxial-cable at high frequency, and can extensively design for electromagnetic compatibility of high-speed data transmission system.

  7. SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model

    DTIC Science & Technology

    2013-01-01

    points in the region 800-1900 cm−1. The two top-ranked by SAX- VSM subsequences in both datasets correpond to spectrogram intervals of Chlorogenic acid ...1600 1800 Wavenumbers Best class-characteristic subsequences - Chlorogenic acid Arabica Robusta 800 1000 1200 1400 1600 1800 Wavenumbers Second to best...correspond to chlorogenic acid (best subsequence) and to caffeine (second to best) regions of spectra. This result aligns with the original work based on

  8. Robust Image Restoration for Ground-Based Space Surveillance

    DTIC Science & Technology

    2013-09-01

    systems can be characterized by well-separated layers of frozen turbulence with different velocity vectors (the frozen flow model, FFM ) [5[. Studies...of the atmosphere at Mt. Haleakala have suggested that there are typically 2-3 such layers [6]. The FFM requires that we know the wind velocities...as a sum of independent static turbulent layers: where denotes the velocity of the ith layer. Using the FFM results in better sampling of the

  9. Using algebra for massively parallel processor design and utilization

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Fellows, Michael R.

    1990-01-01

    This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.

  10. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    PubMed

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes to improve disease control efficacy amidst surging urbanization and changing climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan

    PubMed Central

    Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham

    2005-01-01

    Background In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. Objectives To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Methods Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. Results IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. Conclusion People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements. PMID:16356177

  12. DNA condensation and size effects of DNA condensation agent

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Hui; Jiang, Chong-Ming; Guo, Xin-Miao; Tang, Yan-Lin; Hu, Lin

    2013-08-01

    Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.

  13. Dispersion analysis for baseline reference mission 1. [flight simulation and trajectory analysis for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Kuhn, A. E.

    1975-01-01

    A dispersion analysis considering 3 sigma uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for the baseline reference mission (BRM) 1 of the space shuttle orbiter. The dispersion analysis is based on the nominal trajectory for the BRM 1. State vector and performance dispersions (or variations) which result from the indicated 3 sigma uncertainties were studied. The dispersions were determined at major mission events and fixed times from lift-off (time slices) and the results will be used to evaluate the capability of the vehicle to perform the mission within a 3 sigma level of confidence and to determine flight performance reserves. A computer program is given that was used for dynamic flight simulations of the space shuttle orbiter.

  14. Space-Time Point Pattern Analysis of Flavescence Dorée Epidemic in a Grapevine Field: Disease Progression and Recovery

    PubMed Central

    Maggi, Federico; Bosco, Domenico; Galetto, Luciana; Palmano, Sabrina; Marzachì, Cristina

    2017-01-01

    Analyses of space-time statistical features of a flavescence dorée (FD) epidemic in Vitis vinifera plants are presented. FD spread was surveyed from 2011 to 2015 in a vineyard of 17,500 m2 surface area in the Piemonte region, Italy; count and position of symptomatic plants were used to test the hypothesis of epidemic Complete Spatial Randomness and isotropicity in the space-time static (year-by-year) point pattern measure. Space-time dynamic (year-to-year) point pattern analyses were applied to newly infected and recovered plants to highlight statistics of FD progression and regression over time. Results highlighted point patterns ranging from disperse (at small scales) to aggregated (at large scales) over the years, suggesting that the FD epidemic is characterized by multiscale properties that may depend on infection incidence, vector population, and flight behavior. Dynamic analyses showed moderate preferential progression and regression along rows. Nearly uniform distributions of direction and negative exponential distributions of distance of newly symptomatic and recovered plants relative to existing symptomatic plants highlighted features of vector mobility similar to Brownian motion. These evidences indicate that space-time epidemics modeling should include environmental setting (e.g., vineyard geometry and topography) to capture anisotropicity as well as statistical features of vector flight behavior, plant recovery and susceptibility, and plant mortality. PMID:28111581

  15. Evaluation and Validation of Operational RapidScat Ocean Surface Vector Winds

    NASA Astrophysics Data System (ADS)

    Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi; Sienkiewicz, Joseph; Brennan, Michael

    2015-04-01

    NASA launched RapidScat to the International Space Station (ISS) on September 21, 2014 on a two-year mission to support global monitoring of ocean winds for improved weather forecasting and climate studies. The JPL-developed space-based scatterometer is conically scanning and operates at ku-band (13.4 GHz) similar to QuikSCAT. The ISS-RapidScat's measurement swath is approximately 900 kilometers and covers the majority of the ocean between 51.6 degrees north and south latitude (approximately from north of Vancouver, Canada, to the southern tip of Patagonia) in 48 hours. RapidScat data are currently being posted at a spacing of 25 kilometers, but a version to be released in the near future will improve the postings to 12.5 kilometers. RapidScat ocean surface wind vector data are being provided in near real-time to NOAA, and other operational users such as the U.S. Navy, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the Indian Space Research Organisation (ISRO) and the Royal Netherlands Meteorological Institute (KNMI). The quality of the RapidScat OSVW data are assessed by collocating the data in space and time with "truth" data. Typically "truth" data will include, but are not limited to, the NWS global forecast model analysis (GDAS) fields, buoys, ASCAT, WindSat, AMSR-2, and aircraft measurements during hurricane and winter storm experiment flights. The standard statistical analysis used for satellite microwave wind sensors will be utilized to characterize the RapidScat wind vector retrievals. The global numerical weather prediction (NWP) models are a convenient source of "truth" data because they are available 4 times/day globally which results in the accumulation of a large number of collocations over a relatively short amount of time. The NWP model fields are not "truth" in the same way an actual observation would be, however, as long as there are no systematic errors in the NWP model output the collocations will converge in the mean for winds between approximately 3-20 m/s. The NWP models typically do not properly resolve the very low and high wind speeds in part due to limitations of the spatial scales they can account for. Buoy measurements, aircraft-based measurements and other satellite retrievals can be more directly compared on a point-by-point basis. The RapidScat OSVW validation results will be presented and discussed. Utilization examples of these data in support of NOAA's marine weather forecasting and warning mission will also be presented and discussed.

  16. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  17. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  18. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  19. Blending Velocities In Task Space In Computing Robot Motions

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.

    1995-01-01

    Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.

  20. Sample levitation and melt in microgravity

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip I. (Inventor)

    1990-01-01

    A system is described for maintaining a sample material in a molten state and away from the walls of a container in a microgravity environment, as in a space vehicle. A plurality of sources of electromagnetic radiation, such as an infrared wavelength, are spaced about the object, with the total net electromagnetic radiation applied to the object being sufficient to maintain it in a molten state, and with the vector sum of the applied radiation being in a direction to maintain the sample close to a predetermined location away from the walls of a container surrounding the sample. For a processing system in a space vehicle that orbits the Earth, the net radiation vector is opposite the velocity of the orbiting vehicle.

  1. Sample levitation and melt in microgravity

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip I. (Inventor)

    1987-01-01

    A system is described for maintaining a sample material in a molten state and away from the walls of a container in a microgravity environment, as in a space vehicle. A plurality of sources of electromagnetic radiation, such as of an infrared wavelength, are spaced about the object, with the total net electromagnetic radiation applied to the object being sufficient to maintain it in a molten state, and with the vector sum of the applied radiation being in a direction to maintain the sample close to a predetermined location away from the walls of a container surrounding the sample. For a processing system in a space vehicle that orbits the Earth, the net radiation vector is opposite the velocity of the orbiting vehicle.

  2. Supersymmetric dS/CFT

    NASA Astrophysics Data System (ADS)

    Hertog, Thomas; Tartaglino-Mazzucchelli, Gabriele; Van Riet, Thomas; Venken, Gerben

    2018-02-01

    We put forward new explicit realisations of dS/CFT that relate N = 2 supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The partition function of the free supersymmetric vector model deformed by a range of low spin deformations that preserve supersymmetry appears to specify a well-defined wave function with asymptotic de Sitter boundary conditions in the bulk. In particular we find the wave function is globally peaked at undeformed de Sitter space, with a low amplitude for strong deformations. This suggests that supersymmetric de Sitter space is stable in higher-spin gravity and in particular free from ghosts. We speculate this is a limiting case of the de Sitter realizations in exotic string theories.

  3. Interacting vector fields in relativity without relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Edward; Barbour, Julian

    2002-06-01

    Barbour, Foster and Ó Murchadha have recently developed a new framework, called here the 3-space approach, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of three-dimensional metric-matter configurations. In fact gravity, the universal light-cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity - and more - without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang-Mills fields minimally coupled to gravity.

  4. Intertwined Hamiltonians in two-dimensional curved spaces

    NASA Astrophysics Data System (ADS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-04-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.

  5. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  6. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  7. A global SOLIS vector spectromagnetograph (VSM) network

    NASA Astrophysics Data System (ADS)

    Streander, K. V.; Giampapa, M. S.; Harvey, J. W.; Henney, C. J.; Norton, A. A.

    2008-07-01

    Understanding the Sun's magnetic field related activity is far from complete as reflected in the limited ability to make accurate predictions of solar variability. To advance our understanding of solar magnetism, the National Solar Observatory (NSO) constructed the Synoptic Optical Long-term Investigations of the Sun (SOLIS) suite of instruments to conduct high precision optical measurements of processes on the Sun whose study requires sustained observations over long time periods. The Vector Spectromagnetograph (VSM), the principal SOLIS instrument, has been in operation since 2003 and obtains photospheric vector data, as well as photospheric and chromospheric longitudinal magnetic field measurements. Instrument performance is being enhanced by employing new, high-speed cameras that virtually freeze seeing, thus improving sensitivity to measure the solar magnetic field configuration. A major operational goal is to provide real-time and near-real-time data for forecasting space weather and increase scientific yield from shorter duration solar space missions and ground-based research projects. The National Solar Observatory proposes to build two near-duplicates of the VSM instrument and place them at international sites to form a three-site global VSM network. Current electronic industry practice of short lifetime cycles leads to improved performance and reduced acquisition costs but also to redesign costs and engineering impacts that must be minimized. The current VSM instrument status and experience gained from working on the original instrument is presented herein and used to demonstrate that one can dramatically reduce the estimated cost and fabrication time required to duplicate and commission two additional instruments.

  8. Robust Task Space Trajectory Tracking Control of Robotic Manipulators

    NASA Astrophysics Data System (ADS)

    Galicki, M.

    2016-08-01

    This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  9. Constraints on muon-specific dark forces

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; McKeen, David; Pospelov, Maxim

    2014-10-01

    The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on e-p scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier—in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the g-2 of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity-violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon g-2. However, we also observe that in the absence of a consistent standard model embedding high-energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by (E/mV)2, with E a characteristic energy scale and mV the mass of the mediator. In particular, leptonic W decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.

  10. Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476.

    PubMed

    Srivastava, Preeti; Deb, J K

    2002-07-02

    A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.

  11. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  12. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  13. LVQ and backpropagation neural networks applied to NASA SSME data

    NASA Technical Reports Server (NTRS)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  14. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  15. Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor

    NASA Astrophysics Data System (ADS)

    Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen

    2018-02-01

    We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the Voigt configuration. In these nonreciprocal optical phenomena, a "toroidal moment," α ×M , and a "quadrupole moment," αiMj+Miαj , play central roles. These phenomena are strongly enhanced at the spin-split transition edge in the electron band.

  16. Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.

    PubMed

    Wang, Jun; Deng, Zhaohong; Luo, Xiaoqing; Jiang, Yizhang; Wang, Shitong

    2016-06-01

    Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly independent of the training sets. Moreover, the learning of parameters in its output layer is proved equivalent to a special CCMEB problem in FNN hidden feature space. As most CCMEB approximation based machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the maximal space consumption is independent of the size of training datasets. The experiments on regression tasks confirm the above conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique

    PubMed Central

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J.

    2017-01-01

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system’s configuration and LS’s relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS’ localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision. PMID:28125056

  18. Quad-polarized synthetic aperture radar and multispectral data classification using classification and regression tree and support vector machine-based data fusion system

    NASA Astrophysics Data System (ADS)

    Bigdeli, Behnaz; Pahlavani, Parham

    2017-01-01

    Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.

  19. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique.

    PubMed

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J

    2017-01-25

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system's configuration and LS's relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS' localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision.

  20. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.

  1. Effects of the Deletion of Early Region 4 (E4) Open Reading Frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on Virus-Host Cell Interaction, Transgene Expression, and Immunogenicity of Replicating Adenovirus HIV Vaccine Vectors

    PubMed Central

    Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector. PMID:24143187

  2. Hájek-Rényi inequality for m-asymptotically almost negatively associated random vectors in Hilbert space and applications.

    PubMed

    Ko, Mi-Hwa

    2018-01-01

    In this paper, we obtain the Hájek-Rényi inequality and, as an application, we study the strong law of large numbers for H -valued m -asymptotically almost negatively associated random vectors with mixing coefficients [Formula: see text] such that [Formula: see text].

  3. Improved dynamic analysis method using load-dependent Ritz vectors

    NASA Technical Reports Server (NTRS)

    Escobedo-Torres, J.; Ricles, J. M.

    1993-01-01

    The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.

  4. Energy theorem for (2+1)-dimensional gravity.

    NASA Astrophysics Data System (ADS)

    Menotti, P.; Seminara, D.

    1995-05-01

    We prove a positive energy theorem in (2+1)-dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value 1/4G corresponding to a deficit angle of 2π. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw, and 't Hooft (1984) is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth, and Olum (1994) for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti-de Sitter (2+1)-dimensional gravity.

  5. Light weakly coupled axial forces: models, constraints, and projections

    DOE PAGES

    Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; ...

    2017-05-01

    Here, we investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the e ects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a darkmore » photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, brie y commenting on the relevance of the allowed parameter space to low-energy anomalies in π 0 and 8Be* decay.« less

  6. Discriminant analysis for fast multiclass data classification through regularized kernel function approximation.

    PubMed

    Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K

    2010-06-01

    In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.

  7. Use of Mapping and Spatial and Space-Time Modeling Approaches in Operational Control of Aedes aegypti and Dengue

    PubMed Central

    Eisen, Lars; Lozano-Fuentes, Saul

    2009-01-01

    The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163

  8. Light weakly coupled axial forces: models, constraints, and projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth

    Here, we investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the e ects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a darkmore » photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, brie y commenting on the relevance of the allowed parameter space to low-energy anomalies in π 0 and 8Be* decay.« less

  9. Cosmology in generalized Proca theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Antonio De; Mukohyama, Shinji; Heisenberg, Lavinia

    2016-06-01

    We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for themore » absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.« less

  10. Prediction of hourly PM2.5 using a space-time support vector regression model

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  11. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the performance of human observers in detecting regional motion defects in 4D gated MP SPECT images. The result supports the use of the observer model in the optimization and evaluation of 4D image reconstruction and compensation methods for improving the detection of motion abnormalities in 4D gated MP SPECT images.

  12. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort.

    PubMed

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai

    2017-01-13

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

  13. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort †

    PubMed Central

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai

    2017-01-01

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773

  14. Markov random field model-based edge-directed image interpolation.

    PubMed

    Li, Min; Nguyen, Truong Q

    2008-07-01

    This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.

  15. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.

    PubMed

    Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju

    2016-01-01

    Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Experimental verification of long-term evolution radio transmissions over dual-polarization combined fiber and free-space optics optical infrastructures.

    PubMed

    Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2016-03-10

    This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.

  17. GRASS GIS: The first Open Source Temporal GIS

    NASA Astrophysics Data System (ADS)

    Gebbert, Sören; Leppelt, Thomas

    2015-04-01

    GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management over temporal aggregation, temporal accumulation, spatio-temporal statistics, spatio-temporal sampling, temporal algebra, temporal topology analysis, time series animation and temporal topology visualization to time series import and export capabilities with support for NetCDF and VTK data formats. We will present several temporal modules that support parallel processing of raster and 3D raster time series. [1] GRASS GIS Open Source Approaches in Spatial Data Handling In Open Source Approaches in Spatial Data Handling, Vol. 2 (2008), pp. 171-199, doi:10.1007/978-3-540-74831-19 by M. Neteler, D. Beaudette, P. Cavallini, L. Lami, J. Cepicky edited by G. Brent Hall, Michael G. Leahy [2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 53, 1-12. [3] Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS Intl Journal of Geo-Information 2, 201-219. [4] Löwe, P., Klump, J., Thaler, J. (2012): The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster, (Geophysical Research Abstracts Vol. 14, EGU2012-4491, 2012), General Assembly European Geosciences Union (Vienna, Austria 2012). [5] Akhter, S., Aida, K., Chemin, Y., 2010. "GRASS GIS on High Performance Computing with MPI, OpenMP and Ninf-G Programming Framework". ISPRS Conference, Kyoto, 9-12 August 2010

  18. Integrated Design Analysis and Optimisation of Aircraft Structures (L’Analyse pour la Conception Integree et l’Optimisation des Structures d’Aeronefs)

    DTIC Science & Technology

    1992-02-01

    Division (Code RM) ONERA Office of Aeronautics & Space Technology 29 ave de la Division Leclerc NASA Hq 92320 Chfitillon Washington DC 20546 France United...Vector of thickness variables. V’ = [ t2 ........ tN Vector of thickness changes. AV ’= [rt, 5t2 ......... tNJ TI 7-9 Vector of strain derivatives. F...ds, ds, I d, 1i’,= dt, dr2 ........ dt--N Vector of buckling derivatives. dX d). , dt1 dt2 dtN Then 5F= Vs’i . AV and SX V,’. AV The linearised

  19. A procedure for accurate calibration of the orientation of the three sensors in a vector magnetometer. [at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1977-01-01

    Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.

  20. Flexible body stability analysis of Space Shuttle ascent flight control system by using lambda matrix solution techniques

    NASA Technical Reports Server (NTRS)

    Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.

    1980-01-01

    A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.

  1. Vector space methods of photometric analysis - Applications to O stars and interstellar reddening

    NASA Technical Reports Server (NTRS)

    Massa, D.; Lillie, C. F.

    1978-01-01

    A multivariate vector-space formulation of photometry is developed which accounts for error propagation. An analysis of uvby and H-beta photometry of O stars is presented, with attention given to observational errors, reddening, general uvby photometry, early stars, and models of O stars. The number of observable parameters in O-star continua is investigated, the way these quantities compare with model-atmosphere predictions is considered, and an interstellar reddening law is derived. It is suggested that photospheric expansion affects the formation of the continuum in at least some O stars.

  2. A novel and efficient technique for identification and classification of GPCRs.

    PubMed

    Gupta, Ravi; Mittal, Ankush; Singh, Kuldip

    2008-07-01

    G-protein coupled receptors (GPCRs) play a vital role in different biological processes, such as regulation of growth, death, and metabolism of cells. GPCRs are the focus of significant amount of current pharmaceutical research since they interact with more than 50% of prescription drugs. The dipeptide-based support vector machine (SVM) approach is the most accurate technique to identify and classify the GPCRs. However, this approach has two major disadvantages. First, the dimension of dipeptide-based feature vector is equal to 400. The large dimension makes the classification task computationally and memory wise inefficient. Second, it does not consider the biological properties of protein sequence for identification and classification of GPCRs. In this paper, we present a novel-feature-based SVM classification technique. The novel features are derived by applying wavelet-based time series analysis approach on protein sequences. The proposed feature space summarizes the variance information of seven important biological properties of amino acids in a protein sequence. In addition, the dimension of the feature vector for proposed technique is equal to 35. Experiments were performed on GPCRs protein sequences available at GPCRs Database. Our approach achieves an accuracy of 99.9%, 98.06%, 97.78%, and 94.08% for GPCR superfamily, families, subfamilies, and subsubfamilies (amine group), respectively, when evaluated using fivefold cross-validation. Further, an accuracy of 99.8%, 97.26%, and 97.84% was obtained when evaluated on unseen or recall datasets of GPCR superfamily, families, and subfamilies, respectively. Comparison with dipeptide-based SVM technique shows the effectiveness of our approach.

  3. Identification and Severity Determination of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data Acquired Using a Black-Paper-Based Measuring Method.

    PubMed

    Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang

    2016-01-01

    It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.

  4. Identification and Severity Determination of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data Acquired Using a Black-Paper-Based Measuring Method

    PubMed Central

    Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang

    2016-01-01

    It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464

  5. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.« less

  6. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Ellithi Kamel, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pantano, D.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; ShepherdThemistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Golf, F.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Mantilla, C.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-01-01

    A search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions at √{s}=13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb-1. The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV. [Figure not available: see fulltext.

  7. Anticrossproducts and cross divisions.

    PubMed

    de Leva, Paolo

    2008-01-01

    This paper defines, in the context of conventional vector algebra, the concept of anticrossproduct and a family of simple operations called cross or vector divisions. It is impossible to solve for a or b the equation axb=c, where a and b are three-dimensional space vectors, and axb is their cross product. However, the problem becomes solvable if some "knowledge about the unknown" (a or b) is available, consisting of one of its components, or the angle it forms with the other operand of the cross product. Independently of the selected reference frame orientation, the known component of a may be parallel to b, or vice versa. The cross divisions provide a compact and insightful symbolic representation of a family of algorithms specifically designed to solve problems of such kind. A generalized algorithm was also defined, incorporating the rules for selecting the appropriate kind of cross division, based on the type of input data. Four examples of practical application were provided, including the computation of the point of application of a force and the angular velocity of a rigid body. The definition and geometrical interpretation of the cross divisions stemmed from the concept of anticrossproduct. The "anticrossproducts of axb" were defined as the infinitely many vectors x(i) such that x(i)xb=axb.

  8. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-01-22

    Here, a search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.« less

  9. Short-interval SMS wind vector determinations for a severe local storms area

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.

    1980-01-01

    Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.

  10. ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery

    PubMed Central

    Li, Na; Xu, Zhaopeng; Zhao, Huijie; Huang, Xinchen; Drummond, Jane; Wang, Daming

    2018-01-01

    The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this problem, an instance space-based diverse density (ISBDD) model that employs a novel training strategy is proposed in this paper. In the ISBDD model, DD values of each pixel are computed instead of learning a feature vector, and as a result, the pixel can be classified according to its DD values. Airborne hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and the Push-broom Hyperspectral Imager (PHI) are applied to evaluate the performance of the proposed model. Results show that the overall classification accuracy of ISBDD model on the AVIRIS and PHI images is up to 97.65% and 89.02%, respectively, while the kappa coefficient is up to 0.97 and 0.88, respectively. PMID:29510547

  11. Models of Disease Vector Control: When Can Aggressive Initial Intervention Lower Long-Term Cost?

    PubMed

    Oduro, Bismark; Grijalva, Mario J; Just, Winfried

    2018-04-01

    Insecticide spraying of housing units is an important control measure for vector-borne infections such as Chagas disease. As vectors may invade both from other infested houses and sylvatic areas and as the effectiveness of insecticide wears off over time, the dynamics of (re)infestations can be approximated by [Formula: see text]-type models with a reservoir, where housing units are treated as hosts, and insecticide spraying corresponds to removal of hosts. Here, we investigate three ODE-based models of this type. We describe a dual-rate effect where an initially very high spraying rate can push the system into a region of the state space with low endemic levels of infestation that can be maintained in the long run at relatively moderate cost, while in the absence of an aggressive initial intervention the same average cost would only allow a much less significant reduction in long-term infestation levels. We determine some sufficient and some necessary conditions under which this effect occurs and show that it is robust in models that incorporate some heterogeneity in the relevant properties of housing units.

  12. Flow noise of an underwater vector sensor embedded in a flexible towed array.

    PubMed

    Korenbaum, Vladimir I; Tagiltsev, Alexander A

    2012-05-01

    The objective of this work is to simulate the flow noise of a vector sensor embedded in a flexible towed array. The mathematical model developed, based on long-wavelength analysis of the inner space of a cylindrical multipole source, predicts the reduction of the flow noise of a vector sensor embedded in an underwater flexible towed array by means of intensimetric processing (cross-spectral density calculation of oscillatory velocity and sound-pressure-sensor responses). It is found experimentally that intensimetric processing results in flow noise reduction by 12-25 dB at mean levels and by 10-30 dB in fluctuations compared to a squared oscillatory velocity channel. The effect of flow noise suppression in the intensimetry channel relative to a squared sound pressure channel is observed, but only for frequencies above the threshold. These suppression values are 10-15 dB at mean noise levels and 3-6 dB in fluctuations. At towing velocities of 1.5-3 ms(-1) and an accumulation time of 98.3 s, the threshold frequency in fluctuations is between 30 and 45 Hz.

  13. GNSS Space-Time Interference Mitigation and Attitude Determination in the Presence of Interference Signals

    PubMed Central

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-01-01

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909

  14. GNSS space-time interference mitigation and attitude determination in the presence of interference signals.

    PubMed

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-05-26

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.

  15. Macroscopic theory of dark sector

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).

  16. Support vector machines for nuclear reactor state estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less

  17. Definition of Linear Color Models in the RGB Vector Color Space to Detect Red Peaches in Orchard Images Taken under Natural Illumination

    PubMed Central

    Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2012-01-01

    This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates. PMID:22969369

  18. Definition of linear color models in the RGB vector color space to detect red peaches in orchard images taken under natural illumination.

    PubMed

    Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2012-01-01

    This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.

  19. Comparison of HIV- and EIAV-based vectors on their efficiency in transducing murine and human hematopoietic repopulating cells.

    PubMed

    Siapati, Elena K; Bigger, Brian W; Miskin, James; Chipchase, Daniel; Parsley, Kathryn L; Mitrophanous, Kyriacos; Themis, Mike; Thrasher, Adrian J; Bonnet, Dominique

    2005-09-01

    The use of lentiviral vectors for gene transfer into hematopoietic stem cells has raised considerable interest as these vectors can permanently integrate their genome into quiescent cells. Vectors based on alternative lentiviruses would theoretically be safer than HIV-1-based vectors and could also be used in HIV-positive patients, minimizing the risk of generating replication-competent virus. Here we report the use of third-generation equine infectious anemia virus (EIAV)- and HIV-1-based vectors with minimal viral sequences and absence of accessory proteins. We have compared their efficiency in transducing mouse and human hematopoietic stem cells both in vitro and in vivo to that of a previously documented second-generation HIV-1 vector. The third-generation EIAV- and HIV-based vectors gave comparable levels of transduction and transgene expression in both mouse and human NOD/SCID repopulating cells but were less efficient than the second-generation HIV-1 vector in human HSCs. For the EIAV vector this is possibly a reflection of the lower protein expression levels achieved in human cells, as vector copy number analysis revealed that this vector exhibited a trend to integrate equally efficiently compared to the third-generation HIV-1 vector in both mouse and human HSCs. Interestingly, the presence or absence of Tat in viral preparations did not influence the transduction efficiency of HIV-1 vectors in human HSCs.

  20. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins.

    PubMed

    Li Manni, Giovanni; Smart, Simon D; Alavi, Ali

    2016-03-08

    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

Top