Science.gov

Sample records for space weather modeling

  1. Thermospheric Space Weather Modeling

    DTIC Science & Technology

    2007-06-01

    atmospheric temperature V = satellite velocity relative to the ambient gas ’ Senior physicist, Space Weather Center of Excellence, Mail Stop: VSBXT; Member...where temperature rises drastically to -600 - 2000 K. The density and hence drag in this region is driven mainly by two solar influences: directly by EUV...bulge that drives winds to transport heat away from the hot dayside toward the Earth’s cold nightside. Temperatures on the dayside are typically 30

  2. An introduction to Space Weather Integrated Modeling

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  3. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  4. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  5. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  6. Improvements in the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.; Liemohn, M.; Dezeeuw, D.; Ilie, R.; Sokolov, I.; Toth, G.; Yu, Y.

    2008-12-01

    The magnetosphere within the Space Weather Modeling Framework (SWMF) has been represented by a global magnetosphere model (BATSRUS), an inner magnetosphere model (the Rice Convection Model) and a model of the ionospheric electrodynamics. We present significant improvements in the SWMF: (1) We have implemented a spherical grid within BATSRUS and have utilized this for modeling the magnetosphere; (2) We have significantly improved the physics of the auroral oval within the ionospheric electrodynamics code, modeling a self-consistent diffuse and discrete auroral oval; (3) We utilize the multifluid MHD code within BATSRUS to allow for more accurate specification and differentiation of the density within the magnetosphere; and (4) we have incorporated the Hot Electron and Ion Drift Integrator (HEIDI) ring current code within the SWMF. We will present these improvements and show the quantitative differences within the model results when comparing to a suite of measurements for a number of different intervals.

  7. Validation of Space Weather Models at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; Zheng, Y.; MacNeice, P. J.; Shim, J.; Taktakishvili, A.; Chulaki, A.

    2011-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership to support the research and developmental work necessary to substantially increase space weather modeling capabilities and to facilitate advanced models deployment in forecasting operations. Space weather models and coupled model chains hosted at the CCMC range from the solar corona to the Earth's upper atmosphere. CCMC has developed a number of real-time modeling systems, as well as a large number of modeling and data products tailored to address the space weather needs of NASA's robotic missions. The CCMC conducts unbiased model testing and validation and evaluates model readiness for operational environment. CCMC has been leading recent comprehensive modeling challenges under GEM, CEDAR and SHINE programs. The presentation will focus on experience in carrying out comprehensive and systematic validation of large sets of. space weather models

  8. Validation of Space Weather Models at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Pulkkinen, A.; Rastaetter, L.; Hesse, M.; Chulaki, A.; Maddox, M.

    2011-01-01

    The Community Coordinated Modeling Center (CCMC) is a multiagency partnership, which aims at the creation of next generation space weather modes. CCMC goal is to support the research and developmental work necessary to substantially increase space weather modeling capabilities and to facilitate advanced models deployment in forecasting operations. The CCMC conducts unbiased model testing and validation and evaluates model readiness for operational environment. The presentation will demonstrate the recent progress in CCMC metrics and validation activities.

  9. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  10. Space Weather Modeling at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse M.

    2005-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  11. Space Weather Modeling Services at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  12. Space Weather Modeling at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse M.

    2005-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  13. Space Weather Modeling Services at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  14. Space Weather Model of July 22-23, 2012 CME

    NASA Image and Video Library

    NASA's Space Weather Research Center modeled the July 23, 2012 CME using a modeling program called ENLIL. The CME can be seen to expand dramatically as it travels through space. By comparing how we...

  15. APL experience with space weather modeling and transition to operations

    NASA Astrophysics Data System (ADS)

    Zanetti, L. J.; Wing, S.

    2009-12-01

    In response to the growing space weather needs, the Johns Hopkins University Applied Physics Laboratory (APL) developed and delivered twenty two state of the art space weather products under the auspice of the University Partnering in Operational Support program, initiated in 1998. These products offer nowcasts and forecasts for the region spanning from the Sun to the Earth. Some of these products have been transitioned to the Air Force Weather Agency and other space weather centers. The transition process is quite different from research modeling, requiring additional staff with different sets of expertise. Recently, APL has developed a space weather web page to serve these products to the research and user community. For the initial stage, we have chosen ten of these products to be served from our website, which is presently still under construction. APL’s experience, lessons learned, and successes from developing space weather models, the transition to operations process and the webpage access will be shared and discussed

  16. Extracting Space Weather Information from Research Models: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2010-01-01

    In addition to supporting space research in the international community, the Community Coordinated Modeling Center (CCMC) has as its second objective to apply the power of modern research models toward space weather specification and forecasting. Motivated by the objectives to test models and to ease the transition of research models to space weather forecasting organizations, the CCMC has developed a number of real-time modeling systems, as well as a large number of modeling and data products for space weather forecasting support. Over time, these activities have produced tailored products for partners, as well as tools, which address the space weather needs of NASA's robotic mission community. All tools are accessible via a configurable, flexible interface. During this process, CCMC has accumulated substantial experience in understanding model performance, as well as in the design and execution of realtime systems. This presentation will focus on lessons learned and it will suggest low hanging fruit for transition to operations at partner agencies.

  17. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2010-01-01

    In addition to supporting space research in the international community, the Community Coordinated Modeling Center (CCMC) has as its second objective to bring to apply the power of modern research models toward space weather specification and forecasting. Initially motivated by the objective to test models and to ease the transition of research models to space weather forecasting organization, the CCMC has developed a number of real-time modeling systems, as well as large number of modeling and data products for space weather forecasting. Over time, these activities have evolved into tailored products for partners, as well as into a direct support of the space weather needs within NASA robotic mission community. Accessible through a customizable interface, users within the US or at partnering institutions internationally have access to space weather tools driven by the most advanced space research models. Through partnering with agencies and institutions in the US and abroad, the CCMC strives to set up further data sharing agreements to the benefit of all participating institutions. In this presentation, we provide an overview of existing CCMC space weather services and products, and we will explore additional avenues for international collaborations.

  18. Space weather products at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Hesse, Michael

    In addition to supporting space research in the international community, the Community Co-ordinated Modeling Center (CCMC) has as its second objective to bring to apply the power of modern research models toward space weather specification and forecasting. Initially motivated by the objective to test models and to ease the transition of research models to space weather forecasting organization, the CCMC has developed a number of real-time modeling systems, as well as large number of modeling and data products for space weather forecasting. Over time, these activities have evolved into tailored products for partners, as well as into a direct support of the space weather needs within NASA robotic mission community. Accessible through a customizable interface, users within the US or at partnering institutions internationally have access to space weather tools driven by the most advanced space research models. Through partnering with agencies and institutions in the US and abroad, the CCMC strives to set up further data sharing agreements to the benefit of all participating institutions. In this presen-tation, we provide an overview of existing CCMC space weather services and products, and we will explore additional avenues for international collaborations.

  19. Development of operational models for space weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, Siqing; Gong, Jiancun

    Since space weather prediction is currently at the stage of transition from human experience to objective forecasting methods, developing operational forecasting models becomes an important way to improve the capabilities of space weather service. As the existing theoretical models are not fully operational when it comes to space weather prediction, we carried out researches on developing operational models, considering the user needs for prediction of key elements in space environment, which have vital impacts on space assets security. We focused on solar activities, geomagnetic activities, high-energy particles, atmospheric density, plasma environment and so forth. Great progresses have been made in developing 3D dynamic asymmetric magnetopause model, plasma sheet energetic electron flux forecasting model and 400km-atmospheric density forecasting model, and also in the prediction of high-speed solar-wind streams from coronal holes and geomagnetic AE indices. Some of these models have already been running in the operational system of Space Environment Prediction Center, National Space Science Center (SEPC/NSSC). This presentation will introduce the research plans for space weather prediction in China, and current progresses of developing operational models and their applications in daily space weather services in SEPC/NSSC.

  20. Space Weather: Measurements, Models and Predictions

    DTIC Science & Technology

    2014-03-21

    innovative research and analysis programs to understand the fundamental solar and magnetospheric processes and mechanisms that drive and control the...and analysis programs to understand the fundamental solar and magnetospheric processes and mechanisms that drive and control the Earth’s space...3.2 Space Particle Modeling: The Next Generation Trapped Electron and Proton Models The radiation belts and plasma in the Earth’s magnetosphere pose

  1. A regressive storm model for extreme space weather

    NASA Astrophysics Data System (ADS)

    Terkildsen, Michael; Steward, Graham; Neudegg, Dave; Marshall, Richard

    2012-07-01

    Extreme space weather events, while rare, pose significant risk to society in the form of impacts on critical infrastructure such as power grids, and the disruption of high end technological systems such as satellites and precision navigation and timing systems. There has been an increased focus on modelling the effects of extreme space weather, as well as improving the ability of space weather forecast centres to identify, with sufficient lead time, solar activity with the potential to produce extreme events. This paper describes the development of a data-based model for predicting the occurrence of extreme space weather events from solar observation. The motivation for this work was to develop a tool to assist space weather forecasters in early identification of solar activity conditions with the potential to produce extreme space weather, and with sufficient lead time to notify relevant customer groups. Data-based modelling techniques were used to construct the model, and an extensive archive of solar observation data used to train, optimise and test the model. The optimisation of the base model aimed to eliminate false negatives (missed events) at the expense of a tolerable increase in false positives, under the assumption of an iterative improvement in forecast accuracy during progression of the solar disturbance, as subsequent data becomes available.

  2. Progress in space weather modeling in an operational environment

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Belehaki, Anna; Bergeot, Nicolas; Cid, Consuelo; Delouille, Véronique; Egorova, Tatiana; Jakowski, Norbert; Kutiev, Ivan; Mikhailov, Andrei; Núñez, Marlon; Pietrella, Marco; Potapov, Alexander; Qahwaji, Rami; Tulunay, Yurdanur; Velinov, Peter; Viljanen, Ari

    2013-04-01

    This paper aims at providing an overview of latest advances in space weather modeling in an operational environment in Europe, including both the introduction of new models and improvements to existing codes and algorithms that address the broad range of space weather's prediction requirements from the Sun to the Earth. For each case, we consider the model's input data, the output parameters, products or services, its operational status, and whether it is supported by validation results, in order to build a solid basis for future developments. This work is the output of the Sub Group 1.3 "Improvement of operational models" of the European Cooperation in Science and Technology (COST) Action ES0803 "Developing Space Weather Products and services in Europe" and therefore this review focuses on the progress achieved by European research teams involved in the action.

  3. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  4. Advancing Space Weather Modeling Capabilities at the CCMC

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Kuznetsova, Maria; Boblitt, Justin; Chulaki, Anna; MacNeice, Peter; Mendoza, Michelle; Mullinix, Richard; Pembroke, Asher; Pulkkinen, Antti; Rastaetter, Lutz; Shim, Ja Soon; Taktakishvili, Aleksandre; Wiegand, Chiu; Zheng, Yihua

    2016-04-01

    The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) serves as a community access point to an expanding collection of state-of-the-art space environment models and as a hub for collaborative development on next generation of space weather forecasting systems. In partnership with model developers and the international research and operational communities, the CCMC integrates new data streams and models from diverse sources into end-to-end space weather predictive systems, identifies weak links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will focus on the latest model installations at the CCMC and advances in CCMC-led community-wide model validation projects.

  5. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  6. Models Required to Mitigate Impacts of Space Weather on Space Systems

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    This viewgraph presentation attempts to develop a model of factors which need to be considered in the design and construction of spacecraft to lessen the effects of space weather on these vehicles. Topics considered include: space environments and effects, radiation environments and effects, space weather drivers, space weather models, climate models, solar proton activity and mission design for the GOES mission. The authors conclude that space environment models need to address issues from mission planning through operations and a program to develop and validate authoritative space environment models for application to spacecraft design does not exist at this time.

  7. Improving the physics models in the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Toth, G.; Fang, F.; Frazin, R. A.; Gombosi, T. I.; Ilie, R.; Liemohn, M. W.; Manchester, W. B.; Meng, X.; Pawlowski, D. J.; Ridley, A. J.; Sokolov, I.; van der Holst, B.; Vichare, G.; Yigit, E.; Yu, Y.; Buzulukova, N.; Fok, M. H.; Glocer, A.; Jordanova, V. K.; Welling, D. T.; Zaharia, S. G.

    2010-12-01

    The success of physics based space weather forecasting depends on several factors: we need sufficient amount and quality of timely observational data, we have to understand the physics of the Sun-Earth system well enough, we need sophisticated computational models, and the models have to run faster than real time on the available computational resources. This presentation will focus on a single ingredient, the recent improvements of the mathematical and numerical models in the Space Weather Modeling Framework. We have developed a new physics based CME initiation code using flux emergence from the convection zone solving the equations of radiative magnetohydrodynamics (MHD). Our new lower corona and solar corona models use electron heat conduction, Alfven wave heating, and boundary conditions based on solar tomography. We can obtain a physically consistent solar wind model from the surface of the Sun all the way to the L1 point without artificially changing the polytropic index. The global magnetosphere model can now solve the multi-ion MHD equations and take into account the oxygen outflow from the polar wind model. We have also added the options of solving for Hall MHD and anisotropic pressure. Several new inner magnetosphere models have been added to the framework: CRCM, HEIDI and RAM-SCB. These new models resolve the pitch angle distribution of the trapped particles. The upper atmosphere model GITM has been improved by including a self-consistent equatorial electrodynamics and the effects of solar flares. This presentation will very briefly describe the developments and highlight some results obtained with the improved and new models.

  8. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  9. Using Laboratory Magnetospheres to Develop and Validate Space Weather Models

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Davis, M. S.; Mauel, M. E.; Kesner, J.

    2012-10-01

    Reliable space weather predictions can be used to plan satellite operations, predict radio outages, and protect the electrical transmission grid. While direct observation of the solar corona and satellite measurements of the solar wind give warnings of possible subsequent geomagnetic activity, more accurate and reliable models of how solar fluxes affect the earth's space environment are needed. Recent development in laboratory magnetic dipoles have yielded well confined high-beta plasmas with intense energetic electron belts similar to magnetospheres. With plasma diagnostics spanning from global to small spatial scales and user-controlled experiments, these devices can be used to study current issues in space weather such as fast particle excitation and rapid depolarization events. In levitated dipole experiments, which remove the collisional loss along field lines that normally dominate laboratory dipole plasmas, slow radial convection processes can be observed. Thus, comparisons between laboratory plasmas and global convection models can be made.

  10. Radiation Belt Environment Model: Application to Space Weather and Beyond

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  11. Operationalizing the Space Weather Modeling Framework: Challenges and Resolutions

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Gombosi, T. I.; Toth, G.; Singer, H. J.; Millward, G. H.; Balch, C. C.; Cash, M. D.

    2016-12-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized time-varying magnetic field (dB/dt) predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation chronicles the challenges encountered during the R2O transition of the SWMF. Because operations relies on frequent calculations of global surface dB/dt, new optimizations were required to keep the model running faster than real time. Additionally, several singular situations arose during the 30-day robustness test that required immediate attention. Solutions and strategies for overcoming these issues will be presented. This includes new failsafe options for code execution, new physics and coupling parameters, and the development of an automated validation suite that allows us to monitor performance with code evolution. Finally, the operations-to-research (O2R) impact on SWMF-related research is presented. The lessons learned from this work are valuable and instructive for the space weather community as further R2O progress is made.

  12. Transitioning Space Weather Models Into Operations: The Basic Building Blocks

    NASA Astrophysics Data System (ADS)

    Araujo-Pradere, Eduardo A.

    2009-10-01

    New and improved space weather models that provide real-time or near-real time operational awareness to the long list of customers that the NOAA Space Weather Prediction Center (SWPC) serves are critically needed. Recognizing this, SWPC recently established a Developmental Testbed Center (DTC [see Kumar, 2009]) at which models will be vetted for operational use. What characteristics should models have if they are to survive this transition? The difficulties around the implementation of real-time models are many. From the stability of the data input (frequently coming from third parties) to the elevated information technology (IT) security atmosphere present everywhere, scientists and developers are confronting a series of challenges in the implementation of their models. Quinn et al. [2009] noted that “the transition challenges are numerous and require ongoing interaction between model developers and users.” However, the 2006 Report of the Assessment Committee for the National Space Weather Program (NSWP; see http://www.nswp.gov/nswp_acreport0706.pdf) found that “there is an absence of suitable connection[s] for ‘academia-to-operations’ knowledge transfer and for the transition of research to operations in general.”

  13. The ESA Virtual Space Weather Modelling Centre - Phase 1

    NASA Astrophysics Data System (ADS)

    Poedts, Stefaan

    The ESA ITT project (AO/1-6738/11/NL/AT) to develop Phase 1 of a Virtual Space Weather Modelling Centre has the following objectives and scope: 1. The construction of a long term (~10 yrs) plan for the future development of a European virtual space weather modelling centre consisting of a new ‘open’ and distributed framework for the coupling of physics based models for space weather phenomena; 2. The assessment of model capabilities and the amount of work required to make them operational by integrating them in this framework and the identification of computing and networking requirements to do so. 3. The design of a system to enable models and other components to be installed locally or geographically distributed and the creation of a validation plan including a system of metrics for testing results. The consortium that took up this challenge involves: 1)the Katholieke Universiteit Leuven (Prime Contractor, coordinator: Prof. S. Poedts); 2) the Belgian Institute for Space Aeronomy (BIRA-IASB); 3) the Royal Observatory of Belgium (ROB); 4) the Von Karman Institute (VKI); 5) DH Consultancy (DHC); 6) Space Applications Services (SAS). The project started on May 14 2012, and will finish in May 2014. Thus, by the time of the meeting, both Phase 1A and Phase 1B (the development of the prototype) will be finished. The final report will be presented incl. the architecture decisions made, the framework, the current models integrated already as well as the model couplers installed. The prototype VSWMC will be demonstrated.

  14. Space Weather Models, Tools and Services at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Maddox, M.; Rastaetter, L.; Berrios, D.; Pulkkinen, A.; Zheng, Y.; MacNeice, P. J.; Shim, J.; Takakishvili, A.; Chulaki, A.

    2010-01-01

    The Community Coordinated Modeling center (CCMC) is a multi-agency partnership to support the research and developmental work necessary to substantially increase space weather modeling capabilities and to facilitate advanced models deployment in forecasting operations. The CCMC conducts unbiased model testing and validation and evaluates model readiness for operational environment. Space weather models and coupled model chains hosted at the CCMC range from the solar corona to the Earth's upper atmosphere. CCMC has developed a number of real-time modeling systems, as well as a large number of modeling and data products tailored to address the space weather needs of NASA's robotic missions. The presentation will demonstrate the rapid progress towards development the system allowing using products derived from space weather models in applications associated with National Space Weather needs. The adaptable Integrated Space Weather Analysis (ISWA) System developed at CCMC for NASA-relevant space weather information combines forecasts based on advanced space weather models hosted at CCMC with concurrent space environment information. The system is also enabling post-impact analysis and flexible dissemination of space weather information.

  15. Prevention of Spacecraft Anomalies: The Role of Space Climate and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Space-based systems are developing into critical infrastructure to support the quality of life on Earth. Mission requirements along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. This chapter describes approaches to accommodate space climate and space weather impacts on systems and notes areas where gaps in model development limit our ability to prevent spacecraft anomalies.

  16. Space Weather Education: Learning to Forecast at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Wold, A.

    2015-12-01

    Enhancing space weather education is important to space science endeavors. While participating in the Space Weather Research, Education and Development Initiative (SW REDI) Bootcamp and working as a Space Weather Analyst Intern, several innovative technologies and tools were integral to my learning and understanding of space weather analysis and forecasting. Two of the tools utilized in learning about space weather were the Integrated Space Weather Analysis System (iSWA) and the Space Weather Database Of Notifications, Knowledge, Information (DONKI). iSWA, a web-based dissemination system, hosts many state-of-the-art space weather models as well as real time space weather data from spacecraft such as Solar Dynamics Observatory and the Advanced Composition Explorer. As a customizable tool that operates in real-time while providing access also to historical data, iSWA proved essential in my understanding the drivers and impacts of space weather. DONKI was instrumental in accessing historical space weather events to understand the connections between solar phenomena and their effects on Earth environments. DONKI operates as a database of space weather events including linkages between causes and effects of space weather events. iSWA and DONKI are tools available also to the public. They not only enrich the space weather learning process but also allow researchers and model developers access to essential heliophysics and magnetospheric data.

  17. Using Laboratory Magnetospheres to Develop and Validate Space Weather Models

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Garnier, D.; Kesner, J.

    2012-12-01

    Reliable space weather predictions can be used to plan satellite operations, predict radio outages, and protect the electrical transmission grid. While direct observation of the solar corona and satellite measurements of the solar wind give warnings of possible subsequent geomagnetic activity, more accurate and reliable models of how solar fluxes effect the earth's space environment are needed. The recent development in laboratory magnetic dipoles have yielded well confined high-beta plasmas with intense energetic electron belts similar to magnetospheres. With plasma diagnostics spanning from global to small spatial scales and user-controlled experiments, these devices can be used to study current issues in space weather such as fast particle excitation and rapid depolarization events. In levitated dipole experiments, which remove the collisional loss along field lines that normally dominate laboratory dipole plasmas, slow radial convection processes can be observed. We describe ongoing experiments and investigations that (i) control interchange mixing through application of vorticity injection, (ii) make whole-plasma, high-speed images of turbulent plasma dynamics, (iii) simulate nonlinear gyrokinetic dynamics of bounded driven dipole plasma, and (iv) compare laboratory plasma measurements and global convection models.; Photographs of the LDX and CTX Laboratory Magnetospheres. Trapped plasma and energetic particles are created and studied with a variety of imaging diagnostics. Shown to the right are multiple probes for simultaneous measurements of plasma structures and turbulent mixing.

  18. New Space Weather Forecasting at NOAA with Michigan's Geospace Model

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Millward, G. H.; Balch, C. C.; Cash, M. D.; Onsager, T. G.; Toth, G.; Welling, D. T.; Gombosi, T. I.

    2016-12-01

    We will present first results from the University of Michigan's Geospace model that is transitioning, during 2016, from a research capability into operations at the NOAA Space Weather Prediction Center. The first generation of space weather products from this model will be described. These initial products will support power grid operators, as well as other users, with both global and regional, short-term predictions of geomagnetic activity. The Geospace model is a coupled system including three components: the BATS-R-US magnetohydrodynamic (MHD) model of the magnetosphere; the Ridley ionosphere electrodynamics model (RIM); and the Rice Convection Model (RCM), an inner magnetosphere ring-current model developed at Rice University. The model is driven by solar wind data from a satellite at L1 (now NOAA's DSCOVR satellite) and F10.7, a proxy for solar extreme ultra-violet radiation. The Geospace model runs continuously, driven by the 1-minute cadence real-time L1 data that is propagated to the inflow boundary of the MHD code. The model steps back to an earlier time and then continues forward if high-speed solar wind overtakes slower solar wind. This mode of operation is unique among the models at NOAA's National Center for Environment Prediction's Central Operations (NCO), and it is also different from the typical scientific simulation mode. All of this work has involved 3D graphical model displays and validation tools that are being developed to support forecasters and web-based external users. Lessons learned during the transition process will be described, as well as the iterative process that occurs between Research and Operations and the scientific challenges for future model and product improvements.

  19. Space Weathering of Olivine: Samples, Experiments and Modeling

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2016-01-01

    Olivine is a major constituent of chondritic bodies and its response to space weathering processes likely dominates the optical properties of asteroid regoliths (e.g. S- and many C-type asteroids). Analyses of olivine in returned samples and laboratory experiments provide details and insights regarding the mechanisms and rates of space weathering. Analyses of olivine grains from lunar soils and asteroid Itokawa reveal that they display solar wind damaged rims that are typically not amorphized despite long surface exposure ages, which are inferred from solar flare track densities (up to 10 (sup 7 y)). The olivine damaged rim width rapidly approaches approximately 120 nm in approximately 10 (sup 6 y) and then reaches steady-state with longer exposure times. The damaged rims are nanocrystalline with high dislocation densities, but crystalline order exists up to the outermost exposed surface. Sparse nanophase Fe metal inclusions occur in the damaged rims and are believed to be produced during irradiation through preferential sputtering of oxygen from the rims. The observed space weathering effects in lunar and Itokawa olivine grains are difficult to reconcile with laboratory irradiation studies and our numerical models that indicate that olivine surfaces should readily blister and amorphize on relatively short time scales (less than 10 (sup 3 y)). These results suggest that it is not just the ion fluence alone, but other variable, the ion flux that controls the type and extent of irradiation damage that develops in olivine. This flux dependence argues for caution in extrapolating between high flux laboratory experiments and the natural case. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind processing of olivine.

  20. Sol-Terra - AN Operational Space Weather Forecasting Model Framework

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.

    2015-12-01

    The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within

  1. #9 Using STEREO/SDO Data to Model Space Weather

    NASA Image and Video Library

    The critical observations from STEREO and SDO will help provide accurate and timely space weather storm warnings, and will aid greatly in our efforts to protect the technologies we have become so d...

  2. Models and applications for space weather forecasting and analysis at the Community Coordinated Modeling Center.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Maria

    The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) was established at the dawn of the new millennium as a long-term flexible solution to the problem of transition of progress in space environment modeling to operational space weather forecasting. CCMC hosts an expanding collection of state-of-the-art space weather models developed by the international space science community. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment and developing and maintaining custom displays and powerful web-based systems and tools ready to be used by researchers, space weather service providers and decision makers. In support of space weather needs of NASA users CCMC is developing highly-tailored applications and services that target specific orbits or locations in space and partnering with NASA mission specialists on linking CCMC space environment modeling with impacts on biological and technological systems in space. Confidence assessment of model predictions is an essential element of space environment modeling. CCMC facilitates interaction between model owners and users in defining physical parameters and metrics formats relevant to specific applications and leads community efforts to quantify models ability to simulate and predict space environment events. Interactive on-line model validation systems developed at CCMC make validation a seamless part of model development circle. The talk will showcase innovative solutions for space weather research, validation, anomaly analysis and forecasting and review on-going community-wide model validation initiatives enabled by CCMC applications.

  3. Overview of NASA MSFC and UAH Space Weather Modeling and Data Efforts

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard

    2016-01-01

    Marshall Space Flight Center, along with its industry and academia neighbors, has a long history of space environment model development and testing. Space weather efforts include research, testing, model development, environment definition, anomaly investigation, and operational support. This presentation will highlight a few of the current space weather activities being performed at Marshall and through collaborative efforts with University of Alabama in Huntsville scientists.

  4. Transitioning Models and Model Output to Space Weather Operations: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Berrios, David; Chulaki, Anna; Kuznetsova, Maria M.; MacNeice, Peter J.; Maddox, Mario; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center.

  5. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  6. Operational Space Weather Models: Trials, Tribulations and Rewards

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2009-12-01

    There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of

  7. Space Weather Forecasts Driven by the ADAPT Model

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Arge, C. N.; Shurkin, K.; Schooley, A. K.; Hock, R. A.; White, S.

    2015-12-01

    In this presentation, we highlight recent progress to forecast key space weather parameters with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model. Driven by a magnetic flux transport model, ADAPT evolves global solar magnetic maps forward 1 to 7 days in the future to provide realistic estimates of the solar near-side field distribution used to forecast the solar wind, F10.7 (i.e., the solar 10.7 cm radio flux), extreme ultraviolet (EUV) and far ultraviolet (FUV) irradiance. Input to the ADAPT model includes solar near-side estimates of the inferred photospheric magnetic field from space-based (i.e., HMI) and ground-based (e.g., GONG & VSM) instruments. We summarize the recent findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). In addition, recent progress to utilize the ADAPT global maps as input to the Wang-Sheeley-Arge (WSA) coronal and solar wind model is presented. We also discuss the challenges of observing less than half of the solar surface at any given time and the need for future magnetograph instruments near L1 and L5.

  8. Cone Model for Halo CMEs: Application to Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Xie, Hong; Ofman, Leon; Lawrence, Gareth

    2004-01-01

    In this study, we present an innovative analytical method to determine the angular width and propagation orientation of halo Coronal Mass Ejections (CMEs). The relation of CME actual speed with apparent speed and its components measured at different position angle has been investigated. The present work is based on the cone model proposed by Zhao et al. We have improved this model by: (1) eliminating the ambiguity via a new analytical approach, (2) using direct measurements of projection onto the plane of the sky (POS), and (3) determining the actual radial speeds from projection speeds at different position angles to clarify the uncertainty of projection speeds in previous empirical models. Our analytical approach allows us to use coronagraph data to determine accurately the geometrical features of POS projections, such as major axis, minor axis, and the displacement of the center of its projection, and to determine the angular width and orientation of a given halo CME. Our approach allows for the first time the determination of the actual CME speed, width, and source location by using coronagraph data quantitatively and consistently. The method greatly enhances the accuracy of the derived geometrical and kinematical properties of halo CMEs, and can be used to optimize Space Weather forecasts. The applied model predications are in good agreement with observations.

  9. Cone Model for Halo CMEs: Application to Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Xie, Hong; Ofman, Leon; Lawrence, Gareth

    2004-01-01

    In this study, we present an innovative analytical method to determine the angular width and propagation orientation of halo Coronal Mass Ejections (CMEs). The relation of CME actual speed with apparent speed and its components measured at different position angle has been investigated. The present work is based on the cone model proposed by Zhao et al. We have improved this model by: (1) eliminating the ambiguity via a new analytical approach, (2) using direct measurements of projection onto the plane of the sky (POS), and (3) determining the actual radial speeds from projection speeds at different position angles to clarify the uncertainty of projection speeds in previous empirical models. Our analytical approach allows us to use coronagraph data to determine accurately the geometrical features of POS projections, such as major axis, minor axis, and the displacement of the center of its projection, and to determine the angular width and orientation of a given halo CME. Our approach allows for the first time the determination of the actual CME speed, width, and source location by using coronagraph data quantitatively and consistently. The method greatly enhances the accuracy of the derived geometrical and kinematical properties of halo CMEs, and can be used to optimize Space Weather forecasts. The applied model predications are in good agreement with observations.

  10. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  11. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  12. Tools and Products of Real-Time Modeling: Opportunities for Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the last element. Specifically, we will discuss present capabilities, and the potential to derive further tools. These capabilities will be interpreted in the context of a broad-based, bootstrapping activity for modern Space Weather forecasting.

  13. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  14. Space weather models and their validation and verification at the CCMC

    NASA Astrophysics Data System (ADS)

    Hesse, Michael; Berrios Lutz Rastaetter, Masha Kuznetsova Marlo Maddox Antti Pulkkinen Ja Soon Shim David; MacNeice, Peter; Taktakishvili, Sandro; Chulaki, Anna; Moiseev, Larisa; Bakshi, Sarabjit; Patel, Kiran

    The Community Coordinated Modeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the interna-tional space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the US and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mis-sion operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.

  15. Space Weather Models and Their Validation and Verification at the CCMC

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2010-01-01

    The Community Coordinated l\\lodeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the international space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the CS and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mission operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.

  16. An Overview of Ionosphere—Thermosphere Models Available for Space Weather Purposes

    NASA Astrophysics Data System (ADS)

    Belehaki, A.; Stanislawska, I.; Lilensten, J.

    2009-11-01

    Our objective is to review recent advances in ionospheric and thermospheric modeling that aim at supporting space weather services. The emphasis is placed on achievements of European research groups involved in the COST Action 724. Ionospheric and thermospheric modeling on time scales ranging from a few minutes to several days is fundamental for predicting space weather effects on the Earth’s ionosphere and thermosphere. Space weather affects telecommunications, navigation and positioning systems, radars, and technology in space. We start with an overview of the physical effects of space weather on the upper atmosphere and on systems operating at this regime. Recent research on drivers and development of proxies applied to support space weather modeling efforts are presented, with emphasis on solar radiation indices, solar wind drivers and ionospheric indices. The models are discussed in groups corresponding to the physical effects they are dealing with, i.e. bottomside ionospheric effects, trans-ionospheric effects, neutral density and scale height variations, and spectacular space weather effects such as auroral emissions. Another group of models dealing with global circulation are presented here to demonstrate 3D modeling of the space environment. Where possible we present results concerning comparison of the models’ performance belonging to the same group. Finally we give an overview of European systems providing products for the specification and forecasting of space weather effects on the upper atmosphere, which have implemented operational versions of several ionospheric and thermospheric models.

  17. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  18. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  19. Space weather circulation model of plasma clouds as background radiation medium of space environment.

    NASA Astrophysics Data System (ADS)

    Kalu, A. E.

    A model for Space Weather (SW) Circulation with Plasma Clouds as background radiation medium of Space Environment has been proposed and discussed. Major characteristics of the model are outlined and the model assumes a baroclinic Space Environment in view of observed pronounced horizontal electron temperature gradient with prevailing weak vertical temperature gradient. The primary objective of the study is to be able to monitor and realistically predict on real- or near real-time SW and Space Storms (SWS) affecting human economic systems on Earth as well as the safety and Physiologic comfort of human payload in Space Environment in relation to planned increase in human space flights especially with reference to the ISS Space Shuttle Taxi (ISST) Programme and other prolonged deep Space Missions. Although considerable discussions are now available in the literature on SW issues, routine Meteorological operational applications of SW forecast data and information for Space Environment are still yet to receive adequate attention. The paper attempts to fill this gap in the literature of SW. The paper examines the sensitivity and variability in 3-D continuum of Plasmas in response to solar radiation inputs into the magnetosphere under disturbed Sun condition. Specifically, the presence of plasma clouds in the form of Coronal Mass Ejections (CMEs) is stressed as a major source of danger to Space crews, spacecraft instrumentation and architecture charging problems as well as impacts on numerous radiation - sensitive human economic systems on Earth. Finally, the paper considers the application of model results in the form of effective monitoring of each of the two major phases of manned Spaceflights - take-off and re-entry phases where all-time assessment of spacecraft transient ambient micro-incabin and outside Space Environment is vital for all manned Spaceflights as recently evidenced by the loss of vital information during take-off of the February 1, 2003 US Columbia

  20. Space Weather Data Dissemination Tools from the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Donti, N.; Berrios, D.; Boblitt, J.; LaSota, J.; Maddox, M. M.; Mullinix, R.; Hesse, M.

    2011-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center has developed new space weather data dissemination products. These include a Java-based conversion software for space weather simulation data, an interactive and customizable timeline tool for time series data, and Android phone and tablet versions of the NASA Space Weather App for mobile devices. We highlight the new features of all the updated services, discuss the back-end capabilities required to realize these services, and talk about future services in development.

  1. Introduction and Discussion Part 1: Metrics and Validation Needs for Space Weather Models and Services.

    NASA Astrophysics Data System (ADS)

    Glover, Alexi; Onsager, Terrance; Kuznetsova, Maria; Bingham, Suzy

    2016-07-01

    We invite the space weather community to contribute to a discussion on the main themes of this PSW1 event, with the aim of identifying and prioritising key issues and formulating recommendations and guidelines for policy makers, stakeholders, and data and service providers. This event particularly encourages dialogue between modellers, application developers, service providers and users of space weather products and services in order to review the state of model and service validation activities, to build upon successes, to identify challenges, and to develop a strategy for continuous assessment of space weather predictive capabilities and tracing the improvement over time, as recommended in the COSPAR Space Weather Roadmap. We discuss space weather verification & validation needs for the current generation of activities under development and in planning globally, together with perspectives for modellers and scientific community to further participate in the space weather endeavour. All Assembly participants are welcome to participate in this PSW discussion session and all are invited to submit input for the discussion to the authors ahead of the Assembly. The discussion will take place in two parts at the start and end of the PSW1 event. It is intended that the outcome of these discussion sessions will be formulated as a panel position paper on metrics and validation needs for space weather models and services.

  2. Discussion Part 2: Metrics and Validation Needs for Space Weather Models and Services

    NASA Astrophysics Data System (ADS)

    Glover, Alexi; Onsager, Terrance; Kuznetsova, Maria; Bingham, Suzy

    2016-07-01

    We invite the space weather community to contribute to a discussion on the main themes of this PSW1 event, with the aim of identifying and prioritising key issues and formulating recommendations and guidelines for policy makers, stakeholders, and data and service providers. This event particularly encourages dialogue between modellers, application developers, service providers and users of space weather products and services in order to review the state of model and service validation activities, to build upon successes, to identify challenges, and to develop a strategy for continuous assessment of space weather predictive capabilities and tracing the improvement over time, as recommended in the COSPAR Space Weather Roadmap. We discuss space weather verification & validation needs for the current generation of activities under development and in planning globally, together with perspectives for modellers and scientific community to further participate in the space weather endeavour. All Assembly participants are welcome to participate in this PSW discussion session and all are invited to submit input for the discussion to the authors ahead of the Assembly. The discussion will take place in two parts at the start and end of the PSW1 event. It is intended that the outcome of these discussion sessions will be formulated as a panel position paper on metrics and validation needs for space weather models and services.

  3. Space weather risk

    NASA Astrophysics Data System (ADS)

    Pirjola, Risto; Kauristie, Kirsti; Lappalainen, Hanna; Viljanen, Ari; Pulkkinen, Antti

    2005-02-01

    The importance of space weather to society is in a continuous increase since we are more and more dependent on reliable spaceborne and ground-based technological systems. Physical processes involved in space weather constitute a complicated chain from the Sun to the Earth's surface, so the management of space weather risks requires expertise in many disciplines of science and technology. In this paper, geomagnetically induced currents in electric power networks are considered in detail, referring particularly to research carried out in Finland. Today's monitoring systems of natural risks, such as floods and forest fires, are based on satellite observations. Spacecraft and communication between satellites and the ground are vulnerable to space weather. Thus, besides being a direct risk to technology, space weather may also indirectly have adverse effects on risk management. European efforts, which take into account both aspects, are also discussed in this paper.

  4. Space weather: European Space Agency perspectives

    NASA Astrophysics Data System (ADS)

    Daly, E. J.; Hilgers, A.

    Spacecraft and payloads have become steadily more sophisticated and therefore more susceptible to space weather effects. ESA has long been active in applying models and tools to the problems associated with such effects on its spacecraft. In parallel, ESA and European agencies have built a highly successful solar-terrestrial physics capability. ESA is now investigating the marriage of these technological and scientific capabilities to address perceived user needs for space weather products and services. Two major ESA-sponsored studies are laying the groundwork for a possible operational European space weather service. The wide-ranging activities of ESA in the Space Weather/Space Environment domain are summarized and recent important examples of space weather concerns given.

  5. Brazilian Space Weather Program

    NASA Astrophysics Data System (ADS)

    Padilha, Antonio; Takahashi, Hisao; de Paula, Eurico; Sawant, Hanumant; de Campos Velho, Haroldo; Vitorello, Icaro; Costa, Joaquim; Souza, Jonas; Cecatto, José; Mendes, Odim; Gonzalez Alarcon, Walter Demétrio

    A space weather program is being initiated at the Brazilian National Institute for Space Research (INPE) to study events from their initiation on the sun to their impacts on the earth, including their effects on space-based and ground-based technological systems. The program is built on existing capabilities at INPE, which include scientists with a long tradition and excellence in the observation, analysis and modeling of solar and solar-terrestrial phenomena and an array of geophysical instruments that spans all over the Brazilian territory from the north to south of the magnetic dip equator. Available sensors include solar radio frequency receivers and telescopes, optical instruments and solar imagers, GNSS receivers, ionosondes, radars, allsky imagers, magnetometers and cosmic ray detectors. In the equatorial region, ionosphere and thermosphere constitute a coupled system with electrodynamical and plasma physical processes being responsible for a variety of peculiar phenomena. The most important of them are the equatorial electrojet current system and its instabilities, the equatorial ionization anomaly, and the plasma instabilities/irregularities of the night-time ionosphere (associated with the plasma bubble events). In addition, space weather events modify the equatorial ionosphere in a complex and up to now unpredictable manner. Consequently, a main focus of the program will be on monitoring the low, middle and upper atmosphere phenomena and developing a predictive model of the equatorial ionosphere through data assimilation, that could help to mitigate against the deleterious effects on radio communications and navigation systems. The technological, economic and social importance of such activities was recognized by the Brazilian government and a proposal for funding was approved for the period 2008-2011. New ground instruments will be installed during this period allowing us to extend our current capability to provide space weather observations, accurate

  6. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  7. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  8. Using Online Space Weather Modeling Resources in a Capstone Undergraduate Course

    NASA Astrophysics Data System (ADS)

    Liemohn, M.

    2012-04-01

    The University of Michigan offers a senior-undergraduate-level course entitled, "Space Weather Modeling," taken by all of the space weather concentration students in the Atmospheric, Oceanic, and Space Sciences department. This is the capstone course of our undergraduate series, using the foundational knowledge from the previous courses towards an integrative large-scale numerical modeling study. A fraction of the graduate students also take this course. Because the state-of-the-art modeling capabilities are well beyond what is possible in a single term of programming, this course uses available online model resources, in particular the Community Coordinated Modeling Center (CCMC), a multi-agency facility hosted by NASA's Goddard Space Flight Center. Students learn not only how to use the codes, but also the various options of what equations to solve to model a specific region of space and the various numerical approaches for implementing the equations within a code. The course is project-based, consisting of multiple written reports and oral presentations, and the technical communication skills are an important component of the grading rubric. Students learn how to conduct a numerical modeling study by critiquing several space weather modeling journal articles, and then carry out their our studies with several of the available codes. In the end, they are familiarized with the available models to know the ranges of validity and applicability for a wide array of space weather applications.

  9. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  10. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  11. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts

  12. Planetary Space Weather

    NASA Astrophysics Data System (ADS)

    Grande, M.

    2012-04-01

    Invited Talk - Space weather at other planets While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an exreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. Indeed, space weather may be a significant factor in the habitability of other solar system and extrasolar planets, and the ability of life to travel between them.

  13. A Model for Community Colleges: Engaging Students in Space Weather Research

    NASA Astrophysics Data System (ADS)

    Damas, M. C.; Cheung, T. D.; Ngwira, C.; Mohamed, A.; Knipp, D. J.; Zheng, Y.; Johnson, L. P.; Mays, M. L.; Kuznetsova, M. M.; Dorsinville, R.

    2016-12-01

    Through a 2-year NSF EAGER (Early Concept Grants for Exploratory Research) award, the Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution has implemented a high-impact integrated research and education program in solar and atmospheric physics under the umbrella discipline of space weather. A year-long space weather curriculum was developed which consists of two parts: 1) during the academic year, students are enrolled in two course-based introductory research (CURE) courses where they are introduced to space weather research; and 2) summer internship program where students are placed at partner institutions for 10-weeks. Project partners include the NASA Goddard Space Flight Center's Community Coordinated Modeling Center, CUNY/City College of New York and the University of Colorado at Boulder. We will present the results of this 2-year NSF EAGER project, including successes and challenges.

  14. Commercializing Space Weather using GAIM

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Sojka, Jan J.

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the en-ergy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects com-munication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) was organized in 2009 to develop commercial space weather applications. It uses the Global Assimilation of Ionospheric Measurements (GAIM) system as the basis for providing improvements to communication and navigation systems. For example, in August 2009 SWC released, in conjunction with Space Environment Technologies, the world's first real-time space weather via an iPhone app, Space WX. It displays the real-time, current global ionosphere to-tal electron content along with its space weather drivers, is available through the Apple iTunes store, and is used around the world. The GAIM system is run operationally at SWC for global and regional (continental U.S.) conditions. Each run stream continuously ingests up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations in a Kalman filter to adjust the background output from the physics-based Ionosphere Forecast Model (IFM). Additionally, 80 real-time digisonde data streams from around the world provide ionosphere characterization up to the F-region peak. The combination of these data dramatically improves the current epoch ionosphere specification beyond the physics-based solution. The altitudinal range is 90-1500 km for output TEC, electron densities, and other data products with a few degrees resolution in latitude and longitude at 15-minute time granularity. We describe the existing SWC products that are used as commercial space weather information. SWC funding is provided by the State of Utah's Utah Science Technology and Research (USTAR) initiative. The SWC is physically located on the USU campus in Logan, Utah.

  15. Applying Forecast Models from the Center for Integrated Space Weather Modeling

    NASA Astrophysics Data System (ADS)

    Gehmeyr, M.; Baker, D. N.; Millward, G.; Odstrcil, D.

    2007-12-01

    The Center for Integrated Space Weather Modeling (CISM) has developed three forecast models (FMs) for the Sun-Earth chain. They have been matured by various degrees toward the operational stage. The Sun-Earth FM suite comprises empirical and physical models: the Planetary Equivalent Amplitude (AP-FM), the Solar Wind (SW- FM), and the Geospace (GS-FM) models. We give a brief overview of these forecast models and touch briefly on the associated validation studies. We demonstrate the utility of the models: AP-FM supporting the operations of the AIM (Aeronomy of Ice in the Mesosphere) mission soon after launch; SW-FM providing assistance with the interpretation of the STEREO beacon data; and GS-FM combining model and observed data to characterize the aurora borealis. We will then discuss space weather tools in a more general sense, point out where the current capabilities and shortcomings are, and conclude with a look forward to what areas need improvement to facilitate better real-time forecasts.

  16. Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Minow, Josep I.; Edwards, David L.

    2008-01-01

    Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.

  17. VNIR Effects of Space Weathering: Modeling Strong Absorbers in a Scattering Matrix

    NASA Astrophysics Data System (ADS)

    Legett, C.; Glotch, T. D.; Lucey, P. G.

    2015-11-01

    We use the Multiple Sphere T-Matrix Model to examine a shift from darkening and reddening to just darkening of VNIR spectra of space weathered material. We will also present laboratory work using aerogel in combination with iron and carbon powders.

  18. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; hide

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  19. Kazakhstan Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Kryakunova, Olga

    2012-07-01

    Kazakhstan experimental complex is a center of experimental study of space weather. This complex is situated near Almaty, Kazakhstan and includes experimental setup for registration of cosmic ray intensity (neutron monitor) at altitude of 3340 m above sea level, geomagnetic observatory and setup for registration of solar flux density with frequency of 1 and 3 GHz with 1 second time resolution. Results of space environment monitoring in real time are accessible via Internet. This experimental information is used for space weather investigations and different cosmic ray effects. Almaty mountain cosmic ray station is one of the most suitable and sensitive stations for investigation and forecasting of the dangerous situations for satellites; for this reason Almaty cosmic ray station is included in the world-wide neutron monitor network for the real-time monitoring of the space weather conditions and European Database NMDB (www.nmdb.eu). All data are represented on the web-site of the Institute of Ionosphere (www.ionos.kz) in real time. Since July, 2006 the space environment prediction laboratory represents the forecast of geomagnetic activity every day on the same site (www.ionos.kz/?q=en/node/21).

  20. Operational Space Weather Activities in the US

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  1. The NASA Community Coordinated Modeling Center (CCMC) Next Generation Space Weather Data Warehouse

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Zheng, Y.; Rastaetter, L.; Chulaki, A.; Pembroke, A. D.; Wiegand, C.; Mullinix, R.; Boblitt, J.; Mendoza, A. M. M.; Swindell, M. J., IV; Bakshi, S. S.; Mays, M. L.; Shim, J. S.; Hesse, M.; Collado-Vega, Y. M.; Taktakishvili, A.; MacNeice, P. J.

    2014-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center enables, supports, and performs research and development for next generation space science and space weather models. The CCMC currently hosts a large and expanding collection of state-or-the-art, physics-based space weather models that have been developed by the international research community. There are many tools and services provided by the CCMC that are currently available world-wide, along with the ongoing development of new innovative systems and software for research, discovery, validation, visualization, and forecasting. Over the history of the CCMC's existence, there has been one constant engineering challenge - describing, managing, and disseminating data. To address the challenges that accompany an ever-expanding number of models to support, along with a growing catalog of simulation output - the CCMC is currently developing a flexible and extensible space weather data warehouse to support both internal and external systems and applications. This paper intends to chronicle the evolution and future of the CCMC's data infrastructure, and the current infrastructure re-engineering activities that seek to leverage existing community data model standards like SPASE and the IMPEx Simulation Data Model.

  2. Community Coordinated Modeling Center: Addressing Needs of Operational Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M.; Maddox, M.; Pulkkinen, A.; Hesse, M.; Rastaetter, L.; Macneice, P.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Zheng, Y.; hide

    2012-01-01

    Models are key elements of space weather forecasting. The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) hosts a broad range of state-of-the-art space weather models and enables access to complex models through an unmatched automated web-based runs-on-request system. Model output comparisons with observational data carried out by a large number of CCMC users open an unprecedented mechanism for extensive model testing and broad community feedback on model performance. The CCMC also evaluates model's prediction ability as an unbiased broker and supports operational model selections. The CCMC is organizing and leading a series of community-wide projects aiming to evaluate the current state of space weather modeling, to address challenges of model-data comparisons, and to define metrics for various user s needs and requirements. Many of CCMC models are continuously running in real-time. Over the years the CCMC acquired the unique experience in developing and maintaining real-time systems. CCMC staff expertise and trusted relations with model owners enable to keep up to date with rapid advances in model development. The information gleaned from the real-time calculations is tailored to specific mission needs. Model forecasts combined with data streams from NASA and other missions are integrated into an innovative configurable data analysis and dissemination system (http://iswa.gsfc.nasa.gov) that is accessible world-wide. The talk will review the latest progress and discuss opportunities for addressing operational space weather needs in innovative and collaborative ways.

  3. Mexican Space Weather Service (SCIESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  4. Space Weather Ballooning

    NASA Astrophysics Data System (ADS)

    Phillips, Tony; Johnson, Sam; Koske-Phillips, Amelia; White, Michael; Yarborough, Amelia; Lamb, Aaron; Herbst, Anna; Molina, Ferris; Gilpin, Justin; Grah, Olivia; Perez, Ginger; Reid, Carson; Harvey, Joey; Schultz, Jamie

    2016-10-01

    We have developed a "Space Weather Buoy" for measuring upper atmospheric radiation from cosmic rays and solar storms. The Buoy, which is carried to the stratosphere by helium balloons, is relatively inexpensive and uses off-the-shelf technology accessible to small colleges and high schools. Using this device, we have measured two Forbush Decreases and a small surge in atmospheric radiation during the St. Patrick's Day geomagnetic storm of March 2015.

  5. First-Ever European Space Weather Week

    NASA Astrophysics Data System (ADS)

    Simpson, Sarah

    2004-07-01

    Europe's first Space Weather Week is scheduled to take place at the European Space Agency's European Space Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands, for five days beginning 29 November. Modeled after the U.S. Space Weather Week, the European agenda will highlight not only services and applications but also the crucial activity of transitioning scientific discoveries into forecasting capabilities.

  6. Space weather throughout the heliosphere

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.; Detman, Thomas; Intriligator, James; Dryer, Murray; Sun, Wei; Deehr, Charles; Webber, William R.; Decker, Robert B.; McPherron, Robert L.

    2012-11-01

    We have analyzed space weather throughout the heliosphere using the three-dimensional (3D) timedependent magnetohydrodynamic (MHD) Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI) [1] out to Voyager 2 (V2) and beyond by comparing the HHMS-PI model results with the available spacecraft data. We also have analyzed space weather throughout the heliosphere through in-depth analyses of the available simultaneous data from a number of instruments on spacecraft at various locations. In this paper we focus on our HHMS-PI modeling (starting at the Sun) of the Halloween 2003 solar events by comparing the model results with spacecraft data at ACE and Ulysses. For the Halloween 2003 solar events we also summarize our inter-comparisons of the in-situ V2 data from many of the V2 instruments. These analyses of the comparisons ("benchmarking") of HHMS-PI simulations and the various spacecraft data and of our in-depth analyses of the V2 particle and field data indicate that particle acceleration and other important physical processes are associated with the heliospheric propagation of these large solar cycle 23 space weather events. We conclude that space weather, originating at the Sun, can have important affects throughout the heliosphere to distances as great as 73 AU and beyond.

  7. TS07D Empirical Geomagnetic Field Model as a Space Weather Tool

    NASA Astrophysics Data System (ADS)

    Sharp, N. M.; Stephens, G. K.; Sitnov, M. I.

    2011-12-01

    Empirical modeling and forecasting of the geomagnetic field is a key element of the space weather research. A dramatic increase in the number of data available for the terrestrial magnetosphere required a new generation of empirical models with large numbers of degrees of freedom and sophisticated data-mining techniques. A set of the corresponding data binning, fitting and visualization procedures known as the TS07D model is now available at \\url{http://geomag_field.jhuapl.edu/model/} and it is used for detailed investigation of storm-scale phenomena in the magnetosphere. However, the transformation of this research model into a practical space weather application, which implies its extensive running for validation and interaction with other space weather codes, requires its presentation in the form of a single state-of-the-art code, well documented and optimized for the highest performance. To this end, the model is implemented in the Java programming language with extensive self-sufficient library and a set of optimization tools, including multi-thread operations that assume the use of the code in multi-core computers and clusters. The results of the new code validation and optimization of its binning, fitting and visualization parts are presented as well as some examples of the processed storms are discussed.

  8. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  9. Optical space weathering on Vesta: Radiative-transfer models and Dawn observations

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Denevi, Brett W.; Le Corre, Lucille; Reddy, Vishnu; Schröder, Stefan E.; Pieters, Carle M.; Tosi, Federico; Zambon, Francesca; De Sanctis, Maria Cristina; Ammannito, Eleonora; Roatsch, Thomas; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Exposure to ion and micrometeoroid bombardment in the space environment causes physical and chemical changes in the surface of an airless planetary body. These changes, called space weathering, can strongly influence a surface's optical characteristics, and hence complicate interpretation of composition from reflectance spectroscopy. Prior work using data from the Dawn spacecraft (Pieters, C.M. et al. [2012]. Nature 491, 79-82) found that accumulation of nanophase metallic iron (npFe0), which is a key space-weathering product on the Moon, does not appear to be important on Vesta, and instead regolith evolution is dominated by mixing with carbonaceous chondrite (CC) material delivered by impacts. In order to gain further insight into the nature of space weathering on Vesta, we constructed model reflectance spectra using Hapke's radiative-transfer theory and used them as an aid to understanding multispectral observations obtained by Dawn's Framing Cameras (FC). The model spectra, for a howardite mineral assemblage, include both the effects of npFe0 and that of a mixed CC component. We found that a plot of the 438-nm/555-nm ratio vs. the 555-nm reflectance for the model spectra helps to separate the effects of lunar-style space weathering (LSSW) from those of CC-mixing. We then constructed ratio-reflectance pixel scatterplots using FC images for four areas of contrasting composition: a eucritic area at Vibidia crater, a diogenitic area near Antonia crater, olivine-bearing material within Bellicia crater, and a light mantle unit (referred to as an ;orange patch; in some previous studies, based on steep spectral slope in the visible) northeast of Oppia crater. In these four cases the observed spectral trends are those expected from CC-mixing, with no evidence for weathering dominated by production of npFe0. In order to survey a wider range of surfaces, we also defined a spectral parameter that is a function of the change in 438-nm/555-nm ratio and the 555-nm reflectance

  10. Space Weather Applications of the UAF Eulerian Parallel Polar Ionosphere Model (EPPIM)

    DTIC Science & Technology

    2006-06-01

    list in Figure 1) and from other facilities (for instance, HAARP digizonde at Gakona, Alaska). Space Weather Applications of the UAF Eulerian...RTO-MP-IST-056 11 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Space Weather Applications of the UAF Eulerian Parallel Polar Ionosphere...series of geophysical indices is capable of providing useful space weather forecasts. Further improvement of the forecasts by applying data

  11. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  12. Experience Transitioning Models and Data at the NOAA Space Weather Prediction Center

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2016-07-01

    The NOAA Space Weather Prediction Center has a long history of transitioning research data and models into operations and with the validation activities required. The first stage in this process involves demonstrating that the capability has sufficient value to customers to justify the cost needed to transition it and to run it continuously and reliably in operations. Once the overall value is demonstrated, a substantial effort is then required to develop the operational software from the research codes. The next stage is to implement and test the software and product generation on the operational computers. Finally, effort must be devoted to establishing long-term measures of performance, maintaining the software, and working with forecasters, customers, and researchers to improve over time the operational capabilities. This multi-stage process of identifying, transitioning, and improving operational space weather capabilities will be discussed using recent examples. Plans for future activities will also be described.

  13. Data Format Standardization of Space Weather Model Output at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Maddox, M.; Rastatter, L.; Hesse, M.

    2005-01-01

    The disparate nature of space weather model output provides many challenges with regards to the portability and reuse of not only the data itself, but also any tools that are developed for analysis and visualization. We are developing and implementing a comprehensive data format standardization methodology that allows heterogeneous model output data to be stored uniformly in any common science data format. We will discuss our approach to identifying core meta-data elements that can be used to supplement raw model output data, thus creating self-descriptive files. The meta-data should also contain information describing the simulation grid. This will ultimately assists in the development of efficient data access tools capable of extracting data at any given point and time. We will also discuss our experiences standardizing the output of two global magnetospheric models, and how we plan to apply similar procedures when standardizing the output of the solar, heliospheric, and ionospheric models that are also currently hosted at the Community Coordinated Modeling Center.

  14. Development of the Rice Convection Model as a Space Weather Tool

    DTIC Science & Technology

    2015-05-31

    Air Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Ave SE Kirtland AFB, NM 87117-5776 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL ...unlimited. 9 DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM... AFRL -RV-PS- AFRL -RV-PS- TR-2015-0129 TR-2015-0129 DEVELOPMENT OF THE RICE CONVECTION MODEL AS A SPACE WEATHER TOOL Frank R. Toffoletto, et al

  15. Prediction Techniques in Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  16. Integration of the Radiation Belt Environment Model Into the Space Weather Modeling Framework

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Fok, M.; Gombosi, T.; Liemohn, M.

    2009-01-01

    We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection-diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.

  17. Integration of the Radiation Belt Environment Model Into the Space Weather Modeling Framework

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Fok, M.; Gombosi, T.; Liemohn, M.

    2009-01-01

    We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection-diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.

  18. Commercial Space Tourism and Space Weather

    NASA Astrophysics Data System (ADS)

    Turner, Ronald

    2007-08-01

    Space tourism, a concept which even a few years ago was perveived as science fantasy, is now a credible industry. Five individuals have paid up to $25 M to spend more than a week on the International Space Station. Several enterprises are working toward viable suborbital and orbital private space operations. while operational space weather support to human space flight has been the domain of government entities the emergence of space tourism now presents a new opportunity for the commercial space weather community. This article examines the space weather impact on crews and passengers of the future space tourism industry.

  19. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  20. Space weather models for radiation conditions outside and inside of the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho; Kalegaev, Vladimir; Panasyuk, Mikhail

    2016-07-01

    Radiation environment in the Earth magnetosphere can not be considered without taking into account the physical conditions in interplanetary space due to solar activity. Therefore, any realistic model of radiation inside the magnetosphere should take into account the physical condition determined by the models out of it. Since the flux of galactic and solar cosmic rays in the magnetosphere based on the model of radiation outside the magnetosphere with an indispensable view of the magnetic field of the Earth, due to changes in the solar wind, interplanetary shock waves and magnetic field. These factors are also influence the models of trapped radiation and circular current. Particularly, this report addressed to the methodological issues of generalization of experimental data to the level of computational models, which is unchanged properties of predicting all kinds of extreme situations. The complex of these problems has long been discussed under the pressure of public attention in connection with the problems of weather forecasting and hydrology. In the field of space weather the problem of operational models evaluation (so called "metric & validation" activity) is also of great interest now. In the light of changes in the factors of solar activity in the last minimum and in the solar cycle 24, the report discusses the problems of modeling particle fluxes outside the magnetosphere. Current status of near- Earth radiation modeling including radiation belt particles transport, acceleration and losses will be discussed as well from the experimental and theoretical viewpoint.

  1. Small Sensors for Space Weather

    NASA Astrophysics Data System (ADS)

    Nicholas, A. C.

    2015-12-01

    The Naval Research Laboratory is actively pursuing enhancing the nation's space weather sensing capability. One aspect of this plan is the concept of flying Space Weather sensor suites on host spacecraft as secondary payloads. The emergence and advancement of the CubeSat spacecraft architecture has produced a viable platform for scientifically and operationally relevant Space Weather sensing. This talk will provide an overview of NRL's low size weight and power sensor technologies targeting Space Weather measurements. A summary of on-orbit results of past and current missions will be presented, as well as an overview of future flights that are manifested and potential constellation missions.

  2. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  3. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  4. American Meteorological Society Embraces Space Weather

    NASA Astrophysics Data System (ADS)

    McCoy, Robert; Fisher, Genene

    2011-02-01

    Eight years ago, the American Meteorological Society (AMS) tentatively reached out to the space weather community by scheduling a day-and-a-half Space Weather Symposium (SWS) at its Annual Meeting. That symposium included briefings from operational and research agencies involved with space weather as well as a variety of talks targeting areas of interest common to meteorology and space weather. Topics included data assimilation, connections between the lower and upper atmosphere, new space weather sensors and models, and the economic and social impacts of space weather. That highly successful symposium led to a follow-on SWS every year at the AMS Annual Meeting. These meetings, combined with the release of an AMS policy statement on space weather (see http://www.ametsoc.org/policy/2008spaceweather_amsstatement.html and Fisher [2008]) and related studies in the AMS Policy Program, led the AMS Council to vote on making the space weather discipline a regular part of the society by creating a new Space Weather Committee for the Scientific and Technological Activities Commission (STAC) (http://www.ametsoc.org/stacpges/CommitteeDisplay/CommitteeDisplay.aspx?CC=SW). This is AMS's first new STAC committee in 20 years.

  5. Interactive Visual Contextualization of Space Weather Data

    NASA Astrophysics Data System (ADS)

    Törnros, M.; Ynnerman, A.; Emmart, C.; Berrios, D.; Harberts, R.

    2012-12-01

    Linköping University, the American Museum of Natural History (AMNH), and the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center are collaborating on a new open source visualization software for astrovisualization. The CCMC is providing real-time and historical space weather data from the Integrated Space Weather Analysis System (iSWA), including timely modeled coronal mass ejection events simulated by the Space Weather Research Center at NASA GSFC. Linköping University is developing a new modular visualization tool with multi-channel capabilities to support planetarium exhibits, displaying the real-time space weather data contextualized using fieldlines, volumetric visualization techniques, and planetary information. This collaboration aims to engage the public about space weather and real-time events at the AMNH. We present an overview of this collaboration and demo some of the capabilities.

  6. Data Driven Ionospheric Modeling in Relation to Space Weather: Percent Cloud Coverage

    NASA Astrophysics Data System (ADS)

    Tulunay, Y.; Senalp, E. T.; Tulunay, E.

    2009-04-01

    Since 1990, a small group at METU has been developing data driven models in order to forecast some critical system parameters related with the near-Earth space processes. The background on the subject supports new achievements, which contributed the COST 724 activities, which will contribute to the new ES0803 activities. This work mentions one of the outstanding contributions, namely forecasting of meteorological parameters by considering the probable influence of cosmic rays (CR) and sunspot numbers (SSN). The data-driven method is generic and applicable to many Near-Earth Space processes including ionospheric/plasmaspheric interactions. It is believed that the EURIPOS initiative would be useful in supplying wide range reliable data to the models developed. Quantification of physical mechanisms, which causally link Space Weather to the Earth's Weather, has been a challenging task. In this basis, the percent cloud coverage (%CC) and cloud top temperatures (CTT) were forecast one month ahead of time between geographic coordinates of (22.5˚N; 57.5˚N); and (7.5˚W; 47.5˚E) at 96 grid locations and covering the years of 1983 to 2000 using the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M) [Tulunay, 2008]. The Near Earth Space variability at several different time scales arises from a number of separate factors and the physics of the variations cannot be modeled due to the lack of current information about the parameters of several natural processes. CR are shielded by the magnetosphere to a certain extent, but they can modulate the low level cloud cover. METU-FNN-M was developed, trained and applied for forecasting the %CC and CTT, by considering the history of those meteorological variables; Cloud Optical Depth (COD); the Ionization (I) value that is formulized and computed by using CR data and CTT; SSN; temporal variables; and defuzified cloudiness. The temporal and spatial variables and the cut off rigidity are used to compute the

  7. The International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    2010-01-01

    The International Heliophysical Year (IHY) provided a successful model for the deployment of arrays of small scientific instruments in new and scientifically interesting geographic locations, and outreach. The new International Space Weather Initiative (ISWI) is designed to build on this momentum to promote the observation, understanding, and prediction space weather phenomena, and to communicate the scientific results to the public.

  8. Asteroid age distributions determined by space weathering and collisional evolution models

    NASA Astrophysics Data System (ADS)

    Willman, Mark; Jedicke, Robert

    2011-01-01

    We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.

  9. The Origin of "Space Weather"

    NASA Astrophysics Data System (ADS)

    Cade, William B.; Chan-Park, Christina

    2015-02-01

    Although "space weather" is a fairly recent term, there is a rich history of similar terms being used beginning in the middle to late 1800s. "Solar meteorology," "magnetic weather," and "cosmic meteorology" all appeared during that time frame. The actual first appearance of space weather can be attributed to the publication Science News Letter in 1957 (with the first modern usage in 1959) and was possibly coined by the editor at the time, Watson Davis.

  10. The science of space weather.

    PubMed

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

  11. Japanese space weather research activities

    NASA Astrophysics Data System (ADS)

    Ishii, M.

    2017-01-01

    In this paper, we present existing and planned Japanese space weather research activities. The program consists of several core elements, including a space weather prediction system using numerical forecasts, a large-scale ground-based observation network, and the cooperative framework "Project for Solar-Terrestrial Environment Prediction (PSTEP)" based on a Grant-in Aid for Scientific Research on Innovative Areas.

  12. The Space Weather Modeling System: An ESMF Compliant Solar Wind and Ionospheric Forecast System

    NASA Astrophysics Data System (ADS)

    Reich, J. P.; Fry, C. D.; Eccles, J. V.; Berman, L. M.; Sattler, M. P.

    2008-12-01

    Ionospheric storms can severely impact communications, navigation and surveillance systems. These ionospheric disturbances are driven by solar activity. A key challenge in space science is to understand the causes of the ionospheric response to solar forcing. Attempting to accurately forecast the time-dependent behavior of the ionosphere is the only way to truly test our understanding of the ionosphere. Space weather forecasters for the DoD face this challenge on a daily basis. The Air Force Weather Agency is meeting this challenge through the development of an operational Space Weather Modeling System (SWMS). The SWMS is a Battlespace Environments Institute (BEI) project that couples Earth system environmental models together under the Earth System Modeling Framework (ESMF). BEI is sponsored by the High Performance Computing (HPC) Modernization Office. The first two coupled components in SWMS are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and the Global Assimilation of Ionospheric Measurements (GAIM) model. The HAFv2 model produces quantitative forecasts of solar wind parameters at Earth and elsewhere in the inner heliosphere. The Ionosphere Forecast Model (IFM) is the physics-based ionosphere model within GAIM. IFM provides highly representative specifications of plasma conditions in the global ionosphere. The one-way coupling of HAFv2 to IFM links the solar storm drivers to the ionospheric response. Predicted solar wind quantities are fed as inputs to IFM, which computes the solar wind energy deposition into the high latitude ionosphere, enabling GAIM to provide multi- day forecasts of ionospheric electron density, currents and upper atmosphere dynamics. The SWMS development is a structured project, moving from partial to full ESMF compliance. Bringing the HAFv2 and IFM models into the ESMF allows significant improvements in computational efficiency and data throughput. Modifying these computer codes for the HPC environment opens the door for

  13. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  14. Modeling Extreme Space Weather Scenarios: July 23, 2012 Rare-Type CME

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2014-12-01

    Space weather is a major concern for modern day society because of its adverse impacts on technological infrastructure such as power grids, oil pipelines, and global navigation systems. Particularly, earth directed coronal mass ejections (CMEs) are the main drivers of the most extreme geomagnetic storms in the near-Earth space environment. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast CME that traveled 0.96 astronomical units (~1 AU) in about 19 h. In our study, we use the Space Weather Modeling Framework (SWMF), a 3-D MHD based code, to perform simulations of this rare CME by considering STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of the study is to investigate what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active magnetometer sites. Simulation results show that the July 23 CME would have produced ground effects comparable to previously observed extreme geomagnetic storms such as the Halloween 2003 storm. In addition, we discuss how this study compares to other independent studies on this same event.

  15. Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Nutter, Paul

    1997-01-01

    The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage.

  16. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2003-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  17. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2004-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  18. Space weathering on airless bodies

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; Noble, Sarah K.

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  19. The Integrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Hesse, M.; Kuznetsova, M.; Rastaetter, L.; MacNeice, P. J.; Jain, P.; Garneau, J. W.; Berrios, D. H.; Pulkinnen, A.; Rowland, D.

    2008-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions is therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products, along with the lack of single-portal access, renders its practical use for space weather analysis and forecasting unfeasible. There exists a compelling need for accurate real-time forecasting of both large-scale and local space environments - and their probable impacts for missions. A vital design driver for any system that is created to solve this problem lies in the fact that information needs to be presented in a form that is useful and as such, must be both easily accessible and understandable. The Integrated Space Weather Analysis System is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system will be a turnkey, web-based dissemination system for NASA-relevant space weather information that combines forecasts based on the most advanced space weather models with concurrent space environment information. It will be customer configurable and adaptable for use as a powerful decision making tool offering an unprecedented ability to analyze the present and expected future space weather impacts on virtually all NASA human and robotic missions. We will discuss some of the key design considerations for the system and present some of the initial space weather analysis products that have been created to date.

  20. Space Weather Forecasting: An Enigma

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.

    2012-12-01

    The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove

  1. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; Berrios, David

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  2. Progress in space weather predictions and applications

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  3. Particle radiation transport and effects models from research to space weather operations

    NASA Astrophysics Data System (ADS)

    Santin, Giovanni; Nieminen, Petteri; Rivera, Angela; Ibarmia, Sergio; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Ivanchenko, Vladimir; Kruglanski, Michel; Messios, Neophytos

    Assessment of risk from potential radiation-induced effects to space systems requires knowledge of both the conditions of the radiation environment and of the impact of radiation on sensi-tive spacecraft elements. During sensitivity analyses, test data are complemented by models to predict how external radiation fields are transported and modified in spacecraft materials. Radiation transport is still itself a subject of research and models are continuously improved to describe the physical interactions that take place when particles pass through shielding materi-als or hit electronic systems or astronauts, sometimes down to nanometre-scale interactions of single particles with deep sub-micron technologies or DNA structures. In recent years, though, such radiation transport models are transitioning from being a research subject by itself, to being widely used in the space engineering domain and finally being directly applied in the context of operation of space weather services. A significant "research to operations" (R2O) case is offered by Geant4, an open source toolkit initially developed and used in the context of fundamental research in high energy physics. Geant4 is also being used in the space domain, e.g. for modelling detector responses in science payloads, but also for studying the radiation environment itself, with subjects ranging from cosmic rays, to solar energetic particles in the heliosphere, to geomagnetic shielding. Geant4-based tools are now becoming more and more integrated in spacecraft design procedures, also through user friendly interfaces such as SPEN-VIS. Some examples are given by MULASSIS, offering multi-layered shielding analysis capa-bilities in realistic spacecraft materials, or GEMAT, focused on micro-dosimetry in electronics, or PLANETOCOSMICS, describing the interaction of the space environment with planetary magneto-and atmospheres, or GRAS, providing a modular and easy to use interface to various analysis types in simple or

  4. STEREO Space Weather and the Space Weather Beacon

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  5. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  6. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  7. The Sun and Space Weather

    NASA Astrophysics Data System (ADS)

    Hanslmeier, Arnold

    2007-06-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exist for many of them. Other topics are the influences on the Earth's atmosphere, long and short term climate variations. The last chapters discuss the protection against enhanced radiation environment in view of upcoming manned missions to the Moon and Mars, and the threat from space debris, asteroids and meteoroids. Since the field is quite interdisciplinary, the book will be of interest to scientists working in different fields such as solar physics, geophysics, and space physics. Link: http://www.springer.com/west/home/generic/search/results?SGWID=4-40109-22-173699408-0

  8. Community Coordinated Modeling Center (CCMC): Using innovative tools and services to support worldwide space weather scientific communities and networks

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.

    2012-12-01

    Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating

  9. Space Weather Research: Indian perspective

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  10. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  11. Testing the Hapke Model for the Optical Effects of Space Weathering

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Lucey, P. G.

    2002-01-01

    In the Apollo era, Hapke and colleagues used simulation experiments and theoretical considerations to argue for the importance of vaporphase coatings in causing lunar soils to darken and redden with age. During the 1990s, direct detection of vapor-deposited iron on actual lunar soil grains came from the work of Keller and associates. These workers discovered that most soil grains have coatings, some of which differ from the interior composition. The morphology of the coatings is such that they must have condensed from a vapor. The coatings and grain rims typically contain abundant submicroscopic iron particles (SMFe). While SMFe is largely responsible for the reddening of lunar soil, Hapke's work suggests that it alone does not account for the changes accompanying soil maturity. For example, Hapke found that the inclusion of dark glass was required in addition to submicroscopic iron to account for weathering trends. Using a different formalism, Shkuratov et al. emphasized the importance of known particle size evolution in maturation modeling to match observed space weathering trends. Therefore Hapke's ground-breaking work must be followed up to show how the model glass content and composition and grain size evolution required to fit observed data compare to measured soil properties.

  12. Operational Space Weather in USAF Education

    NASA Astrophysics Data System (ADS)

    Smithtro, C.; Quigley, S.

    2006-12-01

    Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.

  13. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    PubMed

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.

  14. Space Weather Influence on Power Systems: Prediction, Risk Analysis, and Modeling

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy

    2016-04-01

    This report concentrates on dynamic probabilistic risk analysis of optical elements for complex characterization of damages using physical model of solid state lasers and predictable level of ionizing radiation and space weather. The following main subjects will be covered by our report: (a) solid-state laser model; (b) mathematical models for dynamic probabilistic risk assessment; and (c) software for modeling and prediction of ionizing radiation. A probabilistic risk assessment method for solid-state lasers is presented with consideration of some deterministic and stochastic factors. Probabilistic risk assessment is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in solid-state lasers for the purpose of cost-e®ectively improving their safety and performance. This method based on the Conditional Value-at-Risk measure (CVaR) and the expected loss exceeding Value-at-Risk (VaR). We propose to use a new dynamical-information approach for radiation damage risk assessment of laser elements by cosmic radiation. Our approach includes the following steps: laser modeling, modeling of ionizing radiation in°uences on laser elements, probabilistic risk assessment methods, and risk minimization. For computer simulation of damage processes at microscopic and macroscopic levels the following methods are used: () statistical; (b) dynamical; (c) optimization; (d) acceleration modeling, and (e) mathematical modeling of laser functioning. Mathematical models of space ionizing radiation in°uence on laser elements were developed for risk assessment in laser safety analysis. This is a so-called `black box' or `input-output' models, which seeks only to reproduce the behaviour of the system's output in response to changes in its inputs. The model inputs are radiation in°uences on laser systems and output parameters are dynamical characteristics of the solid laser. Algorithms and software for optimal structure and parameters of

  15. Ionosphere-thermosphere space weather issues.

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Sojka, J. J.

    1996-10-01

    Weather disturbances in the ionosphere-thermosphere system can have a detrimental effect on both ground-based and space-based systems. Because of this impact and because this field has matured, it is now appropriate to develop specification and forecast models, with the aim of eventually predicting the occurrence, duration, and intensity of weather effects. As part of the new National Space Weather Program, the CEDAR community will focus on science issues concerning space weather, and this tutorial/review is an expanded version of a tutorial presentation given at the recent CEDAR annual meeting. The tutorial/review provides a brief discussion of weather disturbances and features, the causes of weather, and the status of weather modeling. The features and disturbances discussed include plasma patches, boundary and auroral blobs, Sun-aligned polar cap arcs, the effects of traveling convection vortices and SAID events, the lifetime of density structures, sporadic-E and intermediate layers, spread F and equatorial plasma bubbles, geomagnetic storms and substorms, traveling ionospheric disturbances (TIDs), and the effects of tides and gravity waves propagating from the lower atmosphere. The tutorial/review is only intended to provide an overview of some of the important scientific issues concerning ionospheric-thermospheric weather, with the emphasis on the ionosphere. Tutorials on thermospheric and magnetospheric weather issues are given in companion papers.

  16. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  17. COST 296 action results for space weather ionospheric monitoring and modelling

    NASA Astrophysics Data System (ADS)

    Bourdillon, A.; Zolesi, B.; Cander, Lj. R.

    2010-05-01

    COST 296 Action refers to the project on Mitigation of Ionospheric Effects on Radio Systems (MIERS) in the framework of European Cooperation in Science and Technology (COST), which is one of the longest-running European instruments supporting cooperation among scientists and researchers across Europe. The main objective of the MIERS project has been to develop an increased knowledge of the effects imposed by the ionosphere on practical radio systems, and for the development and implementation of techniques to mitigate the harmful effects of the ionosphere on such systems. This paper highlights COST 296 Action results that have been achieved during its lifetime period of February 2005-February 2009 with emphasis on space weather ionospheric monitoring and modelling.

  18. Addressing Metrics and Validation Needs for Space Weather Models, Tools and Forecasting Techniques at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Maria

    2016-07-01

    Systematic evaluation of space environment models and tools and confidence assessment of space weather forecasting techniques and procedures are critical for development and further improvements of operational space weather prediction capabilities. Quantifying the confidence and predictive accuracy of model calculations is a key information needed for making high-consequence decisions. The approach to the validation, uncertainty assessment and to the format of the metrics is strongly dependent on specific applications and end user needs. There is a need to understand which aspects of spatial and temporal characteristicsof space environment parameters are the most important for specific impacts on technological and biological systems. The presentation will review progress in on-going coordinated model validation activities and metrics studies organized and supported by the Community Coordinated Modeling Center. We will focus on tasks associated with model-data comparisons, such as appropriate metrics selection for specific applications, preparation of observational data, sensitivity analysis of model outputs to input parameters, boundary conditions, modeling assumptions, adjustable parameters. We will discuss ideas for community-wide initiatives to build upon successes and to address challenges of metrics and validation activities, to develop guidelines and procedures to trace improvements over time and to pave a path forward.

  19. The impact of the atmospheric model and of the space weather data on the dynamics of clouds of space debris

    NASA Astrophysics Data System (ADS)

    Petit, Alexis; Lemaitre, Anne

    2016-06-01

    New tools are necessary to deal with more than hundred thousands of space debris, thus our aim is to develop software able to propagate numerous trajectories and manage collisions or fragmentations. Specifically in low orbits Earth, gravity and atmospheric drag are the two main forces that affect the dynamics of the artificial satellites or space debris. NIMASTEP, the local orbit propagator, initially designed for high altitudes, has been adapted to low altitude orbits. To study the future debris environment, we propose a suitable model of space weather and we compare three different atmospheric density models (Jacchia-Bowman 2008, DTM-2013, and TD-88) able to propagate with accuracy and efficiency a large population of space debris on long time scales. We compare the results in different altitudes and during the reentry regime; we show, with a ballistic coefficient constant, a trend to underestimate or overestimate the decrease of the semi-major axis, specifically during the periods of high solar activity. We parallelize our software and use the calculation power of a computing cluster, we propagate a huge cloud of debris and we show that its global evolution is in agreement with the observations on several years.

  20. Space Weathering of Small Bodies

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.

    2002-12-01

    Space weathering is defined as any process that wears away and alters surfaces, here confined to small bodies in the Solar System. Mechanisms which possibly alter asteroid and comet surfaces include solar wind bombardment, UV radiation, cosmic ray bombardment, micrometeorite bombardment. These processes are likely to contribute to surface processes differently. For example, solar wind bombardment would be more important on a body closer to the Sun compared to a comet where cosmic ray bombardment might be a more significant weathering mechanism. How can we measure the effects of space weathering? A big problem is that we don't know the nature of the surface before it was weathered. We are in a new era in the study of surface processes on small bodies brought about by the availability of spatially resolved, color and spectral measurements of asteroids from Galileo and NEAR. What processes are active on which bodies? What physics controls surface processes in different regions of the solar system? How do processes differ on different bodies of different physical and chemical properties? What combinations of observable parameters best address the nature of surface processes? Are there alternative explanations for the observed parameters that have been attributed to space weathering? Should we retain the term, space weathering? How can our understanding of space weathering on the Moon help us understand it on asteroids and comets? Finally, we have to leave behind some presuppositions, one being that there is evidence of space weathering based on the fact that the optical properties of S-type asteroids differs from those of ordinary chondrites.

  1. Space Weather - the Economic Case

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Gibbs, M.

    2015-12-01

    Following on from the UK Government's placement of space weather on it's National Risk Register, in 2011, and the Royal Academy of Engineering's study into the impacts of a severe space weather event, the next piece of key evidence, to underpin future investment decisions, is understanding the socio-economic impact of space weather This poster outlines a study, funded by the UK Space Agency, which will assess the socio-economic cost of space weather, both severe events, such as 1989 & a modern day repeat of the Carrington storm and also the cost of day-to-day impacts. The study will go on to estimate the cost benefit of forecasting and also investigate options for an operational L5 spacecraft mission and knowledge exchange activities with the South African Space Agency. The findings from the initial space weather socio-economic literature review will be presented along with other findings to date and sets out the tasks for the remainder of this programme of work.

  2. Mexican Space Weather Service (SCiESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, J. A.; De la Luz, V.; Corona-Romero, P.; Mejia-Ambriz, J. C.; Gonzalez, L. X.; Sergeeva, M. A.; Romero-Hernandez, E.; Aguilar-Rodriguez, E.

    2017-01-01

    Legislative modifications of the General Civil Protection Law in Mexico in 2014 included specific references to space hazards and space weather phenomena. The legislation is consistent with United Nations promotion of international engagement and cooperation on space weather awareness, studies, and monitoring. These internal and external conditions motivated the creation of a space weather service in Mexico. The Mexican Space Weather Service (SCiESMEX in Spanish) (www.sciesmex.unam.mx) was initiated in October 2014 and is operated by the Institute of Geophysics at the Universidad Nacional Autonoma de Mexico (UNAM). SCiESMEX became a Regional Warning Center of the International Space Environment Services (ISES) in June 2015. We present the characteristics of the service, some products, and the initial actions for developing a space weather strategy in Mexico. The service operates a computing infrastructure including a web application, data repository, and a high-performance computing server to run numerical models. SCiESMEX uses data of the ground-based instrumental network of the National Space Weather Laboratory (LANCE), covering solar radio burst emissions, solar wind and interplanetary disturbances (by interplanetary scintillation observations), geomagnetic measurements, and analysis of the total electron content (TEC) of the ionosphere (by employing data from local networks of GPS receiver stations).

  3. Space weather activities in Europe

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.

    The Sun has long been understood as a source of energy for mankind. Only in the more modern times has it also been seen as a source of disturbances in the space environment of the Earth, but also of the other planets and the heliosphere. Space weather research had an early start in Europe with investigations of Birkeland, Fitzgerald and Lodge, ultimately leading to an understanding of geomagnetic storms and their relation to the Sun. Today, European space weather activities range from the study of the Sun, through the inner heliosphere, to the magnetosphere, ionosphere, atmosphere, down to ground level effects. We will give an overview of European space weather activities and focus on the chain of events from Sun to Earth.

  4. Space Weathering Processes on Mercury

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2002-01-01

    Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will incur the effects of space weathering. These weathering processes are capable of both creating regolith and altering its optical properties. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes as well as the products of those processes. It should be possible to observe the effects of these differences in Vis/NIR spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the iron content of the Mercurian surface. Theoretical and experimental work has been undertaken in order to better understand these consequences.

  5. Space Weathering Processes on Mercury

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2002-01-01

    Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will incur the effects of space weathering. These weathering processes are capable of both creating regolith and altering its optical properties. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes as well as the products of those processes. It should be possible to observe the effects of these differences in Vis/NIR spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the iron content of the Mercurian surface. Theoretical and experimental work has been undertaken in order to better understand these consequences.

  6. Bringing Space Weather Down to Earth

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  7. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting

    PubMed Central

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-01-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518

  8. Cosmic rays: Space Weather Perspective

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    The concept of Space Weather was launched before a decade to describe the short-term variations in the different form of solar ac-tivity and their effect in the near Earth environ-ment. Space weather affects the Earth's atmos-phere in many ways and through various phe-nomena. Among them, geomagnetic storms and the variability of the galactic cosmic ray flux be-long to the most important ones as for the lower atmosphere. We have performed superposed ep-och analysis using hourly neutron monitor data for three different neutron-monitoring stations of different cut off rigidity as a measure of cosmic ray intensity. In the present study for superposed epoch analysis the time of occurrence of CMEs are defined as key time (zero or epoch hour/day). It is noteworthy that the use of cosmic ray data in space weather research plays a key role for its prediction. We have studied the cosmic ray, geo-magnetic and interplanetary plasma/field data to understand the physical mechanism responsible for Forbush decrease and geomagnetic storm that can be used as a signature to forecast space weather. Keywords: Space weather, cosmic ray, geomag-netic storm, forbush decrease

  9. Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.

    2011-01-01

    Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.

  10. Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.

    2011-01-01

    Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.

  11. Modelling the perception of weather conditions by users of outdoor public spaces

    NASA Astrophysics Data System (ADS)

    Andrade, H.; Oliveira, S.; Alcoforado, M.-J.

    2009-09-01

    Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared

  12. Space Weather Characterization of Exoplanets

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Moschou, Sofia P.

    2017-05-01

    M dwarfs are the most feasible targets for finding planets orbiting in the habitable zone (HZ). However, their intense magnetic activity makes it very challenging for these planets to sustain an atmosphere. Using MHD, we model the coronae of planet hosting stars and the interaction of the stellar wind with the planets' atmosphere in order to asses their "habitability". These space weather conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of habitability.In this talk I will discuss these conditions for the exciting newly discovered temperate terrestrial planets around Proxima Centauri and TRAPPIST-1, and will highlight a new and quite extreme magnetospheric configuration that most of the TRAPPIST-1 planets are likely to experience.

  13. Space Weather Services at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hesse, M.; Pulkkinen, A.; Zheng, Y.; Maddox, M.; Kuznetsova, M.; Taktakishvil, A.; Rastaetter, L.

    2010-01-01

    The Space Weather Laboratory (SWL) forms a focal point at GSFC for the generation of space weather tools and information. This information is based on data from space mission and ground observatories, as well as on forefront model calculations conducted at the Community Coordinated Modeling Center (CCMC). CCMC works with the research community to bring to bear the power of communitydeveloped space science models on space weather problems. Data from primarily from NASA missions but also from NOAA and other partner agencies are combined with model results into a fully configurable space weather information display by means of the iSWA system. This information and iSWA form the basis for and SWL-provided service to NASA's robotic mission fleet, which includes forecasts, regular updates, and warnings. This service benefits from a strong partnership with NASA's Space Radiation Analysis Group, and with the US Air Force Weather Agency. In this presentation, we provide a summary of space weather capabilities and services and we present an outlook into the future.

  14. Space weather: Challenges and Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2009-12-01

    The Space Weather Prediction Center (SWPC) has the following legal mandates to: a) Continuously monitor, measure, and specify the space environment, b) Provide timely and accurate space weather data, operational forecasts, alerts, and warnings of hazardous space weather phenomena, c) Provide scientific stewardship of, and public access to, space weather data and products, d) Understand the processes that influence space weather and develop applications for the user community and e) Develop new and improved products and transition them into operations to meet evolving space weather user needs. This presentation will discuss the challenges and opportunities that NOAA and the SWPC face in addressing these mandates. This includes coordination of space environment activities across federal agencies and the strategic planning for NOAA's space weather services, integration of space weather activities as well as critical dependencies of space weather services on current and future operational environmental satellites.

  15. The Transfer Function Model as a Tool to Study and Describe Space Weather Phenomena

    NASA Technical Reports Server (NTRS)

    Porter, Hayden S.; Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Transfer Function Model (TFM) is a semi-analytical, linear model that is designed especially to describe thermospheric perturbations associated with magnetic storms and substorm. activity. It is a multi-constituent model (N2, O, He H, Ar) that accounts for wind induced diffusion, which significantly affects not only the composition and mass density but also the temperature and wind fields. Because the TFM adopts a semianalytic approach in which the geometry and temporal dependencies of the driving sources are removed through the use of height-integrated Green's functions, it provides physical insight into the essential properties of processes being considered, which are uncluttered by the accidental complexities that arise from particular source geometrie and time dependences. Extending from the ground to 700 km, the TFM eliminates spurious effects due to arbitrarily chosen boundary conditions. A database of transfer functions, computed only once, can be used to synthesize a wide range of spatial and temporal sources dependencies. The response synthesis can be performed quickly in real-time using only limited computing capabilities. These features make the TFM unique among global dynamical models. Given these desirable properties, a version of the TFM has been developed for personal computers (PC) using advanced platform-independent 3D visualization capabilities. We demonstrate the model capabilities with simulations for different auroral sources, including the response of ducted gravity waves modes that propagate around the globe. The thermospheric response is found to depend strongly on the spatial and temporal frequency spectra of the storm. Such varied behavior is difficult to describe in statistical empirical models. To improve the capability of space weather prediction, the TFM thus could be grafted naturally onto existing statistical models using data assimilation.

  16. The Transfer Function Model as a Tool to Study and Describe Space Weather Phenomena

    NASA Technical Reports Server (NTRS)

    Porter, Hayden S.; Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Transfer Function Model (TFM) is a semi-analytical, linear model that is designed especially to describe thermospheric perturbations associated with magnetic storms and substorm. activity. It is a multi-constituent model (N2, O, He H, Ar) that accounts for wind induced diffusion, which significantly affects not only the composition and mass density but also the temperature and wind fields. Because the TFM adopts a semianalytic approach in which the geometry and temporal dependencies of the driving sources are removed through the use of height-integrated Green's functions, it provides physical insight into the essential properties of processes being considered, which are uncluttered by the accidental complexities that arise from particular source geometrie and time dependences. Extending from the ground to 700 km, the TFM eliminates spurious effects due to arbitrarily chosen boundary conditions. A database of transfer functions, computed only once, can be used to synthesize a wide range of spatial and temporal sources dependencies. The response synthesis can be performed quickly in real-time using only limited computing capabilities. These features make the TFM unique among global dynamical models. Given these desirable properties, a version of the TFM has been developed for personal computers (PC) using advanced platform-independent 3D visualization capabilities. We demonstrate the model capabilities with simulations for different auroral sources, including the response of ducted gravity waves modes that propagate around the globe. The thermospheric response is found to depend strongly on the spatial and temporal frequency spectra of the storm. Such varied behavior is difficult to describe in statistical empirical models. To improve the capability of space weather prediction, the TFM thus could be grafted naturally onto existing statistical models using data assimilation.

  17. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  18. Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b

    NASA Astrophysics Data System (ADS)

    Yoneda, M.; Berdyugina, S.; Kuhn, J.

    2017-10-01

    Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Vir b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.

  19. Anthropogenic Space Weather

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-04-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  20. The Planeterrella: an Analog Model for Teaching About the Invisible Electromagnetic Processes Driving Space Weather

    NASA Astrophysics Data System (ADS)

    Masongsong, E. V.; Glesener, G. B.; Angelopoulos, V.; Lilensten, J.; Bingley, L.

    2015-12-01

    The Planeterrella can be used as an analog to help students visualize and understand the electromagnetic processes driving space weather that affect our daily lives. Solar storms and solar wind charged particles (plasma) cause "space weather" via their interaction with Earth's protective magnetic shield, the magnetosphere. The Planeterrella uses magnetized spheres in a vacuum chamber to demonstrate solar wind energy transfer to Earth and planets, with polar localization of aurora due to charged particles traveling along geomagnetic field lines. The Planeterrella provides a unique opportunity to experience and manipulate plasma, the dominant form of matter in our universe, yet seldom observable on Earth. Severe space weather events produce spectacular auroral displays as well as devastating consequences: radiation exposure to air and space travelers, prolonged radio blackouts, and damage to critical GPS and communications satellites. We will (1) discuss ways in which the Planeterrella may be most useful in classroom settings, including large lecture halls, laboratories, and small discussion sessions; (2) provide information on how instructors can produce their own Planeterrella for their courses; and (3) invite meeting attendees to engage in a discussion on how we might be able to improve on the current design of the Planeterrella, and how to reach students in more parts of the world.

  1. Forecasting Space Weather Solar Indices

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Shurkin, K.; Arge, C. N.

    2016-12-01

    Progress towards forecasting key space weather parameters, up to 7 days in advance, using SIFT(Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric fluxTransport) model will be discussed in this presentation. The forecasting method reviewed here,and fully outlined in Henney et al. 2012 and Henney et al. 2015, utilizes the solar near-sidemagnetic field distribution estimated with the ADAPT flux transport model as input to the SIFTempirical models, which predict selected bands (between 0.1 to 175 nm) of solar soft X-ray (XUV),far ultraviolet (FUV), and extreme ultraviolet (EUV) irradiance, along with observed F10.7 (solar10.7 cm, 2.8 GHz, radio flux), sunspot number (SSN), and the Mg II core-to-wing ratio values. TheADAPT model assimilates input magnetogram data from SDO/HMI, NISP/GONG, & NISP/VSM. We will provide a summary of recent updates regarding the ADAPT and SIFT models. The ADAPT model development is supported primarily by AFRL, with additional support from NASA. This work utilizes data produced collaboratively between AFRL and NSO.

  2. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  3. Current and future challenges in space weather science

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    The main objective of the space weather science is to provide a scientific basis for reliable space weather forecasting. The importance of space weather forecasting is increasing as our society is becoming more and more dependent on advanced technologies that may be affected by adverse space weather conditions. Space weather forecasting is still a difficult task and requires specific observational inputs that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. A list of key observations that are essential for real-time operational space weather forecasting is established. Further on, the use of observational data to produce reliable predictions requires development of empirical and statistical methods, as well as physical models. Scientific basis of space weather forecasting is briefly described. Several important problems are emphasized, and possible ways of improving our predictive capabilities are discussed, including possible novel space observations to be made in future.

  4. Space weather activities in Australia

    NASA Astrophysics Data System (ADS)

    Cole, D.

    Space Weather Plan Australia has a draft space weather plan to drive and focus appropriate research into services that meet future industry and social needs. The Plan has three main platforms, space weather monitoring and service delivery, support for priority research, and outreach to the community. The details of monitoring, service, research and outreach activities are summarised. A ground-based network of 14 monitoring stations from Antarctica to Papua New Guinea is operated by IPS, a government agency. These sites monitor ionospheric and geomagnetic characteristics, while two of them also monitor the sun at radio and optical wavelengths. Services provided through the Australian Space Forecast Centre (ASFC) include real-time information on the solar, space, ionospheric and geomagnetic environments. Data are gathered automatically from monitoring sites and integrated with data exchanged internationally to create snapshots of current space weather conditions and forecasts of conditions up to several days ahead. IPS also hosts the WDC for Solar-Terrestrial Science and specialises in ground-based solar, ionospheric, and geomagnetic data sets, although recent in-situ magnetospheric measurements are also included. Space weather activities A research consortium operates the Tasman International Geospace Environment Radar (TIGER), an HF southward pointing auroral radar operating from Hobart (Tasmania). A second cooperative radar (Unwin radar) is being constructed in the South Island of New Zealand. This will intersect with TIGER over the auroral zone and enhance the ability of the radar to image the surge of currents that herald space environment changes entering the Polar Regions. Launched in November 2002, the micro satellite FEDSAT, operated by the Cooperative Research Centre for Satellite Systems, has led to successful space science programs and data streams. FEDSAT is making measurements of the magnetic field over Australia and higher latitudes. It also carries a

  5. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  6. Asteroids: Does Space Weathering Matter?

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    2001-01-01

    The interpretive calibrations and methodologies used to extract mineralogy from asteroidal spectra appear to remain valid until the space weathering process is advanced to a degree which appears to be rare or absent on asteroid surfaces. Additional information is contained in the original extended abstract.

  7. Overview of Space Weather Impacts and NASA Space Weather Center Services and Products

    NASA Technical Reports Server (NTRS)

    Zheng, Y.

    2012-01-01

    The presentation is divided into two major components. First, I will give an overview of space weather phenomenon and their associated impacts. Then I will describe the comprehensive list of products and tools that NASA Space Weather Center has developed by leveraging more than a decade long modeling experience enabled by the Community Coordinated Modeling Center (CCMC) and latest scientific research results from the broad science community. In addition, a summary of the space weather activities we have been engaged in and our operational experience will be provided.

  8. The New Space Weather Action Center; the Next Level on Space Weather Education

    NASA Astrophysics Data System (ADS)

    Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.

    2016-12-01

    The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.

  9. CCMC/Space Weather Research Center: Overview and Future Space Weather Needs

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Maddox, M. M.

    2015-12-01

    Space Weather Research Center (SWRC), part of the Community Coordinated Modeling Center (CCMC), was established in 2010 to address emerging space weather needs of NASA robotic missions. By leveraging CCMC's modeling capabilities and through collaborations with different NASA centers, government agencies, educational institutions and multiple entities worldwide, SWRC provides research-based space weather forecasting, monitoring and anomaly support to NASA users. SWRC analyst team has also helped to identify limitations of current models and thus accelerate R2O-O2R process. In addition, the establishment of SWRC has added a new dimension to CCMC's education program. In this presentation, an overview of SWRC activities will be given. Future research and modeling needs will be discussed from the perspective of a space weather analyst.

  10. Health Issues and Space Weather

    NASA Astrophysics Data System (ADS)

    Crosby, N.

    2009-04-01

    The possibility that solar activity and variations in the Earth's magnetic field may affect human health has been debated for many decades but is still a "scientific topic" in its infancy. By learning whether and, if so, how much the Earth's space weather can influence the daily health of people will be of practical importance. Knowing whether human genetics, include regulating factors that take into account fluctuations of the Earth's magnetic field and solar disturbances, indeed exist will also benefit future interplanetary space travelers. Because the atmospheres on other planets are different from ours, as well as their interaction with the space environment, one may ask whether we are equipped with the genetics necessary to take this variability into account. The goal of this presentation is to define what is meant by space weather as a health risk and identify the long-term socio-economic effects on society that such health risks would have. Identifying the physical links between space weather sources and different effects on human health, as well as the parameters (direct and indirect) to be monitored, the potential for such a cross-disciplinary study will be invaluable, for scientists and medical doctors, as well as for engineers.

  11. Activities of NICT space weather project

    NASA Astrophysics Data System (ADS)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  12. European Space Weather Portal Open for Business

    NASA Astrophysics Data System (ADS)

    Staedter, Tracy

    2006-10-01

    This past spring, the European Space Agency (ESA) launched the final release of a centralized Web site designed to showcase a variety of applications, services, and data products revolving around space weather. Called SWENET (Space Weather European Network), the endeavor is expected to create more communication between European scientists and those who use space weather data products and more enthusiasm for space weather among laypeople.

  13. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2013-05-01

    Aschwanden, M. J. 2005, Physics of the Solar Corona . An Introduction with Problems and Solutions (2nd edition), ed. Aschwanden, M. J. Balasubramaniam, K...AFRL-OSR-VA-TR-2013-0020 Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity...Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather 5a. CONTRACT NUMBER FA9550-09

  14. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    NASA Astrophysics Data System (ADS)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  15. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  16. Space weather forecasting: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2012-12-01

    There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.

  17. Two way coupling RAM-SCB to the space weather modeling framework

    SciTech Connect

    Welling, Daniel T; Jordanova, Vania K; Zaharia, Sorin G; Toth, Gabor

    2010-12-03

    The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) has been used to successfully study inner magnetosphere dynamics during different solar wind and magnetosphere conditions. Recently, one way coupling of RAM-SCB with the Space Weather Modeling Framework (SWMF) has been achieved to replace all data or empirical inputs with those obtained through first-principles-based codes: magnetic field and plasma flux outer boundary conditions are provided by the Block Adaptive Tree Solar wind Roe-type Upwind Scheme (BATS-R-US) MHO code, convection electric field is provided by the Ridley Ionosphere Model (RIM), and ion composition is provided by the Polar Wind Outflow Model (PWOM) combined with a multi-species MHO approach. These advances, though creating a powerful inner magnetosphere virtual laboratory, neglect the important mechanisms through which the ring current feeds back into the whole system, primarily the stretching of the magnetic field lines and shielding of the convection electric field through strong region two Field Aligned Currents (FACs). In turn, changing the magnetosphere in this way changes the evolution of the ring current. To address this shortcoming, the coupling has been expanded to include feedback from RAM-SCB to the other coupled codes: region two FACs are returned to the RIM while total plasma pressure is used to nudge the MHO solution towards the RAMSCB values. The impacts of the two way coupling are evaluated on three levels: the global magnetospheric level, focusing on the impact on the ionosphere and the shape of the magnetosphere, the regional level, examining the impact on the development of the ring current in terms of energy density, anisotropy, and plasma distribution, and the local level to compare the new results to in-situ measurements of magnetic and electric field and plasma. The results will also be compared to past simulations using the one way coupling and no coupling

  18. Two Way Coupling RAM-SCB to the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Jordanova, V. K.; Zaharia, S. G.; Toth, G.

    2010-12-01

    The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) has been used to successfully study inner magnetosphere dynamics during different solar wind and magnetosphere conditions. Recently, one way coupling of RAM-SCB with the Space Weather Modeling Framework (SWMF) has been achieved to replace all data or empirical inputs with those obtained through first-principles-based codes: magnetic field and plasma flux outer boundary conditions are provided by the Block Adaptive Tree Solar wind Roe-type Upwind Scheme (BATS-R-US) MHD code, convection electric field is provided by the Ridley Ionosphere Model (RIM), and ion composition is provided by the Polar Wind Outflow Model (PWOM) combined with a multi-species MHD approach. These advances, though creating a powerful inner magnetosphere virtual laboratory, neglect the important mechanisms through which the ring current feeds back into the whole system, primarily the stretching of the magnetic field lines and shielding of the convection electric field through strong region two Field Aligned Currents (FACs). In turn, changing the magnetosphere in this way changes the evolution of the ring current. To address this shortcoming, the coupling has been expanded to include feedback from RAM-SCB to the other coupled codes: region two FACs are returned to the RIM while total plasma pressure is used to nudge the MHD solution towards the RAM-SCB values. The impacts of the two way coupling are evaluated on three levels: the global magnetospheric level, focusing on the impact on the ionosphere and the shape of the magnetosphere, the regional level, examining the impact on the development of the ring current in terms of energy density, anisotropy, and plasma distribution, and the local level to compare the new results to in-situ measurements of magnetic and electric field and plasma. The results will also be compared to past simulations using the one way coupling and no coupling

  19. Development of a Space Weather forecast service

    NASA Astrophysics Data System (ADS)

    Kirsch, Peter; Isles, John; Burge, Christina

    2014-05-01

    Space weather describes changes in the near-Earth space environment, it includes the monitoring of magnetic fields, plasma, radiation and other matter. Ejections of plasma from the Sun and magnetic storms at the Earth can increase the number of high energy particles trapped in the Earth's magnetic field; these events can present risks and hazards to space-borne instrumentation and personnel. Improved knowledge of space weather processes acquired through monitoring via both satellite and ground based instruments and related collaborative research projects (European Union Framework 7 - SPACECAST) has allowed the further development of forecasting models such as the British Antarctic Survey (BAS) Radiation Belt model. A system is being developed which enables real-time access to a space weather forecast service. This service will provide a 3-hourly forward look, updated hourly. To enable this forecast, systems are in place to gather, in real-time, ancillary data required for input into the BAS model, in particular data from the GOES satellite instruments. Auxiliary information from other satellites (e.g. ACE) and ground based magnetometers are also gathered and presented to assist in the interpretation of current space weather activity. BAS is working in collaboration with satellite operators and other interested parties to provide an interface which will inform them, in a timely fashion, of events that may require mitigating action to prevent possible extensive (and costly) effects to, for example, communication services. Data can be obtained via a web service, or viewed directly via a browser interface. In addition, it is anticipated that a post-event analysis suite be available, enabling the more detailed view of recent and past events and the possibility of running the model to "replay" periods of space weather history.

  20. Space Weather Receives First "Impact Rating"

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2007-08-01

    Journal Citation Reports, published by Thomson Scientific (http://scientific.thomson.com/isi/), has issued its first impact factor for Space Weather. It is 1.610. I consider this number to be very good, strongly validating the impact that Space Weather has already made in its short life within the community of space weather professionals.

  1. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2012-07-06

    Ephemeral Brightening,” 2nd ATST – East Workshop In Solar Physics: Magnetic Fields From The Photosphere To The Corona , Washington D.C., Mar 2012. [6...AFRL-RV-PS- AFRL-RV-PS- TR-2012-0133 TR-2012-0133 AUTOMATIC RECOGNITION OF SOLAR FEATURES FOR DEVELOPING DATA DRIVEN PREDICTION MODELS OF... SOLAR ACTIVITY AND SPACE WEATHER Jason Jackiewicz New Mexico State University Department of Astronomy PO Box 30001, MSC 4500 Las

  2. Updates on CCMC Activities and GSFC Space Weather Services

    NASA Technical Reports Server (NTRS)

    Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.; Macneice, P.; Mays, L.; Mendoza, A. M.; Mullinix, R.

    2011-01-01

    In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.

  3. Space Weather Model Validations Using dBH/dt at High and Mid-Latitude Magnetometer Locations

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; Kuznetsova, M. M.; Pulkkinen, A.; Toth, G.; Raeder, J.; Wiltberger, M. J.

    2012-12-01

    As part to the model validation efforts performed at the Community Coordinated Modeling Center (CCMC), a Research-to-Operation (R2O) modeling challenge was started in 2010 to investigate the performance of first-principles and statistical models of the magnetosphere-ionosphere system to predict magnetic disturbances that can trigger geomagnetically induced currents. These models have to be able to run in real-time on a small-sized computer cluster in order to be able to support space weather operations. The outputs of the models are the horizontal magnetic perturbations ("delta-BH") at a given list of magnetometer stations that cover the high, middle and low latitudes. The "R2O challenge" is a continuation of the 2008 GEM challenge and involves the Space Weather Modeling Framework (SWMF), the OpenGGCM and the Lyon Fedder Mobarry (LFM) models of the global magnetosphere-ionosphere system and the Weimer and Weigel delta-BH specification models. These 5 models have been run for 6 events of at least a day's length that include 2 strong storms, 3 intermediate sized storms and one weak event. We compared model outputs with 12 magnetometers that were selected for the original 2008 GEM challenge. In this paper we describe the calculation of the delta-BH values for the magnetosphere-ionosphere models that include currents in the ionosphere, field-aligned currents and the magnetosphere portions of the simulations. To validate the calculations performed at CCMC we compared our results to delta-BH computed during run-time by the Space Weather Modeling Framework (SWMF) model. We present the role and intensity of the contributions to the delta-BH signal coming from the three current systems. The evaluation of the model results is based on an event-based metric using counts of how often the observed or modeled time derivative of delta-BH ("dBH/dt") exceeds a threshold at least once in each of the time windows that cover the storm events. The resulting contingency table (number of

  4. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  5. Space Weather Outreach: An Informal Education Perspective

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2008-12-01

    Informal science education institutions, such as science centers, play an important role in science education. They serve millions of people, including students and teachers. Within the last decade, many have tried to improve the public's understanding of science and scientific research through informal education projects. The recent success of several space weather-related missions and research programs and the launch of the International Heliophysical Year (IHY) research and education programs make this an ideal time to inform the public about the importance and relevance of space weather to our understanding of heliophysical science. Communication efforts associated with space weather both benefit and are compromised by analogies to terrestrial weather. This paper summarizes the benefits and challenges of the terrestrial weather analogy using two exhibit evaluation studies. The paper also describes three components of the Space Science Institute's Space Weather Outreach Program: Space Weather Center Website, Educator Workshops, and Small Exhibits for Libraries and Science Centers.

  6. Mid-Latitude D-Region Absorption Studies in the Space Weather Context: Modeling Results

    NASA Astrophysics Data System (ADS)

    Eccles, V.; Sojka, J.; Rice, D.; Hunsucker, R. D.

    2003-12-01

    A Data-Driven D-region (DDDR) model has been created to ingest real-time geophysical data streams into a D-region electron density model for improved determinations of D-region specification with respect to HF propagation and absorption characteristics. The model is based on the disturbed D-region model of Swider and Foley ["Steady-State Multi-Ion Disturbed D-Region Model", AFGL-TR-78-0155, June 1978] for quick calculation of the global electron density profile from 60 to 100 km altitude. The model is driven by geophysical indices and ingests x-ray observations and solar wind particle observations (NOAA/GOES 12 satellite) into ionization drivers to the weather-sensitive D region model. The DDDR model and the Ionospheric Forecast Model (IFM) are run for the time period of May 25 to June 25 of 2003 and used to calculate HF signal propagation and strength from WWV, WWVH, and CHU standard time-frequency stations to the HF monitoring stations of the HF Investigation and D region Ionosphere Variation Experiment (HIDAVE). The monitoring sites are at Klamath Falls, OR and Bear Lake Observatory, UT. Day-to-day trends in HF absorption are examined in the data-model comparison as well as the D region response to solar flares from Class C to Class X.

  7. Space Weather: The Solar Perspective

    NASA Astrophysics Data System (ADS)

    Schwenn, Rainer

    2006-12-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  8. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan

  9. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  10. Space Weathering on Airless Bodies

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Blewett, D. T.; Hiroi, T.; Marchi, S.; McFadden, L. A.; Noble, S. K.; De Sanctis, M. C.; Taylor, L. A.; Reddy, V.

    2012-12-01

    Space weathering refers to an array of processes that measurably alter the character of surfaces that are exposed to the space environment with time. Important observations and constraints come from integration of ground truth sample information and remotely sensed data for the surface. Currently, such combined sample and remote data are available for the Moon, a few near-Earth asteroids (NEAs), and Vesta. Although common processes exist on every planetary body visited, the character of surface alteration by space weathering on airless bodies is very dependent on the particular space environment and the geology and composition of the host. For the Moon, lunar samples have provided a direct link between exposure to the space environment and the development and accumulation of nanophase reduced iron (npFe^0) on soil grains [1]. The optical properties of npFe^0 are well defined experimentally [2]. The resulting effects on lunar materials include reduction of diagnostic absorption bands, prominence of a red-sloped near-infrared (NIR) continuum, and lower albedo [3]. For Eros and Hyabusa, two NEAs visited by spacecraft, similar, but less pronounced optical effects are observed [4]. The in situ Eros measurements and returned Hyabusa samples confirm both bodies are ordinary chondritic in composition despite the optical alteration of their surface [5]. The main-belt proto-planet Vesta has long been associated with HED basaltic achondrite meteorites [6]. Data from Dawn reveal an anti-correlation between mineral band strength and albedo often observed around fresh craters. However, no association is seen with NIR continuum slope implying little development of significant npFe^0 [7]. Several physical and compositional reasons that hinder npFe^0 creation on Vesta are now recognized; alteration processes are instead more linked with dispersal of opaques and regolith mixing processes [7, 8]. Space weathering and evolution of the optical properties of regolith on airless bodies

  11. A nested-grid mesoscale numerical weather prediction model modified for Space Shuttle operational requirements

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.

    1983-01-01

    A nested-grid mesoscale atmospheric simulation system (MASS) is tested over Florida for the case of intense seabreeze-induced convection. The goal of this modeling system is to provide real-time aviation weather support which is designed to fit local terminal operations such as those supporting NASA's STS. Results from a 58 km and a 14.5 km nested-grid simulation show that this version of the MASS is capable of simulating many of the basic characteristics of convective complexes during periods of relatively weak synoptic scale flow regimes. However, it is noted that extensive development work is required with nested-grid cumulus and planetary boundary layer parameterization schemes before many of the meso-beta scale features such as thunderstorm downdraft-produced bubble high pressure centers can be accurately simulated. After these schemes are properly tuned, MASS can be utilized to initialize microscale modeling systems.

  12. A nested-grid mesoscale numerical weather prediction model modified for Space Shuttle operational requirements

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.

    1983-01-01

    A nested-grid mesoscale atmospheric simulation system (MASS) is tested over Florida for the case of intense seabreeze-induced convection. The goal of this modeling system is to provide real-time aviation weather support which is designed to fit local terminal operations such as those supporting NASA's STS. Results from a 58 km and a 14.5 km nested-grid simulation show that this version of the MASS is capable of simulating many of the basic characteristics of convective complexes during periods of relatively weak synoptic scale flow regimes. However, it is noted that extensive development work is required with nested-grid cumulus and planetary boundary layer parameterization schemes before many of the meso-beta scale features such as thunderstorm downdraft-produced bubble high pressure centers can be accurately simulated. After these schemes are properly tuned, MASS can be utilized to initialize microscale modeling systems.

  13. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations

    NASA Astrophysics Data System (ADS)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.

    2015-12-01

    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (< 50 nm) causing both reddening and darkening of the spectra with respect to unweathered material (Britt-Pieters particle behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters < 80 nm and iron concentrations of ~1-10wt% in an amorphous silica matrix. Further model runs are planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to

  14. Space weather activities at NOAA s Space Environment Center

    NASA Astrophysics Data System (ADS)

    Kunches, J.

    The NOAA Space Environment Center is the focal point for real-time space weather monitoring and prediction in the United States . The Space Weather Operations (SWO) division staffs a 24-hour/day operations center, through which both in-situ and remotely sensed data and imagery flow. These diverse data streams are analyzed continuously, and that information is applied to both predictions and specifications of various aspects of the space environment. These include the behavior of the geomagnetic field, the character of the ionosphere, and the strength of the near-earth radiation environment. Models are brought to bear in each of thes e areas, as SEC has an active research-to-operations transition effort. The Rapid Prototyping Center is the venue through which pertinent models and data must pass to be brought into the operational arena. The model outputs are then made available both internally and externally. SEC is a member of the International Space Environment Service (ISES), a partnership currently consisting of eleven nations. The mission of the ISES is to encourage and facilitate near-real-time international monitoring and prediction of the space environment by: the rapid exchange of space environment information; the standardization of the methodology for space environment observations and data reduction; the uniform publication of observations and statistics; and the application of standardized space environment products and services to assist users in reducing the impact of space weather on activities of human interest. An overview of the operational attributes of the SEC, and the function of the ISES, will be presented. Additional issues related to space weather customers, new data streams to be available in the near-term, and how these new data and imagery will be integrated int o operations will be discussed.

  15. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  16. Validation of Community Models: Identifying Events in Space Weather Model Timelines

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2009-01-01

    I develop and document a set of procedures which test the quality of predictions of solar wind speed and polarity of the interplanetary magnetic field (IMF) made by coupled models of the ambient solar corona and heliosphere. The Wang-Sheeley-Arge (WSA) model is used to illustrate the application of these validation procedures. I present an algorithm which detects transitions of the solar wind from slow to high speed. I also present an algorithm which processes the measured polarity of the outward directed component of the IMF. This removes high-frequency variations to expose the longer-scale changes that reflect IMF sector changes. I apply these algorithms to WSA model predictions made using a small set of photospheric synoptic magnetograms obtained by the Global Oscillation Network Group as input to the model. The results of this preliminary validation of the WSA model (version 1.6) are summarized.

  17. Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring

    NASA Astrophysics Data System (ADS)

    Lee, I. T.; Tsai, H. F.; Liu, J. Y.; Lin, C. H.; Matsuo, T.; Chang, L. C.

    2013-10-01

    the past decade, the paucity of ionospheric observations has made it almost impossible to reconstruct the three-dimensional structures of global ionospheric electron density. The Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC, F3/C) constellation has provided ionospheric electron density profiles with high vertical resolution through radio occultation measurements. Slated for deployment starting in 2016, the FORMOSAT-7/COSMIC-2 (F7/C2) constellation will further provide more than 4 times the number of the F3/C occultation soundings. An observing system simulation experiment is conducted to determine the impact of F7/C2 on ionospheric weather monitoring. The results first show that the F7/C2 observations can reconstruct 3-D ionospheric structure with a data accumulation period of 1 h, which can advance studies of small spatial/temporal scale variation/signatures in the ionosphere. Comparing to assimilation results of F3/C, the assimilation system significantly reduces the error arising in the models and observations after assimilating synthetic observations of F7/C2. During this observing system simulation experiment period, the averaged root-mean-square error percentage for the results of F7/C2 is about 4.4%, lower than that of F3/C 7.3%. Furthermore, even with an assimilation window of less than 60 min, the F7/C2 RMS errors still yield reliable values compared to the F3/C results. This paper represents a major advance in ionospheric weather monitoring for the future mission.

  18. Near Real Time Data for Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2014-12-01

    Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.

  19. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  20. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    SciTech Connect

    Reeves, Geoffrey D; Friedel, Reiner H W; Chen, Yue; Koller, Josef; Henderson, Michael G

    2008-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

  1. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  2. New approaches to space weather forecasting

    NASA Astrophysics Data System (ADS)

    Parnowski, Aleksei; Cheremnykh, Oleg; Yatsenko, Vitaly

    2010-05-01

    We developed several approaches to the problem of real-time space weather indices forecasting using readily available data from ACE and a number of ground stations. The first one is based on a dynamical-information approach to nonlinear modeling of space plasma [1]. It uses new nonlinear mathematical models of geomagnetic indices and original algorithms for detection of structure and parameters. The identification problem is formulated as a constrained optimization problem. Novel algorithms provide an optimal structure of discrete dynamical system using fuzzy systems modeling. The second one is based on the regression modeling method [2], which combines the benefits of empirical and statistical approaches. It uses such statistical methods as the linear regression analysis, maximum likelihood method, dispersion analysis and Monte-Carlo simulations to deduce the empirical relationships in the system. In both cases the typical elapsed time per forecast is about several seconds on an average PC. Such techniques can be easily extended to other indices like AE and Kp. The proposed system can also be useful for investigating of physical phenomena related to interactions between the solar wind and the magnetosphere - it already helped uncovering two new geoeffective parameters. In addition, we performed the risk analysis of damage to VUV, EUV and X-ray optics due to space weather factors and analyzed the safety of space instruments. We plan combining short-term and medium-term approaches to accurately predict geomagnetic storms at least 5-10 hours before commencement. Practical applications of such a system include (but are not limited to): - spacecraft safety (prediction of radiation threat); - human health (putting emergency services on alert); - prevention of technological disasters (power grid failures, major radio blackouts). 1. Cheremnykh O.K., Yatsenko V.A., Semeniv O.V., Shatokhina Yu.V. Nonlinear dynamics and prediction for space weather // Ukr. J. Phys. — 2008

  3. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Rutledge, R.; Semones, E. J.; Johnson, A. S.; Guetersloh, S.; Fry, D.; Stoffle, N.; Lee, K.

    2008-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight -- and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between "research" and "operations". The real, practical work to enable a permanent human presence away from Earth has already begun.

  4. Forecasting Space Weather from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, maps of the measured field in the photosphere, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). For each type of event, the expected rate is readily converted to the chance that the active region will produce such an event in any given forward time window of a day or so. If the chance is small enough (e.g. <5%), the forecast is All Clear for that type of event. We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare

  5. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    influenced very much on communications, working of navigation systems, satellites and high-level technology systems in space and, the atmosphere, and on the ground). The review and original part will contain following parts: 1. Introduction (cosmic rays as object and instrument of space weather monitoring and forecasting). 2. On-line search of the start of great Flare Energetic Particle (FEP) events, automatically formation of Alerts, estimation of probability of false alerts and probability of missing alerts (realized in Israel Cosmic Ray Center and Emilio Segre’ Observatory). 3. On-line determination of flare energetic particle spectrum by the method of coupling functions. 4. Automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere, and on the ground in dependence of cut-off rigidity. 5. Cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects.

  6. [Space Weather Impact on the Electricity Market

    NASA Technical Reports Server (NTRS)

    SaintCyr, O. Chris

    2007-01-01

    Forbes & St. Cyr (2004, hereafter "FISC") have provided evidence that the electricity market can be impacted by space weather. Our analysis indicated that the estimated market impact for PJM was 3.7 % or approximately $500 million dollars over the 19 month sample period. Kappenman has taken exception to this estimate and contends that we have exaggerated the magnitude of the problem that space weather poses to PJM. There are four specific issues: (1) he claims that we have ignored relevant literature; (2) he asserts that Dst is not an appropriate proxy for GICs in PJM; (3) he charges that our findings are inconsistent with the impact of the 17 September 2000 storm; and (4) he alleges that our discussion of October 2003 storms is misleading. In our article, we have explained our methodology, multivariate regression analysis, with a particular focus on how it compares to correlation analysis. We have also explained the limitations of our analysis. We noted that "...While the Dstlprice relationship was found to be robust, the precise estimate should be treated with a relatively high degree of caution given that econometric modeling is not an exact science as well as the fact that the measure of space weather may be a poor proxy for GICs" (paragraph 96). We have also noted that additional research using local magnetometer data are needed (paragraph 97). We did not claim that that our findings for PJM are representative of the impact of space weather on other power grids. On the contrary, we noted that ... "Only analysis of other power grids will tell. " (paragraph 97). Kappenman inaccurately asserts that we have indicated that our findings . . . "imply much higher total costs are likely across the US and elsewhere in the world." He also inaccurately asserts that we have claimed that " . . . Dst is the most suited proxy for GIC in the PJM grid.. ." Moreover, he inaccurately refers to our analysis as a correlation study that uses Dst as quasi-binary indicator.

  7. ESA Soon to Unveil Space Weather Services

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2010-10-01

    The European Space Agency (ESA) will soon begin services associated with its new Space Situational Awareness (SSA) Preparatory Programme, authorized by ESA in November 2008. With a management team based at ESA's European Space Astronomy Centre (ESAC), in Spain, the program will enable scientists, government officials, and industry representatives to better utilize and access space technology by providing real-time information on the near-Earth space environment and its hazards. These hazards involve possible collisions between orbiting objects in space, potential meteor and asteroid strikes, and harmful space weather. This latter aspect, covered under SSA's Space Weather (SWE) element, will begin with the establishment of initial services in October 2010.

  8. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  9. Overview of NASA Heliophysics and the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Clarke, S. W.

    2016-12-01

    Abstract: In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.

  10. ESA SSA Space Weather Services Supporting Space Surveillance and Tracking

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Hilgers, Alain; Fletcher, Emmet

    2012-07-01

    ESA Space Situational Awareness (SSA) Preparatory Programme was started in 2009. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The Space Weather (SWE) Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010. This presentation provides an overview of the ESA SSA SWE services focused on supporting the Space Surveillance and Tracking users. This services include estimates of the atmospheric drag and archive and forecasts of the geomagnetic and solar indices. In addition, the SSA SWE system will provide nowcasts of the ionospheric group delay to support mitigation of the ionospheric impact on radar signals. The paper will discuss the user requirements for the services, the data

  11. Global economic impacts of severe Space Weather.

    NASA Astrophysics Data System (ADS)

    Schulte In Den Baeumen, Hagen; Cairns, Iver

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events, and could have substantial impacts on electric power transmission and telecommunication grids. Modern society’s heavy reliance on these domestic and international networks increases our susceptibility to such a severe Space Weather event. Using a new high-resolution model of the global economy we simulate the economic impact of large CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies through international trade. For the CMEs modeled the total global economic impacts would range from US 380 billion to US 1 trillion. Of this total economic shock 50 % would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 0.1 - 1 %. A severe Space Weather event could lead to global economic damages of the same order as other weather disasters, climate change, and extreme financial crisis.

  12. Fifty Years of Space Weather Forecasting from Boulder

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    The first official space weather forecast was issued by the Space Disturbances Laboratory in Boulder, Colorado, in 1965, ushering in an era of operational prediction that continues to this day. Today, the National Oceanic and Atmospheric Administration (NOAA) charters the Space Weather Prediction Center (SWPC) as one of the nine National Centers for Environmental Prediction (NCEP) to provide the nation's official watches, warnings, and alerts of space weather phenomena. SWPC is now integral to national and international efforts to predict space weather events, from the common and mild, to the rare and extreme, that can impact critical technological infrastructure. In 2012, the Strategic National Risk Assessment included extreme space weather events as low-to-medium probability phenomena that could, unlike any other meteorogical phenomena, have an impact on the government's ability to function. Recognizing this, the White House chartered the Office of Science and Technology Policy (OSTP) to produce the first comprehensive national strategy for the prediction, mitigation, and response to an extreme space weather event. The implementation of the National Strategy is ongoing with NOAA, its partners, and stakeholders concentrating on the goal of improving our ability to observe, model, and predict the onset and severity of space weather events. In addition, work continues with the research community to improve our understanding of the physical mechanisms - on the Sun, in the heliosphere, and in the Earth's magnetic field and upper atmosphere - of space weather as well as the effects on critical infrastructure such as electrical power transmission systems. In fifty years, people will hopefully look back at the history of operational space weather prediction and credit our efforts today with solidifying the necessary developments in observational systems, full-physics models of the entire Sun-Earth system, and tools for predicting the impacts to infrastructure to protect

  13. Toward a Space Weather Virtual Organization (Invited)

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Holm, J. M.; Schaefer, R. K.; Weiss, M.

    2009-12-01

    On the 150th anniversary of the Carrington Event, it behooves us to reflect upon the impact of space weather on our technology-intensive, communications-driven, socitey. Over the period since the last solar maximum in 2001, the commercial, defense department, and other national entities have become increasingly dependent on the electronic command, control, & communication systems that are vulnerable to Space Weather events. There has not been a concomitant increase in our ability to reliably predict space weather nor in our ability to separate natural effects from human ones. Now we need to quickly gear up space situational awareness capability in time for the next solar max predicted to occur in about 3-4 years. Unfortunately, space weather expertise is spread over institutions and academic disciplines and communication between space weather forecasters, forecast users, and the research community is poor. We would like to set up a demonstration space weather virtual organization to find a more efficient way to communicate and manage knowledge to ensure the operational community can get actionable information in a timely manner. We call this system concept SWIFTER-ACTION (Space Weather Informatics, Forecasting, and Technology through Enabling Research - Accessibility, Content, & Timely Information On the Network.) In this paper we provide an overview of the issues that must be addressed in order to transform data into knowledge that enables action.

  14. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  15. Strategy for future space weather observational assets

    NASA Astrophysics Data System (ADS)

    Davies, Jackie; Bogdanova, Yulia; Harrison, Richard; Bisi, Mario; Hapgood, Mike

    2017-04-01

    Observations from an ad-hoc suite of mainly aging, scientific, space-borne assets currently underpin space weather forecasting capabilities world-wide. While efforts have begun to replace / supplement these assets - in particular with the recent launch of the DSCOVR spacecraft - it is widely accepted that there is an urgent need to accelerate these endeavours in order to mitigate the risk of losing these critical observations. It is hence opportune to critically review the possible options for the provision of space weather observations, particularly in terms of identifying the optimum vantage point(s) and the instrumentation that will provide the most beneficial measurements to support space weather prediction. Here we present the results of several recent European studies that aim to identify the best solution for space-based space weather monitoring - obviously within realistic financial constraints and bearing in mind the immediacy with which such a mission needs to be realised.

  16. Resource Letter SW1: Space Weather

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Lanzerotti, Louis J.

    2016-03-01

    This Resource Letter describes the phenomena and effects on technological systems that are known collectively as space weather. A brief history of the topic is provided, and the scientific understandings of drivers for such phenomena are discussed. The impacts of space disturbances are summarized, and the strategies for dealing with space weather threats are examined. The Resource Letter concludes with description of approaches that have been proposed to deal with threats to our increasingly technological society.

  17. Space Weathering Rates in Lunar and Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2017-01-01

    Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.

  18. GEO Satellites as Space Weather Sensors

    DTIC Science & Technology

    2016-04-26

    Solar   Energy ,  Jan.  2016.     Lohmeyer,  W.  and  K.  Cahoy,  “Space  Weather  Radiation  Effects  on...Journal of Solar Energy , Jan. 2016. Lohmeyer, W. and K. Cahoy, "Space Weather Radiation Effects on Geostationary Satellite Solid-State Power Amplifiers...34 submitted for publication in the Journal of Solar Energy , Jan. 2016. Lohmeyer, W. and K. Cahoy, "Space Weather Radiation Effects on

  19. Intuitive Space Weather Displays to Improve Space Situational Awareness (SSA)

    DTIC Science & Technology

    2011-09-01

    Kathy Echiverri, and Lauri Cross (PatchPlus Consulting), and Seth Orloff, and Lydia Lavigne (Ball Aerospace), Kevin Scro (Air Force Space Command...Paul O’Brien (Aerospace Corp), and Paul Gehred (Air Force Weather Agency). 6. References [1] Reeves, G . 2010. Integration of Space Weather into Space

  20. Realtime Space Weather Forecasts Via Android Phone App

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Haacke, B.; Reynolds, A.

    2010-12-01

    For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.

  1. ESA radiation and micro-meteoroid models applied to Space Weathering of atmosphere-less bodies: icy moons and asteroids

    NASA Astrophysics Data System (ADS)

    Vallat, Claire; Altobelli, Nicolas; Cornet, Thomas; Schmidt, Jürgen; Navarro, Sara; Erd, Christian; Witasse, Olivier; Rodmann, Jens; Mints, Alexey

    2016-10-01

    The Galilean moons reveal large albedo variations on their surfaces, in particular between their leading and trailing hemispheres. The differences observed are likely the results of a balance between various weathering processes of the surface, determined by the moons' local environment. Chemical and physical alterations occur at the surface, triggered by multiple exogenic energy deposit processes (radiolysis, plasma sputtering, micro-meteoroids impacts, …).The observed variations are probably due to anisotropy in the energy fluxes received on each hemisphere and due to to a different relative contribution of the weathering agents (plasma, dust…) as function of the distance to Jupiter. We will be testing this hypothesis by estimating quantitatively the kinetic energy flux impacting different part of the surfaces of the Galilean moons. This work is essential in the context of the future missions to the Jovian moons, such as the JUICE ESA mission, as a proper understanding of the moons' surface history can be achieved only if one is able to constrain the balance between exogenic and endogenic alteration processes.Impacts of dust particles coming from the Galilean moons and evolving dynamically in the Jovian system will be simulated using the Jovian Micrometeoroid Environment Model (JMEM) [1]. Direct interplanetary dust impacts are simulated using the prediction of the Interplanetary Micrometeoroid Environment Model (IMEM) [2] computed at Jupiter's Hill radius, taking into account gravitational focusing by the planet. Finally, electron and ion fluxes interacting with different parts of the moons' surfaces can be estimated using the Jovian Specification Environment model (JOSE) [3].In parallel, signature of surface weathering will be assessed using reflectance maps based on the Galileo imaging data.Those models will also be applied, for comparison, to other atmosphere-less bodies of the solar system such as the asteroids Ceres, Vesta and Pallas.References[1] Liu et

  2. Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Bacmeister, Julio T.

    Awareness of weather and concern about weather in the proximate future certainly must have accompanied the emergence of human self-consciousness. Although weather is a basic idea in human existence, it is difficult to define precisely.

  3. Integration of space weather into space situational awareness

    SciTech Connect

    Reeves, Geoffrey D

    2010-11-09

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those

  4. Integration Of Space Weather Into Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2010-09-01

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent complexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbitdependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which allows operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather effects, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This

  5. Space Weather Studies at Istanbul Technical University

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  6. Europe's First Space Weather Think Tank

    NASA Astrophysics Data System (ADS)

    Lilensten, Jean; Clark, Toby; Belehaki, Anna

    2004-04-01

    A new European intergovernmental action devoted to space weather has been recently approved. This paper describes the political and scientific context in which this action takes place, and the goals of this action, called COST 724.

  7. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Image and Video Library

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  8. The National Space Weather Strategy: Policy on Observations

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.

    2016-12-01

    Ensuring that the United States is prepared to respond to and recover from severe space weather storms is a priority to the President and to this Administration. We cannot ignore the potential impact space weather may have on key infrastructures and technologies including aviation and satellite operations, the electric power grid, and GPS applications. These technologies form the very backbone of the critical technology infrastructure we rely on for so much of what we do today. In October 2015, OSTP Director John Holdren announced the release of the National Space Weather Strategy and the National Space Weather Action Plan. The Strategy identifies goals and establishes the principles that will guide efforts to develop national space-weather preparedness in both the near and long term, while the Action Plan identifies specific activities, outcomes, and timelines that the Federal government must pursue to be prepared for and resilient to future space-weather events. The Strategy recognizes that observations are the backbone of forecast and warning capabilities. The Strategy also recognized that to achieve a robust operational program for space-weather observations, the United States must: (1) establish and sustain a foundational set of observations; (2) when feasible and cost effective, use data from multiple sources, including international, Federal, State, and local governments, as well as from the academic and industry sectors; (3) ensure the continuity of critical data sources; (4) continue to support sensors for solar and space physics research; (5) ensure data-assimilation techniques are in place; and (6) maintain archives for ground- and space-based data, which are essential for model development and benchmarking. In this talk we explore elements in the Space Weather Action Plan that will ensure our Nation has the information we need to enhance resilience to the risk of space weather.

  9. Space Weather Gets Real—on Smartphones

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Crowley, Geoff; Oh, Seung Jun; Guhathakurta, Madhulika

    2010-10-01

    True to the saying that "a picture is worth a thousand words," society's affinity for visual images has driven innovative efforts to see space weather as it happens. The newest frontiers of these efforts involve applications, or apps, on cellular phones, allowing space weather researchers, operators, and teachers, as well as other interested parties, to have the ability to monitor conditions in real time with just the touch of a button.

  10. Space weather effects and commerical airlines

    NASA Astrophysics Data System (ADS)

    Jones, J.; Bentley, R.; Hunter, R.; Taylor, G.; Thomas, D.

    Space Weather (SW) phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. The Mullard Space Science Laboratory is collaborating with Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory on a 3- year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether computer models currently used to predict radiation exposure of aircrew are adequate. It also aims to determine whether solar or geomagnetic activity can cause significant modifications to the doses. This presentation will begin by showing some of the preliminary results obtained so far. As an example, we present a comparison of flight doses measured following the 14t h July 2000 X - class flare that was accompanied by a major Solar Particle Event (SPE). The results highlight the importance of a range of external factors that can strongly influence how SPEs may effect the measured dose at aircraft altitudes. At present, any SPE contributions in the airlines' dose records can only be poorly estimated retrospectively. Ideally, it would be better to try to avoid operating during these possibly significant radiation - enhancing events by utilising SW information (alerts, warnings, etc.). However, doing so poses many difficult operational problems for such a heavily regulated international industry, in terms of safety, security and procedures. Therefore, the use of timely SW information, which is still very unreliable, in a similar manner to terrestrial weather will require agreement from the International Civil Aviation Organisation (ICAO) and International Air Transport Association (IATA) to Air Traffic Control and Aviation Regulatory Authority's. This

  11. ISES Experience in Delivering Space Weather Services

    NASA Astrophysics Data System (ADS)

    Boteler, David

    The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.

  12. Operational Space Weather Forecasting: Requirements and Future Needs

    NASA Astrophysics Data System (ADS)

    Henley, E.; Gibbs, M.; Jackson, D.; Marsh, M. S.

    2015-12-01

    The Met Office has over 150 years' experience in providing operational forecasting to meet the UK's terrestrial weather needs, and is developing a similar capability in space weather. Since April 2014 the Met Office Space Weather Operations Centre (MOSWOC) has issued 24/7 operational forecasts, alerts and warnings on space weather which can have impacts on electricity grids, radio communications and satellite electronics. In this talk we will summarise the current requirements and future needs for operational space weather forecasting. We will review what the terrestrial weather community considers as operational forecasts, and use MOSWOC as an example of the underpinning research, IT and collaborations required to accomplish this. We will also discuss the policy, science evidence base and user support requirements needed to obtain sufficient long-term funding for operational activities, illustrating this with the UK's national risk register, Royal Academy of Engineering report, and the forthcoming IPSP economic study, as well as work done with users to ensure services match their needs. These are similar activities to those being undertaken in SWORM and the COSPAR/ILWS Space Weather Shield to Society Roadmap. Future needs will also be considered, considering the need for operational observations, particularly focussing on the role an L5 mission could play; a chain of coupled operational models covering the Sun, Earth, and intervening space; and how these observations and models can be integrated via data assimilation.

  13. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  14. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  15. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  16. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  17. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  18. Space Weathering in the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.

    2010-01-01

    "Space weathering" is the term given to the cumulative effects incurred by surfaces which are exposed to the harsh environment of space. Lunar sample studies over the last decade or so have produced a clear picture of space weathering processes in the lunar environment. By combining laboratory and remote spectra with microanalytical methods (scanning and transmission electron microscopy), we have begun to unravel the various processes (irradiation, micrometeorite bombardment, etc) that contribute to space weathering and the physical and optical consequences of those processes on the Moon. Using the understanding gleaned from lunar samples, it is possible to extrapolate weathering processes to other airless bodies from which we have not yet returned samples (i.e. Mercury, asteroids). Through experiments which simulate various components of weathering, the expected differences in environment (impact rate, distance from Sun, presence of a magnetic field, reduced or enhanced gravity, etc) and composition (particularly iron content) can be explored to understand how space weathering will manifest on a given body.

  19. Space Weather Outreach: Connection to STEM Standards

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  20. Incremental laser space weathering of Allende reveals non-lunar like space weathering effects

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, Jeffrey J.; Lucey, Paul G.; Bradley, John P.; Ishii, Hope A.; Kaluna, Heather M.; Misra, Anumpam; Connolly, Harold C.

    2017-04-01

    We report findings from a series of laser-simulated space weathering experiments on Allende, a CV3 carbonaceous chondrite. The purpose of these experiments is to understand how spectra of anhydrous C-complex asteroids might vary as a function of micrometeorite bombardment. Four 0.5-gram aliquots of powdered, unpacked Allende meteorite were incrementally laser weathered with 30 mJ pulses while under vacuum. Radiative transfer modeling of the spectra and Scanning Transmission Electron Microscope (STEM) analyses of the samples show lunar-like similarities and differences in response to laser-simulated space weathering. For instance, laser weathered Allende exhibited lunar-like spectral changes. The overall spectra from visible to near infrared (Vis-NIR) redden and darken, and characteristic absorption bands weaken as a function of laser exposure. Unlike lunar weathering, however, the continuum slope between 450-550 nm does not vary monotonically with laser irradiation. Initially, spectra in this region redden with laser irradiation; then, the visible continua become less red and eventually spectrally bluer. STEM analyses of less mature samples confirm submicroscopic iron metal (SMFe) and micron sized sulfides. More mature samples reveal increased dispersal of Fe-Ni sulfides by the laser, which we infer to be the cause for the non-lunar-like changes in spectral behavior. Spectra of laser weathered Allende are a reasonable match to T- or possibly K-type asteroids; though the spectral match with a parent body is not exact. The key take away is, laser weathered Allende looks spectrally different (i.e., darker, and redder or bluer depending on the wavelength region) than its unweathered spectrum. Consequently, connecting meteorites to asteroids using unweathered spectra of meteorites would result in a different parent body than one matched on the basis of weathered spectra. Further, spectra for these laser weathering experiments may provide an explanation for

  1. Simulating Space Weather at Pluto

    NASA Image and Video Library

    This video shows a simulation of the space environment all the way out to Pluto in the months surrounding New Horizons’ July 2015 flyby. At the time, scientists at NASA’s Goddard Space Flight Cente...

  2. Space Weather Editors in Transition: Hail and Farewell

    NASA Astrophysics Data System (ADS)

    Knipp, Delores J.

    2017-02-01

    I hope you will join me in welcoming Dr. Daniel Welling of University of Michigan and Dr. T. Paul O'Brien of the Aerospace Corporation to the Space Weather (SWE) editorial team. Dan and Paul have answered the call to fill the shoes of two departing editors: Dr. Howard Singer and Dr. Barbara Giles. Dan brings insight related to space weather model development, while Paul brings expertise in the geospace radiation environment.

  3. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  4. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  5. ESA situational awareness of space weather

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano

    2016-07-01

    ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.

  6. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  7. THOR contribution to space weather science

    NASA Astrophysics Data System (ADS)

    Vaivads, Andris; Opgenoorth, Hermann; Retinò, Alessandro; Khotyaintsev, Yuri; Soucek, Jan; Valentini, Francesco; Escoubet, Philippe

    2016-04-01

    Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. In addition, THOR is designed with enough propellant to reach L1 in the second phase of the mission if necessary. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.

  8. Review on space weather in Latin America. 3. Development of space weather forecasting centers

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the third of a three-part review of space weather in Latin America, specifically observing its evolution in three countries (Argentina, Brazil and Mexico). This work presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reasons/opportunities that lead to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings, ​watches and alerts.

  9. Review on space weather in Latin America. 2. The research networks ready for space weather

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the second of a three-part review of space weather in Latin America, specifically observing its evolution in three countries (Argentina, Brazil and Mexico). This work comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue watches, warnings and alerts.

  10. Operational Space Weather Needs - Perspectives from SEASONS 2014

    NASA Astrophysics Data System (ADS)

    Comberiate, J.; Kelly, M. A.; Paxton, L. J.; Schaefer, R. K.; Bust, G. S.; Sotirelis, T.; Fox, N. J.

    2014-12-01

    A key challenge for the operational space weather community is the gap between the latest scientific data, models, methods, and indices and those that are currently used in operational systems. The November 2014 SEASONS (Space Environment Applications, Systems, and Operations for National Security) Workshop at JHU/APL in Laurel, Maryland, brings together representatives from the operational and scientific communities. The theme of SEASONS 2014 is "Beyond Climatology," with a focus on how space weather events threaten operational assets and disrupt missions. Here we present perspectives from SEASONS 2014 on new observations, models in development, and forecasting methods that are of interest to the operational space weather community. Highlighted topics include ionospheric data assimilation and forecasting models, HF propagation models, radiation belt observations, and energetic particle modeling. The SEASONS 2014 web site can be found at https://secwww.jhuapl.edu/SEASONS/

  11. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind

  12. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  13. Space Weather: Where Is The Beef?

    NASA Astrophysics Data System (ADS)

    Koskinen, H. E. J.

    Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.

  14. Operational Simulation of Heliospheric Space Weather: Improvements of the WSA-ENLIL-Cone Modeling System

    NASA Astrophysics Data System (ADS)

    Odstrcil, Dusan

    2016-07-01

    The ENLIL-based heliospheric modeling system enables faster-than-real-time simulations of corotating and transient disturbances. This hybrid system does not simulate origin of coronal mass ejections (CMEs) but uses appearance in coronagraphs, its geometric and kinematic parameters, and launches a CME-like structure into the solar wind computed using the Wang-Sheeley-Arge (WSA) coronal model. Propagation and interaction in the heliosphere is then solved by a 3-D magnetohydrodynamic (MHD) code. This modeling system is operationally used at NOAA/SWPC, NASA/CCMC, UK/MetOffice, and Korea/KSWPC. In this presentation, we introduce the recent improvements that support modeling of the evolving background solar wind, launching of CME-like transients, and further facilitate comparison with in-situ and remote observations. Further, we introduce the project testbed system (http://heliowether.net) that has helped us to monitor the model development, verify robustness of new model features, and evaluate the prediction accuracy. Finally, we present results of the verification and validation studies, show improvements over the currently-used version, and illustrate broader applications of the new ENLIL version to support various heliospheric missions.

  15. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  16. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, N.; Grande, M.

    2015-10-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this JRA will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of

  17. Space Weather: The Physics Behind a Slogan

    NASA Astrophysics Data System (ADS)

    Moldwin, Mark

    2005-09-01

    Space weather is an emerging field of space physics that has as its focus the understanding of the societal and technological impacts of the solar-terrestrial relationship.The variable Sun's electromagnetic and charged particle outflows affect the Earth's space environment and the satellites, communications systems, electrical power grids, astronauts, and airline passengers that operate within it. The energy, mass, and momentum outflow from the Sun changes over all timescales and gives rise to dynamics of the magnetic field and plasma environment around the Earth. Many terms used in space physics have been borrowed from meteorology: The mass outflow of the Sun is called the ``solar wind,'' and the constant drizzle of energetic electrons into the polar cap is called ``polar rain.'' In the last decade, the term ``space weather'' has become the umbrella term to describe space physics research.

  18. Predicting Space Weather: Challenges for Research and Operations

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  19. Weathering a Perfect Storm from Space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  20. Comprehensive Solar-Terrestrial Environment Model (COSTEM) for Space Weather Predictions

    DTIC Science & Technology

    2007-07-01

    global corona , CME initiation, solar energetic management strategy, and most importantly, we particles, inner magnetosphere, ionosphere- discuss the...many of them represented with multiple models. The SWMF is 2 I 2, ............. capable of simulating the Sun-Earth system from the solar corona to the...several moons, and comets of BATS-R-US the solar system, flux emergence from the The Block Adaptive Tree Solar -wind Roe photosphere to the corona [64

  1. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  2. COST action 724: scientific, technical and forecast aspects of the European space weather service

    NASA Astrophysics Data System (ADS)

    Jansen, F.; Lilensten, J.

    COST action 724 coordinates European research for modelling and prediction of space weather It started two years ago and is now fully operational More than 28 European countries and institutions are involved in this space weather action This talk will describe the objectives aims and status of this European space weather action

  3. The ESA Space Weather Applications Pilot Project

    NASA Astrophysics Data System (ADS)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  4. Planetary space weather: scientific aspects and future perspectives

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Lilensten, Jean; Radioti, Aikaterini; Andriopoulou, Maria; Milillo, Anna; Nordheim, Tom A.; Dandouras, Iannis; Coustenis, Athena; Grassi, Davide; Mangano, Valeria; Massetti, Stefano; Orsini, Stefano; Lucchetti, Alice

    2016-08-01

    In this paper, we review the scientific aspects of planetary space weather at different regions of our Solar System, performing a comparative planetology analysis that includes a direct reference to the circum-terrestrial case. Through an interdisciplinary analysis of existing results based both on observational data and theoretical models, we review the nature of the interactions between the environment of a Solar System body other than the Earth and the impinging plasma/radiation, and we offer some considerations related to the planning of future space observations. We highlight the importance of such comparative studies for data interpretations in the context of future space missions (e.g. ESA JUICE; ESA/JAXA BEPI COLOMBO). Moreover, we discuss how the study of planetary space weather can provide feedback for better understanding the traditional circum-terrestrial space weather. Finally, a strategy for future global investigations related to this thematic is proposed.

  5. A scheme for forecasting severe space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Ebihara, Y.; Skoug, R.; Shiokawa, K.; Batista, I. S.; Tulasi Ram, S.; Omura, Y.; Nakamura, T.; Fok, M.-C.

    2017-03-01

    A scheme is suggested and tested for forecasting severe space weather (SvSW) using solar wind velocity (V) and the north-south component (Bz) of the interplanetary magnetic field (IMF) measured using the ACE (Advanced Composition Explorer) satellite from 1998 to 2016. SvSW has caused all known electric power outages and telegraph system failures. Earlier SvSW events such as the Carrington event of 1859, Quebec event of 1989 and an event in 1958 are included with information from the literature. Dst storms are used as references to identify 89 major space weather events (DstMin ≤ -100 nT) in 1998-2016. The coincidence of high coronal mass ejection (CME) front (or CME shock) velocity ΔV (sudden increase in V over the background by over 275 km/s) and sufficiently large Bz southward at the time of the ΔV increase is associated with SvSW; and their product (ΔV × Bz) is found to exhibit a large negative spike at the speed increase. Such a product (ΔV × Bz) exceeding a threshold seems suitable for forecasting SvSW. However, the coincidence of high V (not containing ΔV) and large Bz southward does not correspond to SvSW, indicating the importance of the impulsive action of large Bz southward and high ΔV coming through when they coincide. The need for the coincidence is verified using the CRCM (Comprehensive Ring Current Model), which produces extreme Dst storms ( < -250 nT) characterizing SvSW when there is coincidence.

  6. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  7. An Extended Objective Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Nutter, Paul; Manobianco, John

    1998-01-01

    This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.

  8. Space Weather, Cosmic Rays, and Satellite Anomalies

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    Results are presented of the Satellite Anomaly Project, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment. Anomaly data from the USSR and Russian “Kosmos” series satellites in the period 1971-1999 are combined into one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high altitude orbit satellites ( 5000 events) and low altitude (about 800 events). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in behavior. Satellites were divided into several groups according to their orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits, and this should be taken into account when developing anomaly frequency models. The preliminary anomaly frequency models are presented.

  9. System Science approach to Space Weather forecast

    NASA Astrophysics Data System (ADS)

    Balikhin, Michael A.

    There are many dynamical systems in nature that are so complex that mathematical models of their behaviour can not be deduced from first principles with the present level of our knowledge. Obvious examples are organic cell, human brain, etc often attract system scientists. A example that is closer to space physics is the terrestrial magnetosphere. The system approach has been developed to understand such complex objects from the observation of their dynamics. The systems approach employs advanced data analysis methodologies to identify patterns in the overall system behaviour and provides information regarding the linear and nonlinear processes involved in the dynamics of the system. This, in combination with the knowledge deduced from the first principles, creates the opportunity to find mathematical relationships that govern the evolution of a particular physical system. Advances and problems of systems science applications to provide a reliable forecasts of space weather phenomena such as geomagnetic storms, substorms and radiation belts particle fluxes are reviewed and compared with the physics based models.

  10. Innovative Information Technology for Space Weather Research

    NASA Astrophysics Data System (ADS)

    Wang, H.; Qu, M.; Shih, F.; Denker, C.; Gerbessiotis, A.; Lofdahl, M.; Rees, D.; Keller, C.

    2004-05-01

    Solar activity is closely related to the near earth environment -- summarized descriptively as space weather. Changes in space weather have adverse effect on many aspects of life and systems on earth and in space. Real-time, high-quality data and data processing would be a key element to forecast space weather promptly and accurately. Recently, we obtained a funding from US National Science Foundation to apply innovative information technology for space weather prediction. (1) We use the technologies of image processing and pattern recognition, such as image morphology segmentation, Support Vector Machines (SVMs), and neural networks to detect and characterize three important solar activities in real-time: filament eruptions, flares, and emerging flux regions (EFRs). Combining the real time detection with the recent statistical study on the relationship among filament eruptions, flares, EFRs, coronal mass ejections (CMEs), and geomagnetic storms, we are establishing real time report of solar events and automatic forecasting of earth directed CMEs and subsequent geomagnetic storms. (2) We combine state-of-art parallel computing techniques with phase diverse speckle imaging techniques, to yield near real-time diffraction limited images with a cadence of approximately 10 sec. We utilize the multiplicity of parallel paradigms to optimize the calculation of phase diverse speckle imaging to improve calculation speed. With such data, we can monitor flare producing active regions continuously and carry out targeted studies of the evolution and flows in flare producing active regions. (3) We are developing Web based software tools to post our processed data, events and forecasting in real time, and to be integrated with current solar activity and space weather prediction Web pages at BBSO. This will also be a part of Virtual Solar Observatory (VSO) being developed by the solar physics community. This research is supported by NSF ITR program.

  11. Space weather effects on communications

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.

  12. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  13. Space Weather for the DoD Warfighter: An Agency Level Update

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2006-12-01

    The Space Weather Operations Center (Space WOC) at the Air Force Weather Agency (AFWA) is the DoD Warfighter's source for operational space weather support. The Space WOC utilizes real-time space weather observations and model output to obtain the situational awareness necessary for the creation tailored space weather products to the warfighter. AFWA Personnel located within space weather programs and technology branches are charged with obtaining and infusing operations with the latest in space weather analysis and forecast capability. This presentation will present an overview of current and near term capabilities, with particular emphasis on the integration of the Global Assimilative Ionospheric Measurements (GAIM) model and the Hakamata-Akasofu-Fry (HAF) solar wind model.

  14. High-latitude space weather monitoring in Finland

    NASA Astrophysics Data System (ADS)

    Ulich, Th.

    2009-04-01

    Today, space weather is of important concern in many respects. Space weather phenomena are subject of extensive scientific research programmes and the consequences of space weather events are of great operational concern for a number of technologies including satellites, humans in space, and global positioning and communications. Due to the Earth's magnetic field, the high latitudes are most strongly affected by space weather phenomena. Naturally, monitoring and understanding of the high-latitude space environment is important for forecasting and modelling operational conditions. The Sodankylä Geophysical Observatory (SGO) was established as a magnetic observatory in 1913. With the sole exception of a year at the end of WWII, the record of geomagnetic field variations is continuous. Since the IGY in 1957, many other routine measurements have been added to the observatory's operations and today SGO is a highly versatile observatory. Here we will present examples of high-latitude space weather data from a selection of instruments including the Sodankylä ionosonde, the Finnish Riometer Chain, and the Tomography (GNSS) receiver chain. We invite collaboration and use of our data products. We will further outline the current EU Framework VII "Access to Research Infrastructures" project of SGO "LAPBIAT2."

  15. Interplanetary Space Weather: A New Paradigm

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Madhulika

    2013-04-01

    In September 1859, Earth was hit by a solar storm so powerful that it set telegraph offices on fire and sparked northern lights in the South Pacific. Historians call it the "Carrington Event," after English astronomer Richard Carrington, who witnessed the instigating solar flare on a projecting screen with his unaided eyes. Many consider this to be the birth of space weather.

  16. Ionosphere Response to Extreme Space Weather

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2016-12-01

    In this presentation, we will evaluate the ionosphere response to extreme space weather events. There are many external factors that modify and drive the ionosphere. The ionosphere is highly coupled to the thermosphere which also responds to extreme space weather conditions. For some types of space weather, such as extreme solar x-ray flares, or solar energetic proton events, the response of the ionosphere D-Region can be predicted based on the empirical relationships determined from moderate flares and proton events. Predicting how the ionosphere will respond to an extreme geomagnetic storm is more challenging. First, estimating the extremes of the IMF and solar wind will introduce some level of uncertainty. The magnetosphere response to extreme solar wind condistions will also introduce unknowns and uncertainties. The conditions of the thermosphere under extreme conditions will strongly drive the ionospheric response as will the level of solar EUV irradiance. Even the variability of the lower atmosphere will influence how the ionosphere responds. We will try to establish the current state of knowledge and then suggest the next steps towards improvements in quantifying the ionospheric response to extreme space weather conditions.

  17. New Techniques in Space Weather Forecasting

    DTIC Science & Technology

    2005-05-01

    during Solar Cycle 23, J. Geophys. Res. (accepted ) 2006. [2] M. Kartalev, M. Dryer , K. Grigorov, E. Stoimenova. Solar wind polytropic index...Magneto Hydrodynamics (MHD) discontinuities that occur due to the solar wind, and its effects on communications. 15. SUBJECT...TERMS EOARD, Communications, Space Weather, Solar Physics 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON MICHAEL KJ MILLIGAN, Lt Col

  18. Briefing highlights space weather risks to GPS

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  19. CME front and severe space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Skoug, R.; Tulasi Ram, S.; Rajesh, P. K.; Shiokawa, K.; Otsuka, Y.; Batista, I. S.; Ebihara, Y.; Nakamura, T.

    2014-12-01

    Thanks to the work of a number of scientists who made it known that severe space weather can cause extensive social and economic disruptions in the modern high-technology society. It is therefore important to understand what determines the severity of space weather and whether it can be predicted. We present results obtained from the analysis of coronal mass ejections (CMEs), solar energetic particle (SEP) events, interplanetary magnetic field (IMF), CME-magnetosphere coupling, and geomagnetic storms associated with the major space weather events since 1998 by combining data from the ACE and GOES satellites with geomagnetic parameters and the Carrington event of 1859, the Quebec event of 1989, and an event in 1958. The results seem to indicate that (1) it is the impulsive energy mainly due to the impulsive velocity and orientation of IMF Bz at the leading edge of the CMEs (or CME front) that determine the severity of space weather. (2) CMEs having high impulsive velocity (sudden nonfluctuating increase by over 275 km s-1 over the background) caused severe space weather (SvSW) in the heliosphere (failure of the solar wind ion mode of Solar Wind Electron Proton Alpha Monitor in ACE) probably by suddenly accelerating the high-energy particles in the SEPs ahead directly or through the shocks. (3) The impact of such CMEs which also show the IMF Bz southward from the leading edge caused SvSW at the Earth including extreme geomagnetic storms of mean DstMP < -250 nT during main phases, and the known electric power outages happened during some of these SvSW events. (4) The higher the impulsive velocity, the more severe the space weather, like faster weather fronts and tsunami fronts causing more severe damage through impulsive action. (5) The CMEs having IMF Bz northward at the leading edge do not seem to cause SvSW on Earth, although, later when the IMF Bz turns southward, they can lead to super geomagnetic storms of intensity (Dstmin) less than even -400 nT.

  20. Geospace Missions for Space Weather and the Next Scientific Challenges

    NASA Technical Reports Server (NTRS)

    Spann, James

    2014-01-01

    Currently there is an active international flotilla of spacecraft that continuously observe and measure the dynamic space environment that surrounds our planet. These spacecraft have remote sensors for photons and particles, and in situ instruments for plasmas, fields and particles. They provide the data input to guide, motivate, and validate predictive space weather models used by decision makers and for a myriad of scientific investigations. This talk will briefly survey the current Geospace missions relevant to space weather, what they observe, and why. This talk will conclude with the description of two most significant scientific challenges that must be met in order to advance our understanding and prediction of space weather, and its impacts to society. They are the genesis and evolution of ionospheric variability and the interplanetary magnetic field. Concepts of possible solutions for these two challenges will be discussed.

  1. Understanding Space Weather: The Sun as a Variable Star

    NASA Technical Reports Server (NTRS)

    Strong, Keith; Saba, Julia; Kucera, Therese

    2012-01-01

    The Sun is a complex system of systems and until recently, less than half of its surface was observable at any given time and then only from afar. New observational techniques and modeling capabilities are giving us a fresh perspective of the solar interior and how our Sun works as a variable star. This revolution in solar observations and modeling provides us with the exciting prospect of being able to use a vastly increased stream of solar data taken simultaneously from several different vantage points to produce more reliable and prompt space weather forecasts. Solar variations that cause identifiable space weather effects do not happen only on solar-cycle timescales from decades to centuries; there are also many shorter-term events that have their own unique space weather effects and a different set of challenges to understand and predict, such as flares, coronal mass ejections, and solar wind variations.

  2. Understanding Space Weather: The Sun as a Variable Star

    NASA Technical Reports Server (NTRS)

    Strong, Keith; Saba, Julia; Kucera, Therese

    2011-01-01

    The Sun is a complex system of systems and until recently, less than half of its surface was observable at any given time and then only from afar. New observational techniques and modeling capabilities are giving us a fresh perspective of the solar interior and how our Sun works as a variable star. This revolution in solar observations and modeling provides us with the exciting prospect of being able to use a vastly increased stream of solar data taken simultaneously from several different vantage points to produce more reliable and prompt space weather forecasts. Solar variations that cause identifiable space weather effects do not happen only on solar-cycle timescales from decades to centuries; there are also many shorter-term events that have their own unique space weather effects and a different set of challenges to understand and predict, such as flares, coronal mass ejections, and solar wind variations

  3. Space weather observational activities and data management in Europe

    NASA Astrophysics Data System (ADS)

    Stanisławska, Iwona; Belehaki, Anna

    2009-03-01

    One of the primary scientific and technical goals of Space Weather investigations is to produce data in order to study the Sun impact on the Earth and its environment. Studies based on data mining philosophy increase our knowledge of the physical properties of Space Weather, modelling capabilities, and gain applications of various procedures in Space Weather monitoring and forecasting. The paper focuses on an analysis of the availability on the Internet of near-real time and historical collections of the European ground-based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The following issues are discussed: (1) raw observations, and/or corrected/updated data, (2) resolution and availability of real-time and historical data, (3) products resulting from models and theory including maps, forecasts and alerts, (4) platforms for data delivery.

  4. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-07-01

    The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.

  5. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  6. Assessment of the National Space Weather Program

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis

    2005-11-01

    The assistance of the research community is being sought for an assessment that is currently in progress of the National Space Weather Program (NSWP). The totality of the NSWP is not as widely recognized as it deserves to be. My experience has been that most researchers have only a fragmentary appreciation of the NSWP. Some researchers see the program through the prism of the annual solicitations that are conducted by the National Science Foundation (NSF) for targeted "space weather" research. Others see some portions of the program reflected in the data sets collected and displayed on the Web site of the NOAA Space Environment Center, as well as by the Center's warnings on solar activity and its current sponsorship of Space Weather Week. Yet others have participated in various NASA Living With a Star studies and mission definitions. The importance of the program for the Department of Defense (DoD) and the protection of national security assets has largely eluded many, except possibly for those that have been involved in one of the DoD-sponsored Multi-University Research Initiatives (MURIs). The genesis of the technical magazine that you are reading is the NSWP.

  7. Space weather and power grids: findings and outlook

    NASA Astrophysics Data System (ADS)

    Krausmann, Elisabeth; Andersson, Emmelie; Murtagh, William; Mitchison, Neil

    2014-05-01

    The impact of space weather on the power grid is a tangible and recurring threat with potentially serious consequences on society. Of particular concern is the long-distance high-voltage power grid, which is vulnerable to the effects of geomagnetic storms that can damage or destroy equipment or lead to grid collapse. In order to launch a dialogue on the topic and encourage authorities, regulators and operators in European countries and North America to learn from each other, the European Commission's Joint Research Centre, the Swedish Civil Contingencies Agency, and NOAA's Space Weather Prediction Centre, with the contribution of the UK Civil Contingencies Secretariat, jointly organised a workshop on the impact of extreme space weather on the power grid on 29-30 October 2013. Being structured into 6 sessions, the topics addressed were space-weather phenomena and the dynamics of their impact on the grid, experiences with prediction and now-casting in the USA and in Europe, risk assessment and preparedness, as well as policy implications arising from increased awareness of the space-weather hazard. The main workshop conclusions are: • There is increasing awareness of the risk of space-weather impact among power-grid operators and regulators and some countries consider it a priority risk to be addressed. • The predictability of space-weather phenomena is still limited and relies, in part, on data from ageing satellites. NOAA is working with NASA to launch the DSCOVR solar wind spacecraft, the replacement for the ACE satellite, in early 2015. • In some countries, models and tools for GIC prediction and grid impact assessment have been developed in collaboration with national power grids but equipment vulnerability models are scarce. • Some countries have successfully hardened their transmission grids to space-weather impact and sustained relatively little or no damage due to currents induced by past moderate space-weather events. • While there is preparedness

  8. SHINE and the Space Weather Community

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.

    2000-05-01

    SHINE (Solar, Heliospheric, and INterplanetary Environment) is an affiliation of researchers dedicated to promoting enhanced understanding of and predictive capabilities for solar disturbances that propagate to Earth. Like its sister organizations GEM and CEDAR, it is sponsored by NSF and its specific goal is to promote discussion, development, and dissemination of ideas and results related to interplanetary aspects of space weather research. Its main activities include facilitating collaborative research campaigns with related groups and conducting an annual workshop devoted to specific and timely space weather questions. In conjunction with the SPD meeting, this year's workshop highlights solar aspects of the Sun-Earth connection theme, but the group maintains strong interests in the generation and propagation of energetic particles in the interplanetary medium and the solar wind - magnetosphere interaction.

  9. Third Space Weather Summit Held for Industry and Government Agencies

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  10. NASA Dryden Flight Research Center's Space Weather Needs

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2011-01-01

    Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.

  11. The surface of Mercury: space weathering effects

    NASA Astrophysics Data System (ADS)

    Baratta, G.; Kanuchova, Z.; Palumbo, M. E.; Sangiorgio, I.; Strazzulla, G.

    2011-10-01

    We present some results of an ongoing experimental research aimed at simulating the effects of ion bombardment (space weathering) in solid objects of the Solar System. In particular we have investigated the color changes induced by the ion bombardment in the UV-Vis-IR In this contribution we focus on materials (silicates) and spectral range (200-300 nanometers) particularly relevant to the study of the Mercury's surface.

  12. AMS-02 as a Space Weather Observatory

    NASA Astrophysics Data System (ADS)

    Whitman, K.; Bindi, V.; Chati, M.; Consolandi, C.; Corti, C.

    2013-12-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art space detector that measures particles in the energy range of hundreds of MeV to a few TeV. AMS-02 has been installed onboard of the International Space Station (ISS) since May 2011 where it will operate for the duration of the station. To date, there is an abundance of space-based solar data collected in the low energy regimes, whereas there are very few direct measurements of higher energy particles available. AMS-02 is capable of measuring arrival time and composition of the highest energy SEPs in space. It is crucial to build a better knowledge base regarding the most energetic and potentially harmful events. We are currently developing a program to employ AMS-02 as a real-time space weather observatory. SEPs with higher energies are usually accelerated during a short period of time and they are the first particles to reach the Earth. AMS-02, measuring these highest energy SEPs, can alert the onset of an SEP event. During the past two years of operation, we have identified two main quantities in AMS-02 that are particularly sensitive to the arrival of SEPs: the detector livetime and the transition radiation detector (TRD) event size. By monitoring the detector livetime and the TRD event size, AMS-02 can pinpoint in real-time the arrival of SEPs inside the Earth's magnetosphere operating as a space weather detector.

  13. Operationalizing Space Weather Products - Process and Issues

    NASA Astrophysics Data System (ADS)

    Scro, K. D.; Quigley, S.

    2006-12-01

    Developing and transitioning operational products for any customer base is a complicated process. This is the case for operational space weather products and services for the USAF. This presentation will provide information on the current state of affairs regarding the process required to take an idea from the research field to the real-time application of 24-hour space weather operations support. General principles and specific issues are discussed and will include: customer requirements, organizations in-play, funding, product types, acquisition of engineering and validation data, security classification, version control, and various important changes that occur during the process. The author's viewpoint is as an individual developing space environmental system-impact products for the US Air Force: 1) as a member of its primary research organization (Air Force Research Laboratory), 2) working with its primary space environment technology transition organization (Technology Application Division of the Space and Missile Systems Center, SMC/WXT), and 3) delivering to the primary sponsor/customer of such system-impact products (Air Force Space Command). The experience and focus is obviously on specific military operationalization process and issues, but most of the paradigm may apply to other (commercial) enterprises as well.

  14. Radiation Storm vs. The Magnetic Shield: Superheroes of Magnetism & Space Weather Education - A Model for Teacher Professional Development Workshops

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R. M.

    2010-12-01

    Magnetic and electric fields and phenomena play important roles in various situations in astronomy, planetary science, and Earth science. Students often lack an intuitive sense of electromagnetic phenomena, and therefore struggle with the complexities of planetary and stellar magnetic fields. Hands-on magnetism activities can provide students with an intuitive grasp of the basics of magnetism, preparing them for more challenging conceptual studies of magnetic phenomena. For the past six years, we have been presenting a professional development workshop for teachers covering the topics of magnetism and space weather. The workshop, which has been conducted more than 20 times for a range of audiences, blends together several simple hands-on activities, background information on space weather and geomagnetism, a collection of images, animations, and interactives that illustrate important concepts, and guidance about specific links between these topics and national science education standards. These workshops have been very well-received, and have consistently been rated highly by participants in surveys. We believe the methods used in these workshops can be applied to other topics in science education and to astronomy and Earth science education specifically. In this presentation, we will describe our magnetism and space weather workshop, including some of the hands-on activities. We will describe successful aspects of the workshop and comment on ways we think this approach could be replicated for other topics. We will also display some of the interactives, graphics, and animations shown during the workshops. Resources have been added to the workshop over the years in response to recurring questions from teachers; we will comment on this process and how it might be applied to other topics. The activities and extensive background content used or referenced in the workshop are available for free on the Windows to the Universe web site (www.windows2universe.org). Hands on

  15. ​The LAGO Space Weather Program

    NASA Astrophysics Data System (ADS)

    Asorey, Hernan; Dasso, Sergio

    The LAGO project is a non-centralized and distributed collaborative network composed by more than 30 institutions from nine ​Latin American countries. It is an extended cosmic ray​ observatory ​formed by water Cherenkov detectors (WCDs), that measure​ with extreme detail​ the temporal evolution of the radiation flux at ground level. It is mainly oriented to make basic research on three branches: extreme universe, space weather, and atmospheric radiation at ground level. The LAGO WCDs network spans over different sites located at significantly different latitudes (from equatorial latitudes up to the antartic region) and different altitudes (from sea level up to more than 5000 meters over sea level), covering a huge range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. Thus, using observations from the LAGO network, it is possible to study the solar modulation of galactic cosmic rays from combining different ground sites, in particular it is possible to study the long-term modulation as well as transient events. This presentation will introduce the LAGO ​Space Weather Program. In particular, real data of the Forbush decrease event of March 2012 will be presented to show how the LAGO network of WCDs can complement present measurements of space weather related phenomena from ground level. This study will be combined with numerical simulations of the expected flux​ at each site​ and with the analysis of the interplanetary conditions from 'in situ' observations recorded by spacecraft in the solar wind.

  16. Industry and Government Officials Meet for Space Weather Summit

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2008-10-01

    Commercial airlines, electric power grids, cell phones, handheld Global Positioning Systems: Although the Sun is less active due to solar minimum, the number and types of situations and technologies that can benefit from up-to-date space weather information are growing. To address this, the second annual summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC) was held on 1 May 2008 during Space Weather Workshop (SWW), in Boulder, Colo.

  17. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.

    2011-08-01

    International Reference Ionosphere extended to the plasmasphere (IRI-Plas) is upgraded analytically for assimilative mode of operation using GPS-derived Total Electron Content (TEC) for reconstruction of instantaneous ionospheric critical frequency and topside scale height at magnetic conjugate hemisphere. The performance of IRI-Plas code is examined with TECgps retrieved from Global Ionospheric Maps compared with the F 2-layer critical frequency at eight ionosonde locations in East Asia region on both hemispheres during the space weather storms at solar maximum (2000) and solar minimum (2006). Missing ionosonde data are completed by cloning of critical frequency. Decomposition of TECgps in electron density profile with IRI-Plas code reveals the opposite relative changes of critical frequency and the topside scale height depending on solar activity. The ionospheric weather W index is computed for the desired locations in conjugate hemispheres and consistent results are obtained indicating the departure of instantaneous values of ionospheric parameters from their respective median varying from quiet state to intense storm.

  18. Solar Sources of Severe Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Shibasaki, K.

    2012-01-01

    Severe space weather is characterized by intense particle radiation from the Sun and severe geomagnetic storm caused by magnetized solar plasma arriving at Earth. Intense particle radiation is almost always caused by coronal mass ejections (CMEs) traveling from the Sun at super-Alfvenic speeds leading to fast-mode MHD shocks and particle acceleration by the shocks. When a CME arrives at Earth, it can interact with Earth's magnetopause resulting in solar plasma entry into the magnetosphere and a geomagnetic storm depending on the magnetic structure of the CME. Particle radiation starts affecting geospace as soon as the CMEs leave the Sun and the geospace may be immersed in the radiation for several days. On the other hand, the geomagnetic storm happens only upon arrival of the CME at Earth. The requirements for the production of particles and magnetic storms by CMEs are different in a number of respects: solar source location, CME magnetic structure, conditions in the ambient solar wind, and shock-driving ability of CMEs. Occasionally, intense geomagnetic storms are caused by corotating interaction regions (CIRs) that form in the interplanetary space when the fast solar wind from coronal holes overtakes the slow wind from the quiet regions. CIRs also accelerate particles, but when they reach several AU from the Sun, so their impact on Earth's space environment is not significant. In addition to these plasma effects, solar flares that accompany CMEs also produce excess ionization in the ionosphere causing sudden ionospheric disturbances. This paper highlights these space weather effects using space weather events observed by space and ground based instruments during of solar cycles 23 and 24.

  19. Space Weather: Historical and Contemporary Perspectives

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2017-09-01

    A somewhat personalized overview is presented of the effects of solar-terrestrial processes on electrical technologies, beginning with the electrical telegraphs in the mid-eighteenth century to the current era of extensive ground- and space-based commercial and governmental technical systems (including national security) upon which modern society depends. As human technologies increased in diversity over the last century and a half, space weather effects have continued to be of significant importance in the successful design and operations of many of these technologies.

  20. Interplanetary Space Weather and Its Planetary Connection

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Bothmer, Volker; Facius, Rainer; Grießmeier, Jean-Mathias; Moussas, Xenophon; Panasyuk, Mikhail; Romanova, Natalia; Withers, Paul

    2008-01-01

    Interplanetary travel is not just a science fiction scenario anymore, but a goal as realistic as when our ancestors started to cross the oceans. With curiosity driving humans to visit other planets in our solar system, the understanding of interplanetary space weather is a vital subject today, particularly because the physical conditions faced during a space vehicle's transit to its targeted solar system object are crucial to a mission's success and vital to the health and safety of spacecraft crew, especially when scheduling planned extravehicular activities.

  1. Evidence for Intense Space Weathering on Mercury

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.; Riner, M. A.

    2010-12-01

    The optical effects of exposure of lunar materials to space are well-characterized (e.g [1]) and similar effects are expected on Mercury. In the lunar case perhaps the most notable effect is strong reddening of lunar materials relative to powdered lunar rocks. There is consensus that this is due to the effect of extremely fine grained (10’s of nm) particles of iron that occur in rims on mineral grains generated during micrometeorite impact and sputtering [2]. Noble et al. 2007 [3] studied silica gel samples infused with fine grained iron and observed lunar-like optical effects. Hapke 2001 [4] used Maxwell-Garnett theory to combine the optical properties of iron metal with the optical properties of the host lunar material to successfully produce the reddening and darkening effects observed. Lucey and Noble 2008 [5] tested the Hapke 2001 formulation against the Noble et al. (2007) data and found good agreement when particles were small with respect to the wavelength. However, particles that were larger than about 50 nm showed sharp deviations from the predictions of the Hapke 2001 treatment. At present there is no theoretical treatment of iron metal inclusions that darken, but do not redden. The Hapke 2001 formulation for modeling the optical effect of iron particles within grains relates the complex index of refraction of the host mineral, iron and particle size of the host to the single scattering albedo to account for absorption due to subwavelength particle inclusions, and adds this to his previously defined absorption coefficient. This absorbing effect, based on equivalent medium Maxwell-Garnett theory, assumes the particles are much smaller than the wavelength, and hence has no particle size dependence. While [5] showed Hapke’s model for space weathering works well for very small particles, the larger particles in the Noble et al. 2007 experiments did not conform well to predictions. To introduce a wavelength dependent term we replace Hapke’s term that

  2. Integrating policy issues into a university space weather curriculum

    NASA Astrophysics Data System (ADS)

    Fisher, G.

    2004-12-01

    The integration of science and policy has been a challenge, or even absent, in graduate research programs at universities. While some universities offer science policy courses on a broad scale, offering science policy courses catered to graduate science students has been a major challenge for various reasons. This presentation will discuss a project aimed at integrating policy into a space weather curriculum. The goal is to educate the next generation of space weather scientists to gain an understanding and appreciation of policy so that they can assist policy makers to make sound public policy decisions. Space weather is a field where policy, societal, and economic aspects are becoming increasingly important as our society is becoming more dependent on activities and technology that are affected by conditions in the space environment. Solar and geomagnetic events can impact many different sectors that affect our daily lives--navigation, satellites, communications, pipelines, electric power systems, and human health in space and flight. A new generation of scientists are increasingly interested in the social and policy impacts of their science. It is important that young scientists are prepared to fully participate in the challenging opportunities that lie ahead, including communicating to policy makers, making sound public policy decisions, and communicating science to the public. Although this project is focused on the development of a space weather policy curriculum, it is anticipated that the project will serve as a model for broader science policy curricula.

  3. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  4. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  5. Synopsis of the Review on Space Weather in Latin America: Space Science, Research Networks and Space Weather Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo

    2016-07-01

    The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to

  6. An outline of the review on space weather in Latin America: space science, research networks and space weather center

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Dasso, S.; Gonzalez-Esparza, A.

    2016-12-01

    The present work is an outline of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to

  7. Historical Space Weather Datasets within NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Mabie, J. J.; Horan, K.; Clark, C.

    2013-12-01

    The National Geophysical Data Center (NGDC) is primarily responsible for scientific data stewardship of operational space weather data from NOAA's fleet of environmental satellites in geostationary and polar, low-earth orbits. In addition to this and as the former World Data Center for Solar Terrestrial Physics from 1957 to 2011 NGDC acquired a large variety of solar and space environmental data in differing formats including paper records and on film. Management of this heterogeneous collection of environmental data is a continued responsibility of NGDC as a participant in the new World Data System. Through the former NOAA Climate Data Modernization Program many of these records were converted to digital format and are readily available online. However, reduced funding and staff have put a strain on NGDC's ability to effectively steward these historical datasets, some of which are unique and, in particular cases, were the basis of fundamental scientific breakthroughs in our understanding of the near-earth space environment. In this talk, I will provide an overview of the historical space weather datasets which are currently managed by NGDC and discuss strategies for preserving these data during these fiscally stressing times.

  8. A Coordinated Effort to Address Space Weather and Environment Needs

    NASA Technical Reports Server (NTRS)

    Minow, Joe; Spann, James F.; Edward, David L.; Burns, Howard D.; Gallagher, Dennis; Xapos, Mike; DeGroh, Kim

    2010-01-01

    The growing need for coordination of the many aspects of space environments is directly related to our increasing dependence on space assets. An obvious result is that there is a need for a coordinated effort to organize and make accessible the increasing number of space environment products that include space environment models and observations, material testing, and forecasting tools. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas; (1) natural environments characterization and modeling, (2) environmental effects on materials and systems, (3) and operational and forecasting space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather.

  9. The Solar Atmosphere and Space Weather

    NASA Astrophysics Data System (ADS)

    Bothmer, Volker

    -based observers. The remote-sensing observations undertaken by Yohkoh, followed by multi-wavelength movies from SoHO (Solar Heliospheric Observatory) and high resolution EUV imaging by TRACE (Transition Region and Coronal Explorer) have revealed to date that the Sun's atmosphere is highly dynamic and never at rest. Solar eruptions have been tracked into space in unprecedented detail. In combination with near-Earth satellites, their interplanetary and geo-space effects could be investigated in depth, having provided the roots for space weather forecasts. This chapter summarizes the discoveries about the origin and evolution of solar storms and their space weather effects, providing a comprehensive picture of the most important links in the Sun-Earth system. It finally provides an outlook to future research in the field of space weather.

  10. Flare forecasting at the Met Office Space Weather Operations Centre

    NASA Astrophysics Data System (ADS)

    Murray, S. A.; Bingham, S.; Sharpe, M.; Jackson, D. R.

    2017-04-01

    The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end-users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms: forecasts for each active region on the solar disk over the next 24 h and full-disk forecasts for the next 4 days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results and forecasting skill decreasing over longer forecast lead times.

  11. An overview on the Space Weather in Latin America: from Space Research to Space Weather and its Forecast

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Gonzalez-Esparza, A.; Dasso, S.

    2015-12-01

    We present an overview on the Space Weather in Latin America, highlighting the main findings from our review the recent advances in the space science investigations in Latin America focusing in the solar-terrestrial interactions, modernly named space weather, which leaded to the creation of forecast centers. Despite recognizing advances in the space research over the whole Latin America, this review is restricted to the evolution observed in three countries (Argentina, Brazil and Mexico) only, due to the fact that these countries have recently developed operational center for monitoring the space weather. The work starts with briefly mentioning the first groups that started the space science in Latin America. The current status and research interest of such groups are then described together with the most referenced works and the challenges for the next decade to solve space weather puzzles. A small inventory of the networks and collaborations being built is also described. Finally, the decision process for spinning off the space weather prediction centers from the space science groups is reported with an interpretation of the reason/opportunities that lead to it. Lastly, the constraints for the progress in the space weather monitoring, research, and forecast are listed with recommendations to overcome them.

  12. The Solar Origins of Severe Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Solar cycle 23 witnessed an unprecedented array of space- and ground-based instruments observing the violent eruptions from the Sun that had huge impact on the heliosphere. Coronal mass ejections (CMEs) contribute to space weather by producing geomagnetic storms and accelerating energetic particles, the two aspects that concern the space weather community. This paper discusses the kinematic and solar-source properties of these CMEs and how they vary with the solar activity cycle with particular emphasis on the following issues. Intense geomagnetic storms are caused by the out-of-the-ecliptic component of the magnetic field in CMEs and/or their sheath. Geoeffective CMEs originate close to the disk center of the Sun. Geoeffective CMEs are more energetic (average speed approx.1000 km/s, mostly halo CMEs or partial halo CMEs). CMEs producing solar energetic particles are the fastest (average speed approx. 1600 km/s) of all CME populations and have very high halo CME fraction. The source location requirement is different for Geoeffective and SEP-producing CMEs because of the different paths taken by CME plasma and energetic particles.

  13. Solar Energetic Particles and Space Weather

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-01-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.

  14. Characterizing Space Weather Effects in the Post-DMSP Era

    NASA Astrophysics Data System (ADS)

    Groves, K. M.

    2015-12-01

    Space weather generally refers to heliophysical phenomena or events that produce a negative impact on manmade systems. While many space weather events originate with impulsive disturbances on the sun, others result from complex internal interactions in the ionosphere-thermosphere system. The reliance of mankind on satellite-based services continues to increase rapidly, yet the global capacity for sensing space weather in the ionosphere seems headed towards decline. A number of recent ionospheric-focused space-based missions are either presently, or soon-to-be, no longer available, and the end of the multi-decade Defense Meteorological Satellite Program is now in sight. The challenge facing the space weather community is how to maintain or increase sensing capabilities in an operational environment constrained by a decreasing numbers of sensors. The upcoming launch of COSMIC-2 in 2016/2018 represents the most significant new capability planned for the future. GNSS RO data has some benefit for background ionospheric models, particularly over regions where ground-based GNSS TEC measurements are unavailable, but the space weather community has a dire need to leverage such missions for far more knowledge of the ionosphere, and specifically for information related to space weather impacts. Meanwhile, the number of ground-based GNSS sensors worldwide has increased substantially, yet progress instrumenting some vastly undersampled regions, such as Africa, remains slow. In fact, the recent loss of support for many existing ground stations in such areas under the former Scintillation Network Decision Aid (SCINDA) program may actually result in a decrease in such sensing sites over the next 1-2 years, abruptly reversing a positive trend established over the last decade. Here we present potential solutions to the challenges these developments pose to the space weather enterprise. Specific topics include modeling advances required to detect and accurately characterize

  15. Integration of Space Weather Forecasts into Space Protection

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  16. Filament Eruptions, Jets, and Space Weather

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    -plasma component of coronal X-ray jets. This favors the idea that Type-II spicules are miniature counterparts of coronal X-ray jets. In Moore et al (2011, ApJ, 731, L18), we pointed out that if Type-II spicules are magnetic eruptions that work like coronal X-ray jets, they carry an area-averaged mechanical energy flux of approximately 7x10)(exp 5) erg cm(exp -2) s(exp-1) into the corona in the form of MHD waves and jet outflow, enough to power the heating of the global corona and solar wind. On this basis, from our observations of mini-filament eruptions in blowout X-ray jets, we infer that magnetic explosions of the type that have erupting filaments in them are the main engines of both (1) the steady solar wind and (2) the CMEs that produce the most severe space weather by blasting out through the corona and solar wind, making solar energetic particle storms, and bashing the Earth's magnetosphere. We conclude that in focusing on prominences and filament eruptions, Einar had his eye on the main bet for understanding what powers all space weather, both the extreme and the normal.

  17. Activity of Science and Operational Research of NICT Space Weather

    NASA Astrophysics Data System (ADS)

    Ishii, Mamoru; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Tsugawa, Takuya; Kubo, Yuki

    Operational space weather forecast is for contribution to social infrastructure than for academic interests. These user need will determine the target of research, e.g., the precision level, spatial and temporal resolution and/or required lead time. We, NICT, aim two target in the present mid-term strategic plan, which are (1) forecast of ionospheric disturbance influencing to satellite positioning, and (2) forecast of disturbance in radiation belt influencing to satellite operation. We have our own observation network and develop empirical and numerical models for achieving each target. However in actual situation, it is much difficult to know the user needs quantitatively. Most of space weather phenomena makes the performance of social infrastructure poor, for example disconnect of HF communication, increase of GNSS error. Most of organizations related to these operation are negative to open these information. We have personal interviews to solve this issue. In this interview, we try to collect incident information related to space weather in each field, and to retrieve which space weather information is necessary for users. In this presentation we will introduce our research and corresponding new service, in addition to our recent scientific results.

  18. Using Helioseismology to Improve Space Weather Predictions

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha

    2010-05-01

    Solar flares and CMEs cause dramatic effects at the Earth, including damage to satellite electronics, loss of airline communications, and degradation, or even complete loss, of GPS. These effects become more disruptive as we become increasingly reliant on highly sophisticated technology. However, it is very difficult to predict when and where these events will occur or how large they will be. Helioseismology has recently emerged as a potentially powerful tool for understanding and predicting space weather events. In the last few years, a series of studies using ring diagram helioseismology has found evidence that signatures of subsurface twisting and emerging flux can be related to flaring activity. In particular, a recent study finds that these signatures are present 2-3 days prior to the occurrence of a flare. In this lecture I will provide a brief overview of helioseismology as well as current space weather forecasting capabilities and needs. The lecture will conclude with the recent work on flare forecasting that draws these two fields together.

  19. Space weather prediction by cosmic rays

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Souvatzoglou, G.; Sarlanis, C.; Mariatos, G.; Plainaki, C.; Gerontidou, M.; Belov, A.; Eroshenko, E.; Yanke, V.

    Relativistic (galactic and solar) cosmic rays (CR) registered by neutron monitors can play a useful key-role in space weather storms forecasting and in the specification of magnetic properties of coronal mass ejections (CMEs), shocks and ground level enhancements (GLEs). In order to produce a real-time prediction of space weather phenomena, only real-time data from a neutron monitor network should be employed. Recently in Athens cosmic-ray station a real-time data collection and acquisition system has been created in collaboration with the cosmic ray group of IZMIRAN. This system collects data in real-time mode from about 15 real-time cosmic ray stations by using the internet. The main server in Athens station collects 5-min and hourly cosmic ray data. The measurements of all stations are being processed automatically while converted into a suitable form, so as to be serviceably for forecasting purposes. All programs have been written in an expandable form, in order to upgrade the network of real-time neutron monitors with the biggest possible number of stations, easily. Programs which make use of these data for forecasting studies are already running in experimental mode. The increased number of NM stations operating in real time provides a good basis for using Neutron Monitor network as a tool of forecasting the arrival of the interplanetary disturbances at the Earth.

  20. IPS Space Weather Research: Korea-Japan-UCSD

    DTIC Science & Technology

    2015-04-27

    measure the selected radio sources around the sky at 327 MHz which is same frequency for use in Japan during last 30 years to derive solar wind velocities...Environment Laboratory (STELab), Japan . The new KSWC system is dedicated to IPS observation and observed data can be used for UCSD model input in...version of the UCSD 3-D IPS model at KSWC for space weather forecasting purpose based on the observed data primarily from Japan and Korea

  1. Achievements and Challenges in the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-08-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  2. A survey of customers of space weather information

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Rabanal, J. P.

    2013-09-01

    We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.

  3. A framework of space weather satellite data pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Fuli; Zou, Ziming

    Various applications indicate a need of permanent space weather information. The diversity of available instruments enables a big variety of products. As an indispensable part of space weather satellite operation system, space weather data processing system is more complicated than before. The information handled by the data processing system has been used in more and more fields such as space weather monitoring and space weather prediction models. In the past few years, many satellites have been launched by China. The data volume downlinked by these satellites has achieved the so-called big data level and it will continue to grow fast in the next few years due to the implementation of many new space weather programs. Because of the huge amount of data, the current infrastructure is no longer incapable of processing data timely, so we proposed a new space weather data processing system (SWDPS) based on the architecture of cloud computing. Similar to Hadoop, SWDPS decomposes the tasks into smaller tasks which will be executed by many different work nodes. Control Center in SWDPS, just like NameNode and JobTracker within Hadoop which is the bond between the data and the cluster, will establish work plan for the cluster once a client submits data. Control Center will allocate node for the tasks and the monitor the status of all tasks. As the same of TaskTrakcer, Compute Nodes in SWDPS are the salves of Control Center which are responsible for calling the plugins(e.g., dividing and sorting plugins) to execute the concrete jobs. They will also manage all the tasks’ status and report them to Control Center. Once a task fails, a Compute Node will notify Control Center. Control Center decides what to do then; it may resubmit the job elsewhere, it may mark that specific record as something to avoid, and it may even blacklist the Compute Node as unreliable. In addition to these modules, SWDPS has a different module named Data Service which is used to provide file

  4. Space-weather assets developed by the French space-physics community

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.

    2016-12-01

    We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.

  5. Space Weather Research in Greece: The Solar Energetic Particle Perspective

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga E.

    2015-03-01

    Space Weather Research carried out in the National Observatory of Athens (NOA), within the SEPServer and COMESEP projects under the Seventh Framework Programme (FP7-SPACE) of the European Union (EU) is presented. Results and services that these projects provide to the whole scientific community as well as stakeholders are underlined. NOA strongly contributes in terms of crucial Solar Energetic Particle (SEP) dataset provided, data analysis and SEP catalogue items provided as well as comparative results of the various components of the project server, greatly facilitating the investigation of SEPs and their origin. SEP research highlights carried out at NOA are also presented, used to test and validate the particle SEP model developed and incorporated within the SEP forecasting tools of the COronal Mass Ejections and Solar Energetic Particles (COMESEP) Space Weather Alert System, i.e. the First European Alert System for geomagnetic storms and SEP radiation hazards.

  6. Successfully Transitioning Science Research to Space Weather Applications

    NASA Technical Reports Server (NTRS)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  7. Locations Where Space Weather Energy Impacts the Atmosphere

    NASA Astrophysics Data System (ADS)

    Sojka, Jan J.

    2017-07-01

    In this review we consider aspects of space weather that can have a severe impact on the terrestrial atmosphere. We begin by identifying the pre-conditioning role of the Sun on the temperature and density of the upper atmosphere. This effect we define as "space climatology". Space weather effects are then defined as severe departures from this state of the atmospheric energy and density. Three specific forms of space weather are reviewed and we show that each generates severe space weather impacts. The three forms of space weather being considered are the solar photon flux (flares), particle precipitation (aurora), and electromagnetic Joule heating (magnetosphere-ionospheric (M-I) coupling). We provide an overview of the physical processes associated with each of these space weather forms. In each case a very specific altitude range exists over which the processes can most effectively impact the atmosphere. Our argument is that a severe change in the local atmosphere's state leads to atmospheric heating and other dynamic changes at locations beyond the input heat source region. All three space weather forms have their greatest atmospheric impact between 100 and 130 km. This altitude region comprises the transition between the atmosphere's mesosphere and thermosphere and is the ionosphere's E-region. This region is commonly referred to as the Space Atmosphere Interaction Region (SAIR). The SAIR also acts to insulate the lower atmosphere from the space weather impact of energy deposition. A similar space weather zone would be present in atmospheres of other planets and exoplanets.

  8. Space Weather Status for Exploration Radiation Protection

    NASA Technical Reports Server (NTRS)

    Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas

    2011-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.

  9. 2011 Space Weather Workshop to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2011-04-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.

  10. Technique for observation derived boundary conditions for Space Weather

    NASA Astrophysics Data System (ADS)

    Pagano, Paolo; Mackay, Duncan; Yeates, Anthony

    2017-04-01

    We propose a new efficient and accurate modelling technique suitable for the next generation of Space Weather predictive tools. Specifically, we put forward an approach that can provide interplanetary Space Weather forecasting models with an accurate time dependent boundary condition of erupting flux ropes in the upper Solar Corona. The unique strength of this technique is that it follows the time evolution of coronal magnetic fields directly driven from observations and captures the full life span of magnetic flux ropes from formation to ejection. To produce accurate and effective boundary conditions we couple two different modelling techniques, MHD simulations with quasi-static non-potential modelling. Our modelling approach uses a time series of observed synoptic magnetograms to drive the non-potential evolution model of the coronal magnetic field to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the ejection phase of the flux rope into interplanetary space. We focus here on the MHD simulation that describes the ejection of two magnetic flux ropes through the solar corona to the outer boundary. At this boundary we then produce time dependent boundary conditions for the magnetic field and plasma that in the future may be applied to interplanetary space weather prediction models. We illustrate that the coupling of observationally derived quasi-static non-potential magnetic field modelling and MHD simulations can significantly reduce the computational time for producing realistic observationally derived boundary conditions at the boundary between the corona and interplanetary space.

  11. Communicating space weather to policymakers and the wider public

    NASA Astrophysics Data System (ADS)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  12. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  13. Space Weather Effects on Aircraft Navigation

    NASA Astrophysics Data System (ADS)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  14. Space weathering trends among carbonaceous asteroids

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Masiero, J. R.; Meech, K. J.

    2016-01-01

    We present visible spectroscopic and albedo data of the 2.3 Gyr old Themis family and the <10 Myr old Beagle sub-family. The slope and albedo variations between these two families indicate C-complex asteroids become redder and darker in response to space weathering. Our observations of Themis family members confirm previously observed trends where phyllosilicate absorption features are less common among small diameter objects. Similar trends in the albedos of large (>15 km) and small (⩽15 km) Themis members suggest these phyllosilicate feature and albedo trends result from regolith variations as a function of diameter. Observations of the Beagle asteroids show a small, but notable fraction of members with phyllosilicate features. The presence of phyllosilicates and the dynamical association of the main-belt comet 133P/Elst-Pizarro with the Beagle family imply the Beagle parent body was a heterogenous mixture of ice and aqueously altered minerals.

  15. Government and Public Awareness of Space Weather

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2011-07-01

    Solar cycle 24 continues to provide confusion in its start and its unsteady rise toward an uncertain maximum. Nevertheless, many entities, including the popular press and influential government agencies, are becoming more aware of the effects of the Sun and the near-Earth space environment on essential modern-day technologies. Within the past 6 months, news articles in the printed and digital press have included such headlines as "Solar storm delivers glancing blow to Earth—and a warning" (Christian Science Monitor, 9 June 2011), "Magnetic north pole shifts, forces runway closures at Florida airport" (http://FoxNews.com, 6 January 2011), "Major solar flare erupts, may make auroras visible in northern U.S." (SPACE.com, 10 March 2011, but picked up by FoxNews.com and Yahoo News), and "As the sun awakens, the power grid stands vulnerable" (Washington Post, 20 June 2011). All such news stories for the general public are a welcome recognition that weather in space can have important implications for human activities, including the performance—and even survivability—of some technologies.

  16. Monitoring space weather with the GOES magnetometers

    NASA Astrophysics Data System (ADS)

    Singer, Howard; Matheson, Lorne; Grubb, Richard; Newman, Ann; Bouwer, David

    1996-10-01

    Magnetic field measurements have been made form geosynchronous orbit for more than 20 years. These measurements are important for monitoring 'space weather' and for providing a unique data base that can be used for improving our knowledge of the Earth's magnetosphere and solar-terrestrial interactions. This paper will focus on the variety of products and services provided by these measurements--those currently available, and those under consideration for the future. The magnetic field assist forecasters in qualitatively assessing the level of geomagnetic disturbance, to interpret changes in energetic particle measurements, to provide data to the National Geophysical Data Center, to support in real-time scientific activities such as rocket launches, and to conduct research for a better understanding of the space environment. One important use of magnetometer data in the Space Environment Center is to alert customers when shocks occur in the solar wind. These shocks have the potential for energizing particles to multi-MeV levels, causing Single Event Upsets in spacecraft electronics, and at lower energy ranges causing deep-dielectric charging that produces spacecraft anomalies. Data from the new GOES-8 and GOES-9 spacecraft will be discussed along with prospects for future products and services.

  17. Chapman Conference accents success of space weather program

    NASA Astrophysics Data System (ADS)

    Siscoe, George; Song, Paul

    Over 160 scientists and students from more than a dozen countries attended the Chapman Conference on Space Weather: Progress and Challenges in Research and Applications to hear 70 talks and peruse 150 posters documenting achievements made during the first 5 years of the National Space Weather Program (NSWP).Since the advent of the NSWR, space weather research has expanded from a semi-private activity, pursued mostly to address operational concerns of industries and military branches affected by space weather, to a broad subject pursued in part for its capacity to integrate research across the divisions of the SPA community.

  18. Collaboration Between Government and Commercial Space Weather Information Providers

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie

    2007-10-01

    Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.

  19. Space Weather Affected Habitable Zones Around Active Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir S.

    2017-05-01

    Our Sun, a magnetically mild star, exhibits space weather in the form of magnetically driven solar explosive events (SEEs) including solar flares, coronal mass ejections (CME) and solar energetic particle (SEP) events. Extreme SEEs from magnetically active stars can significantly perturb magnetosphere, cause strong geomagnetic storms, initiate escape and introduced chemical changes in exoplanetary atmospheres. We use Kepler data and reconstruction of X-ray and UV emission from young solar-like stars to recover the frequency and energy fluxes from extreme events from active stars including the young Sun. I present our recent simulation results based on multi-dimensional multi-fluid hydrodynamic and magnetohydrodynamic models of interactions of extreme CME and SEP events with magnetospheres and lower atmospheres of early Earth and exoplanets around active stars. We also discuss observational bio-signatures of life “highlighted” by space weather events, the beacons of life.

  20. Regional input to joint European space weather service

    NASA Astrophysics Data System (ADS)

    Stanislawska, I.; Belehaki, A.; Jansen, F.; Heynderickx, D.; Lilensten, J.; Candidi, M.

    The basis for elaborating within COST 724 Action Developing the scientific basis for monitoring modeling and predicting Space Weather European space weather service is rich by many national and international activities which provide instruments and tools for global as well as regional monitoring and modeling COST 724 stimulates coordinates and supports Europe s goals of development and global cooperation by providing standards for timely and high quality information and knowledge in space weather Existing local capabilities are taken into account to develop synergies and avoid duplication The enhancement of environment monitoring networks and associated instruments technology yields mutual advantages for European service and regional services specialized for local users needs It structurally increases the integration of limited-area services generates a platform employing the same approach to each task differing mostly in input and output data In doing so it also provides complementary description of the environmental state within issued information A general scheme of regional services concept within COST 724 activity can be the processing chain from measurements trough algorithms to operational knowledge It provides the platform for interaction among the local end users who define what kind of information they need system providers who elaborate tools necessary to obtain required information and local service providers who do the actual processing of data and tailor it to specific user s needs Such initiative creates a unique possibility for small

  1. Solar thematic maps for space weather operations

    NASA Astrophysics Data System (ADS)

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-08-01

    Thematic maps are arrays of labels, or "themes," associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ˜2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  2. Solar thematic maps for space weather operations

    USGS Publications Warehouse

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-01-01

    Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  3. The space-weather enterprise: past, present, and future

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2000-09-01

    Space-weather impacts society in diverse ways. Societies' responses have been correspondingly diverse. Taken together these responses constitute a space weather ``enterprise'', which has developed over time and continues to develop. Technological systems that space-weather affects have grown from isolated telegraph systems in the 1840s to ocean and continent-spanning cable communications systems, from a generator electrifying a few city blocks in the 1880s to continent-spanning networks of high-tension lines, from wireless telegraphy in the 1890s to globe-spanning communication by radio and satellites. To have a name for the global totality of technological systems that are vulnerable to space weather, I suggest calling it the cyberelectrosphere. When the cyberelectrosphere was young, scientists who study space weather, engineers who design systems that space weather affects, and operators of such systems - the personnel behind the space-weather enterprise - were relatively isolated. The space-weather enterprise was correspondingly incoherent. Now that the cyberelectrosphere has become pervasive and indispensable to most segments of society, the space weather enterprise has become systematic and coherent. At present it has achieved considerable momentum, but it has barely begun to realize the level of effectiveness to which it can aspire, as evidenced by achievements of a corresponding but more mature enterprise in meteorology, a field which provides useful lessons. The space-weather enterprise will enter a new phase after it matures roughly to where the tropospheric weather enterprise is now. Then it will become indispensable for humankind's further global networking through technology and for humankind's further utilization of and expansion into space.

  4. Space Weather and Management of Environmental Risks and Hazards

    NASA Astrophysics Data System (ADS)

    Pirjola, R.; Kauristie, K.; Lappalainen, H.

    "Space Weather" is defined as electromagnetic and particle conditions in the space environment that can disturb space-borne and ground-based technological systems (e.g. satellite operation, telecommunication, aviation, electric power transmission) and even endanger human health. Thus, space weather is of great importance to the society since people are dependent on reliable operation of modern technology, interruptions of which may lead to large economical and other losses. Physical processes involved in space weather constitute a complicated chain from the Sun to the Earth's surface. Thus, a full understanding of space weather and the risks it produces requires expertise in many different disciplines of science and technology. Space weather is a new subject among the natural risks and hazards which threaten the society and its infrastructure (although the first observations of ground effects of space weather were already made about 150 years ago). Monitoring systems for the management of other risks, such as floods, forest fires, etc., and for security are, to a great extent, based on satellite observations. Spacecraft and the communication between satellites and the ground are vulnerable to space weather. Thus, besides being a direct risk to technological systems, space weather may also be indirectly adverse to risk management. These two aspects of space weather are considered in a proposal to be submitted to EU's Sixth Framework Programme under the "Aeronautics and Space" priority in the "Global Monitoring for Environment and Security (GMES) / Risk Management" area in March 2004. The proposal coordinated by the Finnish Meteorological Institute with five to ten participating institutes is called SW-RISK ("Space Weather - Risk Indices from Scientific Know-how").

  5. The Nature of Reduction in Space Weathering

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Allen, C. C.

    1993-07-01

    Space weathering is a broad term that includes a number of complex effects of the exposure of materials to the environment of space. The processes that drive space weathering include micrometeorite impact, radiation from the Sun and cosmic rays, and exposure to the vacuum of space. One of the important effects caused by these processes is the tendency for chemical reduction of oxide and silicate materials (including glasses), with accompanying loss of oxygen and production of reduced metal. Such chemical reduction and accompanying metal production may have an important influence on the chemistry of the outermost volume of individual grains as well as on the optical properties of this material. Hapke [1] discussed five processes that have been suggested for producing submicroscopic iron metal in the lunar soil: (1) shock reduction, (2) heating in a thermal blanket in vacuum, (3) shock heating of solar-wind-impregnated grains, (4) coatings deposited by solar wind sputtering, and (5) coatings deposited by impact vaporization. As noted by Hapke, "Processes (1) and (2) have been refuted by laboratory experiments. Processes (4) and (5) have produced submicroscopic iron metal in laboratory simulations. Although no experiments have been done to simulate process (3), it is widely accepted." We have been performing experimental reduction of simulated and actual lunar materials [2-5] and have shown that, under conditions of exposure to hydrogen at elevated temperatures, reduction of FeO readily occurs in ilmenite and lunar composition glass, and occurs at a slower rate in pyroxene and olivine. Even plagioclase feldspar containing minor FeO is readily reduced with formation of metallic iron blebs on surfaces [4]. A comparison of natural lunar samples to hydrogen-reduced samples or simulants in which we are searching for reduction evidence in various soil phases is underway. Preliminary data for mature soils show, in agreement with earlier results, that reduced iron produced in

  6. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  7. Space Weather Workshop 2010 to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2010-03-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).

  8. A Good Start: Workshop Tackles Space Weather Economics

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2008-07-01

    As I wrote earlier this year, reliable estimates of the economic impacts of a space weather event on technologies have often been seriously lacking (see L. Lanzerotti, Space Weather, 6, S01002, doi:10.1029/2007SW000385, 2008). However, I am happy to note that the Space Studies Board of the U.S. National Research Council took an important step toward setting a framework for achieving some of these "reliable estimates" in a workshop that was held in late May in Washington, D. C. The meeting drew active participation from the academic research community and major government agencies in the National Space Weather Program ()http://www.nswp.gov, as well as a significant number of commercial interests large and small. These latter included enterprises that use space weather information for design decisions and/or successful operations, as well as vendors of space weather products and services.

  9. LOFAR new tool for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Wronowski, Roman; Przepiórka, Dorota; Matyjasiak, Barbara; Błaszkiewicz, Leszek; Dabrowski, Bartosz

    2016-04-01

    LOFAR is the Low-Frequency Array, exploring yet poorly studied range between 30-240 MHz frequencies. It constitutes a European array of thousands of antennas - a challenge for data transfer and processing techniques. The project is based on an interferometry array of radio telescopes using about thousand small antennas concentrated in at least 52 larger stations, 40 of these stations are distributed across the Netherlands, six stations in Germany, 3 in Poland and one each in Great Britain, France and Sweden. The data processing is performed by a Blue Gene/P supercomputer situated in the Netherlands at the University of Groningen. Novel ground based wide area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The three new LOFAR stations were installed during 2015 in Poland. The LOFAR facilities in Poland are distributed among three sites: Borówiec near Poznan, Bałdy near Olsztyn and Łazy near Krakow. All they are connected via PIONIER dedicated links to Poznan. The frequency range of LOFAR (10-250 MHz) is a very important for the cosmic plasma physics. In this spectral domain we can observe for a first time the regions of normal and radio galaxies yet unseen at higher frequencies: their radio flux rapidly fades with frequency because of ageing population of high-energy relativistic electrons. This is also the optimum domain for observing the radio emission from magnetospheres of pulsars and giant (solar or extrasolar) planets. LOFAR will also give us chance for monitoring and diagnostic of different processes in space plasma enviroment of the Earth's and rado emissions from Sun. All this provides a trip to yet unexplored domains of the Universe and can be the exelent tool for SSA and Space Weather program

  10. Development of Advanced Space Weather Tools at Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Hesse, Michael; Kuznetsova, Masha; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Rastaetter, Lutz

    2013-04-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and it will provide an overview of tool development at Goddard Space Flight Center.

  11. Maintaining US Space Weather Capabilities after DMSP: Research to Operations

    NASA Astrophysics Data System (ADS)

    Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.

  12. Space weather hazards and planetary habitability

    NASA Astrophysics Data System (ADS)

    Lammer, H.

    2007-08-01

    Space weather related responses of planetary atmospheres include: thermospheric and ionospheric density variations, changes in atmospheric composition including ozone depletion, changes in heating/cooling, temperature and wind perturbations, photochemistry, collisional excitation, deactivation and cooling due to IR-, optical and UV-emissions, magnetospheric compression, enhancement of secondary particles, etc. That these atmospheric effects related to extreme solar events have an influence on satellites (drag, anomalous behaviour / failure), navigation and tracking difficulties, spacecraft/mission design, radiation hazard issues for future manned missions (e.g., Moon, Mars) etc., is only one aspect. Another important aspect is directly related to the evolution of planetary atmospheres and their water inventories. For understanding the principles that generate long-time habitable environments like on Earth or terrestrial type exoplanets such as the recent discovered Gliese 581 inside the habitable zones of lower mass stars, one has to understand the evolutionary influence of the solar/ stellar radiation and particle environment to the atmosphere and surface. The need for a coordinated study of the behaviour of the upper atmosphere, ionosphere, magnetospheric environment and thermal and non-thermal atmospheric loss processes of Venus, Earth, and Mars during "extreme solar events" will be discussed. Such events can serve as a proxy for the influence of the active young Sun with implications for the evolution of planetary atmospheres (solar system and exoplanets), water inventories and habitability. Studies of the evolution of the spectral irradiances (X-ray, EUV, UV) of solar-type stars of different ages are used as a proxy for reconstructing the history of the Sun/stars radiation output. Complementary information concerning solar mass loss (solar/stellar winds) can be derived from studies of the energy distributions of flare related CMEs during low and high solar

  13. Possible ways of space weather prediction improvement

    NASA Astrophysics Data System (ADS)

    Khabarova, O. V.

    2012-04-01

    Most popular short-term space weather prognoses are based on CME-like solar wind conditions' analysis. Short-term forecasts of severe magnetic storms using such a prognostic scheme are rather accurate, but sometimes are not actual due to too short alert time. Moreover, the number of severe storms is 10 times less than the weak magnetic storms' number. At the same time, the quality of weak and moderate magnetic storms forecast is poor for both short-term and medium-term prognoses, especially at a solar minimum. It is found that physical origin of weak and moderate magnetic storms is much closer to substorms' than to severe magnetic storms' nature; that is why CME-condition- based prognoses fail very often for mild geomagnetic storms [1]. Case studies and statistical analysis show that a mechanism of weak and moderate magnetic storms' development could be explained by excitation and compression of the magnetosphere by the SW density sharp increase in a combination with the southward-directed IMF. Sometimes there is a time delay up to several hours between the geoeffective density increase and the negative Bz IMF component's observation [1, 2]. The role of the solar wind velocity in the stimulation of the reconnection in the magnetotail is found out to be negligible for weak or moderate magnetic storms and essential for intensive and severe geomagnetic storms. So, a consideration of high-speed SW streams and the southward IMF direction as a main cause of a geomagnetic storm is correct for storms with Dst<-100nT only. Additionally, there are evidences that a weak increase of the SW density, as well as increased SW turbulence in the ULF diapason one-three days before a geomagnetic storm onset could be considered as a prognostic factor [1, 2]. Therefore, more deep investigation of weak (but not severe) magnetic storms' origin is a main key of future success of space weather prediction. 1. Khabarova O.V., Current Problems of Magnetic Storm Prediction and Possible Ways of

  14. Predicting Space Weather Effects on Close Approach Events

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Newman, Lauri K.; Besser, Rebecca L.; Pachura, Daniel A.

    2015-01-01

    The NASA Robotic Conjunction Assessment Risk Analysis (CARA) team sends ephemeris data to the Joint Space Operations Center (JSpOC) for conjunction assessment screening against the JSpOC high accuracy catalog and then assesses risk posed to protected assets from predicted close approaches. Since most spacecraft supported by the CARA team are located in LEO orbits, atmospheric drag is the primary source of state estimate uncertainty. Drag magnitude and uncertainty is directly governed by atmospheric density and thus space weather. At present the actual effect of space weather on atmospheric density cannot be accurately predicted because most atmospheric density models are empirical in nature, which do not perform well in prediction. The Jacchia-Bowman-HASDM 2009 (JBH09) atmospheric density model used at the JSpOC employs a solar storm active compensation feature that predicts storm sizes and arrival times and thus the resulting neutral density alterations. With this feature, estimation errors can occur in either direction (i.e., over- or under-estimation of density and thus drag). Although the exact effect of a solar storm on atmospheric drag cannot be determined, one can explore the effects of JBH09 model error on conjuncting objects' trajectories to determine if a conjunction is likely to become riskier, less risky, or pass unaffected. The CARA team has constructed a Space Weather Trade-Space tool that systematically alters the drag situation for the conjuncting objects and recalculates the probability of collision for each case to determine the range of possible effects on the collision risk. In addition to a review of the theory and the particulars of the tool, the different types of observed output will be explained, along with statistics of their frequency.

  15. Space weathering and the interpretation of asteroid reflectance spectra

    NASA Astrophysics Data System (ADS)

    Gaffey, Michael J.

    2010-10-01

    Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects - whatever their nature - is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts.

  16. Space Weather Needs of an Evolving Customer Base (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, B.; Viereck, R. A.; Onsager, T. G.

    2013-12-01

    Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.

  17. The idea of Space Weather A historical perspective

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    This paper reports the results of a search to determine who originated the concept and/or the term Space Weather. Though many people have been identified with an early use of the term "Space Weather", the first one to have introduced the term seems to be Thomas Gold of Harvard College Observatory, in a 1959 publication in the Journal of Geophysical Research.

  18. Asteroidal Space Weathering: The Major Role of FeS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Rahman, Z.; Hiroi, T.; Sasaki, S.; Noble, S. K.; Horz, F.; Cintala, M. J.

    2013-01-01

    Space weathering (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and experiments, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and experiments are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space weathering effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of experiments designed to explore the efficiency of npFeS production via the main space weathering processes operating in the asteroid belt.

  19. On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes

    NASA Astrophysics Data System (ADS)

    Khabarova, O. V.; Dimitrova, S.

    2009-12-01

    Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.

  20. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  1. A New Source of Space Weather Data

    NASA Technical Reports Server (NTRS)

    Kaiser, Michael L.

    2007-01-01

    The twin STEREO spacecraft were launched on October 26,2006 and, after spending several weeks in alignment orbits, became operational in heliocentric orbits on January 2 1,2007. The spacecraft are now in orbits similar to Earth's and are separating from each other at a rate of about 45 degrees per year as viewed from the sun. The STEREO spacecraft are each equipped with a complement of EUV, and white light imagers as well as particles and fields in situ instruments and a radio burst tracker. In addition to full resolution data downloaded once per day, each spacecraft broadcasts a real time telemetry 'beacon' stream containing compressed images and typically one minute averages of solar wind measurements and radio intensities. These real time data streams are received by a mix of NOAA and NASA-managed tracking stations and the data is transmitted by these stations to the STEREO Science Center at NASA Goddard Space Flight Center where they are processed into useable parameters with a latency of less than five minutes from receipt. As the two spacecraft recede from the sun-Earth line, triangulation of the imaging and radio measurements should allow better estimate of the speed and direction of coronal mass ejections, allowing a more precise estimate of their arrival at Earth. In situ particles and fields measurements, particularly for the spacecraft (Behind) trailing Earth in its orbit, will sample the solar wind that will eventually co-rotate around to the sun-Earth line. Late in the prime mission when the spacecraft are very far (>90 degrees) from the sun-Earth line, observations from the Behind spacecraft, will be particularly valuable for providing a preview of active regions well beyond the sun's East limb (as seen from Earth). Continually updated STEREO space weather data can be viewed and downloaded at http:/lstereo-ssc.nascom.nasa.govldata/beacon/.

  2. Kinetic Space Weather: Toward a Global Hybrid Model of the Polar Ionosphere-Lower Magnetosphere Plasma Transport

    NASA Technical Reports Server (NTRS)

    Horwitz, James L.

    1996-01-01

    During the indicated period of performance, we had a number of publications concerned with kinetic polar ionosphere-lower magnetosphere plasma transport. For the IUGG 1991-4 Quadrennial Report, we reviewed aspects of U.S. accomplishments concerned with polar plasma transport, among other issues. In another review, we examined the computer simulations of multiple-scale processes in space plasmas, including polar plasma outflow and transport. We also examined specifically multiscale processes in ionospheric outflows. We developed a Generalized Semi-Kinetic(GSK) model for the topside-lower magnetosphere which explored the synergistic action of wave heating and electric potentials in the formation of auroral Ion conics, in particular the "pressure cooker" mechanism. We extended the GSK model all the way down to 120 km and applied this code to illustrate the response of the ionosphere- magnetosphere to soft-electron precipitation and convection-driven frictional ion heating, respectively. Later, the convection-driven heating work was extended to a paper for the Journal of Geophysical Research. In addition to the above full published papers, we also presented the first developments of the coupled fluid-semikinetic model for polar plasma transport during this period. The results from a steady-state treatment were presented, with the second presentation being concerned with the effects of photo-electrons on the polar wind, and the first garnering an outstanding student paper award from the American Geophysical Union. We presented the first results from a time-dependent version of this coupled fluid-semikinetic model.

  3. Space weather effects measured in atmospheric radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  4. Space Weather From Explosive Events at the Sun

    NASA Astrophysics Data System (ADS)

    Mason, G. M.

    2004-12-01

    Space Weather is a broad new field of research that seeks to understand short-term disturbances in the Earth-Sun system that can directly affect life and society. The importance of Space Weather has grown in direct proportion to our society's increasing use of advanced technological systems that can be affected by transient conditions in the Earth-Sun system. Communications systems, satellite and Space Station operations, astronauts, and airline passengers have all been impacted by Space Weather events. Although Space Weather events have many causes, the most extreme are associated with explosions in the solar corona. The explosions occur when large magnetic loop structures become unstable and release much of their energy in a matter of minutes. This unleashes a sequence of events, including rapid heating of the Earth's atmosphere from UV radiation and filling the inner solar system with high energy ionizing radiation. Finally, if the explosion occurs close to the middle of the solar disc, a shock wave from the explosion will impact and energize the Earth's magnetosphere one or two days later. Understanding these events involves solving a large group of scientific questions, such as why the magnetic loops go unstable; how they lose their energy; how the shock is formed and how it interacts with material along its path to energize ions to a significant fraction of the speed of light. The reaction of the Earth's magnetosphere and radiation belts to the impact of such a shock, and the eventual effects on the Earth's atmosphere are further broad areas of inquiry that seek to understand the final stages of the event. Over half of the SH sessions at this AGU meeting deal with aspects of such problems, and a new NASA program (Living With a Star) is dedicated to understanding this system with an eventual goal that will enable U.S. forecasting. A broad new set of observations along with extensive development of theories and numerical models will be needed to achieve this

  5. Comparative Science and Space Weather Around the Heliosphere

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas; COSPAR/ILWS Roadmap Team

    2016-10-01

    Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been concerned to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new `toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched

  6. Comparative science and space weather around the heliosphere

    NASA Astrophysics Data System (ADS)

    Grande, Manuel

    2016-07-01

    Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched

  7. Division II / Working Group International Collaboration in Space Weather

    NASA Astrophysics Data System (ADS)

    Webb, David F.; Gopalswamy, Nat; Liu, William; Sibeck, David G.; Schmieder, Brigitte; Wang, Jingxiu; Wang, Chi

    2007-12-01

    The IAU Division II WG on International Collaboration in Space Weather has as its main goal to help coordinate the many activities related to space weather at an international level. The WG currently includes the international activities of the International Heliospheric Year (IHY), the International Living with a Star (ILWS) program, the CAWSES (Climate and Weather of the Sun-Earth System) Working Group on Sources of Geomagnetic Activity, and Space Weather Studies in China. The coordination of IHY activities within the IAU is led by Division II under this working group. The focus of this half-day meeting was on the activities of the IHY program. About 20 people were in attendance. The Chair of the WG, David F. Webb, gave a brief introduction noting that the meeting would have two parts: first, a session on IHY activities emphasizing IHY Regional coordination and, second, a general discussion of the other programs of the WG involving international Space Weather activities.

  8. Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.; hide

    2012-01-01

    Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (Luna

  9. Space Weather Monitoring with GOES-16: Instruments and Data Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert; Machol, Janet; Kress, Brian; Seaton, Daniel; Darnel, Jonathan; Rowland, William; Tilton, Margaret; Denig, William; Boudouridis, Athanasios; Codrescu, Stefan; Claycomb, Abram

    2017-04-01

    Since their inception in the 1970s, the NOAA GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The GOES-16 spacecraft, the first of four satellites as part of the GOES-R spacecraft series mission, was launched in November 2016. The space weather instruments on GOES-16 have significantly improved capabilities over older GOES instruments. They will image the sun's atmosphere in extreme-ultraviolet and monitor solar irradiance in X-rays and UV, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and the Earth's magnetic field. These measurements are important for providing alerts and warnings to many worldwide customers, including the NOAA National Weather Service, satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-16 space weather instruments and presents initial post launch data along with a discussion of calibration activities and the current status of the instruments. We also describe the space weather Level 2+ products that are being developed for the GOES-R series including solar thematic maps, automated magnetopause crossing detection and spacecraft charging estimates. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  10. Space Weather - Current Capabilities, Future Requirements, and the Path to Improved Forecasting

    NASA Astrophysics Data System (ADS)

    Mann, Ian

    2016-07-01

    We present an overview of Space Weather activities and future opportunities including assessments of current status and capabilities, knowledge gaps, and future directions in relation to both observations and modeling. The review includes input from the scientific community including from SCOSTEP scientific discipline representatives (SDRs), COSPAR Main Scientific Organizers (MSOs), and SCOSTEP/VarSITI leaders. The presentation also draws on results from the recent activities related to the production of the COSPAR-ILWS Space Weather Roadmap "Understanding Space Weather to Shield Society" [Schrijver et al., Advances in Space Research 55, 2745 (2015) http://dx.doi.org/10.1016/j.asr.2015.03.023], from the activities related to the United Nations (UN) Committee on the Peaceful Uses of Outer Space (COPUOS) actions in relation to the Long-term Sustainability of Outer Space (LTS), and most recently from the newly formed and ongoing efforts of the UN COPUOS Expert Group on Space Weather.

  11. Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov

  12. Forecasting space weather: Can new econometric methods improve accuracy?

    NASA Astrophysics Data System (ADS)

    Reikard, Gordon

    2011-06-01

    Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.

  13. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    NASA Astrophysics Data System (ADS)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  14. Experimental space weathering of regolith material. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Allen, C. C.

    1994-01-01

    Significant advances in the understanding of space weathering processes were recently reported. Submicroscopic iron blebs were produced in lunar simulant glass and natural terrestrial minerals by high-temperature reduction in controlled atmosphere furnaces. These experiments altered the samples' optical properties and microtextures so that they resembled those of extremely mature lunar soil. The results contributed to a revised model for natural reduction in the regolith. Subsequently, supporting results were obtained by reduction of lunar samples. Research to date has focused on reduction of three lunar surface components: basalt, pyroclastic glass, and mare soil. An extensive set of H reduction experiments with simulants has led to a detailed understanding of reaction mechanisms and kinetics. Reduction experiments using lunar basalt were recently conducted by Carbotek. Reduced samples from these test were analyzed. Reduction experiments on lunar glass 74220 were run at temperatures of 900-1100 C. Reduction efficiency of volcanic glass proved to be a function of the sample's FeO abundance and reaction temperature. We also reduced mare soil 75061 at temperatures of 900-1050 C. Partial reduction of FeO in olivine and pyroxene occurred, but was slower and less complete than reduction of ilmenite. Our experiments on simulants and lunar samples have indicated that the most readily reduced phases in the regolith are ilmenite and glass. Based on initial tests with simulants we proposed refinements to the accepted model for space weathering of the regolith. The impact of a micrometeoroid flash heats and melts and ejects from the impact point a small volume of soil that contains trapped solar wind H and C. Reduction occurs rapidly, while the melt volume is still in motion. When a droplet encounters unmelted soil, it envelopes cold mineral grains. The melt is chilled rapidly. Our analyses of experimentally reduced lunar basalt, glass, and mare soil support the proposed

  15. Forecasting Space Weather Events for a Neighboring World

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Mason, Tom; Wood, Erin L.

    2015-01-01

    Shortly after NASA's Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft entered Mars' orbit on 21 September 2014, scientists glimpsed the Martian atmosphere's response to a front of solar energetic particles (SEPs) and an associated coronal mass ejection (CME). In response to some solar flares and CMEs, streams of SEPs burst from the solar atmosphere and are further accelerated in the interplanetary medium between the Sun and the planets. These particles deposit their energy and momentum into anything in their path, including the Martian atmosphere and MAVEN particle detectors. MAVEN scientists had been alerted to the likely CME-Mars encounter by a space weather prediction system that had its origins in space weather forecasting for Earth but now forecasts space weather for Earth's neighboring planets. The two Solar Terrestrial Relations Observatory spacecraft and Solar Heliospheric Observatory observed a CME on 26 September, with a trajectory that suggested a Mars intercept. A computer model developed for solar wind prediction, the Wang-Sheeley-Arge-Enlil cone model [e.g., Zheng et al., 2013; Parsons et al., 2011], running in real time at the Community Coordinated Modeling Center (CCMC) located at NASA Goddard since 2006, showed the CME propagating in the direction of Mars (Figure 1). According to MAVEN particle detectors, the disturbance and accompanying SEP enhancement at the leading edge of the CME reached Mars at approximately 17 hours Universal Time on 29 September 2014. Such SEPs may have a profound effect on atmospheric escape - they are believed to be a possible means for driving atmospheric loss. SEPs can cause loss of Mars' upper atmosphere through several loss mechanisms including sputtering of the atmosphere. Sputtering occurs when atoms are ejected from the atmosphere due to impacts with energetic particles.

  16. Forecasting Space Weather Events for a Neighboring World

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Mason, Tom; Wood, Erin L.

    2015-01-01

    Shortly after NASA's Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft entered Mars' orbit on 21 September 2014, scientists glimpsed the Martian atmosphere's response to a front of solar energetic particles (SEPs) and an associated coronal mass ejection (CME). In response to some solar flares and CMEs, streams of SEPs burst from the solar atmosphere and are further accelerated in the interplanetary medium between the Sun and the planets. These particles deposit their energy and momentum into anything in their path, including the Martian atmosphere and MAVEN particle detectors. MAVEN scientists had been alerted to the likely CME-Mars encounter by a space weather prediction system that had its origins in space weather forecasting for Earth but now forecasts space weather for Earth's neighboring planets. The two Solar Terrestrial Relations Observatory spacecraft and Solar Heliospheric Observatory observed a CME on 26 September, with a trajectory that suggested a Mars intercept. A computer model developed for solar wind prediction, the Wang-Sheeley-Arge-Enlil cone model [e.g., Zheng et al., 2013; Parsons et al., 2011], running in real time at the Community Coordinated Modeling Center (CCMC) located at NASA Goddard since 2006, showed the CME propagating in the direction of Mars (Figure 1). According to MAVEN particle detectors, the disturbance and accompanying SEP enhancement at the leading edge of the CME reached Mars at approximately 17 hours Universal Time on 29 September 2014. Such SEPs may have a profound effect on atmospheric escape - they are believed to be a possible means for driving atmospheric loss. SEPs can cause loss of Mars' upper atmosphere through several loss mechanisms including sputtering of the atmosphere. Sputtering occurs when atoms are ejected from the atmosphere due to impacts with energetic particles.

  17. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  18. Surface Particle Detectors in Space Weather forecast

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot

    Recently several groups report on the development of the alarm system based on the surface particle detector data. Among them are high-latitude neutron monitors network "Spaceship Earth", coordinated by the group from Bartol Research Center; Muon network coordinated by the group from Shinshu University and Athens Neutron Monitor Data Processing Center. In the presented report, based on the information content of data from particle detectors of Aragats Space Environmental Center (ASEC) we made attempt to review possibility of surface particle detectors in Space Weather forecasts. Particle monitors located at ASEC at 1000, 2000 and 3200 m altitudes (40˚25 N, 44˚15 E; Vertical cut-off rigidity in 2007: 7.1 GV) detect charged and neutral components of the secondary cosmic rays with different energy thresholds and various angles of incidence. ASEC monitors reliably detect the highest energy CR due to unique geographical location and large underground high energy muon detector. Forecasting of the Solar Energetic Proton (SEP) events by surface particle detectors is based on the detection of the Ground Level Enhancements (GLE). Unfortunately not all SEPs contain particles energetic enough to produce GLE, therefore, the efficiency of the warnings will not be very high. Nonetheless, we can expect that the major events, (like 1859, 1956, 1972, 1989) with high probability will generate GLEs and surface detectors can provide forewarnings on upcoming abundant SEP particles. With the exception of the event on 20 January, when due to very good magnetic connection of the flare site with earth, all relativistic particles seem to come simultaneously, the enhancements of GeV solar particles detected by surface particle detectors can alert on upcoming severe radiation storm. The alerts from middle and low latitude monitors are even more important compared to high latitude networks, because of lower probability of false alarms. If an enhancement occurs at monitors with large cutoff

  19. Space weathering of asteroids: Lessons from Itokawa for future observations

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; HIroi, Takahiro

    2016-07-01

    weathered. The presence of opposition effect in rocky terrain of Itokawa suggested that the surface would be covered by particulate materials or porous enough to scatter light. Spectral variations were observed, that can be explained by Hapke's space weathering model, where the amount of npFe0 controls spectral reddening. As for color variation of Itokawa, we can interpret that seismic shaking caused by impacts or planetary encounters should lead to exposure of underlying relatively fresh bright area by removing weathered darker boulder-rich layer. Itokawa - Evidence from Returned Samples In 2011, HAYABUSA returned more than 1000 particulate samples of Itokawa back to the Earth. Analysis of mineral assemblies and composition of Itokawa particles supports that Itokawa has LL-chondrite composition. The most notable discoveries in Itokawa particles is amorphous space-weathering rims containing npFe0 16, 17, 18). Sometimes ion-implanted type-II layers contains vesicles, probably due mainly to trapping solar wind energetic helium with penetration depth up to a few tens µm (composite vesicular rim in 17, 18)). Large vesicles are observed as blisters on the surface of Itokawa particles. Matsumoto et al. 18) identified space weathered rims with blisters on eleven out of twenty regolith particles of Itokawa. It was confirmed that a blister corresponds to a vesicle in npFe0-bearing amorphous layer. These rims with blisters are heterogeneously distributed even in one particle. Sometimes blistered rims are observed in opposite surfaces of the same particle. This is a strong evidence of regolith mixing. So far, there is no correlation between the blister distribution and surface morphologies such as roundness of particles. A few 10 nm amorphous rim can be developed in timescale 1000 yr (based on solar flare density, Regolith mixing processes may prolong timescale of optical maturation on smooth regions of Itokawa. References 1) Hapke B., Cassidy, W. And Wells. E.: Effects of vapor

  20. Space Weathering: Laboratory Analyses and In-Situ Instrumentation

    NASA Technical Reports Server (NTRS)

    Bentley, M. S.; Ball, A. J.; Dyar, M. D.; Pieters, C. M.; Wright, I. P.; Zarnecki, J. C.

    2005-01-01

    Space weathering is now understood to be a key modifier of visible and near infrared reflectance spectra of airless bodies. Believed to be caused by vapour recondensation after either ion sputtering or impact vaporization, space weathering has been successfully simulated in the laboratory over the past few years. The optical changes caused by space weathering have been attributed to the accumulation of sub-microscopic iron on regolith grain surfaces. Such fine-grained metallic iron has distinctive magnetic properties that can be used to study it.

  1. Jim Dungey, The Open Magnetosphere, and Space Weather

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike

    2016-06-01

    In 1961, James W. Dungey published a remarkable two-paged paper in Physics Review Letters that revolutionized our understanding of the Earth's magnetosphere. In it, he used his concept of "magnetic reconnection" to introduce the open magnetosphere model. Dungey died in 2015, but his idea does a great deal more than just live on in the literature. At the same time as making sense of the magnetosphere, it has established key applications in astrophysics, planetary physics, solar and heliospheric physics, and fusion energy research—in fact, any area involving ionized gases threaded by magnetic fields. It is now the basis of our understanding and prediction of space weather phenomena.

  2. Observations and Impact Assessments of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2007-05-01

    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  3. The Economic Impact of Space Weather: Where Do We Stand?

    PubMed

    Eastwood, J P; Biffis, E; Hapgood, M A; Green, L; Bisi, M M; Bentley, R D; Wicks, R; McKinnell, L-A; Gibbs, M; Burnett, C

    2017-02-01

    Space weather describes the way in which the Sun, and conditions in space more generally, impact human activity and technology both in space and on the ground. It is now well understood that space weather represents a significant threat to infrastructure resilience, and is a source of risk that is wide-ranging in its impact and the pathways by which this impact may occur. Although space weather is growing rapidly as a field, work rigorously assessing the overall economic cost of space weather appears to be in its infancy. Here, we provide an initial literature review to gather and assess the quality of any published assessments of space weather impacts and socioeconomic studies. Generally speaking, there is a good volume of scientific peer-reviewed literature detailing the likelihood and statistics of different types of space weather phenomena. These phenomena all typically exhibit "power-law" behavior in their severity. The literature on documented impacts is not as extensive, with many case studies, but few statistical studies. The literature on the economic impacts of space weather is rather sparse and not as well developed when compared to the other sections, most probably due to the somewhat limited data that are available from end-users. The major risk is attached to power distribution systems and there is disagreement as to the severity of the technological footprint. This strongly controls the economic impact. Consequently, urgent work is required to better quantify the risk of future space weather events. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  4. ScienceCast 121: The Effects of Space Weather on Aviation

    NASA Image and Video Library

    2013-10-25

    Ordinary air travelers can be exposed to significant doses of radiation during solar storms. A new computer model developed by NASA aims to help protect the public by predicting space weather hazards to aviation.

  5. Terrestrial Planet Space Weather Information: An Update

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Li, Y.; Lee, C.; Mays, M. L.; Odstrcil, D.; Jian, L.; Galvin, A. B.; Mewaldt, R. A.; von Rosenvinge, T. T.; Russell, C. T.; Halekas, J. S.; Connerney, J. E. P.; Jakosky, B. M.; Thompson, W. T.; Baker, D. N.; Dewey, R. M.; Zheng, Y.; Holmstrom, M.; Futaana, Y.

    2015-12-01

    Space weather research is now a solar system-wide enterprise. While with the end of the Venus Express Express mission and MESSENGER, we lost our 'inside' sentinels, new missions such as Solar Orbiter and SPP, and Bepi-Colombo will soon be launched and operating. In the meantime the combination of L1 resources (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express and MAVEN missions at ~1.5 AU, provide opportunities. Comparative conditions at the Earth orbit and Mars orbit locations are of special interest because they are separated by the region where most solar wind stream interaction regions develop. These alter the propagation of disturbances including the interplanetary CME-driven shocks that make the space radiation affecting future Human mission planning. We share some observational and modeling results thatillustrate present capabilities, as well as developing ones such as ENLIL-based SEP event models that use a range of available observations.

  6. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  7. Multi-Spectral Sensor Driven Solar EUV Irradiance Models with Improved Spectro-Temporal Resolution for Space Weather Applications at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward M. B.

    Solar extreme ultraviolet (EUV) radiation is a primary driver of space weather at Earth and Mars. At Earth, this radiation can affect satellite drag and disrupt communication and navigation signals. At Mars, it contributes to the loss of a once dense atmosphere to space. Recent EUV irradiance instruments, such as the EUV Monitor (EUVM) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter and the EUV and X-ray Irradiance Sensors (EXIS) on the next generation Geostationary Operational Environmental Satellites (GOES) use multi-spectral sensors to measure key portions of the EUV spectrum which drive models to estimate the complete EUV spectral irradiance. This thesis develops new models for use by EUVM and EXIS using three distinct methods. 1) Empirical models use predetermined correlations with available measurements to estimate the spectral irradiance. I use new high resolution and high time cadence measurements from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO) to improve model spectral resolution and reduce uncertainty. I develop the FISM-M model for MAVEN and the L1B Operational Model for EXIS, each with 5-10% typical uncertainties. 2) Semi-empirical models reconstruct the spectrum by weighting a set of reference spectra according to solar activity estimated with broadband measurements. The SynRef model is developed for EUVM to improve the spectral resolution by 10-100X from 0-6 nm. A semi-empirical model is also developed for the solar H Lyman-alpha line using newly published 1.5 picometer resolution spectra from SOHO/SUMER, and is used to retrieve Mars H-corona densities from EUVM occultation measurements. 3) I develop the Lumped Element Thermal Model (LETM) for specifically modeling the time evolution of EUV flare emissions. I show that hot and cool EUV flare emission light curves are related through the low pass filter equation. This new effect is used to motivate a simple flare cooling model which can accurately

  8. China-Brazil Joint Laboratory for Space Weather

    NASA Astrophysics Data System (ADS)

    Huang, Shengyu

    2016-07-01

    The Joint Laboratory for Space Weather in South America, jointly constructed by National Space Science Center, Chinese Academy of Sciences (NSSC, CAS) and Brazilian National Institute for Space Research (INPE) plays a key role in the formation of International Space Weather Meridian Circle Programme (ISWMCP). This Lab is responsible for the joint Meridian chains observation and data converging in the west hemisphere, the joint space environment exploration and research in the low latitude area both in the east and west hemisphere, as well as the bridge for Sino-Brazilian culture exchanges.

  9. Space Weather Tools of the Trade - A Changing Mix

    NASA Astrophysics Data System (ADS)

    Kunches, J.; Crowley, G.; Pilinski, M.; Winkler, C.; Fish, C. S.; Hunton, D.; Reynolds, A.; Azeem, I.

    2014-12-01

    Historically, operational space weather tools have focused on the large-scale. The Sun, solar wind, magnetosphere, and ionosphere were the domains that, rightly so, needed the attention of experimentalists and scientists to fashion the best sensors and physics-based models available. These initiatives resulted in significant improvements for operational forecasters. For example, geomagnetic storm predictions now do not have to rely on proxies for CMEs, such as type II sweep, but rather make use of available actual observations of CMEs from which the true velocity vector may be determined. The users of space weather services profited from the better large-scale observations, but now have expressed their desire for even better spatially and time-resolved granularity of products and services. This natural evolution towards refining products has ushered in the era of the smaller mission, the more efficient sensor. CubeSats and compact ionospheric monitors are examples of the instrumental suite now emerging to bring in this new era. This presentation will show examples of the new mix of smaller systems that enable finer, more well-resolved products and services for the operational world. A number of technologies are now in the marketplace demonstrating the value of more observations at a decreasing cost. In addition, new models are looming to take advantage of these better observations. Examples of models poised to take advantage of new observations will be given.

  10. Development of a Space Weather Strategy in Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Corona-Romero, P.; Mejia-Ambriz, J. C.; Sergeeva, M. A.; Romero-Hernandez, E.; González, L. X.; Aguilar-Rodriguez, E.

    2016-12-01

    The Mexican Space Weather Service (SCIESMEX) (www.sciesmex.unam.mx) initiated in October 2014 and it is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The SCIESMEX observational capabilities combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The service became a Regional Warning Center (RWC) of the International Space Environment Services (ISES) in June 2015 and participates representing Mexico in the Interprogamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO) and the Space Weather expert group of the UNCOUPUOS. We report the progress in developing a space weather strategy in Mexico. The plan includes: (1) to strengthen regional observational capabilities to monitor ionospheric and geomagnetic disturbances; (2) to develope of an early warning alert within the national civil protection system; (3) to study the vulnerability of critical technological systems in the country towards intense or extreme space weather events; and (4) to desing national policies to prepare the reaction of the guverment to space weather hazards.

  11. Workshop Report on Space Weather Risks and Society

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R.; Straume, Tore

    2012-01-01

    As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden.

  12. Space Weathering of Itokawa Particles: Implications for Regolith Evolution

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Space weathering processes such as solar wind irradiation and micrometeorite impacts are known to alter the the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies. Here, we use the effects of solar wind irradiation and the accumulation of solar flare tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics on these timescales.

  13. New Space Weather Activities in the World Meteorological Organization

    NASA Astrophysics Data System (ADS)

    Bogdan, Thomas J.; Onsager, Terrance G.

    2010-10-01

    A new era of enhanced international cooperation in space weather operations has begun with the recent initiation of space weather activities within the World Meteorological Organization (WMO), an agency of the United Nations (U.N.) with a membership of 189 states and territories. These activities aim to standardize and enhance space weather observations and data exchange, coordinate end products and services, and foster dialogue between the research and operational communities. The WMO's role is to foster collaboration among the meteorological and hydrological (and now space weather) service providers and to promote the establishment of networks for making and exchanging geophysical observations and the standardization of data and metadata. It also contributes to policy making and has a lead role in efforts to monitor and protect the environment.

  14. Challenges for Transitioning Science Research to Space Weather Applications

    NASA Technical Reports Server (NTRS)

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  15. International Heliophysical Year Contributions to Space Weather Research

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    2008-01-01

    The International Heliophysical Year (IHY) is concerned with the study of universal processes in the heliosphere, and international scientific cooperation. The result has been an international cooperative effort, jointly with the United Nations COPUOS, to study process which form the basis of our understanding of Space Weather. It this talk I will review the objectives of the IHY, and the progress made in the deployment of several instrument arrays and investigations which study space weather phenomena.

  16. SEP's during Halloween storms and space weather

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed; Saleh, Ahmed

    2014-05-01

    The solar energetic particles (SEP's) could be accelerated to higher energies of order of MeV per nucleon. A modified model for SEP's acceleration has been given and applied for Halloween storms event during the decline phase of solar cycle 23. The estimated values of the solar magnetic field during the solar particle event were introduced. The solar magnetic field describes a sophisticated feature of discrete sectors/regions over the period that starts from 28 October 2003 to 4 November 2003. The applications of the suggested model on the solar particle event show that a homogeneous structure is in agreement with the observations. The SEP and CME events lead to severe effects in geo-space and on earth, such as power blackouts, disruption of communications, and damage to satellites. Daily Geomagnetic storm changes, during Halloween storms were studied

  17. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  18. Space Weather Effects on Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.

  19. A weather-driven model of malaria transmission

    PubMed Central

    Hoshen, Moshe B; Morse, Andrew P

    2004-01-01

    Background Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. Methods This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Results Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. Conclusion A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts. PMID:15350206

  20. Notes on a Vision for the Global Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Head, James N.

    2015-07-01

    Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.

  1. GOES-R Space Weather Data: Ensuring Access and Usability

    NASA Astrophysics Data System (ADS)

    Tilton, M.; Rowland, W. F.; Wilkinson, D. C.; Denig, W. F.; Darnel, J.; Kress, B. T.; Loto'aniu, P. T. M.; Machol, J. L.; Redmon, R. J.; Rodriguez, J. V.

    2015-12-01

    The upcoming Geostationary Operational Environmental Satellite series, GOES-R, will provide critical space weather data. These data are used to prevent communication outages, mitigate the damage solar weather causes to satellites and power grids, and reduce astronaut radiation exposure. The space weather instruments aboard GOES-R will deliver an operational dataset of unprecedented breadth. However, NOAA's National Centers for Environmental Information (NCEI)—the organization that provides access to archived GOES-R data—has faced several challenges in delivering this information to customers in usable form. For instance, the GOES-R ground system was contracted to develop higher-level products for terrestrial data but not space weather data. Variations in GOES-R data file formats and archive locations have also threatened to create an inconsistent user experience. This presentation will examine the ways in which NCEI is making GOES-R space weather data more accessible and actionable for customers. These efforts include NCEI's development of high-level data products to meet the requirements of NOAA's Space Weather Prediction Center—a role NCEI has not previously played. In addition, NCEI is creating a demonstration system to show how these products can be produced in real-time. The organization is also examining customer usage of the GOES-NOP data access system and using these access patterns to drive decisions about the GOES-R user interface.

  2. Distributed networks enable advances in US space weather operations

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, S. Dave

    2011-06-01

    Space weather, the shorter-term variable impact of the Sun’s photons, solar wind particles, and interplanetary magnetic field upon the Earth’s environment, adversely affects our technological systems. These technological systems, including their space component, are increasingly being seen as a way to help solve 21st Century problems such as climate change, energy access, fresh water availability, and transportation coordination. Thus, the effects of space weather on space systems and assets must be mitigated and operational space weather using automated distributed networks has emerged as a common operations methodology. The evolution of space weather operations is described and the description of distributed network architectures is provided, including their use of tiers, data objects, redundancy, and time domain definitions. There are several existing distributed networks now providing space weather information and the lessons learned in developing those networks are discussed along with the details of examples for the Solar Irradiance Platform (SIP), Communication Alert and Prediction System (CAPS), GEO Alert and Prediction System (GAPS), LEO Alert and Prediction System (LAPS), Radiation Alert and Prediction System (RAPS), and Magnetosphere Alert and Prediction System (MAPS).

  3. Predicting and mitigating impacts of extreme space weather (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2010-12-01

    Vulnerability of society to extreme space weather is an issue of increasing worldwide concern. For example, electric power networks connecting widely separated geographic areas may incur devastating damage induced by geomagnetic storms. Also, the miniaturization of electronic components in spacecraft systems makes them potentially much more susceptible to damage during space weather disturbances. The conclusion of a recent National Academy of Sciences report was that severe space weather events can cause tens of millions to many billions of dollars of damage to space and ground-based assets during major solar storms. The most extreme events could cause months-long power outages and could cost >1$ trillion. In this presentation, we discuss broad socioeconomic impacts of space weather and also discuss the immense potential benefits of improved space weather forecasts. Such forecasts take advantage of our increased understanding of the Earth’s space environmental conditions and the causative solar drivers. We consider scenarios of how forecasts could be used most effectively by policy makers and management officials.

  4. Provision of space weather bulletins in support to ESA missions

    NASA Astrophysics Data System (ADS)

    Kruglanski, Michel; Devos, Andy; Calders, Stijn; De Donder, Erwin; Berghmans, David; Andries, Jesse; Crosby, Norma; Dierckxsens, Mark; Glover, Alexi

    2017-04-01

    The SSCC (SSA Space Weather Coordination Centre) is the focal point for user support of the ESA Space Situational Awareness (SSA) Program Space Weather Service Network (http://swe.ssa.esa.int/) and offers first line support to end-users. Its activities are gradually expanding as more products and tools are incorporated in the associated Network. Here we report on the tailoring of the network resources at the SSCC in order to produce space weather forecast notifications in support to selected ESA missions. With the help of forecasters from the Expert Service Centres (ECSs) for Solar Weather and for Space Radiation, the SSCC already has provided dedicated notifications for various missions including the launch window and the L2 insertion manoeuvre of the GAIA mission, for the last aerobraking campaign of Venus Express, during the trajectory around Comet 67P/Churyumov-Gerasimenko of the Rosetta mission and the landing of Philae lander, for the flight of the experimental IXV space plane, and for the launch LISA Pathfinder mission and during the operations phase at L1. Examples of space weather notification will be given. Those exercises are performed in a test and evaluation context helping to evaluate the network capabilities and to identify recommendations for improvement.

  5. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  6. Space Weather Research at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  7. Space Weather Phenomena at the Galilean Satellites

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Barthelemy, Mathieu

    2015-04-01

    In the framework of the JUICE mission, characterization of Galilean satellites atmospheres is a priority. Although Ganymede and Europa possess a faint atmosphere, their exosphere show emissions features due to both solar UV flux as well as precipitating particles. Using the atmospheric model proposed by Marconi (2006,2007), we have developed a model of exospheric emissions by only considering primary collisions. Two regions will be considered for Ganymede, a polar one mainly dominated by oxygen, and an equatorial one with the predominance of water. Model of Europa's atmosphere presents an uniform one dominated by oxygen. Since Ganymede has its own magnetic field, the polar regions are mainly affected by particle precipitations while in case of Europe, the whole atmosphere has to be considered. Comparison with direct observations such as local measurements from Galileo (electronic density), or remote observations with the Hubble Space Telescope in the UV (oxygen lines at 130.5 and 135.5 nm), shows a good agreement which ensures us to provide reasonable constraints for the JUICE mission.

  8. COMESEP: a new type of space weather alert system

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Veronig, Astrid; Robbrecht, Eva; Vrsnak, Bojan; Vennerstrom, Susanne; Malandraki, Olga; Dalla, Silvia; Srivastava, Nandita; Hesse, Michael; Odstrcil, Dusan

    2013-04-01

    Tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms are and have been developed under the three-year EU FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles) collaborative project. In its final year, the validation and implementation of the produced tools into an operational space weather alert system is now underway. Geomagnetic and SEP radiation storm alerts are being based on the COMESEP definition of risk. The COMESEP alert system will provide notifications for the space weather community. To achieve this the system relies on both models and data, the latter including near real-time data as well as historical data. One of the important outcomes of the scientific analysis has been to identify key ingredients that lead to magnetic storms and SEP events. COMESEP is a unique cross-collaboration effort and bridges the gap between the SEP, coronal mass ejection and terrestrial effects scientific communities. For more information see the project website (http://www.comesep.eu/). This work has received funding from the European Commission FP7 Project COMESEP (263252).

  9. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

    PubMed Central

    Damé, Luc; Meftah, Mustapha; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain; Marchand, Marion; Irbah, Abdenour; Quémerais, Éric; Bekki, Slimane; Foujols, Thomas; Kretzschmar, Matthieu; Cessateur, Gaël; Shapiro, Alexander; Schmutz, Werner; Kuzin, Sergey; Slemzin, Vladimir; Urnov, Alexander; Bogachev, Sergey; Merayo, José; Brauer, Peter; Tsinganos, Kanaris; Paschalis, Antonis; Mahrous, Ayman; Khaled, Safinaz; Ghitas, Ahmed; Marzouk, Besheir; Zaki, Amal; Hady, Ahmed A.; Kariyappa, Rangaiah

    2013-01-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018. PMID:25685424

  10. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

    NASA Astrophysics Data System (ADS)

    Damé, Luc

    2013-05-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.

  11. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission.

    PubMed

    Damé, Luc

    2013-05-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.

  12. 2015 Los Alamos Space Weather Summer School Research Reports

    SciTech Connect

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  13. Oh! I Slipped the Surly Bounds of Earth....and Ran into Space Weather!

    NASA Technical Reports Server (NTRS)

    Golightly, Michael J.

    2004-01-01

    ) flight controllers use real-time space weather data to detect and assess the impact of solar particle events, outer electron belt enhancements, the formation of pseudo-stable additional trapped radiation belts, and the solar cycle modulation of trapped radiation belts and galactic cosmic rays. Energetic particle data from GOES spacecraft are automatically ingested from NOAA Space Environment Center data servers and used to drive a model for the estimating the exposure to astronauts from solar particle events. While adequate for current manned space flight support, the existing operational space weather support system requires improvements to address the anticipated evolution in both the character of manned missions as well as space flight operations management. Necessary space weather data improvements include: reliably available (near) real-time space weather data on a fixed schedule via redundant access methods that support autonomous data acquisition by computer systems behind enterprise firewalls; and rapid transition of promising research sensors into operational systems.

  14. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  15. Fifth Space Weather Enterprise Forum Reaches New Heights

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2011-09-01

    As the world's commercial infrastructure grows more dependent on sensitive electronics and space-based technologies, the global economy is becoming increasingly vulnerable to solar storms. Experts from the federal government, academia, and the private sector met to discuss the societal effects of major solar storms and other space weather at the fifth annual Space Weather Enterprise Forum (SWEF), held on 21 June 2011 at the National Press Club in Washington, D. C. More than 200 members of the space weather community attended this year's SWEF, which focused on the consequences of severe space weather for national security, critical infrastructure, and human safety. Participants also addressed the question of how to prepare for and mitigate those consequences as the current solar cycle approaches and reaches its peak, expected in 2013. This year's forum included details of plans for a "Unified National Space Weather Capability," a new interagency initiative which will be implemented over the next two years, designed to improve forecasting, warning, and other services ahead of the coming solar maximum.

  16. Growing Diversity in Space Weather and Climate Change Research

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  17. Future L5 Missions for Solar Physics and Space Weather

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Gopalswamy, Nat

    Coronal mass ejections (CMEs) and corotating interaction regions (CIR) are the sources of intense space weather in the heliosphere. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). In this paper, the advantages of remote-sensing and in-situ observations from the Sun-Earth L5 point are discussed. Locating a mission at Sun-Earth L5 has several key benefits for solar physics and space weather: (1) off the Sun-Earth line view is critical in observing Earth-arriving parts of CMEs, (2) L5 coronagraphic observations can also provide near-Sun space speed of CMEs, which is an important input to models that forecast Earth-arrival time of CMEs, (3) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, (4) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, (5) CIRs reach the L5 point a few days before they arrive at Earth, and hence provide significant lead time before CIR arrival, (6) L5 observations can provide advance knowledge of CME and CIR source regions (coronal holes) rotating to Earth view, and (7) magnetograms obtained from L5 can improve the surface magnetic field distribution used as input to MHD models that predict the background solar wind. The paper also discusses L5 mission concepts that can be achieved in the near future. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C

  18. eHEROES: where Space Weather and Communication meet

    NASA Astrophysics Data System (ADS)

    Vanlomel, Petra; Gressl, Corinna; Lapenta, Giovanni; Crosby, Norma B.; Cessateur, Gaël

    2014-05-01

    Involvement of people outside the scientific community in space weather becomes more and more an issue. To raise awareness and reach involvement, we have to come up with a tide communication plan that answers the questions: what, to whom, why, when, how, by whom? One of the tools to get peoples attention and to communicate about space weather is education, both formal and informal. In the FP7 project eHEROES, a considerable effort was put in communication and dissemination through education to different sorts of audiences. We will shed some light on 'Classroom', 'Hitchhiker's guide to space' and our Quiz-database.

  19. The Space Weather of Proxima Centauri b

    NASA Astrophysics Data System (ADS)

    Garraffo, C.; Drake, J. J.; Cohen, O.

    2016-12-01

    A planet orbiting in the “habitable zone” of our closest neighboring star, Proxima Centauri, has recently been discovered, and the next natural question is whether or not Proxima b is “habitable.” Stellar winds are likely a source of atmospheric erosion that could be particularly severe in the case of M dwarf habitable zone planets that reside close to their parent star. Here, we study the stellar wind conditions that Proxima b experiences over its orbit. We construct 3D MHD models of the wind and magnetic field around Proxima Centauri using a surface magnetic field map for a star of the same spectral type and scaled to match the observed ˜600 G surface magnetic field strength of Proxima. We examine the wind conditions and dynamic pressure over different plausible orbits that sample the constrained parameters of the orbit of Proxima b. For all the parameter space explored, the planet is subject to stellar wind pressures of more than 2000 times those experienced by Earth from the solar wind. During an orbit, Proxima b is also subject to pressure changes of 1-3 orders of magnitude on timescales of a day. Its magnetopause standoff distance consequently undergoes sudden and periodic changes by a factor of 2-5. Proxima b will traverse the interplanetary current sheet twice each orbit, and likely crosses into regions of subsonic wind quite frequently. These effects should be taken into account in any physically realistic assessment or prediction of its atmospheric reservoir, characteristics, and loss.

  20. Understanding the space environment: simulations, statistics and space weather (Julius Bartels Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Tuija

    2017-04-01

    Three disruptive transformations have taken place since the 1990's that have reshaped space research in a major way: Increased computational capacity and improved numerical methods have transformed numerical simulations from rough description of the large-scale dynamics to detailed models capable of describing magnetospheric processes to the accuracy that they compare well with in-situ observations. Coordinated satellite programs and multi-satellite missions have increased the coverage of the near-Earth space from single-satellite observations to statistical databases that allow analysis of the environment changes under varying conditions. The increased use of space assets in non-space-related applications has increased the need for accurate space weather monitoring and forecasts that set new requirements for the accuracy and processing times for as well observations and models. In this presentation, we focus on plasma and energy transfer across the bow shock from the solar wind into the magnetosheath, transport through the magnetosheath, and entry into the magnetosphere across the magnetopause. To that end, we use the GUMICS global magnetohydrodynamic simulation and the Themis 5-spacecraft mission plasma and magnetic field measurements. We show that the transport processes are not uniform, but are different during southward and northward IMF, and during strong and weak driving. We conclude by assessing how these results relate to our capabilities of producing valuable space weather services.

  1. White House and agencies focus on space weather concerns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-06-01

    "Space weather is a serious matter that can affect human economies around the world," Tamara Dickinson, a senior policy analyst with the White House Office of Science and Technology Policy (OSTP), told attendees at the 2012 Space Weather Enterprise Forum, held 5 June in Washington, D. C. With the 2013 solar maximum nearing, researchers and government agencies are focusing on how the greater solar activity could affect our increasingly technological society and what measures can be taken to help prevent or mitigate any threats to the electricity grid, GPS, and other potentially vulnerable technologies. Dickenson said that there has been an increased awareness about space weather in the White House and that President Barack Obama recently has requested briefing memos on the topic. She highlighted several efforts the administration is taking related to space weather, including a forthcoming national Earth observation strategy, which could be released in July and will include an assessment of space weather. She explained that the strategy document will be part of the fiscal year 2014 presidential budget request and that it will be updated every 3 years.

  2. Solar Magnetic Drivers of Space Weather

    DTIC Science & Technology

    1998-01-01

    and Sheeley), the Air Force Phillips Lab (Space Effects Division - Webb and Kahler ), the NOAA Space Environment Center (Rapid Prototyping Center...Solar Physics, eds. K. S. Balasubramaniam, J. Harvey, D. Rabin , ASP Conf. Ser. 140, 155-160. Harvey, J. and Worden, J. 1998, “Calibrating Solar Polar

  3. Solar Magnetic Drivers of Space Weather

    DTIC Science & Technology

    1997-09-30

    Solar Physics Branch (Code 7660, Wang and Sheeley), the Air Force Phillips Lab (Space Effects Division, Kahler and Webb), NOAA Space Environment...eds. K. Balasubramaniam, J. Harvey, D. Rabin , ASP Conf. Ser. (San Francisco: ASP), in press. Y. M. Wang, N. R. Sheeley, Jr., K. P. Dere, R. T. Duffin

  4. Understanding space weather with new physical, mathematical and philosophical approaches

    NASA Astrophysics Data System (ADS)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  5. Concept for an International Standard related to Space Weather Effects on Space Systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  6. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  7. Regimes for the ocean, outer space, and weather

    NASA Technical Reports Server (NTRS)

    Brown, S.; Cornell, N. W.; Fabian, L. L.; Weiss, E. B.

    1977-01-01

    The allocation of resources among users of the oceans, outer space and the weather is discussed. Attention is given to the international management of maritime navigation, the control of fisheries, offshore oil and gas exploitation, mineral exploitation in the deep seabed (especially the mining of manganese nodules), and the regulation of oceanographic studies. The management of outer space is considered, with special reference to remote sensing by satellites, television broadcasting, the technical requirements of maritime satellites, and problems associated with satellite frequency and orbit allocation. Rainmaking and typhoon modification, as well as the distribution of weather modification capabilities in the world, are also mentioned. The United Nations, international agencies and tribunals, and multi- or bilateral agreements are some of the implements suggested for use in the regulation of the oceans, outer space and the weather.

  8. The Cubesat Heliospheric Imaging Experiment for Space Weather Prediction

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Howard, T.; Dickinson, J.; Epperly, M.; Kief, C.

    2010-05-01

    Heliospheric imaging data have been shown to improve space weather prediction by an order of magnitude, and heliospheric monitoring by the SMEI and STEREO-HI instruments have proven to be extremely useful for understanding heliospheric conditions near Earth. However, SMEI is approaching end-of-life and the STEREOs are drifting away from favorable Earth-viewing geometry just as the new solar cycle begins. CHIME is an innovative, miniaturized, fully functional space weather heliospheric monitor that fits within the 3U CubeSat envelope and can be flown individually (as a scientific or demonstrator mission) or in a swarm (to attain operational-class reliability) at a small fraction of the cost of a conventional mission. Here we describe the CHIME concept and its use with the automated processing pipeline AICMED to improve space weather prediction.

  9. Space Weather Influence on the Earth wheat markets: past, present, and future.

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev

    solar wind, high cosmic ray flux and North Atlantic cloudiness, caused by CR excess, with negative sequences for wheat agriculture in this humid zone. In the same time wheat markets in the South Europe (Spain, Italy) show reliable sensitivity to space weather state in the opposite (maximum) phase of solar activity with strong solar wind, low cosmic ray flux and deficit of CR input in cloudiness in North Atlantic with next deficit of precipitations in the arid zones of the South Europe. In the same time the large part of markets in the Central Europe zone, functioned far from "high risk agriculture state" show the absence of any effects-responses on space weather. This asymmetry is in accordance with model expectation in the frame of proposed approach. For extremely case of the Iceland agriculture we show that drop of agriculture production in unfavorable states of space weather leads to mass mortality from famines correlated with phase of solar activity with high confi- dence level. We discuss possible increasing of sensitivity of wheat markets to space weather effects in condition of drastic and fast change of modern climate, caused by global warming of the Earth atmosphere with fast and unexpected shift of numerous agriculture regions in the world to state of "high risk agriculture zone". Publications on the theme of review: I. "INFLUENCE OF SOLAR ACTIVITY ON THE STATE OF THE WHEAT MARKET IN MEDIEVAL ENGLAND", Solar Physics 223: 335-356, 2004. c 2004 Kluwer Academic Publishers II. "SPACE CLIMATE MANIFESTATION IN EARTH PRICES - FROM MEDIEVAL ENGLAND UP TO MODERN U.S.A.", LEV PUSTIL'NIK and GREGORY YOM DIN, Solar Physics, 224: 473-481 c Springer 2005

  10. Formation of the Surface Space Charge Layer in Fair Weather

    NASA Astrophysics Data System (ADS)

    Redin, Alexander; Kupovykh, Gennady; Boldyreff, Anton

    2014-05-01

    It is widely known that the positive space charge, caused by electrode effect action, is obtained near surface in fair weather. Space charge density depends on the different local features: meteorological conditions, aerosol particles concentration, convective transfer of the surface layer. Namely space charge determines the local variations of electric field. Space charge could be negative in condition of strong ionization rate in thin air layer near surface. The electrodynamic model, consisting of transfer equations of light ions and nucleuses, generated by interactions between lights ions and aerosol particles, and Poisson equation. The turbulent transfer members, electric field near the surface, the mobility of positive and negative ions, recombination coefficient, ionization rate, the number of elementary charges on the nuclei were took into account in the model equations. The time-space variations of positive and negative small and heavy ions, electric field, electrical conductivity, current density and space charge, depending on aerosol particles concentrations, turbulence and convective transfer ionization rate, aerosol particles size and number of charged on the particles are calculated. The mechanisms of turbulent and convection-turbulent surface layer electrodynamic structure forming in dependence of single and multi-charged aerosol particles for different physical and meteorological conditions are investigated. Increasing of turbulent mixing intensity leads to increasing of character electrode layer thickness, decreasing of space charge density value, decreasing of electric current conductivity value. The electrode effect of the whole layer remains constant. Increasing of aerosol particles concentration leads to decreasing of electrode effect within the whole electrode layer and increasing of electric field values, decreasing of space charge density values and current conductivity density. It was received that increasing of the aerosol particles

  11. Space weather services: now and in the future

    NASA Astrophysics Data System (ADS)

    Kunches, J.; Murtagh, W.

    The NOAA Space Environment Center has provided continuous 24 hours per day 7 days per week space weather products and services to the United States and the international community via the International Space Environment Service for more than 30 years Over that time span an evolutionary process has occurred In the early days the products consisted of short text and coded messages to accommodate the communications technologies of the period The birth of the Internet made the sharing of graphical imagery and real-time data possible enabling service providers to communicate more information more quickly to the users Now in parallel with the advances in telecommunications the space weather user community has grown dramatically and is enunciating ever-stronger requirements back to the service providers The commercial airline community is probably the best example of an industry wanting more from space weather How are the users going to continue to change over the next 10-20 years and what services might they need How will they get this information and how might they use it This is the overall thrust of the presentation offering a look to the future and a challenge to the space weather community

  12. How are Space Weather and Space Climate Connected to Solar Phenomena?

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2012-01-01

    Many aspects of modern society are susceptible to space weather effects. Pertinent space weather effects include high-energy electromagnetic and particle radiation, changes of atmospheric drag, reduction of GPS accuracy or complete loss of GPS signals, communication outages, and the generation of potentially harmful DC currents in our electric power grid. Beginning in the early 1990s, researchers and government have been increasingly aware of the need to understand the causes of space weather, and to find ways to mitigate deleterious effects associated with it. New research and development programs have been created to address space weather primarily at NASA but also at other agencies. This investment has been very fruitful by generating a new class of entirely new space weather specification and forecast capabilities. This presentation provides an overview of space weather causes and effects, as well as of research and development to forecast and mitigate space weather effects. It will include a discussion of modern space weather analysis and forecasting, and conclude by pointing out paths into the future.

  13. Space weathering on volatile deposits in lunar cold traps

    NASA Astrophysics Data System (ADS)

    Crider, D.; Vondrak, R.

    There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there, including micrometeoroid bombardment, solar wind and magnetospheric ion sputtering, photon-stimulated desorption, and sublimation. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap by simulating the development of a column of material near the surface of the Moon. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expected hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data. Each column is initialized with a random starting depth profile of hydrogen content assuming very immature soil. Time is allowed to run for 1 billion years and all changes to the column are calculated. An impactor flux from Gault [1972] is imposed to determine the timing and location of all nearby impacts. Nearby impacts excavate material from the column, exposing material from depth. More distant impacts cover the column with an ejecta blanket with a size and time dependent maturity value. In between impacts, the competing short term effects are simulated. Using the steady state delivery rate of water vapor to the lunar cold traps from Crider and Vondrak [2002], we find that the removal rate from space weathering processes does not exceed the rate at which volatiles are delivered to the cold traps on average. Together with the steady migration of hydrogen released from the soil elsewhere on the Moon, the predicted hydrogen content of the topmost meter of regolith in cold traps is within a factor of 2 of

  14. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  15. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Cowardin, H.; Engelhar, D.; Plis, Elena; Hoffman, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers and Mylar, specifically those found in multi-layered spacecraft insulation, due to electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons. Among other properties these chemical changes altered the optical reflectance as documented in laboratory analysis. This paper presents results of the initial experiment results focused on the exposure of materials to various fluences of high energy electrons, used to simulate a portion of the geosynchronous space environment. The paper illustrates how the spectral reflectance changes as a function of time on orbit with respect to GEO environmental factors and investigates the survivability of the material after multiple electron doses. These results provide a baseline for analysis of aging effects on satellite systems used for remote sensing. They also provide preliminary analysis on what materials are most likely to encompass the high area-to-mass population of space debris in the geosynchronous environment. Lastly, the paper provides the results of the initial experimentation as a proof of concept for space aging on polymers and Mylar for conducting more experiments with a larger subset of spacecraft materials.

  16. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  17. Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; Voronka, Nestor; Williams, Scott

    2013-01-01

    Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.

  18. Ground-based Space Weather Monitoring with LOFAR

    NASA Astrophysics Data System (ADS)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    capable of generating various responses including alerting external observatories or reallocating internal observing capacity to create short cadence (1-10 sec) images of the Sun. More uniquely, the core development, already invested by LOFAR to produce astronomical images of the sky, makes an excellent framework on which to build a near real-time ionospheric monitor and thereby study the effects of space weather events on our atmosphere. One of the key technical challenges to producing high quality scientific images in the low frequency radio regime are the effects of the active ionosphere over the detector array on signal propagation through the earth's atmosphere. To correct for these effects, the current LOFAR system includes an adaptive calibration employing both single and multi-layer phase screen models for the ionosphere. The output of this calibration automatically produces continuous ionospheric measurements with a data cadence in seconds. Although limited to the sky over the array, the resulting TEC maps can have vertical and horizontal resolutions down to 2m and relative accuracies of 0.001 TECU. The intent is to publish both Solar and ionospheric data-streams to the space weather community providing an excellent complement to existing space-based monitoring assets. In this presentation, we will describe the current and planned capabilities of the LOFAR system as well as show some first examples of the potential data products taken during the ongoing commissioning phase. We will also discuss plans to build upon the current LOFAR infrastructure and provide a source of near real-time monitoring data to the space weather community.

  19. Solar Eruptions, CMEs and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.

  20. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  1. Imaging Space Weather Over Europe from a Single Site

    NASA Astrophysics Data System (ADS)

    Mendillo, M.; Wroten, J.; Baumgardner, J. L.; Barbieri, C.; Umbriaco, G.

    2012-12-01

    We have recently installed a low-light-level, all-sky-imager (ASI) at the astronomical observatory in Asiago, Italy (45.8 N, 11.5 E, 41 N geomagnetic). The field-of-view for such a system can yield reliable observations from zenith down to about five degrees elevation angle. Atmospheric emissions arise from different altitudes and thus the spatial region observed by an ASI depends on the specific wavelength (and process) involved. For 6300 A emissions from atomic oxygen, diffuse aurora occur at ~200 km, ambient airglow at ~300 km and so-called Stable Auroral Red (SAR) arcs at ~400 km. From the Asiago site, the FOV at 400 km spans latitudes extending from southern Scandanavia to Northern Africa. For a magnetic latitude of 50 N, longitudes observed to the north extend from Ireland to Belarus. For a magnetic latitude of 30 N, longitudes to the south can be observed from Spain to Turkey. The SAR arc that occurred during the geomagnetic storm 26-27 September 2011 was, we think, the first-ever such event imaged from the ground in Europe. The SAR arc's location throughout the night maps to the inner magnetosphere where the plasmapause and inner edge of the ring current coincide. The spatial-temporal positions of these features determine the lowest latitudes of magnetosphere-ionospheric energy input during space weather events. We show that an all-sky-imager can thus be used to provide real-time information of this boundary over most of Europe—and thus the low-latitude limit of the radiowave scintillations associated with SAR arcs. Moreover, such information can be used for retrospective validations of global models that predict the latitude extent of space weather effects.

  2. Review on space weather in Latin America. 1. The beginning from space science research

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the first of a three-part review on space weather in Latin America. It comprises the evolution of several Latin American institutions investing in space science since the 1960s, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this review is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues.

  3. Space weather in the EU's FP7 Space Theme. Preface to the special issue on "EU-FP7 funded space weather projects"

    NASA Astrophysics Data System (ADS)

    Chiarini, Paola

    2013-11-01

    Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.

  4. Adaptation of Mesoscale Weather Models to Local Forecasting

    NASA Technical Reports Server (NTRS)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  5. Space Weather Around the World: An IHY Education Program

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Ng, C.; Hawkins, I.; Lewis, E.; Cline, T.

    2007-05-01

    Fifty years ago the International Geophysical Year organized a unique and unprecedented program of research that united 60,000 scientists from 66 nations to study global phenomena concerning the Earth and its space environment. In that same spirit, "Space Weather Around the World" is a program to coordinate and facilitate the involvement of NASA heliophysics missions and scientists to inspire and educate a world-wide audience about the International Heliophysical Year (IHY). We will use the popular Sun-Earth Day annual event framework sponsored by the Sun-Earth Connection Education Forum to promote IHY science and the spirit of international collaboration. The theme for the March 2007 Sun-Earth Day: "IHY: Living in the Atmosphere of the Sun" was selected a year ago in anticipation of the IHY celebration. These efforts will be expanded through a series of coordinated programs under the theme "Space Weather Around the World" for Sun-Earth Day 2008. We will produce a live broadcast from China of the total solar eclipse on August 1st 2008 as the central event, highlighting investigations associated with the eclipse by the international heliophysics community. Additional collaborative efforts will include: a Space Weather Media Maker web-tool to allow educators and scientists to create their own multi-media resource to enhance teaching and learning at all levels; Rock-n-Sol, a musical composition by children internationally inspired by space weather and incorporating sonifications of solar data; and Space Weather Action Centers for students to track a solar storm featuring podcasts of multi-cultural perspectives on IHY. The anticipated audience would be millions of people internationally The science and E/PO heliophysics community has an exciting story to tell about IHY, and we look forward to the opportunity to share it globally.

  6. Extreme