Workshop Report on Space Weather Risks and Society
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie R.; Straume, Tore
2012-01-01
As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden.
Space Weather Workshop 2010 to Be Held in April
NASA Astrophysics Data System (ADS)
Peltzer, Thomas
2010-03-01
The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).
2011 Space Weather Workshop to Be Held in April
NASA Astrophysics Data System (ADS)
Peltzer, Thomas
2011-04-01
The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.
NASA Astrophysics Data System (ADS)
Meehan, Jennifer; Fulgham, Jared; Tobiska, W. Kent
2012-07-01
How can we continue to advance the space weather operational community from lessons already learned when it comes to data reliability, maintainability, accessibility, dependability, safety, and quality? How can we make space weather more easily accessible to each other and outside users? Representatives from operational, commercial, academic, and government organizations weighed in on these important questions at the second annual Space Weather Community Operations Workshop, held 22-23 March 2012 in Park City, Utah, with the unofficial workshop motto being Don’t Reinvent the Wheel.
Achievements and Challenges in the Science of Space Weather
NASA Astrophysics Data System (ADS)
Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf
2017-11-01
In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.
Space Weather in the Machine Learning Era: A Multidisciplinary Approach
NASA Astrophysics Data System (ADS)
Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.
2018-01-01
The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.
NASA Technical Reports Server (NTRS)
Gallagher, D. L.
2004-01-01
This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.
NASA Technical Reports Server (NTRS)
2009-01-01
The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D.C., 2008), which was prepared by the Committee on the Societal and Economic Impacts of Severe Space Weather Events: A Workshop. The present document is an expanded summary of that report.
A Workshop for the Aviation Community
NASA Astrophysics Data System (ADS)
Murtagh, William; Combs, Larry; Kunches, Joseph
2004-06-01
On 23-24 February 2004 at NOAA's Space Environment Center in Boulder, Colo., the SEC, Virgin Atlantic Airways, and SolarMetrics hosted an aviation workshop on integrating space weather information into the operating procedures for commercial airlines. The meeting, with representatives from the industry and academic communities, led to the formation of the International Committee for Space Weather Impacts on Aviation Safety working group.
Industry and Government Officials Meet for Space Weather Summit
NASA Astrophysics Data System (ADS)
Intriligator, Devrie S.
2008-10-01
Commercial airlines, electric power grids, cell phones, handheld Global Positioning Systems: Although the Sun is less active due to solar minimum, the number and types of situations and technologies that can benefit from up-to-date space weather information are growing. To address this, the second annual summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC) was held on 1 May 2008 during Space Weather Workshop (SWW), in Boulder, Colo.
Third Space Weather Summit Held for Industry and Government Agencies
NASA Astrophysics Data System (ADS)
Intriligator, Devrie S.
2009-12-01
The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.
Workshop Builds Strategies to Address Global Positioning System Vulnerabilities
NASA Astrophysics Data System (ADS)
Fisher, Genene
2011-01-01
When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.
NASA Astrophysics Data System (ADS)
Gadimova, S.; Haubold, H. J.; Danov, D.; Georgieva, K.; Maeda, G.; Yumoto, K.; Davila, J. M.; Gopalswamy, N.
2011-11-01
The UNBSSI is a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis. A series of workshops on BSS was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004) Pursuant to resolutions of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, Ro Korea 2009) Starting in 2010, the workshops focus on the International Space Weather Initiative (ISWI) as recommended in a three-year-work plan as part of the deliberations of UNCOPUOS (www.iswi-secretariat.org/). Workshops on the ISWI have been scheduled to be hosted by Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. Currently, fourteen IHY/ISWI instrument arrays with more than five hundred instruments are operational in ninety countries.
NASA Technical Reports Server (NTRS)
Atlas, D. (Editor); Thiele, O. W. (Editor)
1981-01-01
Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.
Operational Space Weather Needs - Perspectives from SEASONS 2014
NASA Astrophysics Data System (ADS)
Comberiate, J.; Kelly, M. A.; Paxton, L. J.; Schaefer, R. K.; Bust, G. S.; Sotirelis, T.; Fox, N. J.
2014-12-01
A key challenge for the operational space weather community is the gap between the latest scientific data, models, methods, and indices and those that are currently used in operational systems. The November 2014 SEASONS (Space Environment Applications, Systems, and Operations for National Security) Workshop at JHU/APL in Laurel, Maryland, brings together representatives from the operational and scientific communities. The theme of SEASONS 2014 is "Beyond Climatology," with a focus on how space weather events threaten operational assets and disrupt missions. Here we present perspectives from SEASONS 2014 on new observations, models in development, and forecasting methods that are of interest to the operational space weather community. Highlighted topics include ionospheric data assimilation and forecasting models, HF propagation models, radiation belt observations, and energetic particle modeling. The SEASONS 2014 web site can be found at https://secwww.jhuapl.edu/SEASONS/
Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop
NASA Technical Reports Server (NTRS)
Creduer, Leonard (Editor); Perry, R. Brad (Editor)
1997-01-01
A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.
Advancing Heliophysics and Space Weather Research with Student Internships and Faculty Development
NASA Astrophysics Data System (ADS)
Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S. A.; Frost, J.; Cheung, T. K.; Tremberger, G.; Robbins, I.; Carlson, B. E.; Paglione, T.; Damas, C.; Steiner, J. C.; Rudolph, E.; Lewis, E.; Ford, K. S.; Cline, T.
2011-12-01
Expanding research capability in Heliophysics and Space Weather is the major focus of a collaboration between the City University of New York (CUNY) and NASA Goddard Space Fight Center (GSFC). The Heliophysics Education Consortium has a two-pronged approach centered on undergraduate research and faculty development. Summer 2011 student research projects include: Comparison of Fast Propagating Solar Waves and Slow Kelvin-Helmholtz Waves captured by SDO; Brightness Fluctuation of March 8, 2011 Eruption with Magnetic Rope Structure Measured by SDO; Investigation of Sunspot Regions, Coronal Mass Ejections and Solar Flares; An Integration and Testing Methodology for a Microsatellite; Comparative Analysis of Attitude Control Systems for Microsatellites; Spectral Analysis of Aerosols in Jupiter's Atmosphere Using HST Data; Alternative Sources of 5 GHz and 15 GHz Emissions in Active Galactic Nuclei; Probing Starburst-Driven Superwinds; Asteroid Astrometry; and Optimize an Electrostatic Deflection Element on PIXIES (Plasma Ion Experiment - Ion and Electron Sensor) for a CUNY student at GSFC. Faculty development workshops were conducted by Space Weather Action Center scientists. These workshops included a faculty development session at the CUNY Graduate Center and high school teachers professional development series at Queensborough Community College. The project is supported by NASA award NNX10AE72G.
Ninth Workshop 'Solar Influences on the Magnetosphere, Ionosphere and Atmosphere'
NASA Astrophysics Data System (ADS)
Georgieva, Kayta; Kirov, Boian; Danov, Dimitar
2017-08-01
The 9th Workshop "Solar Influences on the Magnetosphere, Ionosphere and Atmosphere" is an international forum for scientists working in the fields of: Sun and solar activity, Solar wind-magnetosphere-ionosphere interactions, Solar influences on the lower atmosphere and climate, Solar effects in the biosphere, Instrumentation for space weather monitoring and Data processing and modelling.
Space Weather Outreach: Connection to STEM Standards
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.
2008-12-01
Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.
Global Cooperation in the Science of Sun-Earth Connection
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk; Davila, Joseph
2011-01-01
The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the International Space Weather Initiative (ISWI), the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Living with a Star (ILWS) program. These programs have brought scientists together to tackle the scientific issues related to short and long term variability of the Sun and the consequences in the heliosphere. The ISWI program is a continuation of the successful International Heliophysical Year (IHY) 2007 program in focusing on science, observatory deployment, and outreach. The IHY/ISWI observatory deployment has not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. The ISWI schools and UN workshops are the primary venues for interaction and information exchange among scientists from developing and developed countries that lead to collaborative efforts in space weather. This paper presents a summary of ISWI activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.
The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research
NASA Astrophysics Data System (ADS)
Engebretson, Mark; Zesta, Eftyhia
2017-11-01
A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.
Summary of Cumulus Parameterization Workshop
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Starr, David OC.; Hou, Arthur; Newman, Paul; Sud, Yogesh
2002-01-01
A workshop on cumulus parameterization took place at the NASA Goddard Space Flight Center from December 3-5, 2001. The major objectives of this workshop were (1) to review the problem of representation of moist processes in large-scale models (mesoscale models, Numerical Weather Prediction models and Atmospheric General Circulation Models), (2) to review the state-of-the-art in cumulus parameterization schemes, and (3) to discuss the need for future research and applications. There were a total of 31 presentations and about 100 participants from the United States, Japan, the United Kingdom, France and South Korea. The specific presentations and discussions during the workshop are summarized in this paper.
Space Weather, Geomagnetic Disturbances and Impact on the High-Voltage Transmission Systems
NASA Technical Reports Server (NTRS)
Pullkkinen, A.
2011-01-01
Geomagnetically induced currents (GIC) affecting the performance of high-voltage power transmission systems are one of the most significant hazards space weather poses on the operability of critical US infrastructure. The severity of the threat was emphasized, for example, in two recent reports: the National Research Council (NRC) report "Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report" and the North American Electric Reliability Corporation (NERC) report "HighImpact, Low-Frequency Event Risk to the North American Bulk Power System." The NRC and NERC reports demonstrated the important national security dimension of space weather and GIC and called for comprehensive actions to forecast and mitigate the hazard. In this paper we will give a brief overview of space weather storms and accompanying geomagnetic storm events that lead to GIC. We will also review the fundamental principles of how GIC can impact the power transmission systems. Space weather has been a subject of great scientific advances that have changed the wonder of the past to a quantitative field of physics with true predictive power of today. NASA's Solar Shield system aimed at forecasting of GIC in the North American high-voltage power transmission system can be considered as one of the ultimate fruits of those advances. We will review the fundamental principles of the Solar Shield system and provide our view of the way forward in the science of GIC.
NASA Astrophysics Data System (ADS)
Su, Shin-Yi; Chung Lee, Lou; Lyu, L. H.
From 2004 to 2008, SCOSTEP (Scientific Committee on Solar-Terrestrial Physics) is promoting a world-wide CAWSES (Climate and Weather of the Sun-Earth System) program activity. One of the CAWSES program themes is Education Outreach. Thus, in past three years (2005-2007), three different capacity building workshops of space science for young scientists from Southeast Asian countries have been organized by CAWSES-AOPR (CAWSES-Asia Oceanic Pacific Rim) Coordinating Office at National Central University in Taiwan with the support from National Science Council of the Republic of China. In each of the three workshops, there are about 30 participants/trainees from Indonesia, Philippine, Vietnam, Thailand, and Malaysia have attended. The workshop lecturers are professors from National Central University in addition to a few invited professors from US, Japan, and Australia. The workshop tutorial materials are based on the scientific data collected by three Taiwanese satellites launched in 1999 (FORMOSAT-1), 2004 (FORMOSAT-2), and 2006 (FORMOSAT-3/COSMIC). To promote scientific collaboration of using these satellite data, one particular Open Symposium was setup on the third workshop (2007) for all participants to present their research works on their respective national and regional activities. However, due to different national and scientific needs of their own countries, there seem different definitions of "space science" presumed by the participants so that large and different backgrounds are noted among the participants as well as their perceptions of attending the workshops. Thoughts of organizing such "space science" workshop in the future will be discussed.
The United Nations Basic Space Science Initiative
NASA Astrophysics Data System (ADS)
Haubold, Hans; Balogh, Werner
2014-05-01
The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.
NASA Astrophysics Data System (ADS)
Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.
2012-12-01
Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim
On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, we have release brand new products, among them, some regional magnetic indices and the GNSS vertical error map over South America. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)
Workshop on chemical weathering on Mars, part 2
NASA Technical Reports Server (NTRS)
Burns, Roger (Editor); Banin, Amos (Editor)
1992-01-01
The third Mars Surface and Atmosphere Through Time (MSATT) Workshop, which was held 10-12 Sep. 1992, at Cocoa Beach/Cape Kennedy, focused on chemical weathering of the surface of Mars. The 30 papers presented at the workshop described studies of Martian weathering processes based on results from the Viking mission experiments, remote sensing spectroscopic measurements, studies of the shergottite, nakhlite, and chassignite (SNC) meteorites, laboratory measurements of surface analog materials, and modeling of reaction pathways. A summary of the technical sessions is presented and a list of workshop participants is included.
Workshop Addresses Aviation Community
NASA Astrophysics Data System (ADS)
Meehan, Jennifer; Kunches, Joseph
2012-08-01
Delta Airlines had an unprecedented experience in 2011: For the first time, a flight was rerouted because of space weather activity. Flight 189 from Detroit, Mich., to Beijing, China, had to reroute due to solar activity that occurred 24-28 September 2011. Over the last decade most airlines that fly routes across the North Pole region have had diversions as a result of solar activity. As cross-polar air traffic increases, standing at 10,993 one-way crossings in 2011, the aviation industry is becoming more aware of the impacts that space weather can have on operations, communications, and navigation, as well as the issue of increased radiation exposure for passengers and flight crew on board.
Bringing Planetary Science to the Public through Traveling Exhibitions
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.
2001-11-01
The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop another exhibit called Gas Giants. These exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of these major outreach programs. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The focus of the presentation will be on MarsQuest and Gas Giants. MarsQuest is a 5000 square-foot, 3M, traveling exhibition that is now touring the country. The exhibit's 3-year tour will enable millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient museum staff (e.g. museum educators and docents) and workshops for master educators near host museums and science centers. The workshops make innovative connections between the exhibitions interactive experiences and lesson plans aligned with the National Science Education Standards. These exhibit programs are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education. The presentation will also discuss how Gas Giants, a proposed 4000 square-foot traveling exhibition on the mysteries and discoveries of the outer planets, will be able to take advantage of the connections and resources that have been developed by the MarsQuest project.
NASA Astrophysics Data System (ADS)
Zwink, A. B.; Morris, D.; Ware, P. J.; Ernst, S.; Holcomb, B.; Riley, S.; Hardy, J.; Mullens, S.; Bowlan, M.; Payne, C.; Bates, A.; Williams, B.
2016-12-01
For several years, employees at the Cooperative Institute of Mesoscale Meteorological Studies at the University of Oklahoma (OU) that are affiliated with Warning Decision Training Division (WDTD) of the National Weather Service (NWS) provided training simulations to students from OU's School of Meteorology (SoM). These simulations focused on warning decision making using Dual-Pol radar data products in an AWIPS-1 environment. Building on these previous experiences, CIMMS/WDTD recently continued the collaboration with the SoM Oklahoma Weather Lab (OWL) by holding a warning decision workshop simulating a NWS Weather Forecast Office (WFO) experience. The workshop took place in the WDTD AWIPS-2 computer laboratory with 25 AWIPS-2 workstations and the WES-2 Bridge (Weather Event Simulator) software which replayed AWIPS-2 data. Using the WES-2 Bridge and the WESSL-2 (WES Scripting Language) event display, this computer lab has the state-of-the-art ability to simulate severe weather events and recreate WFO warning operations. OWL Student forecasters attending the workshop worked in teams in a multi-player simulation of the Hastings, Nebraska WFO on May 6th, 2015, where thunderstorms across the service area produced large hail, damaging winds, and multiple tornadoes. This paper will discuss the design and goals of the WDTD/OWL workshop, as well as plans for holding similar workshops in the future.
Traveling Exhibitions: translating current science into effective science exhibitions
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Morrow, C.; Harold, J.
The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop two other exhibitions called Cosmic Origins and InterActive Earth. Museum exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of earth and space outreach programs. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The focus of the presentation will be on the Institute's MarsQuest exhibition. This project is a 5000 square-foot, 2.5M, traveling exhibition that is now touring the country. The exhibit's 3-year tour is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient host museum staff (e.g. museum educators and docents). The workshops make innovative connections between the exhibitions interactive experiences and lesson plans aligned with the National Science Education Standards. SSI is also developing an interactive web site called MarsQuest On-line. The linkage between the web site, education program and exhibit will be discussed. MarsQuest and SSI's other exhibitions are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education.
Challenges to modeling the Sun-Earth System: A Workshop Summary
NASA Technical Reports Server (NTRS)
Spann, James F.
2006-01-01
This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress
NASA Astrophysics Data System (ADS)
Tulunay, Y.; Tulunay, E.; Kocabas, Z.; Altuntas, E.; Yapici, T.; Senalp, E. T.; Hippler, R.
2009-04-01
Space Weather has important effects on many systems and peripherals that human interacts with. However, most of the people are not aware of those interactions. During the FP6 SWEETS, COST 724 and the ‘I love my Sun' activities it was aimed to create basis to bring together academicians from universities, experts from industry, scientific institutes, and the public, especially the school children of age 7-11, in order to enhance the awareness of space weather effects and to discuss appropriate countermeasures by different education and promotion methods including non-technical ones. This work mentions the activities performed in Turkey within the framework. Since 1990, a small group at METU has been developing data driven models in order to forecast some critical system parameters related with the near-Earth space processes. With the background on the subject the group feels responsible to organise activities in Turkey to inform public on enhancing the awareness of space weather effects. In order to inform and educate public on their interaction with the Space Weather, distinct social activities which take quick and strong attention were organised. Those include art shows and workshops, quizes, movies and entertainments, special programs for school children of age 7-11 under the ‘I love my Sun' activities, press releases, audio-visual media including webpages [Tulunay, 2007]. The impact of the activities can be evaluated considering the before and after activity record materials of the participants. For instance, under the ‘I love my Sun' activities, the school children drew pictures related with Sun before and after the informative programs. The performance of reaching the school children on the subject is very promising. Sub-activities conducted under the action are: 1. Space Weather Dance Show "Sonnensturm" 2. Web Quiz all over Europe: In Türkiye 3. Space Weather / Sun / Heliospheric Public Science Festivals in 27 Countries: In Türkiye 4. Space Weather on Tour-Mobile Bus 5. Rocket / balloon launch participation for European web quiz winner and journalists 6. Space Weather / Solar / Aurora / Rocket / Balloon movie production for TV 7. Space Weather / Sun /Heliospheric public science festival & public fair in Schwerin castle (main SWEETS festival during ESW 2007) 8. Space Weather telescope video link with Australian (Antarctic Mawson station) and Japanese locations for Schwerin castle festival (no. 7 deliverable) 9. Space Weather planetarium show in Poland, Finland, France and Portugal (4 new languages) 10. Updated Space Weather / Solar CD-Rom / DVD in 7 new languages, poster / flyer 11. Cosmic ray spark chambers 12. Space Weather storm forecast map 13. Mirror system for solar movie 14. FP6 SWEETS / IHY / COST 724 Case Sub-project: "I LOVE MY SUN" (An outreach Activity in Turkey: The Space Weather and the Sun as conceived by the School Children of age 7-11) 15. Press Releases 16. FP6 SWEETS Related Art 17. Turkish Translations in IHY and COST webpages 18. Impact of the SWEETS References Tulunay Y. (2007), FP6 SWEETS (SSA) Activity Report of the Participant No. 16: the METU in Ankara, Türkiye, 31 December 2007, www.ae.metu.edu.tr/~cost.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... inclement weather, NMFS cancelled the Protected Species Safe Handling, Release, and Identification workshop..., 2011, due to inclement weather along the east coast of the United States on the date of the originally...
NASA Astrophysics Data System (ADS)
Burns, R. G.; Banin, A.
1993-10-01
The Workshop on Chemical Weathering on Mars consisted of thirty papers, extended abstracts of which were published in the LPI Technical Report, No. 92-04. The collection of seven papers in this issue report new data and interpretations about the chemical evolution of the Martian surface.
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Moses, M. N.
2011-12-01
Increasing students' earth science literacy, especially those at Minority Serving Institutions (MSIs), is a primary goal of the American Meteorological Society (AMS). Through the NSF-supported AMS Weather Studies and AMS Ocean Studies Diversity workshops for Historically Black College and Universities, Hispanic Serving Institutions, Tribal Colleges and Universities, Alaska Native, and Native Hawaiian Serving Institutions, AMS has brought meteorology and oceanography courses to more students. These workshops trained and mentored faculty implementing AMS Weather Studies and AMS Ocean Studies. Of the 145 institutions that have participated in the AMS Weather Studies Diversity Project, reaching over 13,000 students, it was the first meteorology course offered for more than two-thirds of the institutions. As a result of the AMS Ocean Studies Diversity Project, 75 institutions have offered the course to more than 3000 students. About 50 MSIs implemented both the Weather and Ocean courses, improving the Earth Science curriculum on their campuses. With the support of NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the newest professional development workshop, AMS Climate Studies Diversity Project will recruit MSI faculty members through the vast network of Second Nature's more than 670 signatories. These workshops will begin in early summer 2012. An innovative approach to studying climate science, AMS Climate Studies explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, faculty and students learn about basic climate modeling through the AMS Conceptual Energy Model. Following the flow of energy in a clear, simplified model from space to Earth and back sets the stage for differentiating between climate, climate variability, and climate change. The AMS Climate Studies Diversity Project will follow the successful models of the Weather and Ocean Diversity Projects. Hands on examples, computer based experiments, round table discussions, lectures, and conversations with scientists in the field and other experienced professors are all important parts of previous workshops, and will be complimented by previous participants' feedback. This presentation will also focus on insight gained from the results of a self-study of the long term, successful AMS DataStreme Project, precollege teacher professional development courses. AMS is excited for this new opportunity of reaching even more MSI faculty and students. The ultimate goal of the AMS is to have a geoscience concentration at MSIs throughout the nation and to greatly increase the number of minority students entering geoscience careers, including science teaching.
NASA Technical Reports Server (NTRS)
Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi
2016-01-01
Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.
NASA Astrophysics Data System (ADS)
Urquhart, M. L.; Hairston, M. R.
2005-12-01
Education and Public Outreach (E/PO) targeting pre-college education can be focused on teachers or students, but is ultimately only effective if it impacts classrooms. A challenge in the teacher workshop model is tracking the impact we have actually made. Teachers may be excited by our offerings, and rate workshops highly, but is our E/PO actually making a difference with pre-college students? In June 2005 we ran our second four-day teacher workshop for the joint NASA/U.S. Air Force sponsored ionospheric instrument package, the Coupled Ion Neutral Dynamics Investigation (CINDI) with a new twist. We experimented with the integration of our workshop into a long-term professional development program for 6th and 7th grade teachers at UT Dallas. Immediate direct benefits to the CINDI E/PO program included knowledge of teacher backgrounds prior to the workshop, a narrow target grade level range, and the elimination of the need for separate recruiting efforts. More importantly, by working within a year-long program supported by a Teacher Quality Grant we have been able to better assess teacher learning and the impact our outreach efforts is having on the middle school students of participants. The 20-contact hours our workshop contributed to the Teacher Quality Summer Institute were specifically designed to meet Texas standards for middle school science, and made connections between space weather, Earth systems, basic physics, technology, and communications. Participants were able to interact with members of the science team in formal settings and over casual lunches. We will present our motivations for this experiment, participant feedback, and lessons learned. In addition, we will give an update on our CINDI Educator Guide, and the newly completed Cindi in Space comic book. For the latest on CINDI E/PO, curriculum materials, and the comic book in pdf format, go to http://cindispace.utdallas.edu/education/.
Astronomy education through hands-on photography workshops
NASA Astrophysics Data System (ADS)
Schofield, I.; Connors, M. G.; Holmberg, R.
2013-12-01
Athabasca University (AU), Athabasca University Geophysical and Geo-Space Observatories (AUGO / AUGSO), the Rotary Club of Athabasca and Science Outreach Athabasca has designed a three day science workshop entitled Photography and the Night Sky. This pilot workshop, aimed primarily at high-school aged students, serves as an introduction to observational astronomy as seen in the western Canadian night sky using digital astrophotography without the use of a telescope or tracking mount. Participants learn the layout of the night sky by proficiently photographing it using digital single lens reflex camera (DSLR) kits including telephoto and wide-angle lenses, tripod and cable release. The kits are assembled with entry-level consumer-grade camera gear as to be affordable by the participants, if they so desire to purchase their own equipment after the workshop. Basic digital photo editing is covered using free photo editing software (IrfanView). Students are given an overview of observational astronomy using interactive planetarium software (Stellarium) before heading outdoors to shoot the night sky. Photography is conducted at AU's auroral observatories, both of which possess dark open sky that is ideal for night sky viewing. If space weather conditions are favorable, there are opportunities to photograph the aurora borealis, then compare results with imagery generated by the all-sky auroral imagers located at the Geo-Space observatory. The aim of this program is to develop awareness to the science and beauty of the night sky, while promoting photography as a rewarding, lifelong hobby. Moreover, emphasis is placed on western Canada's unique subauroral location that makes aurora watching highly accessible and rewarding in 2013, the maximum of the current solar cycle.
Hands on the sun: Teaching SEC science through hands on inquiery and direct observation
NASA Astrophysics Data System (ADS)
Mayo, L.; Cline, T.; Lewis, E.
2003-04-01
Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.
2013-05-01
and simulation/modeling/ theory teams” (ERG Science Center at STEL, Nagoya University, available at http://ergsc.stelab.nagoya-u.ac.jp/). 13 Joint...D. Smith, A. Adler, J. Stuart , and G. Ginet. 2009. AFRL’s Demonstration and Science Experiments (DSX) Mission. In Solar Physics and Space Weather...shear wave, and a reflected magnetosonic wave, they were able to infer the Pedersen and Hall conductances at the foot of the flux tube. The authors
The USWRP Workshop on the Weather Research Needs of the Private Sector.
NASA Astrophysics Data System (ADS)
Pielke, Roger A., Jr.; Abraham, Jim; Abrams, Elliot; Block, Jim; Carbone, Richard; Chang, David; Droegemeier, Kelvin; Emanuel, Kerry; Friday, Elbert W. Joe, Jr.; Gall, Robert; Gaynor, John; Getz, Rodger R.; Glickman, Todd; Hoggatt, Bradley; Hooke, William H.; Johnson, Edward R.; Kalnay, Eugenia; Kimpel, James Jeff; Kocin, Paul; Marler, Byron; Morss, Rebecca; Nathan, Ravi; Nelson, Steve; Pielke, Roger, Sr.; Pirone, Maria; Prater, Erwin; Qualley, Warren; Simmons, Kevin; Smith, Michael; Thomson, John; Wilson, Greg
2003-07-01
Private sector meteorology is a rapidly growing enterprise. It has been estimated that the provision of weather information has, by some estimates, a global market totaling in the billions of dollars. Further, the decisions based on such information could easily total trillions of dollars in the U.S. economy alone. The private sector clearly plays an important, and growing, role at the interface of weather research and the weather information needs of society. To date, little information has been paid to the connections of the meteorological research community and the scientific needs of the private sector. Thus, the time is ripe to stimulate a more active dialogue between what is generally considered the "basic" research community of physical and social scientists and those individuals and businesses that provide weather information to myriad customers across the U.S. economy. In December 2000, the U.S. Weather Research Program (supported by NSF, NOAA, NASA, and the U.S. Navy) sponsored a workshop in Palm Springs, California, to bring together weather researchers and representatives of private sector meteorology to discuss needs, wants, opportunities, and challenges and how to enhance the linkages between the two relatively detached communities. The workshop focused on developing a better understanding of the relations of research and private sector meteorology, which ultimately means a better understanding of one of the important connections of research and societal needs.
NASA Astrophysics Data System (ADS)
Tripoli, G. J.; Chandrasekar, V.; Chen, S. S.; Holland, G. J.; Im, E.; Kakar, R.; Lewis, W. E.; Marks, F. D.; Smith, E. A.; Tanelli, S.
2007-12-01
Last April the first Nexrad in Space (NIS) workshop was held in Miami, Florida to discuss the value and requirements for a possible satellite mission featuring a Doppler radar in geostationary orbit capable of measuring the internal structure of tropical cyclones over a circular scan area 50 degrees latitude in diameter. The proposed NIS technology, based on the PR2 radar design developed at JPL and an innovative deployable antenna design developed at UCLA would be capable of 3D volume sampling with 12 km horizontal and 300 m vertical resolution and 1 hour scan period. The workshop participants consisted of the JPL and UCLA design teams and cross section of tropical cyclone forecasters, researchers and modelers who could potentially benefit from this technology. The consensus of the workshop included: (a) the NIS technology would provide observations to benefit hurricane forecasters, real time weather prediction models and model researchers, (b) the most important feature of NIS was its high frequency coverage together with its 3D observation capability. These features were found to fill a data gap, now developing within cloud resolving analysis and prediction systems for which there is no other proposed solution, particularly over the oceans where TCs form. Closing this data gap is important to the improvement of TC intensity prediction. A complete description of the potential benefits and recommended goals for this technology concluded by the workshop participants will be given at the oral presentation.
Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger
2017-05-15
Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extreme Weather and Climate: Workshop Report
NASA Technical Reports Server (NTRS)
Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc;
2016-01-01
Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.
Norway and Cuba Continue Collaborating to Build Capacity to Improve Weather Forecasting
NASA Astrophysics Data System (ADS)
Antuña, Juan Carlos; Kalnay, Eugenia; Mesquita, Michel D. S.
2014-06-01
The Future of Climate Extremes in the Caribbean Extreme Cuban Climate (XCUBE) project, which is funded by the Norwegian Directorate for Civil Protection as part of an assignment for the Norwegian Ministry of Foreign Affairs to support scientific cooperation between Norway and Cuba, carried out a training workshop on seasonal forecasting, reanalysis data, and weather research and forecasting (WRF). The workshop was a follow-up to the XCUBE workshop conducted in Havana in 2013 and provided Cuban scientists with access to expertise on seasonal forecasting, the WRF model developed by the National Center for Atmospheric Research (NCAR) and the community, data assimilation, and reanalysis.
Piloting and Evaluating a Workshop to Teach Georgia Teachers about Weather Science and Safety
ERIC Educational Resources Information Center
Stewart, Alan E.; Knox, John A.; Schneider, Pat
2015-01-01
A survey of 691 Georgia teachers suggested that their students generally were not prepared for severe weather. Teachers also were somewhat dissatisfied with the quality of the teaching resources on weather and weather safety. Only 46 (7%) of the teachers were aware of the American Red Cross Masters of Disaster (MoD) weather science and safety…
Growing Diversity in Space Weather and Climate Change Research
NASA Astrophysics Data System (ADS)
Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.
2013-12-01
Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.
NASA Education Activity Training (NEAT): Professional Development for Montana K-12 Teachers
NASA Astrophysics Data System (ADS)
Williamson, Kathryn; McKenzie, D.; Des Jardins, A.; Key, J.; Kanode, C.; Willoughby, S.
2012-05-01
Piloted during the 2011-2012 academic year, the NASA Education Activity Training (NEAT) teacher workshop program has introduced five solar astronomy and space weather activities to over forty Montana K-12 teachers. Because many Montana schools are geographically isolated (40% of Montana students live more than 50 miles from a city) and/or serve traditionally underrepresented groups (primarily Native Americans), professional development for teachers can be costly and time consuming. However, with funding shared by the Atmospheric Imaging Assembly EPO team and the Montana Space Grant Consortium, graduate student specialists are able to host the two-hour NEAT workshops on-site at the schools free of charge, and participating teachers earn two continuing education credits. Leveraging the existing catalogue of research-based NASA activities, the featured NEAT activities were chosen for their ease-of-use and applicability to Montana science standards. These include three advanced activities for older students, such as a paper plate activity for the June 5th, 2012 Transit of Venus, Kinesthetic Astronomy, and the Herschel Infrared experiment, along with two simpler activities for the younger students, such as Solar Cookies and the Electromagnetic War card game. Feedback surveys show that NEAT workshop participants were interested and engaged in the activities and planned on using the activities in their classrooms. With such positive responses, the NEAT program has been a huge success and can serve as a model for other institutions looking to increase their space public outreach and education.
Popularizing Space Education in Indian Context
NASA Astrophysics Data System (ADS)
Yalagi, Amrut
Indians have many mythological stories about many constellations and stars. Hindu months are based on MOON and 27 stars on Zodiac. They are very important for many Indians in ritual, religious functions. By prompting them to identify their birth star, really makes them elevated. Similarly conveying them the importance of star gazing with respect to their day today life makes them to take interest and active participation in Space Activities. Space activities should be driven by public; their requirements; their dreams and imaginations. Their active participation definitely gives valuable inputs to space scientists. Hence, there is a need of involving common man or public mass by appropriate motivation by organising sky gazing sessions, exhibitions, workshops, etc. In this connection, even if the some organisation are able to attract a small percent of qualified engineers/scientists,, enthusiastic students, it would result in the creation of a sizable pool of talent in space sciences,which may well determine the future mankind on this planet. Some simple motivation acts have made the people to take interest in space. we have been using certain methodologies to popularize space science - 1] Conducting theory sessions on basics of star gazing and conveying importance of sky gazing with respect to day-today life. 2] Organising seminars, workshops, lectures and other academic/popular science activities with special reference to space science 3] Projects - a] Cubsat Missions b] Automatic Weather Station Facility c] Model making d] Creating and simulating space models and rover making competitions. The 50 year's of Exploration has left tremendous impact on many society's working towards space education and exploration.
NASA Astrophysics Data System (ADS)
Friday, E.; Barron, E. J.; Elfring, C.; Geller, L.
2002-12-01
When a major East Coast snowstorm was forecast during the winter of 2001, people began preparing - both the public and the decision-makers responsible for public services. There was an air of urgency, heightened because just the previous year the region had been hit hard by a storm of unpredicted strength. But this time, the storm never materialized and people were left wondering what went "wrong" with the forecast. Did something go wrong or did forecasters just fail to communicate their information in an effective way? Did they convey a sense of the likelihood of the event and keep people up to date as information changed? In the summer of 2001, the National Academies' Board on Atmospheric Sciences and Climate hosted a workshop designed to explore the communication of uncertainty in weather and climate information. Workshop participants examined five case studies that were chosen to illustrate a range of forecast timescales and certainty levels. The cases were: Red River Flood, Grand Forks, April 1997; East Coast Winter Storm, March 2001; Oklahoma-Kansas Tornado Outbreak, May 3, 1999; El Nino 1997-1998, and Climate Change Science, a report issued in 2001. In each of these cases, participants examined who said what, when, to whom, how, and with what effect. The last two cases specifically address climate-related topics. This paper summarizes the final workshop report (Communicating Uncertainties in Weather and Climate Information: Summary of a Workshop, NRC 2002), including an overview of the five cases and lessons learned about communicating uncertainties in weather and climate forecasts. Among other findings, the report stresses that communication and appropriate dissemination of information, including information about uncertainty in the forecasts and the forecaster's confidence in the product, should be an integral, ongoing part of the forecasting process, not an afterthought. Explaining uncertainty should be an integral part of what weather and climate forecasters do and is essential to delivering accurate and useful information.
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan K.; Murphy, Charles; Moore, James; Wetzel, Melanie; Knight, David; Ruscher, Paul; Mullen, Steve; Desouza, Russel; Hawk, Denise S.; Fulker, David
1995-12-01
This report summarizes discussions that took place during a Unidata Cooperative Program for Operational Meteorology, Education, and Training (COMET) workshop on Mesoscale Meteorology Instruction in the Age of the Modernized Weather Service. The workshop was held 13-17 June 1994 in Boulder, Colorado, and it was organized by the Unidata Users Committee, with help from Unidata, COMET, and the National Center for Atmospheric Research staff. The principal objective of the workshop was to assess the need for and to initiate those changes at universities that will be required if students are to learn mesoscale and synoptic meteorology more effectively in this era of rapid technological advances. Seventy-one participants took part in the workshop, which included invited lectures, breakout roundtable discussions on focused topics, electronic poster sessions, and a forum for discussing recommendations and findings in a plenary session. Leading scientists and university faculty in the area of synoptic and mesoscale meteorology were invited to share their ideas for integrating data from new observing systems, research and operational weather prediction models, and interactive computer technologies into the classroom. As a result, many useful ideas for incorporating mesoscale datasets and analysis tools into the classroom emerged. Also, recommendations for future coordinated activities to create, catalog, and distribute case study datasets were made by the attendees.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Gelb, L.; Watson, K. A.; Steimke, A.; Chang, C.; Busche, C.; Breidenbach, J.
2016-12-01
A climate literate citizenry is essential to the long-term success of climate change adaptation and to enhancing resilience of communities to climate change impacts. In support of a National Science Foundation CAREER award, we developed a teacher training workshop on a project that engages students in creating functioning, low-cost weather stations using open source electronics. The workshop aims to improve climate literacy among K-12 students while providing an authentic opportunity to acquire and hone STEM skills. Each station measures temperature, humidity, barometric pressure, light level, soil moisture, and precipitation occurrence. Our day-long workshop focuses on three elements: (1) providing context on the scientific importance of climate observation, (2) equipping teachers with technical skills needed to assemble and use a station from provided components, and (3) highlighting relevant educational standards met by the weather station activities. The workshop was attended by twelve 4th-9th grade teachers from southwest Idaho, all of whom teach at rural and/or Title I schools. Attendees reported having minimal or no previous experience with open source electronics, but all were able to effectively use their weather station with less than two hours of hands-on training. In written and oral post-workshop reflections teachers expressed a strong desire to integrate these activities into classrooms, but also revealed barriers associated with rigid curricular constraints and risk-averse administrators. Continued evolution of the workshop will focus on: (1) extending the duration and exploratory depth of the workshop, (2) refining pre- and post-assessments and performing longitudinal monitoring of teacher participants to measure short- and long-term efficacy of the workshop, and (3) partnering with colleagues to engage school district administrators in dialog on how to integrate authentic activities like this one into K-12 curriculum.
NASA Technical Reports Server (NTRS)
1985-01-01
An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.
AIAA Educator Academy: The Space Weather Balloon Module
NASA Astrophysics Data System (ADS)
Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.
2013-12-01
Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each provided with an AIAA professional member as a mentor for themselves and/or their students. These curriculum modules, provided by AIAA are available to any K-12 teachers as well as EPO officers for use in formal or informal education settings.
Entity Modeling and Immersive Decision Environments
2011-09-01
Simulation Technologies (REST) Lerman, D. J. (2010). Correct Weather Modeling of non-Standard Days (10F- SIW -004). In Proceedings of 2010 Fall Simulation...Interoperability Workshop (Fall SIW ) SISO. Orlando, FL: SISO. Most flight simulators compute and fly in a weather environment that matches a
NASA Astrophysics Data System (ADS)
Szymanska-Markowska, Barbara
2016-04-01
Why should students be trapped within the four walls of the classroom when there are a lot of ideas to have lessons led in the different way? I am not a fan of having lessons at school. For many students it is also boring to stay only at school, too. So I decided to organize workshops and trips to Universities or outdoors. I created KMO ( Discoverer's Club for Teenagers) at my school where students gave me some ideas and we started to make them real. I teach at school where students don't like science. I try hard to change their point of view about it. That's why I started to take parts in different competitions with my students. Last year we measured noise everywhere by the use of applications on a tablet to convince them that noise is very harmful for our body and us. We examined that the most harmful noises were at school's breaks, near the motorways and in the households. We also proved that acoustic screens, which were near the motorways, didn't protect us from noise. We measured that 30 meters from the screens the noise is the same as the motorway. We won the main prize for these measurements. We also got awards for calculating the costs of a car supplied by powered by a solar panel. We measured everything by computer. This year we decided to write an essay about trees and weather. We went to the forest and found the cut trees because we wanted to read the age of tree from the stump. I hadn't known earlier that we could read the weather from the tree's grain. We examined a lot of trees and we can tell that trees are good carriers of information about weather and natural disasters. I started studies safety education and I have a lot of ideas how to get my students interested in this subject that is similar to P.E., physics and chemistry, too. I hope that I will use my abilities from European Space Education Resource Office and GIFT workshop. I plan to use satellite and space to teach my students how they can check information about terrorism, floods or other disasters. I am interested in space and the Solar System, too. I want to improve my knowledge from this kind of science.
Workshop on Fuzzy Control Systems and Space Station Applications
NASA Technical Reports Server (NTRS)
Aisawa, E. K. (Compiler); Faltisco, R. M. (Compiler)
1990-01-01
The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented.
DOT National Transportation Integrated Search
1998-05-15
This White Paper focuses on the needs of surface transportation decisions for better support by weather information, integrated with other information in the ITS. Findings are included from a special team workshop and feedback from conference present...
Proceedings of the Space Shuttle Sortie Workshop. Volume 1: Policy and system characteristics
NASA Technical Reports Server (NTRS)
1972-01-01
The workshop held to definitize the utilization of the space shuttle is reported, and the objectives of the workshop are listed. The policy papers are presented along with concepts of the space shuttle program, and the sortie workshop.
Toward Global Harmonization of Derived Cloud Products
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Baum, Bryan A.; Choi, Yong-Sang; Foster, Michael J.; Karlsson, Karl-Goeran; Heidinger, Andrew; Poulsen, Caroline; Pavolonis, Michael; Riedi, Jerome; Roebeling, Robert
2017-01-01
Formerly known as the Cloud Retrieval Evaluation Workshop (CREW; see the list of acronyms used in this paper below) group (Roebeling et al. 2013, 2015), the International Cloud Working Group (ICWG) was created and endorsed during the 42nd Meeting of CGMS. The CGMS-ICWG provides a forum for space agencies to seek coherent progress in science and applications and also to act as a bridge between space agencies and the cloud remote sensing and applications community. The ICWG plans to serve as a forum to exchange and enhance knowledge on state-of-the-art cloud parameter retrievals algorithms, to stimulate support for training in the use of cloud parameters, and to encourage space agencies and the cloud remote sensing community to share knowledge. The ICWG plans to prepare recommendations to guide the direction of future research-for example, on observing severe weather events or on process studies-and to influence relevant programs of the WMO, WCRP, GCOS, and the space agencies.
MSATT Workshop on Chemical Weathering on Mars
NASA Technical Reports Server (NTRS)
Burns, Roger (Editor); Banin, Amos (Editor)
1992-01-01
The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.
Space physics strategy: Implementation study. Volume 2: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.
76 FR 35215 - Notice of EPA Workshop on Sanitary Sewer Overflows and Peak Wet Weather Discharges
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... draft Peak Flows Policy. The workshop will include a facilitated discussion with representatives of organizations that represent POTWs, state NPDES permitting authorities, and non-for-profit environmental groups... maintained sanitary sewer systems are meant to collect and transport all of the sewage that flows into them...
NASA/SDIO Space Environmental Effects on Materials Workshop, part 2
NASA Technical Reports Server (NTRS)
Teichman, Louis A. (Compiler); Stein, Bland A. (Compiler)
1989-01-01
The National Aeronautics and Space Administration (NASA) and the Strategic Defense Initiative Organization (SDIO) cosponsored a workshop on Space Environmental Effects on Materials. The joint workshop was designed to inform participants of the present state of knowledge regarding space environmental effects on materials and to identify knowledge gaps that prevent informed decisions on the best use of advanced materials in space for long duration NASA and SDIO missions. Establishing priorities for future ground based and space based materials research was a major goal of the workshop. The end product of the workshop was an assessment of the current state-of-the-art in space environmental effects on materials in order to develop a national plan for spaceflight experiments.
Space Transportation Materials and Structures Technology Workshop. Volume 2; Proceedings
NASA Technical Reports Server (NTRS)
Cazier, Frank W., Jr. (Compiler); Gardner, James E. (Compiler)
1993-01-01
The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems.
Workshop on Meteorites From Cold and Hot Deserts
NASA Technical Reports Server (NTRS)
Schultz, Ludolf (Editor); Annexstad, John O. (Editor); Zolensky, Michael E. (Editor)
1994-01-01
The current workshop was organized to address the following points: (1) definition of differences between meteorites from Antarctica, hot deserts, and modern falls; (2) discussion of the causes of these differences; (3) implications of possible different parent populations, infall rates, weathering processes, etc.; (4) collection, curation, and distribution of meteorites; and (5) planning and coordination of future meteorite searches.
Workshop on Using NASA Data for Time-Sensitive Applications
NASA Technical Reports Server (NTRS)
Davies, Diane K.; Brown, Molly E.; Murphy, Kevin J.; Michael, Karen A.; Zavodsky, Bradley T.; Stavros, E. Natasha; Carroll, Mark L.
2017-01-01
Over the past decade, there has been an increase in the use of NASA's Earth Observing System (EOS) data and imagery for time-sensitive applications such as monitoring wildfires, floods, and extreme weather events. In September 2016, NASA sponsored a workshop for data users, producers, and scientists to discuss the needs of time-sensitive science applications.
NASA Astrophysics Data System (ADS)
Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo
2015-04-01
With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.
NASA Technical Reports Server (NTRS)
1985-01-01
A summary of the proceedings in which the most important findings stemming from the Global Weather Experiment (GWE) are highlighted, additional key results and recommendations are comered, and the presentations and discussion are summarized. Detailed achievements, unresolved problems, and recommendations are included.
Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information
NASA Astrophysics Data System (ADS)
Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.
2017-12-01
The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.
A survey of customers of space weather information
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Rabanal, J. P.
2013-09-01
We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.
The LATEST Project: Operational Assessment of Total Lightning Data in the U.S.
NASA Technical Reports Server (NTRS)
Goodman, Steven
2004-01-01
A government, university, and industry alliance has joined forces to transition total lightning observations from ground-based research networks and NASA satellites (LIS/TRMM) to improve the short range prediction of severe weather. This interest builds on the desire of the U.S Weather Research Program to foster a national Nowcasting Test Bed, with this specific transition activity initiated through the NASA short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL. A kick-off national workshop sponsored by the SPoRT Center was held in Huntsville April 1-2 to identify the common goals and objectives of the research and operational community, and to assign roles and responsibilities within the alliance. The workshop agenda, presentations, and summary are available at the SPoRT Center Web site ( h h under the "Meetings" tab. The next national workshop is planned for 2005 in Dallas, TX. The NASA North Alabama regional Lightning Mapping Array &MA) has been operational in the Huntsville area for 3 years, and has continuously sampled a variety of severe weather systems during that period. A gridded version of the LMA total lightning data is currently being supplied to National Weather Service offices in Huntsville, Nashville and Birmingham through the NWS AWES decision support system, for the purposes of assessing the utility of the data in the nowcasting of severe weather such as tornadoes, damaging straight line winds, flash flooding and other weather hazards (lightning induced forest fires, microbursts). While the raw LMA data have been useful to NWS forecasters, even greater utility would be realized if higher-order data products could be supplied through AWIPS along with the gridded data over a larger domain. In 2003-2004 additional LMA systems have been deployed across the southern US. from Florida to New Mexico, providing an opportunity for more than 20 NWS forecast offices to evaluate the incremental value of total lightning data in the warning decision making process.
Current gaps in understanding and predicting space weather: An operations perspective
NASA Astrophysics Data System (ADS)
Murtagh, W. J.
2016-12-01
The NOAA Space Weather Prediction Center (SWPC), one of the nine National Weather Service (NWS) National Centers for Environmental Prediction, is the Nation's official source for space weather alerts and warnings. Space weather effects the technology that forms the backbone of global economic vitality and national security, including satellite and airline operations, communications networks, and the electric power grid. Many of SWPC's over 48,000 subscribers rely on space weather forecasts for critical decision making. But extraordinary gaps still exist in our ability to meet customer needs for accurate and timely space weather forecasts and warnings. The 2015 National Space Weather Strategy recognizes that it is imperative that we improve the fundamental understanding of space weather and increase the accuracy, reliability, and timeliness of space-weather observations and forecasts in support of the growing demands. In this talk we provide a broad perspective of the key challenges that currently limit the forecaster's ability to better understand and predict space weather. We also examine the impact of these limitations on the end-user community.
NASA Technical Reports Server (NTRS)
Camp, D. W.; Frost, W.; Coons, F.; Evanich, P.; Sprinkle, C. H.
1984-01-01
The six workshops whose proceedings are presently reported considered the subject of meteorological and environmental information inputs to aviation, in order to satisfy workshop-sponsoring agencies' requirements for (1) greater knowledge of the interaction of the atmosphere with aircraft and airport operators, (2) a better definition and implementation of meteorological services to operators, and (3) the collection and interpretation of data useful in establishing operational criteria that relate the atmospheric science input to aviation community operations. Workshop topics included equipment and instrumentation, forecasts and information updates, training and simulation facilities, and severe weather, icing and wind shear.
Space Weather: What is it, and Why Should a Meteorologist Care?
NASA Technical Reports Server (NTRS)
SaintCyr, Chris; Murtagh, Bill
2008-01-01
"Space weather" is a term coined almost 15 years ago to describe environmental conditions ABOVE Earth's atmosphere that affect satellites and astronauts. As society has become more dependent on technology, we nave found that space weather conditions increasingly affect numerous commercial and infrastructure sectors: airline operations, the precision positioning industry, and the electric power grid, to name a few. Similar to meteorology where "weather" often refers to severe conditions, "space weather" includes geomagnetic storms, radiation storms, and radio blackouts. But almost all space weather conditions begin at the Sun--our middle-age, magnetically-variable star. At NASA, the science behind space weather takes place in the Heliophysics Division. The Space Weather Prediction Center in Boulder, Colorado, is manned jointly by NCAA and US Air Force personnel, and it provides space weather alerts and warnings for disturbances that can affect people and equipment working in space and on Earth. Organizationally, it resides in NOAA's National Weather Service as one of the National Centers for Environmental Prediction. In this seminar we hope to give the audience a brief introduction to the causes of space weather, discuss some of the effects, and describe the state of the art in forecasting. Our goal is to highlight that meteorologists are increasingly becoming the "first responders" to questions about space weather causes and effects.
Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard
NASA Technical Reports Server (NTRS)
Pellish, Jonathan
2017-01-01
Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
Operational Space Weather Activities in the US
NASA Astrophysics Data System (ADS)
Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert
2016-07-01
We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.
NASA Technical Reports Server (NTRS)
Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard;
2012-01-01
The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.
A survey of of uses and value of space weather information
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Rabanal, J.
2013-12-01
We analyze some 2,800 responses to a survey among subscribers of NOAA's Space Weather Prediction Center email services. Interest in, anticipated impacts from, and responses to solar flares, energetic particle events, and geomagnetic storms are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and the response to, space-weather forecasts and alerts. Space weather information is primarily used as aid to understand anomalies, to implement mitigating strategies designed to avoid impacts on operations, and to prepare for potential contingencies related directly or indirectly to space weather. Current and near-future space-weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts (related most frequently to human safety and reliability of operations). We conclude that even among those receiving space weather information, there is considerable uncertainty about how to act on the information provided.
An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors
NASA Astrophysics Data System (ADS)
Cade, W. B., III
2016-12-01
Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.
NASA Astrophysics Data System (ADS)
Jonas, S.; Murtagh, W. J.; Clarke, S. W.
2017-12-01
The National Space Weather Action Plan identifies approximately 100 distinct activities across six strategic goals. Many of these activities depend on the identification of a series of benchmarks that describe the physical characteristics of space weather events on or near Earth. My talk will provide an overview of Goal 1 (Establish Benchmarks for Space-Weather Events) of the National Space Weather Action Plan which will provide an introduction to the panel presentations and discussions.
Enhancing STEM coursework at MSIs through the AMS Climate Studies Diversity Project
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Mills, E. W.; Slough, S. W.; Brey, J. A.; Geer, I. W.; Nugnes, K. A.
2017-12-01
The AMS Education Program celebrates a successful completion to its AMS Climate Studies Diversity Project. The project was funded for 6 years (2011-2017) through the National Science Foundation (NSF). It introduced and enhanced geoscience and/or sustainability-focused course components at minority-serving institutions (MSIs) across the U.S., many of which are signatories to the President's Climate Leadership Commitments, administered by Second Nature, and/or members of the Louis Stokes Alliances for Minority Participation. The Project introduced AMS Climate Studies curriculum to approximately 130 faculty representing 113 MSIs. Each year a cohort of, on average, 25 faculty attended a course implementation workshop where they were immersed in the course materials, received presentations from high-level speakers, and trained as change agents for their local institutions. This workshop was held in the Washington, DC area in collaboration with Second Nature, NOAA, NASA Goddard Space Flight Center, Howard University, and other local climate educational and research institutions. Following, faculty introduced and enhanced geoscience curricula on their local campuses with AMS Climate Studies course materials, thereby bringing change from within. Faculty were then invited to the following AMS Annual Meeting to report on their AMS Climate Studies course implementation progress, reconnect with their colleagues, and learn new science presented at the meeting. A longitudinal survey was administered to all Climate Diversity Project faculty participants who attended the course implementation workshops. The survey goals were to assess the effectiveness of the Project in helping faculty implement/enhance their institutional climate science offering, share best practices in offering AMS Climate Studies, and analyze the usefulness of course materials. Results will be presented during this presentation. The AMS Climate Studies Diversity Project builds on highly successful, NSF-supported diversity projects for the AMS Weather and Ocean Studies courses conducted from 2001-2008. As a whole, AMS Climate, Weather, and Ocean Studies courses have activated more than 400 institutional licenses from MSIs and impacted more than 25,000 students.
Space Mechanisms Technology Workshop
NASA Technical Reports Server (NTRS)
Oswald, Fred B. (Editor)
2001-01-01
The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop to discuss the state of drive systems technology needed for space exploration. The Workshop was held Thursday, November 2, 2000. About 70 space mechanisms experts shared their experiences from working in this field and considered technology development that will be needed to support future space exploration in the next 10 to 30 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tranebjaerg, L.; Lubs, H.A.; Borghgraef, M.
The Seventh International Workshop on the Fragile X and X-linked Mental Retardation was held at the University of Tromso in Norway on August 2-5, 1995. Approximately 120 participants from 20 countries attended the Workshop. By special invitation Dr. Felix de la Cruz, who initiated the first international Workshop on fragile X, attended this Workshop. For the first time, the workshop took place in Scandinavia and was hosted by Lisbeth Tranebjaerg and Herbert Lubs. For most participants this Workshop, held at the northernmost university in the world, presented a unique opportunity to visit this exotic place. Between sessions, the participants hadmore » a chance to experience 24 hours of daylight, codfishing, and extreme weather situations with excessive amounts of rain as well as spectacular changes in the light and rainbows. The format of the Workshop was a combination of platform presentations and poster presentations. In contrast to previous meetings, the Workshop opened with syndromal and non-syndromal X-linked mental retardation in order to allow time for discussion. 34 refs., 1 fig.« less
Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook
2012-01-01
The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.
NASA Technical Reports Server (NTRS)
Dreschel, Thomas W.
1996-01-01
The National Aeronautics and Space Administration holds summer teacher workshops to motivate teachers to use space science in their lessons. In evaluating these workshops, the areas of interest were participant beliefs about science and science teaching and concerns about educational change and innovation. The teachers attending workshops in 1995, past participants, teachers that received materials but had not attended a workshop, and science researchers were surveyed using the Beliefs about Science and Science Education Survey and/or the Stages of Concern Questionnaire. Comparisons were made by workshop length, time since workshop, and highest grade taught. Reductions in concerns were most evident in the four week workshop. Changes in beliefs were also observed relative to teaching approach and ability. Differences in beliefs were observed between teachers and science researchers. Differences were also observed relative to time since attendance and by grade level taught. It is recommended that the workshops be at least four weeks in length and in length and target specific grade levels, that refresher workshops be offered.
Outcome of the third cloud retrieval evaluation workshop
NASA Astrophysics Data System (ADS)
Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi
2013-05-01
Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.
Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)
NASA Astrophysics Data System (ADS)
Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.
2013-12-01
Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space weather and this influences our forecasts. In this presentation, I will discuss the unique challenges that space weather forecasters face when explaining what we know and what we don't know about space weather events to customers and policy makers.
NEXRAD-In-Space: A Geostationary Orbiting Doppler Radar for Hurricane Monitoring and Studies
NASA Technical Reports Server (NTRS)
Im, Eastwood; Durden, Stephen L.; Tanelli, Simone; Fang, Houfei; Rahmat-Samii, Yahya
2011-01-01
Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science and technology roadmap.
The 26th Space Cryogenic Workshop: Overview, Description of Presentations, and List of Abstracts
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Plachta, David; Shirron, Peter; Huget, Laurie
2016-01-01
This is a summary of the 2015 Space Cryogenics Workshop that was held in Phoenix, Arizona, June 24 to 26, 2015. The workshop was organized by David Plachta and Jason Hartwig of the Cryogenics and Fluid Systems Branch at NASA Glenn Research Center, and continued the tradition of bringing together specialists in the field of space cryogenics to discuss upcoming and potential space missions, and the development of technologies that support or-more often-are enabling for the science and exploration goals of the world's space agencies. The workshop consisted of two days of talks and poster sessions, and provided ample opportunity for more informal discussions that foster collaborations and cooperation in the space cryogenics community. Selected papers from the workshop are published in a special issue of Cryogenics, which is expected to be published by the end of 2015.
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz
2013-03-01
Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/
Space Weather Impacts to Mariners
Tsunamis 406 EPIRB's National Weather Service Marine Forecasts SPACE WEATHER IMPACTS TO MARINERS Marine present an even greater danger near shore or any shallow waters? Space Weather Impacts to Mariners Don't ), Notices to Mariners, Special Paragraphs: "(73) SPACE WEATHER IMPACTS. There is a growing potential
Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.
Impact of Satellite Atmospheric Motion Vectors In the GMAO GEOS-5 Global Data Assimilation System
NASA Technical Reports Server (NTRS)
Gelaro, Ronald; Merkova, Dagmar
2012-01-01
The WMO and THORPEX co-sponsored fifth Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction will be organized by the Expert Team on the Evolution of the Global Observing System in Sedona, Arizona, United States, from 22 to 25 May 2012. Participants are expected to come from all the major NWP centres which are active in the area of impact studies. The workshop will be conducted in English. As for the first four workshops it is planned to produce a workshop report to be published as a WMO Technical Report that will include the papers submitted by the participants. The previous four workshops in this series took place in Geneva {April 1997), Toulouse (March 2000), Alpbach (March 2004) and Geneva (May 2008). Results from Observing System Experiments (OSEs), both with global and regional aspects were presented and conclusions were drawn concerning the contributions of the various components of the observing system to the large scale forecast skill at short and medium range (Workshop Proceedings were published as WMO World Weather Watch Technical Reports TD No. 868, 1034, 1228 and 1450). Since then, some significant changes and developments have affected the global observing system and more efforts have been devoted to meso-scale observing and assimilation systems. There has also been a trend toward using techniques other than OSEs to document data impact, such as adjoint-based sensitivity to observations or ensemble-based sensitivity. Field experiments have been carried out, in particular through the THORPEX project, and the use of targeted data has been assessed.
2012-10-20
The John C. Stennis Space Center Educator Resource Center hosted an Oct. 20 workshop to equip teachers of grades 3 through 12 in using the LEGO Bricks in Space curriculum issued by NASA. Participants in the professional development workshop built their own LEGO simple machine prototypes and explored the engineering principles that make them work (on Earth and in space).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.
2015-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik
2016-07-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.
2016-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Combined Industry, Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)
1996-01-01
The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
The GOES-R Spacecraft Space Weather Instruments and Level 2+ Products
NASA Astrophysics Data System (ADS)
Loto'aniu, Paul; Rodriguez, Juan; Machol, Janet; Kress, Brian; Darnel, Jonathan; Redmon, Robert; Rowland, William; Seation, Daniel; Tilton, Margaret; Denig, William
2016-04-01
Since their inception in the 1970s, the GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The space weather instruments on GOES-R will monitor: solar X-rays, UV light, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and Earth's magnetic field. These measurements are important for providing alerts and warnings to many customers, including satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-R space weather instruments and describes the space weather Level 2+ products that are being developed for GOES-R. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.
Communicating space weather to policymakers and the wider public
NASA Astrophysics Data System (ADS)
Ferreira, Bárbara
2014-05-01
As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.
CCMC: bringing space weather awareness to the next generation
NASA Astrophysics Data System (ADS)
Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.
2017-12-01
Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.
Space Weather Needs of an Evolving Customer Base (Invited)
NASA Astrophysics Data System (ADS)
Rutledge, B.; Viereck, R. A.; Onsager, T. G.
2013-12-01
Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.
MUCESS-Supported Ozone Studies in Upstate New York and along the Texas Gulf Coast
NASA Astrophysics Data System (ADS)
Hromis, A.; Balimuttajjo, M.; Johnson, A.; Wright, J. M.; Idowu, A.; Vieyra, D.; Musselwhite, D.; Morris, P. A.
2010-12-01
The Minority University Consortium for Earth and Space Sciences (MUCESS) supports yearly atmospheric science workshops at their respective institutions. The NSF funded program has enabled Universities and colleges that are part of MUCESS, which include Medgar Evers College, City University of NY, University of Houston-Downtown and South Carolina State University, to develop and support atmospheric studies. The goal of the annual workshops is to instruct the students on the basics of atmospheric science and provide them with hands-on experience for preparing and calibrating the instruments for measuring atmospheric parameters. The instruments are subsequently attached to weather balloons. The data is obtained with an ENSCI ECC ozonesonde, which measures ozone concentrations to parts per billion, and an iMET radiosonde, which records temperature, pressure, relative humidity, and GPS altitude and position. In March 2010, Medgar Evers hosted the workshop in Paradox, NY. Students and faculty from the three institutions attended the 3 day workshop. Subsequent to the annual workshop students from the University of Houston-Downtown (UHD) launched a series of four Sunday launches during the summer from the campus. The data from both the workshop and UHD launches was subsequently analyzed to compare ozone profiles within the troposphere and stratosphere. Comparing rural (Paradox, NY) and urban ozone profiles (Houston, Tx) provides an invaluable experience. An excellent example is the March Paradox temperature profiles as the data indicates a mid-tropospheric temperature inversion. Coincident with this inversion, there is a significant rise in ozone concentrations, the source of which is likely of non-local provenance. In contrast, the Houston summer data indicates a different story as ground level ozone is produced by industrial and transportation-related ozone sources levels which vary. Weekend ground level ozone levels on Sunday are usually relatively low because of decreased traffic, but with the raise in altitude, higher levels may be recorded that represent weekday levels.
NASA Astrophysics Data System (ADS)
De Nardin, C. M.; Dasso, S.; Gonzalez-Esparza, A.
2016-12-01
The present work is an outline of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo
2016-07-01
The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.
STEREO Space Weather and the Space Weather Beacon
NASA Technical Reports Server (NTRS)
Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.
2007-01-01
The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.
2012-12-01
Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.
The United Nations Basic Space Science Initiative
NASA Astrophysics Data System (ADS)
Haubold, H. J.
2006-08-01
Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm
SPace weather applications in a technology-dependent society
NASA Astrophysics Data System (ADS)
Ngwira, C. M.
2017-12-01
Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.
2012-10-20
John C. Stennis Space Center educators and area teachers partnered together during a professional development workshop Oct. 20 to learn about the LEGO Bricks in Space curriculum issued by NASA. The curriculum is designed to encourage students in areas of science, technology, engineering and mathematics. The Stennis Space Center Educator Resource Center hosted the workshop to equip teachers of grades 3-12.
Martian Surface and Atmosphere Workshop
NASA Astrophysics Data System (ADS)
Schuraytz, Benjamin C.
The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.
Workshop on Early Mars: How Warm and How Wet?, part 1
NASA Technical Reports Server (NTRS)
Squyres, S. (Editor); Kasting, J. (Editor)
1993-01-01
This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.
Proceedings of the 2011 Space Cryogenics Workshop: "Poised for the Future, Reflecting on the Past"
NASA Technical Reports Server (NTRS)
Johnson, W. L. (Editor); Schnell, A. R. (Editor); Huget, L. (Editor)
2013-01-01
The 24th Space Cryogenics Workshop was held at the Best Western Coeur d Alene Inn and Conference Center, Coeur d Alene, Idaho, June 8-10, 2011. The workshop was organized and sponsored by NASA Kennedy Space Center and NASA Marshall Space Flight Center, with a theme of "Poised for the Future, Reflecting on the Past." Over 100 scientists and engineers from around the world came together to discuss space applications for cryogenics, renew old acquaintances, and meet new practitioners in the field of space cryogenics.
Radar aeroecology: exploring the movements of aerial fauna through radio-wave remote sensing
Chilson, Phillip B.; Bridge, Eli; Frick, Winifred F.; Chapman, Jason W.; Kelly, Jeffrey F.
2012-01-01
An international and interdisciplinary Radar Aeroecology Workshop was held at the National Weather Center on 5–6 March 2012 on the University of Oklahoma campus in Norman, OK, USA. The workshop brought together biologists, meteorologists, radar engineers and computer scientists from 22 institutions and four countries. A central motivation behind the Radar Aeroecology Workshop was to foster better communication and cross-disciplinary collaboration among a diverse spectrum of researchers, and promote a better understanding of the ecology of animals that move within and use the Earth's lower atmosphere (aerosphere). PMID:22628093
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.
2011-01-01
The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
Promoting an Integrated Science Approach in Teacher Training Programs
NASA Astrophysics Data System (ADS)
Morris, P. A.; Reiff, P.; Garcia, J.; McKay, G. A.
2007-12-01
The Rio Grande Valley of Texas presents a unique opportunity for teacher workshops. First of all, it is separated geographically from major Texas metropolitan areas and it is still primarily rural with relatively small cities and the population is predominantly Hispanic. Teacher workshop offerings in the valley are limited and the teachers usually travel at their own expense to larger cities such as Corpus Christi, San Antonio or Houston to enhance their science background. A few years ago we were prompted by Javier Garcia to offer a workshop at the University of Texas at Brownsville. For three consecutive summers, with NASA funding and support, we taught a one week integrated science teacher workshop at the University of Texas at Brownsville. The workshop is nontraditional, as we do not concentrate on a single scientific discipline such as geology, physics but cover the broader scientific disciplines. Each day is devoted to a separate field, i.e. physics, terrestrial geology, space geology, etc. The topics can vary from year to year. Scientists are brought to Brownsville from the greater Houston area and represent the University of Houston-Downtown, Rice University, Texas Southern University and Johnson Space Center. All sessions are inquiry based and include short introductions to subjects and interactive activities that can be adapted to a variety of age groups. For example, the relationship between Earth and Moon is a crucial state middle school education standard. We begin the Earth/Moon activities with standard inquiry activities such as using flashlights to create phases of the Moon and eclipses, and extend the activities to higher mathematical levels through calculations of the height of lunar features through measuring shadow lengths, and discussion of space weather concerns for lunar exploration. As a way to illustrate the contrast between the Earth and the Moon, we show our planetarium show "Earth's Wild Ride", which is set on a lunar colony, as a start for discussion on lunar versus earth surfaces, atmospheres, and skies. The program has been a success as teachers, which have included grades 4-12, can choose the subjects. Some elect to attend the whole week while others may attend only 1 or 2 days. The advantage to this type of program is that it is easily adaptable to the science requirements for the various grade levels and it provides flexibility as some teachers are traveling 2-3 hours by automobile to attend. Thus by bringing both scientists and a planetarium to the Valley, we provide a "field trip without the bus".
The Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1993-01-01
This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.
Proceedings of the Workshop on Space Telerobotics, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1987-01-01
These proceedings report the results of a workshop on space telerobotics, which was held at the Jet Propulsion Laboratory, January 20-22, 1987. Sponsored by the NASA Office of Aeronautics and Space Technology (OAST), the Workshop reflected NASA's interest in developing new telerobotics technology for automating the space systems planned for the 1990s and beyond. The workshop provided a window into NASA telerobotics research, allowing leading researchers in telerobotics to exchange ideas on manipulation, control, system architectures, artificial intelligence, and machine sensing. One of the objectives was to identify important unsolved problems of current interest. The workshop consisted of surveys, tutorials, and contributed papers of both theoretical and practical interest. Several sessions were held on the themes of sensing and perception, control execution, operator interface, planning and reasoning, and system architecture.
NASA Workshop on Technology for Human Robotic Exploration and Development of Space
NASA Technical Reports Server (NTRS)
Mankins, J. C.; Marzwell, N.; Mullins, C. A.; Christensen, C. B.; Howell, J. T.; O'Neil, D. A.
2004-01-01
Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.
A Milestone in Commercial Space Weather: USTAR Center for Space Weather
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2009-12-01
As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.
NASA Space Environments Technical Discipline Team Space Weather Activities
NASA Astrophysics Data System (ADS)
Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.
2017-12-01
The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.
Locations Where Space Weather Energy Impacts the Atmosphere
NASA Astrophysics Data System (ADS)
Sojka, Jan J.
2017-11-01
In this review we consider aspects of space weather that can have a severe impact on the terrestrial atmosphere. We begin by identifying the pre-conditioning role of the Sun on the temperature and density of the upper atmosphere. This effect we define as "space climatology". Space weather effects are then defined as severe departures from this state of the atmospheric energy and density. Three specific forms of space weather are reviewed and we show that each generates severe space weather impacts. The three forms of space weather being considered are the solar photon flux (flares), particle precipitation (aurora), and electromagnetic Joule heating (magnetosphere-ionospheric (M-I) coupling). We provide an overview of the physical processes associated with each of these space weather forms. In each case a very specific altitude range exists over which the processes can most effectively impact the atmosphere. Our argument is that a severe change in the local atmosphere's state leads to atmospheric heating and other dynamic changes at locations beyond the input heat source region. All three space weather forms have their greatest atmospheric impact between 100 and 130 km. This altitude region comprises the transition between the atmosphere's mesosphere and thermosphere and is the ionosphere's E-region. This region is commonly referred to as the Space Atmosphere Interaction Region (SAIR). The SAIR also acts to insulate the lower atmosphere from the space weather impact of energy deposition. A similar space weather zone would be present in atmospheres of other planets and exoplanets.
United Nations/European Space Agency Workshops on Basic Space Science
NASA Technical Reports Server (NTRS)
Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.
1995-01-01
In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.
NASA Space Weather Center Services: Potential for Space Weather Research
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.
2012-01-01
The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.
General Public Space Travel and Tourism. Volume 2; Workshop Proceedings
NASA Technical Reports Server (NTRS)
ONeil, D. (Compiler); Mankins, J. (Editor); Bekey, I. (Editor); Rogers, T. (Editor); Stallmer, E. (Editor); Piland, W. (Editor)
1999-01-01
The Space Transportation Association and NASA conducted a General Public Space Travel study between 1996 and 1998. During the study, a workshop was held at Georgetown University. Participants included representatives from the travel, aerospace, and construction industries. This report is the proceedings from that workshop. Sections include infrastructure needs, travel packages, policy related issues, and potential near-term activities.
Space Weather Models at the CCMC And Their Capabilities
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2007-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.
Technology for Space Station Evolution. Executive summary and overview
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the technology discipline presentations. The Executive Summary and Overview contains an executive summary for the workshop, the technology discipline summary packages, and the keynote address. The executive summary provides a synopsis of the events and results of the workshop and the technology discipline summary packages.
Partnerships form the basis for implementing a National Space Weather Plan
NASA Astrophysics Data System (ADS)
Spann, James F.; Giles, Barbara L.
2017-08-01
The 2017 Space Weather Enterprise Forum, held June 27, focused on the vital role of partnerships in order to establish an effective and successful national space weather program. Experts and users from the many government agencies, industry, academia, and policy makers gathered to discuss space weather impacts and mitigation strategies, the relevant services and supporting infrastructure, and the vital role cross-cutting partnerships must play for successful implementation of the National Space Weather Action Plan.
Near Real Time Data for Operational Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Berger, T. E.
2014-12-01
Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.
The Future of Operational Space Weather Observations
NASA Astrophysics Data System (ADS)
Berger, T. E.
2015-12-01
We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.
NASA Astrophysics Data System (ADS)
De Nardin, C. M.; Gonzalez-Esparza, A.; Dasso, S.
2015-12-01
We present an overview on the Space Weather in Latin America, highlighting the main findings from our review the recent advances in the space science investigations in Latin America focusing in the solar-terrestrial interactions, modernly named space weather, which leaded to the creation of forecast centers. Despite recognizing advances in the space research over the whole Latin America, this review is restricted to the evolution observed in three countries (Argentina, Brazil and Mexico) only, due to the fact that these countries have recently developed operational center for monitoring the space weather. The work starts with briefly mentioning the first groups that started the space science in Latin America. The current status and research interest of such groups are then described together with the most referenced works and the challenges for the next decade to solve space weather puzzles. A small inventory of the networks and collaborations being built is also described. Finally, the decision process for spinning off the space weather prediction centers from the space science groups is reported with an interpretation of the reason/opportunities that lead to it. Lastly, the constraints for the progress in the space weather monitoring, research, and forecast are listed with recommendations to overcome them.
The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center
NASA Astrophysics Data System (ADS)
Singer, H. J.
2017-12-01
The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.
Space Weather Forecasting at the Joint Space Operations Center (JSpOC)
NASA Astrophysics Data System (ADS)
Nava, O.
2012-12-01
The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.
Revolutionary Concepts of Radiation Shielding for Human Exploration of Space
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.
2005-01-01
This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.
2013-12-01
Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.
The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction
NASA Astrophysics Data System (ADS)
Haubold, H. J.
2006-11-01
Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm
The United Nations Basic Space Science Initiative
NASA Astrophysics Data System (ADS)
Haubold, H. J.
Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm
NASA Astrophysics Data System (ADS)
Chiarini, Paola
2013-11-01
Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Compiler)
2005-01-01
Contents includes papers on the following: JPDO: Inter-Agency Cooperation for the Next Generation ATS; R&T Programs; Integrated CNS Systems and Architectures; Datalink Communication Systems; Navigation, System Demonstrations and Operations; Safety and Security Initiatives Impacting CNS; Global Communications Initiatives; Airborne Internet; Avionics for System-Level Enhancements; SWIM (System Wide Information Management); Weather Products and Data Dissemination Technologies; Airsapce Communication Networks; Surveillance Systems; Workshop Breakouts Sessions and ; ICNS Conference Information.
Collaboration Between Government and Commercial Space Weather Information Providers
NASA Astrophysics Data System (ADS)
Intriligator, Devrie
2007-10-01
Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.
Proceedings of a Workshop on Applications of Tethers in Space: Executive Summary
NASA Technical Reports Server (NTRS)
Baracat, W. A. (Compiler)
1986-01-01
The workshop was attended by persons from government, industry, and academic institutions to discuss the rapidly evolving area of tether applications in space. Many new applications were presented at the workshop, and existing applications were revised, refined, and prioritized as to which applications should be implemented and when. The workshop concluded with summaries developed individually and jointly by each of the applications panels.
NASA Astrophysics Data System (ADS)
Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.
2015-12-01
Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.
Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations
NASA Technical Reports Server (NTRS)
Minow, Joseph; Pettit, Donald R.; Hartman, William A.
2012-01-01
Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.
Promoting Scientist Communications Through Graduate Summer School in Heliophysics and Space Physics
NASA Astrophysics Data System (ADS)
Gross, N. A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Wiltberger, M. J.
2014-12-01
edagogical tools that promote student interaction can be applied successfully during graduate workshops to enhance community and communication among the participants and instructors. The NASA/LWS funded Heliophysics Summer School and the NSF funded Space Weather Summer School provide graduate students starting research in the field, and others who are involved in space physics, an opportunity to learn from and interact with leaders in the field and each other. These interactions can happen casually, but there are a number of programatic aspects that foster the interaction so that they can be as fruitful as possible during the short period. These include: specific "ice-breaker" activities, practicing "elevator speeches", embedded lecture questions, question cards, discussion questions, interactive lab activities, structured lab groups, and use of social media. We are continuing to develop new ways to foster profession interaction during these short courses. Along with enhancing their own learning, the inclusion of these strategies provides both the participants and the instructors with models of good pedagogical tools and builds community among the students. Our specific implementation of these strategies and evidence of success will be presented.
Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System
NASA Technical Reports Server (NTRS)
Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.
2011-01-01
The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.
An abridged history of federal involvement in space weather forecasting
NASA Astrophysics Data System (ADS)
Caldwell, Becaja; McCarron, Eoin; Jonas, Seth
2017-10-01
Public awareness of space weather and its adverse effects on critical infrastructure systems, services, and technologies (e.g., the electric grid, telecommunications, and satellites) has grown through recent media coverage and scientific research. However, federal interest and involvement in space weather dates back to the decades between World War I and World War II when the National Bureau of Standards led efforts to observe, forecast, and provide warnings of space weather events that could interfere with high-frequency radio transmissions. The efforts to observe and predict space weather continued through the 1960s during the rise of the Cold War and into the present with U.S. government efforts to prepare the nation for space weather events. This paper provides a brief overview of the history of federal involvement in space weather forecasting from World War II, through the Apollo Program, and into the present.
NASA Astrophysics Data System (ADS)
Hettrich, Sebastian; Kempf, Yann; Perakis, Nikolaos; Górski, Jędrzej; Edl, Martina; Urbář, Jaroslav; Dósa, Melinda; Gini, Francesco; Roberts, Owen W.; Schindler, Stefan; Schemmer, Maximilian; Steenari, David; Joldžić, Nina; Glesnes Ødegaard, Linn-Kristine; Sarria, David; Volwerk, Martin; Praks, Jaan
2015-02-01
The Atmospheric Drag, Occultation `N' Ionospheric Scintillation mission (ADONIS) studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO). The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT) about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG), the European Space Agency (ESA), the International Space Science Institute (ISSI) and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of "Space Weather: Science, Missions and Systems", supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams' efforts.
New Space Industries for the Next Millennium
NASA Technical Reports Server (NTRS)
Smitherman, D. V., Jr. (Compiler)
1998-01-01
New Space Industries For the Next Millennium is a final report of the findings from the New Space Industries Workshop held in Washington, DC, in February 1998. The primary purpose of this workshop was to identify what must be done to develop new markets, and to generate plans, milestones and new organizational relationships designed to facilitate the goal of space development. This document provides a summary report on the results of that workshop and is not intended as a statement of NASA or government policy. Previous studies had shown great potential for the development of new markets in space (e.g., travel and entertainment, space solar power, satellite and space transfer services, research and development in space, space manufacturing, and space resources), and a great need for coordination and formation of infrastructures (e.g., space transportation, space business parks, and space utilities), to facilitate the growth of new space businesses. The New Space Industries Workshop brought together government, academia, and industry participants from several previous studies and other professionals interested in the development of space for commercial purposes. Their participation provided input into the role of government and industry in space development as well as the technology needs that will enable space development. The opening of the frontier of space, not just to government missions but to private individuals and commercial business, is a challenge of overarching importance. It is our hope that the workshop and this final report continue in earnest the process of identifying and overcoming the barriers to large-scale public access and development of space in the early years of the next century.
Advancing Heliophysics Student Research and Public Outreach in an Urban Environment
NASA Astrophysics Data System (ADS)
Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S. A.; Frost, J.; Cheung, T. K.; Tremberger, G.; Robbins, I.; Paglione, T.; Damas, C.; Steiner, J. C.; Rudolph, E.; Carlson, B. E.; Lewis, E.; Cline, T. D.; Zalava-Gutierrez, R.; Howard, A.; Morris, P. A.; Reiff, P. H.; Scalzo, F.; Chow, Y.; Stewart, A.; Zamor, P.; Brathwaite, K.; Barley, R.; Tulsee, T.
2012-12-01
During 2012, City University of New York (CUNY) and NASA Goddard Space Fight Center (GSFC) Heliophysics Research and Education Consortium centered on faculty and undergraduate research, as well as public outreach. Research areas spanned Heliophysics from solar surface to Earth's magnetosphere/ionosphere, microsatellite development for ionospheric experiments and climate change investigations. The Summer 2012 research teams were located at CUNY campuses and GSFC. Fourteen undergraduate students participated; four are female and eleven are underrepresented minorities. Topics included: Analyzing the Links Between Aurora Borealis, Magnetic Reconnection, and Substorms; Solar Energy Upsurge in 2012-Jun Active Region 1520 with 2010-Jun Active Region 1108 Calibration; Solar Limb Active Region 1515 Analysis and Coronal Heating; Testing Solar Energetic Particle Origin Through COMPTEL Small X-Ray Line Flares; Investigation of Sunspot Regions connection to Coronal Mass Ejections and Solar Flares; A Study of the Stratospheric Aerosols on Jupiter Using Hubble Space Telescope Data; An Integration and Testing Methodology for a Nanosatellite; Software Architecture for Autonomous Control; Combining Passive Polarimetric Remote Sensing and Advanced Measurements of Lidar Intensive Variables in Vertically Resolved Aerosol Retrievals; Tropospheric Ozone Investigations in New York City; The Effects of the Arctic, North Atlantic and El Niño-Southern Oscillation on Climate in the New York Metropolitan Area; Fluctuation Analysis of Magnetic Tornadoes Simulation Model; Ocean Mixing Models Parameterization for Climate Studies; and Analyses of Colloidal Leachate Recovered from Field- and Laboratory-Experiments on Bio-reacted Mining Waste. Public outreach activities included Space Weather workshops, for high school teachers and undergraduate students, conducted by GSFC Space Weather Action Center scientist and a week of CUNY-wide activities for Sun-Earth Day conducted by CUNY faculty and external university partners. The project is supported by NASA awards NNX10AE72G and NNX09AL77G.
Concept for an International Standard related to Space Weather Effects on Space Systems
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Tomky, Alyssa
There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances in scientific and engineering understanding. We present a draft outline that can be used as the basis for such a standard.
NASA Astrophysics Data System (ADS)
Pustil'Nik, Lev
We consider a problem of the possible influence of unfavorable states of the space weather on agriculture markets through the chain of connections: "space weather"-"earth weather"- "agriculture crops"-"price reaction". We show that new manifestations of "space weather"- "earth weather" relations discovered in the recent time allow revising a wide range of the expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction on the specific unfavorable states of space weather in the form of price bursts and price asymmetry. We point out that implementation of considered "price reaction scenarios" is possible only for the case of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in the selected region to space weather; the state of "high risk agriculture" in the selected agriculture zone; high sensitivity of agricultural market to a possible deficit of yield. Results of our previous works (I, II), including application of this approach to the Medieval England wheat market (1250-1700) and to the modern USA durum market (1910-1992), showed that connection between wheat price bursts and space weather state in these cases was absolutely real. The aim of the present work is to answer the question why wheat markets in one selected region may be sensitive to a space weather factor, while in other regions wheat markets demonstrate absolutely indifferent reaction on the space weather. For this aim, we consider dependence of sensitivity of wheat markets to space weather as a function of their location in different climatic zones of Europe. We analyze a database of 95 European wheat markets from 14 countries for the 600-year period (1260-1912). We show that the observed sensitivity of wheat markets to space weather effects is controlled, first of all, by a type of predominant climate in different zones of agricultural production. Wheat markets in the Northern and, partly, in Central Europe (England, Holland, Belgium) show high sensitivity to space weather in minimum states of solar activity, when excess of the high energy cosmic ray stimulate additional cloudiness and precipitation. In the same time, wheat markets in the Southern Europe (Spain, Italy) show high sensitivity to space weather state in the opposite (maximum) phase of solar activity when a deficit of cosmic ray entering into the earth atmosphere leads to decrease of cloudiness and to increase of probability of drought weather periods. We demonstrate that the large part of markets in the Central Europe zone show absence of any effects of sensitivity to space weather state and show that this North-South asymmetry is in good accordance with the suggested model of expected wheat market reaction. We discuss possible increasing of sensitivity of wheat markets to space weather effects under conditions of fast and drastic change of modern climate with a shift of numerous agriculture regions to the state of "high risk agriculture zone".
Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.
2012-01-01
The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.
1994 Science Information Management and Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1994-01-01
This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.
The 1995 Science Information Management and Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1995-01-01
This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.
Towards a National Space Weather Predictive Capability
NASA Astrophysics Data System (ADS)
Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.
2014-12-01
National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.
Superposed epoch analysis of physiological fluctuations: possible space weather connections
NASA Astrophysics Data System (ADS)
Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien
2018-03-01
There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.
Superposed epoch analysis of physiological fluctuations: possible space weather connections.
Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien
2018-03-01
There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.
Towards a National Space Weather Predictive Capability
NASA Astrophysics Data System (ADS)
Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.
2015-12-01
National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.
78 FR 33424 - Tobacco Product Analysis; Scientific Workshop; Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... participants based on space limitations. Registrants will receive confirmation once they have been accepted for the workshop. Onsite registration on the day of the workshop will be based on space availability. If... when comparing liquid chromatography/mass spectrometry and gas chromatography/thermal energy analyzer...
Games and Simulations for Climate, Weather and Earth Science Education
NASA Astrophysics Data System (ADS)
Russell, R. M.
2013-12-01
We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.
Games and Simulations for Climate, Weather and Earth Science Education
NASA Astrophysics Data System (ADS)
Russell, R. M.; Clark, S.
2015-12-01
We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.
Space Weather Forecasting: An Enigma
NASA Astrophysics Data System (ADS)
Sojka, J. J.
2012-12-01
The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove-pipe" disciplines. The perceived progress in space weather understanding differs significantly depending upon which community (scientific, technology, forecaster, society) is addressing the question. Even more divergent are these thoughts when the question is how valuable is the scientific capability of forecasting space weather. This talk will discuss present day as well as future potential for forecasting space weather for a few selected examples. The author will attempt to straddle the divergent community opinions.
Successfully Transitioning Science Research to Space Weather Applications
NASA Technical Reports Server (NTRS)
Spann, James
2012-01-01
The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.
Space Weathering of Lunar Rocks
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2012-01-01
All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.
Eastwood, Jonathan P
2008-12-13
The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.
The Critical Role of the Research Community in Space Weather Planning and Execution
NASA Astrophysics Data System (ADS)
Robinson, Robert M.; Behnke, Richard A.; Moretto, Therese
2018-03-01
The explosion of interest in space weather in the last 25 years has been due to a confluence of efforts all over the globe, motivated by the recognition that events on the Sun and the consequent conditions in interplanetary space and Earth's magnetosphere, ionosphere, and thermosphere can have serious impacts on vital technological systems. The fundamental research conducted at universities, government laboratories, and in the private sector has led to tremendous improvements in the ability to forecast space weather events and predict their impacts on human technology and health. The mobilization of the research community that made this progress possible was the result of a series of actions taken by the National Science Foundation (NSF) to build a national program aimed at space weather. The path forward for space weather is to build on those successes through continued involvement of the research community and support for programs aimed at strengthening basic research and education in academia, the private sector, and government laboratories. Investments in space weather are most effective when applied at the intersection of research and applications. Thus, to achieve the goals set forth originally by the National Space Weather Program, the research community must be fully engaged in the planning, implementation, and execution of space weather activities, currently being coordinated by the Space Weather Operations, Research, and Mitigation Subcommittee under the National Science and Technology Council.
MSFC Skylab mission report: Saturn workshop
NASA Technical Reports Server (NTRS)
1974-01-01
The Skylab's Saturn Workshop mission performance is presented. Experiments were conducted to determine man's ability to live and work in space for extended periods, to make sun and earth investigations, and to advance science and technology in several areas of space applications. Performance is compared with design parameters, and problem causes and solutions are treated. The Saturn Workshop successfully performed its role and advanced the technology of space systems design.
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
Global Space Weather Observational Network: Challenges and China's Contribution
NASA Astrophysics Data System (ADS)
Wang, C.
2017-12-01
To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.
The National Space Weather Strategy: Policy on Observations
NASA Astrophysics Data System (ADS)
Murtagh, W. J.
2016-12-01
Ensuring that the United States is prepared to respond to and recover from severe space weather storms is a priority to the President and to this Administration. We cannot ignore the potential impact space weather may have on key infrastructures and technologies including aviation and satellite operations, the electric power grid, and GPS applications. These technologies form the very backbone of the critical technology infrastructure we rely on for so much of what we do today. In October 2015, OSTP Director John Holdren announced the release of the National Space Weather Strategy and the National Space Weather Action Plan. The Strategy identifies goals and establishes the principles that will guide efforts to develop national space-weather preparedness in both the near and long term, while the Action Plan identifies specific activities, outcomes, and timelines that the Federal government must pursue to be prepared for and resilient to future space-weather events. The Strategy recognizes that observations are the backbone of forecast and warning capabilities. The Strategy also recognized that to achieve a robust operational program for space-weather observations, the United States must: (1) establish and sustain a foundational set of observations; (2) when feasible and cost effective, use data from multiple sources, including international, Federal, State, and local governments, as well as from the academic and industry sectors; (3) ensure the continuity of critical data sources; (4) continue to support sensors for solar and space physics research; (5) ensure data-assimilation techniques are in place; and (6) maintain archives for ground- and space-based data, which are essential for model development and benchmarking. In this talk we explore elements in the Space Weather Action Plan that will ensure our Nation has the information we need to enhance resilience to the risk of space weather.
Successful Heliophysical Programs Emphasizing the Relation of Earth and the Sun
NASA Astrophysics Data System (ADS)
Morris, P. A.; Reiff, P.; Sumners, C.; McKay, G. A.
2007-05-01
Heliophysical is defined as the interconnectedness of the entire solar-heliospheric-planetary system. Our goals are to introduce easily accessible programs that introduce the Sun and other solar system processes to the public. The programs emphasize the impact of these processes on Earth and its inhabitants over geological time. These types of programs are important as these topics as generally taught as a secondary concept rather than an integrated approach. Space Weather is an excellent mechanism for integrating Earth and space science. Heliophysics, which includes Space Weather, is traditionally part of space science studies, but most students do not understand the effect of the Sun's atmosphere on Earth or the intense effects energetic particles can have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include effects on Earth's magnetosphere which, in turn, affect radio transmission, GPS accuracy, and on occasion spacecraft loss and terrestrial power outages. Meteoritic impacts are another topic. Impacts on planetary bodies without strong plate tectonic activities provide ample evidence of their occurrence over geological time. As an analog, impacts have also had an extensive record on Earth, but plate tectonics have been responsible for obliterating most of the evidence. We have developed effective and engaging venues for teaching heliophysics, via the internet, CD-Rom's, museum kiosks, and planetarium shows. We have organized workshops for teachers; "NASA Days" and "Sally Ride Festivals" for students, and "Sun-Earth Day" events for the public. Our goals are both to increase k-16 and public literacy on heliophysical processes and to inspire the next generation to enhance the workforce. We will be offering examples of these programs, as well as distributing CD's and DVD's of some of the creative works.
NASA Technical Reports Server (NTRS)
Mccormac, B. M. (Editor); Seliga, T. A.
1979-01-01
The book contains most of the invited papers and contributions presented at the symposium/workshop on solar-terrestrial influences on weather and climate. Four main issues dominate the activities of the symposium: whether solar variability relationships to weather and climate is a fundamental scientific question to which answers may have important implications for long-term weather and climate prediction; the sun-weather relationships; other potential solar influences on weather including the 11-year sunspot cycle, the 27-day solar rotation, and special solar events such as flares and coronal holes; and the development of practical use of solar variability as a tool for weather and climatic forecasting, other than through empirical approaches. Attention is given to correlation topics; solar influences on global circulation and climate models; lower and upper atmospheric coupling, including electricity; planetary motions and other indirect factors; experimental approaches to sun-weather relationships; and the role of minor atmospheric constituents.
NASA Astrophysics Data System (ADS)
Hesse, M.; Kuznetsova, M. M.; Birn, J.; Pulkkinen, A. A.
2013-12-01
Space weather is different from terrestrial weather in an essential way. Terrestrial weather has benefitted from a long history of research, which has led to a deep and detailed level of understanding. In comparison, space weather is scientifically in its infancy. Many key processes in the causal chains from processes on the Sun to space weather effects in various locations in the heliosphere remain either poorly understood or not understood at all. Space weather is therefore, and will remain in the foreseeable future, primarily a research field. Extensive further research efforts are needed before we can reasonably expect the precision and fidelity of weather forecasts. For space weather within the Earth's magnetosphere, the coupling between solar wind and magnetosphere is of crucial importance. While past research has provided answers, often on qualitative levels, to some of the most fundamental questions, answers to some of the latter and the ability to predict quantitatively remain elusive. This presentation will provide an overview of pertinent aspects of solar wind-magnetospheric coupling, its importance for space weather near the Earth, and it will analyze the state of our ability to describe and predict its efficiency. It will conclude with a discussion of research activities, which are aimed at improving our ability to quantitatively forecast coupling processes.
Instruments for Deep Space Weather Prediction and Science
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Laurent, G.
2018-02-01
We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.
Space Weather Models and Their Validation and Verification at the CCMC
NASA Technical Reports Server (NTRS)
Hesse, Michael
2010-01-01
The Community Coordinated l\\lodeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the international space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the CS and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mission operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.
International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Davila, Joseph M.
2010-01-01
The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.
Global Cooperation in the Science of Space Weather
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2011-01-01
The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.
Proceedings of the NASA Laboratory Astrophysics Workshop
NASA Technical Reports Server (NTRS)
Salama, Farid (Editor)
2002-01-01
This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.
The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains
NASA Astrophysics Data System (ADS)
Gu, Lixin; Zhang, Bin; Hu, Sen; Noguchi, Takaaki; Hidaka, Hiroshi; Lin, Yangting
2018-03-01
Space weathering is an important process on the Moon and other airless celestial bodies. The most common space weathering effects are amorphization of the top surface of soil grains and formation of nanophase iron particles (npFe) within the partially amorphous rims. Hence, space weathering significantly affects optical properties of the surface of the Moon and other airless celestial bodies. Transmission electron microscope (TEM) analysis of Apollo 15 soil grains displays npFe (≤5 nm in size) embedded in the space-weathered rim (∼60 nm in thickness) of a pyroxene grain, consistent with previous studies. In contrast, submicron-sized fragments that adhere to the pyroxene grain show distinct space weathering features. Silicon oxide nanoparticles (npSiOx) were observed with npFe in a submicron-sized Mg-Fe silicate fragment. This is the first discovery of npSiOx as a product of space weathering. The npSiOx and the coexisting npFe are ∼10-25 nm in size, significantly larger than the typical npFe in the space weathered rim of the pyroxene grain. The coexisting npSiOx and npFe were probably formed directly in micrometeorite shock-induced melt, instead of in a solar-wind generated vapor deposit or irradiated rim. This new observation will shed light on space weathering processes on the Moon and airless celestial bodies.
Space Weather Forecasting and Supporting Research in the USA
NASA Astrophysics Data System (ADS)
Pevtsov, A. A.
2017-12-01
In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.
1981-12-01
STUDIES PROJECT MODIFICATION JFK JOHN F. KENNEDY AIRPORT PATWAS PILOT AUTOMATIC TELEPHONE WEATHER ANSWERING SERVICE JPL JET PROPULSION LABORATORY PDP...wing aircraft, helicopters, and cruise sorship directed at Atmospheric Electricity missiles. The AEHP concepts developed will apply Hazards Protection...atmospheric electricity simulators. 90 THE JOINT AIRPORT WEATHER STUDIES PROJECT John McCarthy National Center for Atmospheric Research Several people raised
NASA Astrophysics Data System (ADS)
Fisher, G.; Jones, B.
2006-12-01
The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.
NASA Astrophysics Data System (ADS)
Špoler Čanić, Kornelija; Rasol, Dubravka; Milković, Janja
2013-04-01
The Meteorological and Hydrological Service in Croatia (MHSC) is, as a public service, open to and concentrated on public. The organization of visits to the MHSC for groups started in 1986. The GLOBE program in Croatia started in 1995 and after that interest for the group tours at the MHSC has increased. The majority of visitors are school and kindergarten children, students and groups of teachers. For each group tour we try to prepare the content that is suitable for the age and interest of a group. Majority of groups prefer to visit the meteorological station where they can see meteorological instruments and learn how they work. It is organized as a little workshop, where visitors can ask questions and discuss with a guide not only about the meteorological measurements but also about weather and climate phenomena they are interested in. Undoubtedly the highlight of a visit is the forecaster's room where visitors can talk to the forecasters (whom they can also see giving a weather forecast on the national TV station) and learn how weather forecasts are made. Sometimes we offer to visitors to make some meteorological experiments but that is still not in a regular program of the group tours due to the lack of performing space. Therefore we give them the instructions for making instruments and simulations of meteorological phenomena from household items. Visits guides are meteorologists with profound experience in the popularization of science.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.
2017-12-01
The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.
Fifty Years of Space Weather Forecasting from Boulder
NASA Astrophysics Data System (ADS)
Berger, T. E.
2015-12-01
The first official space weather forecast was issued by the Space Disturbances Laboratory in Boulder, Colorado, in 1965, ushering in an era of operational prediction that continues to this day. Today, the National Oceanic and Atmospheric Administration (NOAA) charters the Space Weather Prediction Center (SWPC) as one of the nine National Centers for Environmental Prediction (NCEP) to provide the nation's official watches, warnings, and alerts of space weather phenomena. SWPC is now integral to national and international efforts to predict space weather events, from the common and mild, to the rare and extreme, that can impact critical technological infrastructure. In 2012, the Strategic National Risk Assessment included extreme space weather events as low-to-medium probability phenomena that could, unlike any other meteorogical phenomena, have an impact on the government's ability to function. Recognizing this, the White House chartered the Office of Science and Technology Policy (OSTP) to produce the first comprehensive national strategy for the prediction, mitigation, and response to an extreme space weather event. The implementation of the National Strategy is ongoing with NOAA, its partners, and stakeholders concentrating on the goal of improving our ability to observe, model, and predict the onset and severity of space weather events. In addition, work continues with the research community to improve our understanding of the physical mechanisms - on the Sun, in the heliosphere, and in the Earth's magnetic field and upper atmosphere - of space weather as well as the effects on critical infrastructure such as electrical power transmission systems. In fifty years, people will hopefully look back at the history of operational space weather prediction and credit our efforts today with solidifying the necessary developments in observational systems, full-physics models of the entire Sun-Earth system, and tools for predicting the impacts to infrastructure to protect against any and all forms of space weather.
Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1
NASA Technical Reports Server (NTRS)
Cutts, James (Editor); Ng, Edward (Editor)
1991-01-01
The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization.
Science and Exploration Deep Space Gateway Workshop
NASA Technical Reports Server (NTRS)
Spann, James F.
2017-01-01
We propose a workshop whose outcome is a publically disseminated product that articulates SMD investigations and HEOMD Life Science research, including international collaborations, that are made possible by the new opportunities in space that result from the Deep Space Gateway.
The New Space Weather Action Center; the Next Level on Space Weather Education
NASA Astrophysics Data System (ADS)
Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.
2016-12-01
The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.
Using Space Weather for Enhanced, Extreme Terrestrial Weather Predictions.
NASA Astrophysics Data System (ADS)
McKenna, M. H.; Lee, T. A., III
2017-12-01
Considering the complexities of the Sun-Earth system, the impacts of space weather to weather here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial weather. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space weather contribute to extreme weather on Earth, and if so, to what degree?"
Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1991-01-01
The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.
The effort to increase the space weather forecasting accuracy in KSWC
NASA Astrophysics Data System (ADS)
Choi, J. S.
2017-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.
Space Weathering on Airless Bodies.
Pieters, Carle M; Noble, Sarah K
2016-10-01
Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.
Space Weathering on Airless Bodies
Pieters, Carle M.; Noble, Sarah K.
2018-01-01
Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. PMID:29862145
Models Required to Mitigate Impacts of Space Weather on Space Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
This viewgraph presentation attempts to develop a model of factors which need to be considered in the design and construction of spacecraft to lessen the effects of space weather on these vehicles. Topics considered include: space environments and effects, radiation environments and effects, space weather drivers, space weather models, climate models, solar proton activity and mission design for the GOES mission. The authors conclude that space environment models need to address issues from mission planning through operations and a program to develop and validate authoritative space environment models for application to spacecraft design does not exist at this time.
Rocks, Rain, and Climate: a GIFT Workshop for Teachers in Brazil
NASA Astrophysics Data System (ADS)
Passow, M. J.; Krusche, N.; Carneiro, C. D.
2010-12-01
Classroom teachers and university professors from two continents joined to learn about “Rocks, Rain, and Climate” in the GIFT (Geophysical Information For Teachers) Workshop at the Meeting of the Americas, held in Foz de Iguaçu (Iguassu Falls), Brazil, 8 - 9 August 2010. GIFT workshops have long been part of the AGU Fall Meetings, but among “the pioneers” from this program were the first GIFT in South America and the first GIFT presented in Portuguese and English. Its success will provide a model for future teacher-professor-researcher professional development in Brazil. The two-day course opened with overviews of the “Geology and Relief of South America” from C.D.R. Carneiro and the “Weather and Climate in South America” from Michelle R. Reboita (Federal University of Itajubá/UNIFEI). M.J. Passow organized a discussion about the “Challenges to Teaching about Climate Change,” followed by an exchange among the participants about their teaching experiences. The first day ended with a presentation by Antonio Carlos Alves Carvalho (Ministry of Education) about governmental initiatives to enhance distance learning and educational technology across the country to provide greater access to quality resources for all students and teachers. On the second day, Rachel Albrecht (Center for Weather Forecasting and Climate Studies of the National Space Research Institute/CPTEC-INPE) described her research using Tropical Rainfall Measuring Mission (TRMM)satellite precipitation data. M.J. Passow explained additional classroom applications of satellite data for studying precipitation and other patterns in the Tropics. C.D.R. Carneiro then discussed current research into “Weathering, Rocks, and the Carbon Cycle.” In the final session, Maria Assunção Faus da Silva Dias (University of São Paulo/USP)explained creation and educational uses of mathematical models to study the evolution of climate, especially as it relates to the hydrologic cycle. Participants included secondary school teachers and university professors from Brazil, Argentina, and the USA. Insights gained from developing this international GIFT program will be shared, including strengths, weaknesses, and attendee feedback. Archived versions of the slide shows and other resources (mostly in Portuguese, with some English) are available on http://www.earth2class.org and other websites created by the organizers for further dissemination. A bilingual paper by MJ Passow, “TRMM: Bringing remote sensing of precipitation into your classroom,” is part of Terræ Didatica, v. 6, iss. 1 (2010), available at http://www.ige.unicamp.br/terraedidatica/.
Outcome of the Third Cloud Retrieval Evaluation Workshop
NASA Astrophysics Data System (ADS)
Roebeling, R.; Baum, B.; Bennartz, R.; Hamann, U.; Heidinger, A.; Thoss, A.; Walther, A.
2012-04-01
Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and inter-annual variations are needed to improve the understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics need to be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), which was held from 15-18 November 2011 in Madison, Wisconsin, USA, is to enhance our knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimising these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods that are used to prepare daily and monthly cloud parameter climatologies. An important component of the workshop is the discussion on the results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we will summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on the reasons for the observed differences. More in depth discussions were held on retrieval principles and validation, and the utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement; cloud physical properties, and cloud climatologies. We will present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize the actions defined to tailor the CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention will be given to increase the traceability and uniformity of different long-term and homogeneous records of cloud parameters.
Space Station Workshop: Commercial Missions and User Requirements
NASA Technical Reports Server (NTRS)
1988-01-01
The topics of discussion addressed during a three day workshop on commercial application in space are presented. Approximately half of the program was directed towards an overview and orientation to the Space Station Project; the technical attributes of space; and present and future potential commercial opportunities. The remaining time was spent addressing technological issues presented by previously-formed industry working groups, who attempted to identify the technology needs, problems or issues faced and/or anticipated by the following industries: extraction (mining, agriculture, petroleum, fishing, etc.); fabrication (manufacturing, automotive, aircraft, chemical, pharmaceutical and electronics); and services (communications, transportation and retail robotics). After the industry groups presented their technology issues, the workshop divided into smaller discussion groups composed of: space experts from NASA; academia; industry experts in the appropriate disciplines; and other workshop participants. The needs identified by the industry working groups, space station technical requirements, proposed commercial ventures and other issues related to space commercialization were discussed. The material summarized and reported are the consensus from the discussion groups.
NASA Astrophysics Data System (ADS)
Jackson, David
NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar-wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.
The Economic Impact of Space Weather: Where Do We Stand?
Eastwood, J P; Biffis, E; Hapgood, M A; Green, L; Bisi, M M; Bentley, R D; Wicks, R; McKinnell, L-A; Gibbs, M; Burnett, C
2017-02-01
Space weather describes the way in which the Sun, and conditions in space more generally, impact human activity and technology both in space and on the ground. It is now well understood that space weather represents a significant threat to infrastructure resilience, and is a source of risk that is wide-ranging in its impact and the pathways by which this impact may occur. Although space weather is growing rapidly as a field, work rigorously assessing the overall economic cost of space weather appears to be in its infancy. Here, we provide an initial literature review to gather and assess the quality of any published assessments of space weather impacts and socioeconomic studies. Generally speaking, there is a good volume of scientific peer-reviewed literature detailing the likelihood and statistics of different types of space weather phenomena. These phenomena all typically exhibit "power-law" behavior in their severity. The literature on documented impacts is not as extensive, with many case studies, but few statistical studies. The literature on the economic impacts of space weather is rather sparse and not as well developed when compared to the other sections, most probably due to the somewhat limited data that are available from end-users. The major risk is attached to power distribution systems and there is disagreement as to the severity of the technological footprint. This strongly controls the economic impact. Consequently, urgent work is required to better quantify the risk of future space weather events. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.
National Space Weather Program Advances on Several Fronts
NASA Astrophysics Data System (ADS)
Gunzelman, Mark; Babcock, Michael
2008-10-01
The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.
Introduction to the Space Weather Monitoring System at KASI
NASA Astrophysics Data System (ADS)
Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.
2014-05-01
We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.
Second NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
1994-01-01
This document contains the proceedings of the Second NASA Workshop on Wiring for Space Applications held at NASA LeRC in Cleveland, OH, 6-7 Oct. 1993. The workshop was sponsored by NASA Headquarters Code QW Office of Safety and Mission Quality, Technical Standards Division and hosted by NASA LeRC, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry, and academia presented and discussed topics on arc tracking phenomena, wiring system design, insulation constructions, and system protection. Presentation materials provided by the various speakers are included in this document.
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
The 1977 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
1977-01-01
The papers presented were derived from transcripts taken at the Tenth Annual Battery Workshop held at the Goddard Space Flight Center, November 15-17, 1977. The Workshop was attended by manufacturers, users, and government representatives interested in the latest results of testing, analysis, and development of the sealed nickel cadmium cell system. The purpose of the Workshop was to share flight and test experience, stimulate discussion on problem areas, and to review the latest technology improvements.
Space Mechanisms Technology Workshop
NASA Technical Reports Server (NTRS)
Oswald, Fred B. (Editor)
2002-01-01
The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop on Tuesday, May 14, 2002, to discuss space mechanisms technology. The theme for this workshop was 'Working in the Cold,' a focus on space mechanisms that must operate at low temperatures. We define 'cold' as below -60C (210 K), such as would be found near the equator of Mars. However, we are also concerned with much colder temperatures such as in permanently dark craters of the Moon (about 40 K).
Realtime Space Weather Forecasts Via Android Phone App
NASA Astrophysics Data System (ADS)
Crowley, G.; Haacke, B.; Reynolds, A.
2010-12-01
For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.
Mexican Space Weather Service (SCiESMEX)
NASA Astrophysics Data System (ADS)
Gonzalez-Esparza, J. A.; De la Luz, V.; Corona-Romero, P.; Mejia-Ambriz, J. C.; Gonzalez, L. X.; Sergeeva, M. A.; Romero-Hernandez, E.; Aguilar-Rodriguez, E.
2017-01-01
Legislative modifications of the General Civil Protection Law in Mexico in 2014 included specific references to space hazards and space weather phenomena. The legislation is consistent with United Nations promotion of international engagement and cooperation on space weather awareness, studies, and monitoring. These internal and external conditions motivated the creation of a space weather service in Mexico. The Mexican Space Weather Service (SCiESMEX in Spanish) (www.sciesmex.unam.mx) was initiated in October 2014 and is operated by the Institute of Geophysics at the Universidad Nacional Autonoma de Mexico (UNAM). SCiESMEX became a Regional Warning Center of the International Space Environment Services (ISES) in June 2015. We present the characteristics of the service, some products, and the initial actions for developing a space weather strategy in Mexico. The service operates a computing infrastructure including a web application, data repository, and a high-performance computing server to run numerical models. SCiESMEX uses data of the ground-based instrumental network of the National Space Weather Laboratory (LANCE), covering solar radio burst emissions, solar wind and interplanetary disturbances (by interplanetary scintillation observations), geomagnetic measurements, and analysis of the total electron content (TEC) of the ionosphere (by employing data from local networks of GPS receiver stations).
Games and Simulations for Climate, Weather and Earth Science Education
NASA Astrophysics Data System (ADS)
Russell, R. M.
2014-12-01
We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory. More info available at: scied.ucar.edu/events/agu-2014-games-simulations-sessions
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
NASA Astrophysics Data System (ADS)
Freeman, John W.
2012-11-01
Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.
Examples of variable speed limit applications : speed management workshop
DOT National Transportation Integrated Search
2000-01-09
VSL systems are a type of Intelligent Transportation System (ITS) that utilizes traffic : speed and volume detection, weather information, and road surface condition technology to determine appropriate speeds at which drivers should be traveling, giv...
OAST Space Theme Workshop 1976
NASA Technical Reports Server (NTRS)
Sadin, S. R.
1977-01-01
Papers that provide a technical foundation including research and technology base candidates for each of six space themes - space power, space industrialization, search for extraterrestrial intelligence, exploration of the solar system, global service, and advanced transportation systems - are presented. The material is mainly intended for further use by workshop participants and NASA elements concerned with space research and technology. While the data presented do not represent official plans or positions, they are part of the process of evolving such plans and positions. The information contained reflects the efforts of workshop participants and should be an aid in the successful implementation and execution of the Agency's near- and far-term advanced technology program.
Space Weather Influence on the Earth wheat markets: past, present, and future.
NASA Astrophysics Data System (ADS)
Pustil'Nik, Lev
We consider problem of a possible influence of unfavorable states of the space weather on agriculture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works (I, II) included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the question, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predominant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low solar wind, high cosmic ray flux and North Atlantic cloudiness, caused by CR excess, with negative sequences for wheat agriculture in this humid zone. In the same time wheat markets in the South Europe (Spain, Italy) show reliable sensitivity to space weather state in the opposite (maximum) phase of solar activity with strong solar wind, low cosmic ray flux and deficit of CR input in cloudiness in North Atlantic with next deficit of precipitations in the arid zones of the South Europe. In the same time the large part of markets in the Central Europe zone, functioned far from "high risk agriculture state" show the absence of any effects-responses on space weather. This asymmetry is in accordance with model expectation in the frame of proposed approach. For extremely case of the Iceland agriculture we show that drop of agriculture production in unfavorable states of space weather leads to mass mortality from famines correlated with phase of solar activity with high confi- dence level. We discuss possible increasing of sensitivity of wheat markets to space weather effects in condition of drastic and fast change of modern climate, caused by global warming of the Earth atmosphere with fast and unexpected shift of numerous agriculture regions in the world to state of "high risk agriculture zone". Publications on the theme of review: I. "INFLUENCE OF SOLAR ACTIVITY ON THE STATE OF THE WHEAT MARKET IN MEDIEVAL ENGLAND", Solar Physics 223: 335-356, 2004. c 2004 Kluwer Academic Publishers II. "SPACE CLIMATE MANIFESTATION IN EARTH PRICES - FROM MEDIEVAL ENGLAND UP TO MODERN U.S.A.", LEV PUSTIL'NIK and GREGORY YOM DIN, Solar Physics, 224: 473-481 c Springer 2005
78 FR 59065 - Interview Room Recording System Standard and License Plate Reader Standard Workshops
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
.... Space is limited at each workshop, and as a result, only 50 participants will be allowed to register for... organization. Exceptions to this limit may occur, should space allow. Participants planning to attend are responsible for their own travel arrangements. DATES: Both workshops will be held on Saturday, October 19...
Space Weather Monitoring with GOES-16: Instruments and Data Products
NASA Astrophysics Data System (ADS)
Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert; Machol, Janet; Kress, Brian; Seaton, Daniel; Darnel, Jonathan; Rowland, William; Tilton, Margaret; Denig, William; Boudouridis, Athanasios; Codrescu, Stefan; Claycomb, Abram
2017-04-01
Since their inception in the 1970s, the NOAA GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The GOES-16 spacecraft, the first of four satellites as part of the GOES-R spacecraft series mission, was launched in November 2016. The space weather instruments on GOES-16 have significantly improved capabilities over older GOES instruments. They will image the sun's atmosphere in extreme-ultraviolet and monitor solar irradiance in X-rays and UV, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and the Earth's magnetic field. These measurements are important for providing alerts and warnings to many worldwide customers, including the NOAA National Weather Service, satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-16 space weather instruments and presents initial post launch data along with a discussion of calibration activities and the current status of the instruments. We also describe the space weather Level 2+ products that are being developed for the GOES-R series including solar thematic maps, automated magnetopause crossing detection and spacecraft charging estimates. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.
Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.
2016-12-01
Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.
Observations and Impact Assessments of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Baker, D. N.
2007-05-01
"Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.
76 FR 60505 - Food Defense Workshop; Public Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... space available basis on the day of the public workshop beginning at 8 a.m. The cost of registration at... businesses, with firsthand working knowledge of FDA's regulations and compliance policies. This workshop is...
Activities of NICT space weather project
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru
NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar-wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
NASA Technical Reports Server (NTRS)
Hoerz, F. (Editor)
1986-01-01
Summaries of papers presented at the Workshop on Micrometeorite Capture Experiments are compiled. The goals of the workshop were to define the scientific objectives and the resulting performance requirements of a potential Space Station facility and to identify the major elements of a coherent development program that would generate the desired capabilities within the next decade. Specific topics include cosmic dust and space debris collection techniques, particle trajectory and source determination, and specimen analysis methods.
Prospects for commercialization of SELV-based in-space operations
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J. (Compiler); Garrison, James L., Jr. (Compiler)
1995-01-01
A workshop was hosted by the Langley Research Center as a part of an activity to assess the commercialization potential of Small Expendible Launch Vehicle-based in-space operations. Representatives of the space launch insurance industry, industrial consultants, producers of spacecraft, launch vehicle manufacturers, and government researchers constituted the participants. The workshop was broken into four sessions: Customers Small Expendible Launch Systems, Representative Missions, and Synthesis-Government role. This publication contains the presentation material, written synopses of the sessions, and conclusions developed at the workshop.
Communicating Science through Exhibitions
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Harold, J.; Morrow, C.
It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. There are many ways for scientists to help develop science exhibitions. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). Two of its exhibitions, Space Weather Center and MarsQuest, are currently on tour. Another exhibition, Alien Earths, is in development. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. MarsQuest is a 5000 square-foot traveling exhibition. The exhibit's second 3-year tour began this January at the Detroit Science Center. It is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. The 3,000 square-foot traveling exhibition, called Alien Earths, will bring origins-related research and discoveries to students and the American public. Alien Earths has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. Besides the exhibits, SSI is also developing interactive web sites based on exhibit themes. New technologies are transforming the Web from a static medium to an interactive environment with tremendous potential for informal education and inquiry-based investigations. This talk will focus on the development of the MarsQuest and Alien Earths exhibitions and their associated education programs.
Space Weather Research: Indian perspective
NASA Astrophysics Data System (ADS)
Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.
2016-12-01
Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.
NASA Dryden Flight Research Center's Space Weather Needs
NASA Technical Reports Server (NTRS)
Wiley, Scott
2011-01-01
Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.
Space Weathering in the Thermal Infrared: Lessons from LRO Diviner and Next Steps
NASA Astrophysics Data System (ADS)
Greenhagen, B. T.; Lucey, P. G.; Glotch, T. D.; Arnold, J. A.; Bowles, N. E.; Donaldson Hanna, K. L.; Shirley, K. A.
2018-04-01
Global data from the LRO Diviner show that the thermal infrared is affected by space weathering. We will present and discuss hypotheses for the unanticipated space weathering dependence and next steps.
First NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
Hammond, Ahmad (Compiler); Stavnes, Mark W. (Compiler)
1994-01-01
This document contains the proceedings of the First NASA Workshop on Wiring for Space Applications held at NASA Lewis Research Center in Cleveland, OH, July 23-24, 1991. The workshop was sponsored by NASA Headquarters Code QE Office of Safety and Mission Quality, Technical Standards Division and hosted by the NASA Lewis Research Center, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry and academia presented and discussed topics on arc tracking phenomena, wiring applications and requirements, and new candidate insulation materials and constructions. Presentation materials provided by the various speakers are included in this document.
NASA Technical Reports Server (NTRS)
1985-01-01
Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.
Space Weathering Rates in Lunar and Itokawa Samples
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.
2017-01-01
Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Lynn Cline, deputy associate administrator for Space Operations, speaks to attendees of the One NASA Leader-Led Workshop about Transformation activities at Kennedy. The workshop included senior leadership in the Agency.
Application of space benefits to education.
NASA Technical Reports Server (NTRS)
Dannenberg, K. K.; Ordway, F. I., III
1971-01-01
Information is given on the conduct of a summer teacher workshop designed to strengthen a weakened public interest in the benefits of space programs to various aspects of life. The workshop is part of an educational program for teachers based on the NASA Marshall Space Flight Center industrial facilities and displays at the Alabama Space and Rocket Center.
Fifth Space Weather Enterprise Forum Reaches New Heights
NASA Astrophysics Data System (ADS)
Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.
2011-09-01
As the world's commercial infrastructure grows more dependent on sensitive electronics and space-based technologies, the global economy is becoming increasingly vulnerable to solar storms. Experts from the federal government, academia, and the private sector met to discuss the societal effects of major solar storms and other space weather at the fifth annual Space Weather Enterprise Forum (SWEF), held on 21 June 2011 at the National Press Club in Washington, D. C. More than 200 members of the space weather community attended this year's SWEF, which focused on the consequences of severe space weather for national security, critical infrastructure, and human safety. Participants also addressed the question of how to prepare for and mitigate those consequences as the current solar cycle approaches and reaches its peak, expected in 2013. This year's forum included details of plans for a "Unified National Space Weather Capability," a new interagency initiative which will be implemented over the next two years, designed to improve forecasting, warning, and other services ahead of the coming solar maximum.
Space Weather and the State of Cardiovascular System of a Healthy Human Being
NASA Astrophysics Data System (ADS)
Samsonov, S. N.; Manykina, V. I.; Krymsky, G. F.; Petrova, P. G.; Palshina, A. M.; Vishnevsky, V. V.
The term "space weather" characterizes a state of the near-Earth environmental space. An organism of human being represents an open system so the change of conditions in the environment including the near-Earth environmental space influences the health state of a human being.In recent years many works devoted to the effect of space weather on the life on the Earth, and the degree of such effect has been represented from a zero-order up to apocalypse. To reveal a real effect of space weather on the health of human being the international Russian- Ukrainian experiment "Geliomed" is carried out since 2005 (http://geliomed.immsp.kiev.ua) [Vishnevsky et al., 2009]. The analysis of observational set of data has allowed to show a synchronism and globality of such effect (simultaneous manifestation of space weather parameters in a state of cardiovascular system of volunteer groups removed from each other at a distance over 6000 km). The response of volunteer' cardiovascular system to the changes of space weather parameters were observed even at insignificant values of the Earth's geomagnetic field. But even at very considerable disturbances of space weather parameters a human being healthy did not feel painful symptoms though measurements of objective physiological indices showed their changes.
Space Weather - Current Capabilities, Future Requirements, and the Path to Improved Forecasting
NASA Astrophysics Data System (ADS)
Mann, Ian
2016-07-01
We present an overview of Space Weather activities and future opportunities including assessments of current status and capabilities, knowledge gaps, and future directions in relation to both observations and modeling. The review includes input from the scientific community including from SCOSTEP scientific discipline representatives (SDRs), COSPAR Main Scientific Organizers (MSOs), and SCOSTEP/VarSITI leaders. The presentation also draws on results from the recent activities related to the production of the COSPAR-ILWS Space Weather Roadmap "Understanding Space Weather to Shield Society" [Schrijver et al., Advances in Space Research 55, 2745 (2015) http://dx.doi.org/10.1016/j.asr.2015.03.023], from the activities related to the United Nations (UN) Committee on the Peaceful Uses of Outer Space (COPUOS) actions in relation to the Long-term Sustainability of Outer Space (LTS), and most recently from the newly formed and ongoing efforts of the UN COPUOS Expert Group on Space Weather.
Space Weathering of Itokawa Particles: Implications for Regolith Evolution
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Space weathering processes such as solar wind irradiation and micrometeorite impacts are known to alter the the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies. Here, we use the effects of solar wind irradiation and the accumulation of solar flare tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics on these timescales.
Proceedings of the Third Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, Craig R. (Compiler)
1989-01-01
This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.
Overview of NASA Heliophysics and the Science of Space Weather
NASA Astrophysics Data System (ADS)
Talaat, E. R.
2017-12-01
In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.
Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)
1992-01-01
The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.
The 1994 Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1994-01-01
This document is the proceedings from the fourth annual 'Space and Earth Science Data Compression Workshop,' which was held on April 2, 1994, at the University of Utah in Salt Lake City, Utah. This workshop was held in cooperation with the 1994 Data Compression Conference, which was held at Snowbird, Utah, March 29-31 1994. The Workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. It consisted of 13 papers presented in 4 sessions. The papers focus on data compression research that is integrated into, or has the potential to be integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientist's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.
ESA SSA Space Radiation Expert Service Centre: the Importance of Community Feedback
NASA Astrophysics Data System (ADS)
Crosby, Norma; Dierckxsens, Mark; Kruglanski, Michel; De Donder, Erwin; Calders, Stijn; Messios, Neophytos; Glover, Alexi
2017-04-01
End-users in a wide range of sectors both in space and on the ground are affected by space weather. In the frame of its Space Situational Awareness (SSA) programme (http://swe.ssa.esa.int/) the European Space Agency (ESA) is establishing a Space Weather (SWE) Service Network to support end-users in three ways: mitigate the effects of space weather on their systems, reduce costs, and improve reliability. Almost 40 expert groups from institutes and organisations across Europe contribute to this Network organised in five Expert Service Centres (ESCs) - Solar Weather, Heliospheric Weather, Space Radiation, Ionospheric Weather, Geomagnetic Conditions. To understand the end-user needs, the ESCs are supported by the SSCC (SSA Space Weather Coordination Centre) that offers first line support to the end-users. Here we present the mission of the Space Radiation ESC (R-ESC) (http://swe.ssa.esa.int/space-radiation) and the space domain services it supports. Furthermore, we describe how the R-ESC project complements past and ongoing projects both on national level as well as international (e.g. EU projects), emphasizing the importance of inter-disciplinary communication between different communities ranging from scientists, engineers to end-users. Such collaboration is needed if basic science is to be used most efficiently for the development of products and tools that provide end-users with what they actually need. Additionally, feedback from the various communities (projects) is also essential when defining future projects.
76 FR 35024 - National Institute of Justice Stab-Resistant Body Armor Standard Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
.... Space is limited at this workshop, and as a result, only 50 participants will be allowed to register. We.../2011_NIJ_Stab-resistant_BA_Workshop.aspx . Registration will close on July 8, 2011. DATES: The workshop...
Space Station Workstation Technology Workshop Report
NASA Technical Reports Server (NTRS)
Moe, K. L.; Emerson, C. M.; Eike, D. R.; Malone, T. B.
1985-01-01
This report describes the results of a workshop conducted at Goddard Space Flight Center (GSFC) to identify current and anticipated trends in human-computer interface technology that may influence the design or operation of a space station workstation. The workshop was attended by approximately 40 persons from government and academia who were selected for their expertise in some aspect of human-machine interaction research. The focus of the workshop was a 1 1/2 brainstorming/forecasting session in which the attendees were assigned to interdisciplinary working groups and instructed to develop predictions for each of the following technology areas: (1) user interface, (2) resource management, (3) control language, (4) data base systems, (5) automatic software development, (6) communications, (7) training, and (8) simulation. This report is significant in that it provides a unique perspective on workstation design for the space station. This perspective, which is characterized by a major emphasis on user requirements, should be most valuable to Phase B contractors involved in design development of the space station workstation. One of the more compelling results of the workshop is the recognition that no major technological breakthroughs are required to implement the current workstation concept. What is required is the creative application of existing knowledge and technology.
Subverting Space: An Exploration of a Dance Therapy Workshop Apparatus for Schizophrenics.
Lippi, Silvia; Petit, Laetitia
2017-04-01
The authors created a dance workshop for schizophrenic patients designed to address their singular experience of space, in which the categories of interior and exterior do not function as limits. The space of the workshop, which, paradoxically, is thought in terms of the psychic space of schizophrenic patients by playing on its borderless quality, creates a continuity between the psychiatric hospital and the external world, and thus helps to prevent the segregation and isolation of such patients. This continuity is established on the basis of both the physical architecture of the workshop setting and the practice of dancing itself. The authors explore the hypothesis that, inside the particular space made possible by the apparatus of the workshop, schizophrenic patients benefit from the experience of movement, beginning with the pulse of rhythm, which establishes a consistency in time. By means of its repetitive character, the beat of music, like movement, accompanies and promotes the experience of continuity, which is the condition for any possible form of symbolizing. Two brief clinical illustrations show how this approach to dance therapy allows a moribund jouissance to be overturned and transformed into the aesthetic jouissance that characterizes the experience of dance.
NASA Astrophysics Data System (ADS)
Hartkorn, O. A.; Ritter, B.; Meskers, A. J. H.; Miles, O.; Russwurm, M.; Scully, S.; Roldan, A.; Juestel, P.; Reville, V.; Lupu, S.; Ruffenach, A.
2014-12-01
The Earth's magnetosphere is formed as a consequence of the interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past forty years with the intention of understandingand forcasting solar behavior and space weather. In particular, Earth-bound interplanetary coronal mass ejections (CMEs) can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. We present a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the CME properties. The mission secondary objective is the improvement of scientific space weather models. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and flux gate magnetometers. For remote measurements, coronagraphs are employed. The proposed instruments originate from other space missions with the intention to reduce mission costs and to streamline the mission design process. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. This network provides an information service that is in uninterrupted contact with the spacecraft, allowing for continuos space weather monitoring. A dedicated data processing center will handle all the data, and forward the processed data to the SSA Space Weather Coordination Center. This organization will inform the general public through a space weather forecast. The data processing center will additionally archive the data for the scientific community. This concept mission allows for major advances in space weather forecasting and the scientific modeling of space weather.
NASA Technical Reports Server (NTRS)
1980-01-01
Helicopter user needs, technology requirements and status, and proposed research and development action are summarized. It is divided into three sections: flight dynamics and control; all weather operations; and human factors.
Inquiry Based Writing Workshop
ERIC Educational Resources Information Center
Spence, Lucy K.
2009-01-01
Teacher-librarians have implemented collaborations, becoming facilitators of literacy development throughout their schools as library research moves into multimodal forms. For instance, Wolf & Jordan (2006) studied teacher-librarian collaboration with third grade students researching and writing within a unit on severe weather preparedness. The…
Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2015-01-01
Space weathering processes such as solar wind ion irradiation and micrometeorite impacts are widely known to alter the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies.
Space Weathering: Laboratory Analyses and In-Situ Instrumentation
NASA Technical Reports Server (NTRS)
Bentley, M. S.; Ball, A. J.; Dyar, M. D.; Pieters, C. M.; Wright, I. P.; Zarnecki, J. C.
2005-01-01
Space weathering is now understood to be a key modifier of visible and near infrared reflectance spectra of airless bodies. Believed to be caused by vapour recondensation after either ion sputtering or impact vaporization, space weathering has been successfully simulated in the laboratory over the past few years. The optical changes caused by space weathering have been attributed to the accumulation of sub-microscopic iron on regolith grain surfaces. Such fine-grained metallic iron has distinctive magnetic properties that can be used to study it.
Updates on CCMC Activities and GSFC Space Weather Services
NASA Technical Reports Server (NTRS)
Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.;
2011-01-01
In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.
Experiments in Planetary and Related Sciences and the Space Station
NASA Technical Reports Server (NTRS)
Greeley, Ronald (Editor); Williams, Richard J. (Editor)
1987-01-01
Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.
Space-weather assets developed by the French space-physics community
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.
2016-12-01
We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.
Review on space weather in Latin America. 1. The beginning from space science research
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo
2016-11-01
The present work is the first of a three-part review on space weather in Latin America. It comprises the evolution of several Latin American institutions investing in space science since the 1960s, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this review is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues.
Space Weather Studies at Istanbul Technical University
NASA Astrophysics Data System (ADS)
Kaymaz, Zerefsan
2016-07-01
This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.
NASA Technical Reports Server (NTRS)
Maryniak, Gregg E.
1992-01-01
Prior studies by NASA and the Space Studies Institute have looked at the infrastructure required for the construction of solar power satellites (SPS) and other valuable large space systems from lunar materials. This paper discusses the results of a Lunar Systems Workshop conducted in January 1988. The workshop identified components of the infrastructure that could be implemented in the near future to create a revenue stream. These revenues could then be used to 'bootstrap' the additional elements required to begin the commercial use of nonterrestrial materials.
Predicting Space Weather: Challenges for Research and Operations
NASA Astrophysics Data System (ADS)
Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.
2013-12-01
Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.
NASA Technical Reports Server (NTRS)
1975-01-01
Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.
Recent Applications of Space Weather Research to NASA Space Missions
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.
2013-01-01
Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.
Strategy for future space weather observational assets
NASA Astrophysics Data System (ADS)
Davies, Jackie; Bogdanova, Yulia; Harrison, Richard; Bisi, Mario; Hapgood, Mike
2017-04-01
Observations from an ad-hoc suite of mainly aging, scientific, space-borne assets currently underpin space weather forecasting capabilities world-wide. While efforts have begun to replace / supplement these assets - in particular with the recent launch of the DSCOVR spacecraft - it is widely accepted that there is an urgent need to accelerate these endeavours in order to mitigate the risk of losing these critical observations. It is hence opportune to critically review the possible options for the provision of space weather observations, particularly in terms of identifying the optimum vantage point(s) and the instrumentation that will provide the most beneficial measurements to support space weather prediction. Here we present the results of several recent European studies that aim to identify the best solution for space-based space weather monitoring - obviously within realistic financial constraints and bearing in mind the immediacy with which such a mission needs to be realised.
Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.
2015-12-01
Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov
Ionosphere-related products for communication and navigation
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.
2011-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
NASA Astrophysics Data System (ADS)
Solomon, D.; van Dijk, A.
The "2002 ESA Lunar Architecture Workshop" (June 3-16) ESTEC, Noordwijk, NL and V2_Lab, Rotterdam, NL) is the first-of-its-kind workshop for exploring the design of extra-terrestrial (infra) structures for human exploration of the Moon and Earth-like planets introducing 'architecture's current line of research', and adopting an architec- tural criteria. The workshop intends to inspire, engage and challenge 30-40 European masters students from the fields of aerospace engineering, civil engineering, archi- tecture, and art to design, validate and build models of (infra) structures for Lunar exploration. The workshop also aims to open up new physical and conceptual terrain for an architectural agenda within the field of space exploration. A sound introduc- tion to the issues, conditions, resources, technologies, and architectural strategies will initiate the workshop participants into the context of lunar architecture scenarios. In my paper and presentation about the development of the ideology behind this work- shop, I will comment on the following questions: * Can the contemporary architectural agenda offer solutions that affect the scope of space exploration? It certainly has had an impression on urbanization and colonization of previously sparsely populated parts of Earth. * Does the current line of research in architecture offer any useful strategies for com- bining scientific interests, commercial opportunity, and public space? What can be learned from 'state of the art' architecture that blends commercial and public pro- grammes within one location? * Should commercial 'colonisation' projects in space be required to provide public space in a location where all humans present are likely to be there in a commercial context? Is the wave in Koolhaas' new Prada flagship store just a gesture to public space, or does this new concept in architecture and shopping evolve the public space? * What can we learn about designing (infra-) structures on the Moon or any other space context that will be useful on Earth on a conceptual and practical level? * In what ways could architecture's field of reference offer building on the Moon (and other celestial bodies) a paradigm shift? 1 In addition to their models and designs, workshop participants will begin authoring a design recommendation for the building of (infra-) structures and habitats on celestial bodies in particular the Moon and Mars. The design recommendation, a substantiated aesthetic code of conduct (not legally binding) will address long term planning and incorporate issues of sustainability, durability, bio-diversity, infrastructure, CHANGE, and techniques that lend themselves to Earth-bound applications. It will also address the cultural implications of architectural design might have within the context of space exploration. The design recommendation will ultimately be presented for peer review to both the space and architecture communities. What would the endorsement from the architectural community of such a document mean to the space community? The Lunar Architecture Workshop is conceptualised, produced and organised by(in alphabetical order): Alexander van Dijk, Art Race in Space, Barbara Imhof; ES- CAPE*spHERE, Vienna, University of Technology, Institute for Design and Building Construction, Vienna, Bernard Foing; ESA SMART1 Project Scientist, Susmita Mo- hanty; MoonFront, LLC, Hans Schartner' Vienna University of Technology, Institute for Design and Building Construction, Debra Solomon; Art Race in Space, Dutch Art Institute, Paul van Susante; Lunar Explorers Society. Workshop locations: ESTEC, Noordwijk, NL and V2_Lab, Rotterdam, NL Workshop dates: June 3-16, 2002 (a Call for Participation will be made in March -April 2002.) 2
NASA Astrophysics Data System (ADS)
Gadimova, S. H.; Haubold, H. J.
2014-01-01
Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.
Operational Space Weather in USAF Education
NASA Astrophysics Data System (ADS)
Smithtro, C.; Quigley, S.
2006-12-01
Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.
Solar EUV irradiance for space weather applications
NASA Astrophysics Data System (ADS)
Viereck, R. A.
2015-12-01
Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.
NASA Astrophysics Data System (ADS)
Shibata, K.; Kurokawa, H.
The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction
Progress in space weather predictions and applications
NASA Astrophysics Data System (ADS)
Lundstedt, H.
The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.
NASA Technical Reports Server (NTRS)
1972-01-01
The proceedings of the 1972 NASA/Goddard Battery Workshop are reported. Topics discussed include: separators, materials and processing, test and storage experience, and improved energy density systems.
Relativistic Gravitational Experiments in Space
NASA Technical Reports Server (NTRS)
Hellings, Ronald W. (Editor)
1989-01-01
The results are summarized of a workshop on future gravitational physics space missions. The purpose of the workshop was to define generic technological requirements for such missions. NASA will use the results to direct its program of advanced technology development.
NASA Astrophysics Data System (ADS)
Gross, N. A.; Hughes, W.
2011-12-01
This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.
Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila
2015-01-01
The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.
Tropical Pacific Observing for the Next Decade
NASA Astrophysics Data System (ADS)
Legler, David M.; Hill, Katherine
2014-06-01
More than 60 scientists and program officials from 13 countries met at the Scripps Institution of Oceanography for the Tropical Pacific Observing System (TPOS) 2020 Workshop. The workshop, although motivated in part by the dramatic decline of NOAA's Tropical Atmosphere Ocean (TAO) buoy reporting from mid-2012 to early 2014 (see http://www.bloomberg.com/news/2014-03-07/aging-el-nino-buoys-getting-fixed-as-weather-forecasts-at-risk.html), evaluated the needs for tropical Pacific observing and initiated efforts to develop a more resilient and integrative observing system for the future.
Proceedings of the International Meteorological Satellite Workshop
NASA Technical Reports Server (NTRS)
1962-01-01
International Meteorological Satellite Workshop, November 13-22, 1961, presented the results of the meteorological satellite program of the United States and the possibilities for the future, so that-- the weather services of other nations may acquire a working knowledge of meteorological satellite data for assistance in their future analysis programs both in research and in daily synoptic application and guidance in their national observational support efforts; the world meteorological community may become more familiar with the TIROS program.; and the present activity may be put in proper perspective relative to future operational programs.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Adm. Craig Steidle, associate administrator for Exploration Systems, speaks to attendees of the One NASA Leader-Led Workshop about the Agency plan for achieving the Vision for Space Exploration. The workshop included senior leadership in the Agency who talked about ongoing Transformation activities and Kennedys role in the Vision for Space Exploration.
Second Workshop on Spacecraft Glow
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr. (Editor); Moorehead, T. W. (Editor)
1985-01-01
Various aspects of space glow were considered. Results of a workshop held on May 6 to 7, 1985, at the Space Science Laboratory of NASA/Marshall Space Flight Center, Huntsville, Alabama are presented. The topics of discussion are divided as follows: (1) in situ observations; (2) theoretical calculations; (3) laboratory measurements; and (4) future experiments.
Goals, History and Current Programs of Workshop
NASA Technical Reports Server (NTRS)
2001-01-01
Mr. Robert Fusaro, coordinator for the Glenn Research Center Space Mechanisms program, presented the goals of the workshop, history of previous workshops and gave an overview of current space mechanisms work performed by Glenn Research Center. Highlights of his presentation are shown. Following the presentation, Mr. Fusaro demonstrated the new NASA Space Mechanisms Handbook and Reference Guide CD ROM, which was featured as a highlight of the workshop. The handbook is an authoritative guide for design and testing of space mechanisms and related components. Over 600 pages of guidelines written by 25 experts in the field provide in-depth information on how to design space mechanisms and components, including: deployables, release devices, latches, rotating and pointing mechanisms, dampers, motors, gears, fasteners, valves, etc. The handbook provides details on appropriate environmental and tribological testing methods and practices required to evaluate new mechanisms and components. Distribution of the Handbook and Reference Guide is limited by ITAR (International Traffic in Arms Regulations). It is available only to US companies and citizens. A request form for the CD ROM can be found on the Space Mechanisms Project website at http://www.grc.nasa.gov/WWW/spacemech/.
NASA Technical Reports Server (NTRS)
Ayon, Juan A. (Editor)
1992-01-01
A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
NASA Astrophysics Data System (ADS)
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
Advanced Solar Cell Testing and Characterization
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Curtis, Henry; Piszczor, Michael
2005-01-01
The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.
NASA Astrophysics Data System (ADS)
Cash, M. D.; Biesecker, D. A.; Reinard, A. A.
2013-05-01
The Deep Space Climate Observatory (DSCOVR) mission, which is scheduled for launch in late 2014, will provide real-time solar wind thermal plasma and magnetic measurements to ensure continuous monitoring for space weather forecasting. DSCOVR will be located at the L1 Lagrangian point and will include a Faraday cup to measure the proton and alpha components of the solar wind and a triaxial fluxgate magnetometer to measure the magnetic field in three dimensions. The real-time data provided by DSCOVR will be used to generate space weather applications and products that have been demonstrated to be highly accurate and provide actionable information for customers. We present several future space weather products currently under evaluation for development. New potential space weather products for use with DSCOVR real-time data include: automated shock detection, more accurate L1 to Earth delay time, automatic solar wind regime identification, and prediction of rotations in solar wind Bz within magnetic clouds. Additional ideas from the community on future space weather products are encouraged.
Overview of NASA MSFC and UAH Space Weather Modeling and Data Efforts
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard
2016-01-01
Marshall Space Flight Center, along with its industry and academia neighbors, has a long history of space environment model development and testing. Space weather efforts include research, testing, model development, environment definition, anomaly investigation, and operational support. This presentation will highlight a few of the current space weather activities being performed at Marshall and through collaborative efforts with University of Alabama in Huntsville scientists.
Current Collection from Space Plasmas
NASA Technical Reports Server (NTRS)
Singh, Nagendra (Editor); Wright, K. H., Jr. (Editor); Stone, Nobie H. (Editor)
1990-01-01
The First Workshop on Current Collection from Space Plasmas was held at the Tom Bevil Center on the campus of The University of Alabama in Huntsville on April 24 to 25, 1989. The intent of the workshop was to assemble experts on various topics related to the problem of current collection for deliberations that would elucidate the present understanding of the overall current collection problem. Papers presented at the workshop are presented.
Landscapes. Artists' Workshop Series.
ERIC Educational Resources Information Center
King, Penny; Roundhill, Clare
This instructional resource, designed to be used by and with elementary level students, provides inspiration for landscape painting by presenting the work of six different artists. These include: "Fuji in Clear Weather" (Katsushika Hokusai, 1823-29); "The Tree of Life" (Gustav Klimt, c. 1905-1909); "The Waterlily…
National Weather- RFC Development Management
Map News Organization Search NWS ALL NOAA Go RFC Development Management Presentations Projects & ; Plans RFC Development Program RFC Archive Database Documentation Outline Workshops Contact Us resources and services. Description Graphic The RFC Development Management component of the Office of
The Hydrologic Ensemble Prediction Experiment (HEPEX)
NASA Astrophysics Data System (ADS)
Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena
2015-04-01
The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Dole, Randall; vandenDool, Huug; Suarez, Max; Waliser, Duane
2002-01-01
This workshop, held in April 2002, brought together various Earth Sciences experts to focus on the subseasonal prediction problem. While substantial advances have occurred over the last few decades in both weather and seasonal prediction, progress in improving predictions on these intermediate time scales (time scales ranging from about two weeks to two months) has been slow. The goals of the workshop were to get an assessment of the "state of the art" in predictive skill on these time scales, to determine the potential sources of "untapped" predictive skill, and to make recommendations for a course of action that will accelerate progress in this area. One of the key conclusions of the workshop was that there is compelling evidence for predictability at forecast lead times substantially longer than two weeks. Tropical diabatic heating and soil wetness were singled out as particularly important processes affecting predictability on these time scales. Predictability was also linked to various low-frequency atmospheric "phenomena" such as the annular modes in high latitudes (including their connections to the stratosphere), the Pacific/North American (PNA) pattern, and the Madden Julian Oscillation (MJO). The latter, in particular, was highlighted as a key source of untapped predictability in the tropics and subtropics, including the Asian and Australian monsoon regions.
Third NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad (Compiler); Stavnes, Mark (Compiler)
1995-01-01
This workshop addressed key technology issues in the field of electrical power wiring for space applications, and transferred information and technology related to space wiring for use in government and commercial applications. Speakers from space agencies, U.S. Federal labs, industry, and academia presented program overviews and discussed topics on arc tracking phenomena, advancements in insulation materials and constructions, and new wiring system topologies.
Space Weather Model Testing And Validation At The Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Kuznetsova, M.; Rastaetter, L.; Falasca, A.; Keller, K.; Reitan, P.
The Community Coordinated Modeling Center (CCMC) is a multi-agency partner- ship aimed at the creation of next generation space weather models. The goal of the CCMC is to undertake the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to pro- vide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With aStar initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Tran- sition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and devel- opment accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate.
Implementation of weather stations at Ghanaian high schools
NASA Astrophysics Data System (ADS)
Pieron, M.
2012-04-01
The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an initiative that aims to develop a dense weather observation network in Sub-Sahara Africa. The ambition is to have 20.000 low-cost innovative weather stations in place in 2015. An increased amount of weather data is locally required to provide stakeholders that are dependent on the weather, such as farmers and fishermen, with accurate forecasts. As a first proof of concept, showing that sensors can be built at costs lower than commercially available, a disdrometer was developed. In parallel with the design of the measurement instruments, a high school curriculum is developed that covers environmental sciences. In order to find out which requirements the TAHMO weather station and accompanying educational materials should meet for optimal use at Junior High Schools research was done at Ghanaian schools. Useful insights regarding the future African context of the weather station and requirements for an implementation strategy were obtained during workshops with teachers and students, visits to WMO observatories and case studies regarding use of educational materials. The poster presents the conclusions of this research, which is part of the bigger TAHMO framework.
NOAA Environmental Satellite Measurements of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.
2015-12-01
For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.
United States Civil Space Policy: Summary of a Workshop
NASA Technical Reports Server (NTRS)
2008-01-01
What are the principal purposes, goals, and priorities of the U.S. civil space program? This question was the focus of the workshop on civil space policy held November 29-30, 2007, by the Space Studies Board (SSB) and the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC). In addressing this question, invited speakers and panelists and the general discussion from this public workshop explored a series of topics, including the following: (1) Key changes and developments in the U.S. civil space program since the new national Vision for Space Exploration2 (the Vision) was articulated by the executive branch in 2004; (2) The fit of space exploration within a broader national and international context; (3) Affordability, public interest, and political will to sustain the civil space program; (4) Definitions, metrics, and decision criteria for the mix and balance of activities within the program portfolio; (5) Roles of government in Earth observations from space; and (6) Gaps in capabilities and infrastructure to support the program.
Tools for Understanding Space Weather Impacts to Satellites
NASA Astrophysics Data System (ADS)
Green, J. C.; Shprits, Y.; Likar, J. J.; Kellerman, A. C.; Quinn, R. A.; Whelan, P.; Reker, N.; Huston, S. L.
2017-12-01
Space weather causes dramatic changes in the near-Earth radiation environment. Intense particle fluxes can damage electronic components on satellites, causing temporary malfunctions, degraded performance, or a complete system/mission loss. Understanding whether space weather is the cause of such problems expedites investigations and guides successful design improvements resulting in a more robust satellite architecture. Here we discuss our progress in developing tools for satellite designers, manufacturers, and decision makers - tools that summarize space weather impacts to specific satellite assets and enable confident identification of the cause and right solution.
Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, E. L.
2014-01-01
The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.
NASA Astrophysics Data System (ADS)
Ferreira, B.
2014-12-01
When the public think about natural hazards, space weather is not the first thing to come to mind. Yet, though uncommon, extreme space weather events can have an economic impact similar to that of large floods or earthquakes. Although there have been efforts across various sectors of society to communicate this topic, many people are still quite confused about it, having only a limited understanding of the relevance of space weather in their daily lives. As such, it is crucial to properly communicate this topic to a variety of audiences. This article explores why we should communicate space weather research, how it can be framed for different audiences and how researchers, science communicators, policy makers and the public can raise awareness of the topic.
A regressive storm model for extreme space weather
NASA Astrophysics Data System (ADS)
Terkildsen, Michael; Steward, Graham; Neudegg, Dave; Marshall, Richard
2012-07-01
Extreme space weather events, while rare, pose significant risk to society in the form of impacts on critical infrastructure such as power grids, and the disruption of high end technological systems such as satellites and precision navigation and timing systems. There has been an increased focus on modelling the effects of extreme space weather, as well as improving the ability of space weather forecast centres to identify, with sufficient lead time, solar activity with the potential to produce extreme events. This paper describes the development of a data-based model for predicting the occurrence of extreme space weather events from solar observation. The motivation for this work was to develop a tool to assist space weather forecasters in early identification of solar activity conditions with the potential to produce extreme space weather, and with sufficient lead time to notify relevant customer groups. Data-based modelling techniques were used to construct the model, and an extensive archive of solar observation data used to train, optimise and test the model. The optimisation of the base model aimed to eliminate false negatives (missed events) at the expense of a tolerable increase in false positives, under the assumption of an iterative improvement in forecast accuracy during progression of the solar disturbance, as subsequent data becomes available.
The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges
NASA Astrophysics Data System (ADS)
Fry, C. D.; Eccles, J. V.; Reich, J. P.
2010-12-01
Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.
Space Weathering on Icy Satellites in the Outer Solar System
NASA Technical Reports Server (NTRS)
Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.
2014-01-01
Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.
Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather
NASA Technical Reports Server (NTRS)
Spann, James
2012-01-01
Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.
Global, real-time ionosphere specification for end-user communication and navigation products
NASA Astrophysics Data System (ADS)
Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2010-12-01
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those data into operational space physics models, and finally generate visualization products such as the images, plots, and alerts that can be viewed on SpaceWx. In a real sense, the space weather community is now able to transition research models into operations through “proofing” products such as real-time disseminated of information through smart phones. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
NASA Astrophysics Data System (ADS)
Hapgood, Mike
2017-01-01
Space weather-changes in the Earth's environment that can often be traced to physical processes in the Sun-can have a profound impact on critical Earth-based infrastructures such as power grids and civil aviation. Violent eruptions on the solar surface can eject huge clouds of magnetized plasma and particle radiation, which then propagate across interplanetary space and envelop the Earth. These space weather events can drive major changes in a variety of terrestrial environments, which can disrupt, or even damage, many of the technological systems that underpin modern societies. The aim of this book is to offer an insight into our current scientific understanding of space weather, and how we can use that knowledge to mitigate the risks it poses for Earth-based technologies. It also identifies some key challenges for future space-weather research, and considers how emerging technological developments may introduce new risks that will drive continuing investigation.
The International Space Weather Initiative
NASA Technical Reports Server (NTRS)
Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson
2010-01-01
The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.
Exploring Space Physics Concepts Using Simulation Results
NASA Astrophysics Data System (ADS)
Gross, N. A.
2008-05-01
The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) was established at the dawn of the new millennium as a long-term flexible solution to the problem of transition of progress in space environment modeling to operational space weather forecasting. CCMC hosts an expanding collection of state-of-the-art space weather models developed by the international space science community. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment and developing and maintaining custom displays and powerful web-based systems and tools ready to be used by researchers, space weather service providers and decision makers. In support of space weather needs of NASA users CCMC is developing highly-tailored applications and services that target specific orbits or locations in space and partnering with NASA mission specialists on linking CCMC space environment modeling with impacts on biological and technological systems in space. Confidence assessment of model predictions is an essential element of space environment modeling. CCMC facilitates interaction between model owners and users in defining physical parameters and metrics formats relevant to specific applications and leads community efforts to quantify models ability to simulate and predict space environment events. Interactive on-line model validation systems developed at CCMC make validation a seamless part of model development circle. The talk will showcase innovative solutions for space weather research, validation, anomaly analysis and forecasting and review on-going community-wide model validation initiatives enabled by CCMC applications.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Kennedy Deputy Director Woodrow Whitlow Jr. speaks to attendees of the One NASA Leader-Led Workshop about Kennedys role in supporting the Vision for Space Exploration. The workshop included senior leadership in the Agency who talked about ongoing Transformation activities.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. NASA Deputy Administrator Fred Gregory updates attendees of the One NASA Leader-Led Workshop about the Agencys Transformation and implementation strategies. The workshop included senior leadership in the Agency. Other speakers explained Kennedys role in the Vision for Space Exploration.
75 FR 71454 - NIJ Certification Programs Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... Paris Ballroom. Space is limited at this workshop, and as a result, only 70 participants will be allowed... than two. Exceptions to this limit may occur, should space allow. Participants planning to attend are responsible for their own travel arrangements. [[Page 71455
NASA Technical Reports Server (NTRS)
Weisbin, C. R. (Editor)
2004-01-01
A workshop entitled, "Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions," was convened on April 21-22, 2004 in San Diego, California to review the status of methods for objective resource allocation, to discuss the research barriers remaining, and to formulate recommendations for future development and application. The workshop explored the state-of-the-art in decision analysis in the context of being able to objectively allocate constrained technical resources to enable future space missions and optimize science return. This article summarizes the highlights of the meeting results.
First National Space Grant Conference report
NASA Technical Reports Server (NTRS)
1990-01-01
The main business of the conference centered around a series of 15 workshops in which 15 program directors of their designates discussed various components of the Space Grant Program. On the basis of the workshops and conference discussion, the workshop facilitators redrafted and edited the reports, and these reports are presented. The topics covered include: an evaluation of the NASA Space Grant Consortia Programs; pre-college and college education; the use of continuing adult education; publicity and public relations; underrepresented groups; outreach and public service; state and local governments; university-industry interaction; program management; and use of fellowships.
NASA Astrophysics Data System (ADS)
Viereck, R. A.; Azeem, S. I.
2017-12-01
One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.
Mexican Space Weather Service (SCIESMEX)
NASA Astrophysics Data System (ADS)
Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.
2015-12-01
Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).
NASA Technical Reports Server (NTRS)
Noble, Sarah
2011-01-01
Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.; Zhang, S.
2016-01-01
Space weathering effects on airless bodies result largely from micrometeorite impacts and solar wind interactions. Decades of research have provided insights into space weathering processes and their effects, but a major unanswered question still remains: what is the rate at which these space weathering effects are acquired in lunar and asteroidal regolith materials? To determine the space weathering rate for the formation of rims on lunar anorthite grains, we combine the rim width and type with the exposure ages of the grains, as determined by the accumulation of solar flare particle tracks. From these analyses, we recently showed that space weathering effects in mature lunar soils (both vapor-deposited rims and solar wind amorphized rims) accumulate and attain steady state in 10(sup 6)-10(sup 7) y. Regolith grains from Itokawa also show evidence for space weathering effects, but in these samples, solar wind interactions appear to dominate over impactrelated effects such as vapor-deposition. While in our lunar work, we focused on anorthite, given its high abundance on the lunar surface, for the Itokawa grains, we focused on olivine. We previously studied 3 olivine grains from Itokawa and determined their solar flare track densities and described their solar wind damaged rims]. We also analyzed olivine grains from lunar soils, measured their track densities and rim widths, and used this data along with the Itokawa results to constrain the space weathering rate on Itokawa. We observe that olivine and anorthite have different responses to solar wind irradiation.
Automated shock detection and analysis algorithm for space weather application
NASA Astrophysics Data System (ADS)
Vorotnikov, Vasiliy S.; Smith, Charles W.; Hu, Qiang; Szabo, Adam; Skoug, Ruth M.; Cohen, Christina M. S.
2008-03-01
Space weather applications have grown steadily as real-time data have become increasingly available. Numerous industrial applications have arisen with safeguarding of the power distribution grids being a particular interest. NASA uses short-term and long-term space weather predictions in its launch facilities. Researchers studying ionospheric, auroral, and magnetospheric disturbances use real-time space weather services to determine launch times. Commercial airlines, communication companies, and the military use space weather measurements to manage their resources and activities. As the effects of solar transients upon the Earth's environment and society grow with the increasing complexity of technology, better tools are needed to monitor and evaluate the characteristics of the incoming disturbances. A need is for automated shock detection and analysis methods that are applicable to in situ measurements upstream of the Earth. Such tools can provide advance warning of approaching disturbances that have significant space weather impacts. Knowledge of the shock strength and speed can also provide insight into the nature of the approaching solar transient prior to arrival at the magnetopause. We report on efforts to develop a tool that can find and analyze shocks in interplanetary plasma data without operator intervention. This method will run with sufficient speed to be a practical space weather tool providing useful shock information within 1 min of having the necessary data to ground. The ability to run without human intervention frees space weather operators to perform other vital services. We describe ways of handling upstream data that minimize the frequency of false positive alerts while providing the most complete description of approaching disturbances that is reasonably possible.
Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest
NASA Astrophysics Data System (ADS)
Filjar, R.; Filic, M.; Milinkovic, F.
2017-12-01
Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.
AFFECTS - Advanced Forecast For Ensuring Communications Through Space
NASA Astrophysics Data System (ADS)
Bothmer, Volker
2013-04-01
Through the AFFECTS project funded by the European Union's 7th Framework Programme, European and US scientists develop an advanced proto-type space weather warning system to safeguard the operation of telecommunication and navigation systems on Earth to the threat of solar storms. The project is led by the University of Göttingen's Institute for Astrophysics and comprises worldwide leading research and academic institutions and industrial enterprises from Germany, Belgium, Ukraine, Norway and the United States. The key objectives of the AFFECTS project are: State-of-the-art analysis and modelling of the Sun-Earth chain of effects on the Earth's ionosphere and their subsequent impacts on communication systems based on multipoint space observations and complementary ground-based data. Development of a prototype space weather early warning system and reliable space weather forecasts, with specific emphasis on ionospheric applications. Dissemination of new space weather products and services to end users, the scientific community and general public. The presentation summarizes the project highlights, with special emphasis on the developed space weather forecast tools.
Adverse Space Weather at the Solar Cycle Minimum
NASA Astrophysics Data System (ADS)
Baker, D. N.; Kanekal, S. G.; McCollough, J. P.; Singer, H. J.; Chappell, S. P.; Allen, J. H.
2008-05-01
It is commonly understood that many types of adverse space weather (solar flares, coronal mass ejections, geomagnetic storms) occur most commonly around the maximum of the 11-year sunspot activity cycle. Other types of well-known space weather such as relativistic electron events in the Earth's outer magnetosphere (that produce deep dielectric charging in spacecraft systems) are usually associated with the period just after sunspot maximum. At the present time, we are in the very lowest activity phase of the sunspot cycle (solar minimum). As such we would not expect much in the way of adverse space weather events. However, in early to mid-February of 2008 quite prominent solar coronal holes produced two high-speed streams that in turn stimulated very large, long-duration relativistic electron enhancements in Earth's magnetosphere. These seem to have been associated with several spacecraft operational anomalies at various spacecraft orbital locations. We describe these recent space weather events and assess their operational significance in this presentation. These results show that substantial space weather events can and do occur even during the quietest parts of the solar cycle.
White House and agencies focus on space weather concerns
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-06-01
"Space weather is a serious matter that can affect human economies around the world," Tamara Dickinson, a senior policy analyst with the White House Office of Science and Technology Policy (OSTP), told attendees at the 2012 Space Weather Enterprise Forum, held 5 June in Washington, D. C. With the 2013 solar maximum nearing, researchers and government agencies are focusing on how the greater solar activity could affect our increasingly technological society and what measures can be taken to help prevent or mitigate any threats to the electricity grid, GPS, and other potentially vulnerable technologies. Dickenson said that there has been an increased awareness about space weather in the White House and that President Barack Obama recently has requested briefing memos on the topic. She highlighted several efforts the administration is taking related to space weather, including a forthcoming national Earth observation strategy, which could be released in July and will include an assessment of space weather. She explained that the strategy document will be part of the fiscal year 2014 presidential budget request and that it will be updated every 3 years.
A Framework to Understand Extreme Space Weather Event Probability.
Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M
2018-03-12
An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, a member of the weather team looks over the weather balloons inside. The release of a Rawinsonde weather balloon was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
NASA Astrophysics Data System (ADS)
Harjanne, Atte; Haavisto, Riina; Tuomenvirta, Heikki; Gregow, Hilppa
2017-10-01
Weather, climate and climate change can cause significant risks to businesses and public administration. However, understanding these processes can also create opportunities. Information can help to manage these risks and opportunities, but in order to do so, it must be in line with how risk management and decision making works. To better understand how climate risks and opportunities are reflected in different organizational processes and what types of information is needed and used, we conducted a study on the perceptions and management of weather and climate risks in Finnish organizations and on their use of weather and climate information. In addition, we collected feedback on how the existing climate information tools should be developed. Data on climate risk management was collected in an online survey and in one full-day workshop. The survey was aimed to the Finnish public and private organizations who use weather and climate data and altogether 118 responses were collected. The workshop consisted of two parts: weather and climate risk management processes in general and the development of the current information tools to further address user needs.
We found that climate risk management in organizations is quite diverse and often de-centralized and that external experts are considered the most useful sources of information. Consequently, users emphasize the need for networks of expertise and sector-specific information tools. Creating such services requires input and information sharing from the user side as well. Better temporal and spatial accuracy is naturally asked for, but users also stressed the need for transparency when it comes to communicating uncertainties, and the availability and up-to-datedness of information. Our results illustrate that weather and climate risks compete and blend in with other risks and changes perceived by the organizations and supporting information is sought from different types of sources. Thus the design and evaluation of climate services should take into account the context of existing and developing processes in organizational risk management.
78 FR 12763 - Fecal Microbiota for Transplantation; Public Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... public workshop will be provided on a space available basis beginning at 8 a.m. If you need special... this workshop to provide a forum for the exchange of information, knowledge, and experience between...
The DSCOVR Solar Wind Mission and Future Space Weather Products
NASA Astrophysics Data System (ADS)
Cash, M. D.; Biesecker, D. A.; Reinard, A. A.
2012-12-01
The Deep Space Climate Observatory (DSCOVR) mission, scheduled for launch in mid-2014, will provide real-time solar wind thermal plasma and magnetic measurements to ensure continuous monitoring for space weather forecasting. DSCOVR will orbit L1 and will serve as a follow-on mission to NASA's Advanced Composition Explorer (ACE), which was launched in 1997. DSCOVR will have a total of six instruments, two of which will provide real-time data necessary for space weather forecasting: a Faraday cup to measure the proton and alpha components of the solar wind, and a triaxial fluxgate magnetometer to measure the magnetic field in three dimensions. Real-time data provided by DSCOVR will include Vx, Vy, Vz, n, T, Bx, By, and Bz. Such real-time L1 data is used in generating space weather applications and products that have been demonstrated to be highly accurate and provide actionable information for customers. We evaluate current space weather products driven by ACE and discuss future products under development for DSCOVR. New space weather products under consideration include: automated shock detection, more accurate L1 to Earth delay time, and prediction of rotations in solar wind Bz within magnetic clouds. Suggestions from the community on product ideas are welcome.
Bringing Space Weather Down to Earth
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Sumners, C.
2005-05-01
Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. NASA Deputy Administrator Fred Gregory moderates the panel presentation during the One NASA Leader-Led Workshop about the Agencys Transformation and implementation strategies. The workshop included senior leadership in the Agency. Other speakers explained Kennedys role in the Vision for Space Exploration.
DOT National Transportation Integrated Search
2017-03-30
This workshop presentation discusses space based receiver applications, NASA developed receivers, the TriG receiver, on-orbit assessment parameters, the TriG GNSS-RO antenna gain pattern, the GNSS-RO antenna beam Earth grazing coverage area, assessme...
NASA Astrophysics Data System (ADS)
Henley, E. M.; Pope, E. C. D.
2017-12-01
This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.
NASA Technical Reports Server (NTRS)
1988-01-01
The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.
Workshop on Research for Space Exploration: Physical Sciences and Process Technology
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1998-01-01
This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.
Space Weather Modeling Services at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael
2006-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse M.
2005-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
Grande, Manuel; Andre, Nicolas
2016-07-01
Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
Proceedings of the Second Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, C. R. (Compiler)
1986-01-01
The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 3
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures are reported. This volume deals mainly with control theory and methodologies as they apply to space stations and large antennas. Integration and dynamics and control experimental findings are reported. Among the areas of control theory discussed were feedback, optimization, and parameter identification.
The Social and Economic Impacts of Space Weather (US Project)
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.
2017-12-01
The National Space Weather Action Plan calls for new research into the social and economic impacts of space weather and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space Weather Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space weather to U.S. interests. This study covers impacts resulting from both moderate and severe space weather events across four technological sectors: Electric power, commercial aviation, satellites, and Global Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space weather scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.
Space weather activities in Europe
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.
The Sun has long been understood as a source of energy for mankind. Only in the more modern times has it also been seen as a source of disturbances in the space environment of the Earth, but also of the other planets and the heliosphere. Space weather research had an early start in Europe with investigations of Birkeland, Fitzgerald and Lodge, ultimately leading to an understanding of geomagnetic storms and their relation to the Sun. Today, European space weather activities range from the study of the Sun, through the inner heliosphere, to the magnetosphere, ionosphere, atmosphere, down to ground level effects. We will give an overview of European space weather activities and focus on the chain of events from Sun to Earth.
OAST Technology for the Future. Executive Summary
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems
2000-09-30
MRY) and I developed a collaboration with the NRL/SSMIS Lower-Atmospheric Sounding Capability program; Gene Poe (NRL, Team Leader). The effort is...Geophysical Society Annual Meeting (Nice, Fance ; April 2000), the Extratropical Cyclone Workshop (Monterey, CA; Sept. 2000), and in seminars at NCAR
Aviation/Aerospace Teacher Education Workshops: Program Development and Implementation
DOT National Transportation Integrated Search
1998-01-01
The Aviation/Aerospace Teacher Education Workshops have been recommended by the Illinois Task force for Aviation/Space Education (1988) as a way of encouraging aeronautical education. The workshop will be offered to elementary school teachers. During...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoff
The Sun’s continuous bombardment of the Earth with high-energy electrons, protons, and other nuclei results in space weather that can wreak havoc on the nation’s satellites, aircraft, communications networks, navigation systems, and the electric power grid. Because of the potential for space weather to so critically impact national security, Los Alamos National Laboratory has been studying it for decades, designing and building space-based sensors to detect emissions from potential nuclear events here on Earth and to study natural and man-made radiation in space.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... available space. Abstracts for scientific posters for display at the workshop are also invited (see... submission of poster abstracts is September 16, 2011. ADDRESSES: The workshop will be held at the Center for... scientific posters to be displayed during this workshop. Posters should address current research, development...
Space Science Field Workshops for K-12 Teacher-Scientist Teams
NASA Technical Reports Server (NTRS)
Thompson, P. B.; Kiefer, W. S.; Treiman, A. H.; Irving, A. J.; Johnson, K. M.
2002-01-01
In collaboration with NASA Space Grant Consortia and other partners, we developed workshops for K-12 teachers that involve intensive, direct interaction with scientists. Field trips allow informal and spontaneous interaction, encouraging active participation. Additional information is contained in the original extended abstract.
Space Mechanisms Technology Workshop Proceedings
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Editor)
1999-01-01
Over the years, NASA has experienced a number of troublesome mechanism anomalies. Because of this, the NASA Office of Safety and Mission Assurance initiated a workshop to evaluate the current space mechanism state-of-the-art and to determine the obstacles that will have to be met in order to achieve NASA's future missions goals. Seventy experts in the field attended the workshop. The experts identified current and perceived future space mechanisms obstacles. For each obstacle, the participants identified technology deficiencies, the current state-of-the-art, and applicable NASA, DOD, and industry missions. In addition, the participants at the workshop looked at technology needs for current missions, technology needs for future missions, what new technology is needed to improve the reliability of mechanisms, what can be done to improve technology development and the dissemination of information, and what do we do next.
Thematic Design: My Story is Better When Your Story is Better
NASA Technical Reports Server (NTRS)
Tobola, Kay; Allen, Jaclyn
2011-01-01
What does a well-designed thematic workshop look like? Walking into a presentation at a convention center or at a NASA center, one might see formal and informal educators receiving space science content from knowledgeable science experts, actively participating in topic-related activities, questioning, collaborating, and investigating, connecting topics and content to their education needs, and having fun. But what is really going on, and what did it take to get to this point-the point of delivery. This is an opportunity to share experience and knowledge pertaining to designing and conducting space science thematic workshops and trainings. It is an attempt to describe the thematic approach to space science education that has been demonstrated in Solar System Exploration Education Forum workshops over many years and to articulate the best practices pertain-ing to designing and presenting those workshops.
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther
2015-01-01
An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.
Proceedings: Workshop on the Need for Lightning Observations from Space
NASA Technical Reports Server (NTRS)
Christensen, L. S. (Editor); Frost, W. (Editor); Vaughan, W. W. (Editor)
1979-01-01
The results of the Workshop on the Need for Lightning Observations from Space held February 13-15, 1979, at the University of Tennessee Space Institute, Tullahoma, Tennessee are presented. The interest and active involvement by the engineering, operational, and scientific participants in the workshop demonstrated that lightning observations from space is a goal well worth pursuing. The unique contributions, measurement requirements, and supportive research investigations were defined for a number of important applications. Lightning has a significant role in atmospheric processes and needs to be systematically investigated. Satellite instrumentation specifically designed for indicating the characteristics of lightning are of value in severe storms research, in engineering and operational problem areas, and in providing information on atmospheric electricity and its role in meteorological processes.
NASA Technical Reports Server (NTRS)
Stutte, Gary W.
2015-01-01
NASA has long recognized the importance of biological life-support systems to remove carbon dioxide, generate oxygen, purify water, and produce food for long-duration space missions. Experiments to understand the effects of the space environment on plant development have been performed since early days of the space program. In the late 1970s, NASA sponsored a series of workshops to identify issues associated with developing a sustainable, biological life-support system for long-duration space missions. Based on findings from these workshops, NASA's Controlled Ecological Life Support Systems (CELSS) program began funding research at university and field centers to systematically conduct the research identified in those workshops. Key issues were the necessity to reduce mass, power/energy requirements, and volume of all components.
The International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
2010-01-01
The International Heliophysical Year (IHY) provided a successful model for the deployment of arrays of small scientific instruments in new and scientifically interesting geographic locations, and outreach. The new International Space Weather Initiative (ISWI) is designed to build on this momentum to promote the observation, understanding, and prediction space weather phenomena, and to communicate the scientific results to the public.
NASA Astrophysics Data System (ADS)
Pustil'nik, L.; Yom Din, G.
2013-01-01
We present the results of study of a possible relationship between the space weather and terrestrial markets of agricultural products. It is shown that to implement the possible effect of space weather on the terrestrial harvests and prices, a simultaneous fulfillment of three conditions is required: 1) sensitivity of local weather (cloud cover, atmospheric circulation) to the state of space weather; 2) sensitivity of the area-specific agricultural crops to the weather anomalies (belonging to the area of risk farming); 3) relative isolation of the market, making it difficult to damp the price hikes by the external food supplies. Four possible scenarios of the market response to the modulations of local terrestrial weather via the solar activity are described. The data sources and analysismethods applied to detect this relationship are characterized. We describe the behavior of 22 European markets during the medieval period, in particular, during the Maunder minimum (1650-1715). We demonstrate a reliable manifestation of the influence of space weather on prices, discovered in the statistics of intervals between the price hikes and phase price asymmetry. We show that the effects of phase price asymmetry persist even during the early modern period in the U.S. in the production of the durum wheat. Within the proposed approach, we analyze the statistics of depopulation in the eighteenth and nineteenth century Iceland, induced by the famine due to a sharp livestock reduction owing to, in its turn, the lack of foodstuff due to the local weather anomalies. A high statistical significance of temporal matching of these events with the periods of extreme solar activity is demonstrated. We discuss the possible consequences of the observed global climate change in the formation of new areas of risk farming, sensitive to space weather.
Specification of the Surface Charging Environment with SHIELDS
NASA Astrophysics Data System (ADS)
Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.
2016-12-01
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.
Cognition in Space Workshop. 1; Metrics and Models
NASA Technical Reports Server (NTRS)
Woolford, Barbara; Fielder, Edna
2005-01-01
"Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.
Forecasting Space Weather Hazards for Astronauts in Deep Space
NASA Astrophysics Data System (ADS)
Martens, P. C.
2018-02-01
Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.
An Early Prediction of Sunspot Cycle 25
NASA Astrophysics Data System (ADS)
Nandy, D.; Bhowmik, P.
2017-12-01
The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.
Ethical considerations for planetary protection in space exploration: a workshop.
Rummel, J D; Race, M S; Horneck, G
2012-11-01
With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, a member of the weather team prepares a Rawinsonde weather balloon for release. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.
2011-01-01
The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru
2016-01-01
This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons. PMID:27092508
Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru
2016-04-15
This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons.
NASA Technical Reports Server (NTRS)
Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.
2015-01-01
Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.
Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2
NASA Technical Reports Server (NTRS)
Wilson, Barbara A. (Editor)
1991-01-01
In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
NASA Technical Reports Server (NTRS)
Tobiska, W. Kent
2008-01-01
Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.
NASA Astrophysics Data System (ADS)
Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.
2017-12-01
Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data and models that are available, and present methods for meeting the data management and access needs of the disparate communities who require low-latency space weather data and information.
Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, Nicolas; Grande, Manuel
2016-04-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
NASA Technical Reports Server (NTRS)
Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David;
2011-01-01
Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3
Space Weathering in Houston: A Role for the Experimental Impact Laboratory at JSC
NASA Technical Reports Server (NTRS)
Cintala, M. J.; Keller, L. P.; Christoffersen, R.; Hoerz, F.
2015-01-01
The effective investigation of space weathering demands an interdisciplinary approach that is at least as diversified as any other in planetary science. Because it is a macroscopic process affecting all bodies in the solar system, impact and its resulting shock effects must be given detailed attention in this regard. Direct observation of the effects of impact is most readily done for the Moon, but it still remains difficult for other bodies in the solar system. Analyses of meteorites and precious returned samples provide clues for space weathering on asteroids, but many deductions arising from those studies must still be considered circumstantial. Theoretical work is also indispensable, but it can only go as far as the sometimes meager data allow. Experimentation, however, can permit near real-time study of myriad processes that could contribute to space weathering. This contribution describes some of the capabilities of the Johnson Space Center's Experimental Impact Laboratory (EIL) and how they might help in understanding the space weathering process.
Applications of Tethers in Space: Workshop Proceedings, Volume 1
NASA Technical Reports Server (NTRS)
Baracat, W. A. (Compiler)
1986-01-01
The complete documentation of the workshop including all addresses, panel reports, charts, and summaries are presented. This volume presents all the reports on the fundamentals of applications of tethers in space. These applications include electrodynamic interactions, transportation, gravity utilization, constellations, technology and test, and science applications.
Local Ionospheric Measurements Satellite (LionSat)
2005-07-01
LionSat)," NASA Third Space Internet Workshop, Cleveland, OH, 4-6 June 2003. ** Graduate Student * Undergraduate Student "LionSat PENNSTATE LionSat 2...Measurements Satellite (UonSat)Lý NASA Third Space Internet MINISTATE Workshop, Cleveland, OH, 4-6 June 2003. University Nanosat-3 Flight Competition Review
The 1988 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Yi, Thomas Y. (Editor)
1993-01-01
This document contains the proceedings of the 21st annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 1-3, 1988. The Workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included battery testing methodologies and criteria, life testing of nickel-cadmium cells, testing and operation of nickel-hydrogen batteries in low earth orbit, and nickel-hydrogen technology issues and concerns.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
The 1987 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Morrow, George (Editor); Yi, Thomas Y. (Editor)
1993-01-01
This document contains the proceedings of the 20th annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 4-5, 1987. The workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included lithium cell technology and safety improvements, nickel-cadmium electrode technology along with associated modifications, flight experience and life testing of nickel-cadmium cells, and nickel-hydrogen applications and technology.
The 1990 NASA Aerospace Battery Workshop
NASA Technical Reports Server (NTRS)
Kennedy, Lewis M. (Compiler)
1991-01-01
This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Activities at the One NASA Leader-Led Workshop included a panel to answer questions from the audience. Seated here are Lynn Cline, deputy associate administrator for Space Operations, Adm. Craig Steidle, associate administrator for Exploration Systems, and Woodrow Whitlow Jr., Kennedy deputy director. The workshop included senior leadership in the Agency who talked about ongoing Transformation activities and Kennedys role in the Vision for Space Exploration.
Workshop summary: Space environmental effects
NASA Technical Reports Server (NTRS)
Meulenberg, A.; Anspaugh, B. E.
1991-01-01
The workshop on Space Environmental Effects is summarized. The underlying concern of the group was related to the question of how well laboratory tests correlate with actual experience in space. The discussion ranged over topics pertaining to tests involving radiation, atomic oxygen, high voltage plasmas, contamination in low earth orbit, and new environmental effects that may have to be considered on arrays used for planetary surface power systems.
Weather uncertainty versus climate change uncertainty in a short television weather broadcast
NASA Astrophysics Data System (ADS)
Witte, J.; Ward, B.; Maibach, E.
2011-12-01
For TV meteorologists talking about uncertainty in a two-minute forecast can be a real challenge. It can quickly open the way to viewer confusion. TV meteorologists understand the uncertainties of short term weather models and have different methods to convey the degrees of confidence to the viewing public. Visual examples are seen in the 7-day forecasts and the hurricane track forecasts. But does the public really understand a 60 percent chance of rain or the hurricane cone? Communication of climate model uncertainty is even more daunting. The viewing public can quickly switch to denial of solid science. A short review of the latest national survey of TV meteorologists by George Mason University and lessons learned from a series of climate change workshops with TV broadcasters provide valuable insights into effectively using visualizations and invoking multimedia-learning theories in weather forecasts to improve public understanding of climate change.
Workshop on Extraterrestrial Materials from Cold and Hot Deserts
NASA Technical Reports Server (NTRS)
Schultz, Ludolf (Editor); Franchi, Ian A. (Editor); Reid, Arch M. (Editor); Zolensky, Michael E. (Editor)
1999-01-01
Since 1969 expeditions from Japan, the United States, and European countries have recovered more than 20,000 meteorite specimens from remote ice fields of Antarctica. They represent approximately 4000-6000 distinct falls, more than all non-Antarctic meteorite falls and finds combined. Recently many meteorite specimens of a new "population" have become available: meteorites from hot deserts. It turned out that suitable surfaces in hot deserts, like the Sahara in Africa, the Nullarbor Plain in Western and South Australia, or desert high plains of the U.S. (e.g., Roosevelt County, New Mexico), contain relatively high meteorite concentrations. For example, the 1985 Catalog of Meteorites of the British Museum lists 20 meteorites from Algeria and Libya. Today, 1246 meteorites finds from these two countries have been published in MetBase 4.0. Four workshops in 1982, 1985, 1988, and 1989 have discussed the connections between Antarctic glaciology and Antarctic meteorites, and the differences between Antarctic meteorites and modern falls. In 1995, a workshop addressed differences between meteorites from Antarctica, hot deserts, and modem falls, and the implications of possible different parent populations, infall rates, and weathering processes. Since 1995 many more meteorites have been recovered from new areas of Antarctica and hot deserts around the world. Among these finds are several unusual and interesting specimens like lunar meteorites or SNCs of probable martian origin. The Annual Meeting of the Meteoritical Society took place in 1999 in Johannesburg, South Africa. As most of the recent desert finds originate from the Sahara, a special workshop was planned prior to this meeting in Africa. Topics discussed included micrometeorites, which have been collected in polar regions as well as directly in the upper atmosphere. The title "Workshop on Extraterrestrial Materials from Cold and Hot Deserts" was chosen and the following points were emphasized: (1) weathering processes, (2) terrestrial ages, (3) investigations of "unusual" meteorites, and (4) collection and curation.
Spacecraft Charging and Auroral Boundary Predictions in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2016-01-01
Auroral charging of spacecraft is an important class of space weather impacts on technological systems in low Earth orbit. In order for space weather models to accurately specify auroral charging environments, they must provide the appropriate plasma environment characteristics responsible for charging. Improvements in operational space weather prediction capabilities relevant to charging must be tested against charging observations.
Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System
NASA Technical Reports Server (NTRS)
Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.
2013-01-01
Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.
Space weather effects on ground based technology
NASA Astrophysics Data System (ADS)
Clark, T.
Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).
Linking Space Weather Science and Decision Making (Invited)
NASA Astrophysics Data System (ADS)
Fisher, G. M.
2009-12-01
Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.
Space weather forecasting: Past, Present, Future
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
2012-12-01
There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.
A State Studies Approach to Teaching People About Their Environment.
ERIC Educational Resources Information Center
Bennett, Dean
1984-01-01
Highlights a workshop utilizing a four-volume sourcebook for K-12 science teachers and naturalists. The volumes contain 38 units focusing on land, water, atmosphere and weather, plants, animals, energy, natural ecosystems, urban areas, unusual and rare features, and problems and issues. A sample interdisciplinary activity on bullfrog development…
A Community Terrain-Following Ocean Modeling System (ROMS/TOMS)
2013-09-30
workshop at the Windsor Atlântica Hotel, Rio de Janeiro , Brazil, October 22-25, 2012. As in the past, several tutorials were offered on basic and...from the European Centre For Medium-Range Weather Forecasts (ECMWF) ERA-Interim, 3-hour dataset. River runoff is included along the Alabama
Demonstration Aids for Aviation Education [National Aviation Education Workshop].
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC.
This manual, compiled by a Committee of the Curriculum Laboratory of the Civil Air Patrol, contains 105 demonstrations and activities which can be used to introduce the elementary student to the properties of air as related to aviation, what makes airplanes fly, and the role of weather in aviation. (CP)
The National Space Weather Program: Two decades of interagency partnership and accomplishments
NASA Astrophysics Data System (ADS)
Bonadonna, Michael; Lanzerotti, Louis; Stailey, Judson
2017-01-01
This paper describes the development of the United States National Space Weather Program (NSWP) from early interests in space environmental phenomena and their impact through the culmination of the program in 2015. Over its 21 year run, the NSWP facilitated substantial improvements in the capabilities of Federal Space Weather services and fostered broad and enduring partnerships with industry and the academic community within the U.S. and internationally. Under the management of the Office of the Federal Coordinator for Meteorological Services and Supporting Research a coalition of 10 federal agencies worked together from 1994 to 2015 to advance the national space weather enterprise. The paper describes key events and accomplishments of the NSWP interagency partnership while recognizing the great achievements made by the individual agencies. In order to provide context, the paper also discusses several important events outside the NSWP purview. Some of these external events influenced the course of the NSWP, while others were encouraged by the NSWP partnership. Following the establishment of the Space Weather Operations, Research, and Mitigation Task Force of the National Science and Technology Council in the White House and the deactivation of the NSWP Council, the agencies now play a supporting role in the national effort as the federal engagement in the National Space Weather Partnership graduates to a higher level.
The New Era in Operational Forecasting
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.
2012-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe recent forecasting advances for moving space weather information through automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
An Overview of Advanced Concepts for Launch
2012-02-09
Loads, System. --- Space Platforms Unfeasible. --- Space Elevator Materials, O, µmeteoroids, weather, vibrations.. Asteroid Mining Breakthrough...Unfeasible. --- Space Elevator Materials, O, µmeteoroids, weather, vibrations.. Asteroid Mining Breakthrough Physics No known feasible concepts
Investigating the feasibility of Visualising Complex Space Weather Data in a CAVE
NASA Astrophysics Data System (ADS)
Loughlin, S.; Habash Krause, L.
2013-12-01
The purpose of this study was to investigate the feasibility of visualising complex space weather data in a Cave Automatic Virtual Environment (CAVE). Space weather is increasingly causing disruptions on Earth, such as power outages and disrupting communication to satellites. We wanted to display this space weather data within the CAVE since the data from instruments, models and simulations are typically too complex to understand on their own, especially when they are of 7 dimensions. To accomplish this, I created a VTK to NetCDF converter. NetCDF is a science data format, which stores array oriented scientific data. The format is maintained by the University Corporation for Atmospheric Research, and is used extensively by the atmospheric and space communities.
NASA Astrophysics Data System (ADS)
Balthazor, R. L.; McHarg, M. G.; Wilson, G.
2016-12-01
The Integrated Miniaturized Electrostatic Analyzer (IMESA) is a space weather sensor developed by the United States Air Force Academy and integrated and flown by the DoD's Space Test Program. IMESA records plasma spectrograms from which can be derived plasma density, temperature, and spacecraft frame charging. Results from IMESA currently orbiting on STPSat-3 are presented, showing frame charging effects dependent on a complex function of the number of solar panel cell strings switched in, solar panel current, and plasma density. IMESA will fly on four more satellites launching in the next two calendar years, enabling an undergraduate DoD space weather constellation in Low Earth Orbit that has the ability to significantly improve space weather forecasting capabilities using assimilative forecast models.
The Hydrologic Ensemble Prediction Experiment (HEPEX)
NASA Astrophysics Data System (ADS)
Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.
2012-12-01
The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.
FOREWORD: Workshop on "Very Hot Astrophysical Plasmas"
NASA Astrophysics Data System (ADS)
Koch-Miramond, Lydie; Montemerie, Thierry
1984-01-01
A Workshop on "Very Hot Astrophysical Plasmas" was held in Nice, France, on 8-10 November 1982. Dedicated mostly to theoretical, observational, and experimental aspects of X-ray astronomy and related atomic physics, it was the first of its kind to be held in France. The Workshop was "European" in the sense that one of its goals (apart from pure science) was to gather the European astronomical community in view of the forthcoming presentation of the "X-80" project for final selection to be the next scientific satellite of the European Space Agency. We now know that the Infrared Space Observatory has been chosen instead, but the recent successful launch of EXOSAT still keeps X-ray astronomy alive, and should be able to transfer, at least for a time, the leadership in this field from the U.S. to Europe, keeping in mind the competitive level of our Japanese colleagues. (With respect to the selection of ISO, one should also keep in mind that observations in the infrared often bring material relevant to the study of X-ray sources!) On a longer time scale, the Workshop also put emphasis on several interesting projects for the late eighties-early nineties, showing the vitality of the field in Europe. Some proposals have already taken a good start, like XMM, the X-ray Multi-Mirror project, selected by ESA last December for an assessment study in 1983. The present proceedings contain most of the papers that were presented at the Workshop. Only the invited papers were presented orally, contributed papers being presented in the form of posters but summarized orally by rapporteurs. To make up this volume, the written versions of these papers were either cross-reviewed by the Invited Speakers, or refereed by the Rapporteurs (for contributed papers) and edited by us, when necessary. Note, however, that the conclusions of the Workshop, which were kindly presented by Richard McCray, have already appeared in the "News and Views" section of Nature (301, 372, 1983). Altogether, the present proceedings aim at giving an up-to-date overview of X-ray astronomy, and may be taken also as a kind of "status report" on European projects in the field. As such, it should hopefully be useful to the astronomical community at large. But it is certainly worthwhile to recall that the Workshop (hence, this volume) would not have been possible without the help of many people, especially on location, in the city of Nice. The organizers received a competent and dedicated help from the Observatoire de Nice (interesting absorption effects could be seen while ascending the Mont-Gros in the fog — and also during the lunch under the Grande Coupole!), from the "Mutuelle Générale de l'Education Nationale", which provided a convenient and modern building to hold the Workshop, and from the City of Nice, which arranged a magnificent — if rainy — cocktail party at the Villa Massha. Thanks are also due to all our sponsors for financial help. We want to thank more particularly Pr Raymond Michard, Director of the Observatoire de Nice, and several other people there: Françoise Bely-Dubau, Danièle Benotto, Renata Feldmann, Paul Faucher. In Saclay and during the Workshop, we all appreciated the efficient collaboration of Claudine Belin and Raymonde Boschiero, while after the Workshop, Nils Robert Nilsson was of great help as Manuscript Editor for these proceedings. In spite of the poor weather, already alluded to — and which turned out to be the worst over all France for decades — and thanks to the cooperation of all, we do think it was really...— a Nice Workshop.
Space Transportation Technology Workshop: Propulsion Research and Technology
NASA Technical Reports Server (NTRS)
2000-01-01
This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.
NASA Astrophysics Data System (ADS)
Kraft, S.; Puschmann, K. G.; Luntama, J. P.
2017-09-01
As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Falasca, A.; Johnson, J.; Keller, K.; Kuznetsova, M.; Rastaetter, L.
2003-04-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership aimed at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With a Star (LWS) initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. We will demonstrate the capabilities of models resident at CCMC via the analysis of a geomagnetic storm, driven by a shock in the solar wind.
Chart links solar, geophysical events with impacts on space technologies
NASA Astrophysics Data System (ADS)
Davenport, George R.
While developing a Space Weather Training Program for Air Force Space Command and the 50th Weather Squadron, both based in Colorado, ARINC Incorporated produced a flowchart that correlates solar and geophysical events with their impacts on Air Force systems.Personnel from both organizations collaborated in the development of the flowchart and provided many comments and suggestions. The model became the centerpiece of the Space Environment Impacts Reference Pamphlet, as well as the formal Space Weather Training Program. Although it is not a numerical or computer model, the flowchart became known as the “Space Environmental Impacts Model.”
Space Weather affects on Air Transportation
NASA Astrophysics Data System (ADS)
Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.
In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,
ISES Experience in Delivering Space Weather Services
NASA Astrophysics Data System (ADS)
Boteler, David
The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.
Fire Weather Sun/Moon Long Range Forecasts Climate Prediction Past Weather Past Weather Heating/Cooling Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought Winter Weather Information
Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.
Geospace monitoring for space weather research and operation
NASA Astrophysics Data System (ADS)
Nagatsuma, Tsutomu
2017-10-01
Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.
GOES-R Space Weather Data: Ensuring Access and Usability
NASA Astrophysics Data System (ADS)
Tilton, M.; Rowland, W. F.; Wilkinson, D. C.; Denig, W. F.; Darnel, J.; Kress, B. T.; Loto'aniu, P. T. M.; Machol, J. L.; Redmon, R. J.; Rodriguez, J. V.
2015-12-01
The upcoming Geostationary Operational Environmental Satellite series, GOES-R, will provide critical space weather data. These data are used to prevent communication outages, mitigate the damage solar weather causes to satellites and power grids, and reduce astronaut radiation exposure. The space weather instruments aboard GOES-R will deliver an operational dataset of unprecedented breadth. However, NOAA's National Centers for Environmental Information (NCEI)—the organization that provides access to archived GOES-R data—has faced several challenges in delivering this information to customers in usable form. For instance, the GOES-R ground system was contracted to develop higher-level products for terrestrial data but not space weather data. Variations in GOES-R data file formats and archive locations have also threatened to create an inconsistent user experience. This presentation will examine the ways in which NCEI is making GOES-R space weather data more accessible and actionable for customers. These efforts include NCEI's development of high-level data products to meet the requirements of NOAA's Space Weather Prediction Center—a role NCEI has not previously played. In addition, NCEI is creating a demonstration system to show how these products can be produced in real-time. The organization is also examining customer usage of the GOES-NOP data access system and using these access patterns to drive decisions about the GOES-R user interface.
The COSPAR Capacity Building Initiative - past, present, future, and highlights
NASA Astrophysics Data System (ADS)
Gabriel, Carlos; Mendez, Mariano; D'Amicis, Raffaella; Santolik, Ondrej; Mathieu, Pierre-Philippe; Smith, Randall
At the time of the COSPAR General Assembly in Moscow, the 21st workshop of the Programme for Capacity Building will have taken place. We have started in 2001 with the aim of: i) increasing the knowledge and use of public archives of space data in developing countries, ii) providing highly-practical instruction in the use of these archives and the associated publicly-available software, and iii) fostering personal links between participants and the experienced scientists who lecture during the workshops and supervise the projects carried on by the students. Workshops in many space disciplines have been successfully held so far (X-ray, Gamma-ray and Space Optical and UV Astronomy, Magnetospheric Physics, Space Oceanography, Remote Sensing and Planetary Science) in thirteen countries (Argentina, Brazil, China, Egypt, India, Indonesia, Malaysia, Morocco, Romania, Russia, South Africa, Thailand and Uruguay). An associated Fellowship Programme is helping former participants of these workshops to build on skills gained at them. We will summarize the past and discuss the present and future of the Programme, including highlights like the most recent one: the identification of a transient magnetar (the 9th object of this class so far discovered) in the vicinity of a supernova by one of our students, during the CB workshop on high-energy Astrophysics in Xuyi, China, in September 2013.
NASA Astrophysics Data System (ADS)
Young, Eliot; Traub, Wesley; Unwin, Stephen; Stapelfeldt, Karl
2010-05-01
A four-day workshop was convened on November 10-13, 2009 by the Keck Institute for Space Studies and JPL to consider innovative approaches to detecting and characterizing exoplanets and planetary systems. The program and many of the presentations can be found online:
Plasma Physics of the Subauroral Space Weather
2016-03-20
AFRL-RV-PS- AFRL-RV-PS- TR-2016-0068 TR-2016-0068 PLASMA PHYSICS OF THE SUBAURORAL SPACE WEATHER Evgeny V. Mishin, et al. 20 March 2016 Final...Oct 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Plasma Physics of the Subauroral Space Weather 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...5 4.3. Physics -based hybrid model with finite Larmor radius effects
A Study of Aerospace Education Workshops Which Utilize NASA Materials and Resource Personnel
ERIC Educational Resources Information Center
Helton, Robert Dale
1974-01-01
Reports findings from two questionnaires administered to participants of aerospace workshops which utilized the National Aeronautics and Space Administration (NASA) materials and resource personnel. The findings gave a broad picture of aerospace workshops across the United States. (BR)
Applications of Tethers in Space
NASA Technical Reports Server (NTRS)
Cron, A. C.
1985-01-01
The proceedings of the first workshop on applications of tethers in space are summarized. The workshop gathered personalities from industry, academic institutions and government to discuss the relatively new area of applied technology of very long tethers in space to a broad spectrum of future space missions. A large number of tethered concepts and configurations was presented covering electrodynamic interaction tethers, tethered transportation through angular momentum exchange, tethered constellations, low gravity utilization, applicable technology, and tethered test facilities. Specific recommendations were made to NASA in each area.
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers release an upper-level weather balloon while several newscasters watch. The release of the balloon was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers carry an upper-level weather balloon outside for release. The release was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
2006-06-28
KENNEDY SPACE CENTER, FLA. - An upper-level weather balloon sails into the sky after release from the Cape Canaveral weather station in Florida. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
1989-01-01
The responses to issues and questions raised at the Space Station Freedom Workshops are compiled. The findings are presented under broad divisions of general, materials processing in space, commercial earth and ocean observations, life sciences, infrastructure services, and infrastructure policy. The responses represent the best answers available at this time and future modifications may be expected. Contact names, telephone numbers, and organizations are included.
THOR contribution to space weather science
NASA Astrophysics Data System (ADS)
Vaivads, A.; Opgenoorth, H. J.; Retino, A.; Khotyaintsev, Y. V.; Soucek, J.; Valentini, F.; Escoubet, C. P.; Chen, C. H. K.; Vainio, R. O.; Fazakerley, A. N.; Lavraud, B.; Narita, Y.; Marcucci, M. F.; Kucharek, H.; Bale, S. D.; Moore, T. E.; Kistler, L. M.; Samara, M.
2016-12-01
Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.
How MAG4 Improves Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Falconer, David; Khazanov, Igor; Barghouty, Nasser
2013-01-01
Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.
Ethical Considerations for Planetary Protection in Space Exploration: A Workshop
Rummel, J.D.; Horneck, G.
2012-01-01
Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments—Environment—Habitability. Astrobiology 12, 1017–1023. PMID:23095097
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... hold a 1-day workshop on November 4, 2013. The workshop will be open to the public, with attendance limited to space available. DATES: The workshop will be held on November 4, 2013, from 8:00 a.m. to 3:30 p... entities. The November 4, 2013, workshop held by the KUHICC Urology Subcommittee, also called the ``Urology...
NASA Astrophysics Data System (ADS)
Adamson, E. T.; Pizzo, V. J.; Biesecker, D. A.; Mays, M. L.; MacNeice, P. J.; Taktakishvili, A.; Viereck, R. A.
2017-12-01
In 2011, NOAA's Space Weather Prediction Center (SWPC) transitioned the world's first operational space weather model into use at the National Weather Service's Weather and Climate Operational Supercomputing System (WCOSS). This operational forecasting tool is comprised of the Wang-Sheeley-Arge (WSA) solar wind model coupled with the Enlil heliospheric MHD model. Relying on daily-updated photospheric magnetograms produced by the National Solar Observatory's Global Oscillation Network Group (GONG), this tool provides critical predictive knowledge of heliospheric dynamics such as high speed streams and coronal mass ejections. With the goal of advancing this predictive model and quantifying progress, SWPC and NASA's Community Coordinated Modeling Center (CCMC) have initiated a collaborative effort to assess improvements in space weather forecasts at Earth by moving from a single daily-updated magnetogram to a sequence of time-dependent magnetograms to drive the ambient inputs for the WSA-Enlil model as well as incorporating the newly developed Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. We will provide a detailed overview of the scope of this effort and discuss preliminary results from the first phase focusing on the impact of time-dependent magnetogram inputs to the WSA-Enlil model.
Weathering a Perfect Storm from Space
Love, Jeffrey J.
2016-01-01
Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.
Geodetic Space Weather Monitoring by means of Ionosphere Modelling
NASA Astrophysics Data System (ADS)
Schmidt, Michael
2017-04-01
The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via modelling the ionosphere and detecting and forecasting its disturbances. At present a couple of nations, such as the US, UK, Japan, Canada and China, are taken the threats from extreme space weather events seriously and support the development of observing strategies and fundamental research. However, (extreme) space weather events are in all their consequences on the modern highly technologized society, causative global problems which have to be treated globally and not regionally or even nationally. Consequently, space weather monitoring must include (1) all space-geodetic observation techniques and (2) geodetic evaluation methods such as data combination, real-time modelling and forecast. In other words, geodetic space weather monitoring comprises the basic ideas of GGOS and will provide products such as forecasts of severe solar events in order to initiate necessary activities to protect the infrastructure of modern society.
OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
Characteristics of Operational Space Weather Forecasting: Observations and Models
NASA Astrophysics Data System (ADS)
Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim
2015-04-01
In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.
Future Missions for Space Weather Specifications and Forecasts
NASA Astrophysics Data System (ADS)
Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.
2017-12-01
The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.
Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061
NASA Technical Reports Server (NTRS)
Wentworth, S. J.; Robinson, G. A.; McKay, D. S.
2005-01-01
Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?
76 FR 35023 - National Institute of Justice Protective Helmet Standards Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... and to voice suggestions and concerns. Space is limited at this workshop, and as a result, only 50... representatives to no more than two per organization. Exceptions to this limit may occur, should space allow. Participants planning to attend are responsible for their own travel arrangements. Registration information may...
2012-10-16
Participants in an Oct. 16-18 workshop at John C. Stennis Space Center focused on identifying current and future climate risks and developing strategies to address them. NASA Headquarters sponsored the Resilience and Adaptation to Climate Risks Workshop to understand climate change risks and adaptation strategies. The workshop was part of an effort that joins the science and operations arms of the agency in a coordinated response to climate change. NASA Headquarters is holding workshops on the subject at all NASA centers.
NASA Astrophysics Data System (ADS)
Cobabe-Ammann, E.; Jakosky, B.
2007-12-01
Historically, there has been a delineation between those activities that promote the education of the general public (formal and information education) and those that involve journalists and the media (public affairs). However, over the last several years, there has been recognition that in the interest of "full spectrum science communication", journalists, who deliver more than 85% of the science news and content to the general public, may be legitimately seen as an audience for education activities. The goal of these activities is not primarily to promote a specific story, event or theme, but instead to broaden and deepen journalists' understanding of space science and to promote increased communication and understanding among journalists, scientists and educators. In the last several years, the Laboratory for Atmospheric and Space Physics has initiated workshops for the professional development of journalists as a cornerstone of its Education program. To date, workshops have covered Mars System Science, Life in Extreme Environments, Extrasolar Planets, Out Planets, and soon, the Role of Uncertainty in Climate Change. These programs bring together 20 elite journalists from both print and broadcast and 6-8 internationally recognized scientists in a 3-4 day encounter. Evaluation of past workshops suggests that the journalists not only feel that these workshops are a worthwhile use of their time, but that they impact the quality of their writing. Several indicated that the quality of the writing and its content had been noticed by their editor and allowed them to more easily 'pitch' space science stories when they were in the news. Many, including several regional journalists, commented that the workshop provided a level of background information that would help them for years to come. In this talk, we present the LASP media workshop model, talk about editorial barriers for journalists and the impact of the workshops, and discuss lessons learned that increase participation by the nation's leading media outlets.
ESA situational awareness of space weather
NASA Astrophysics Data System (ADS)
Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano
2016-07-01
ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.
Book Review: Dolores Knipp’s Understanding Space Weather and the Physics Behind It
NASA Astrophysics Data System (ADS)
Moldwin, Mark
2012-08-01
Delores Knipp's textbook Understanding Space Weather and the Physics Behind It provides a comprehensive resource for space physicists teaching in a variety of academic departments to introduce space weather to advanced undergraduates. The book benefits from Knipp's extensive experience teaching introductory and advanced undergraduate physics courses at the U.S. Air Force Academy. The fundamental physics concepts are clearly explained and are connected directly to the space physics concepts being discussed. To expand upon the relevant basic physics, current research areas and new observations are highlighted, with many of the chapters including contributions from a number of leading space physicists.
Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.
NASA Astrophysics Data System (ADS)
Scherrer, D. K.; Burress, B.
2006-05-01
Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors have been designated for deployment to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany distribution of the monitors worldwide. Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students anywhere in the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a VLF radio receiver to monitor the signal strength from distant VLF transmitters and noting unusual changes as the waves bounce off the ionosphere. High school students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis are handled by a local PC. Stanford is providing a centralized data repository where students and researchers can exchange and discuss data. Chabot Space & Science Center is an innovative teaching and learning center focusing on astronomy and the space sciences. Formed as a Joint Powers Agency with the City of Oakland (California), the Oakland Unified School District, the East Bay Regional Park District, and in collaboration with the Eastbay Astronomical Society, Chabot addresses the critical issue of broad access to the specialized information and facilities needed to improve K-12 science education and public science literacy. Up to 2,000 K-12 teachers annually take part in Chabot's professional development programs, in turn reaching up to 60,000 students each year. Through the Chabot/Stanford partnership, we will be developing, testing, and evaluating classroom activities and laboratory research projects targeted to high school and community college-level classrooms, and a 3-day Teacher Training Workshop which will eventually be provided as an online/DVD training course accessible to educators around the world. Materials will be translated into the six official languages of the United Nations: Arabic, Chinese, English, French, Russian, and Spanish.
Posner, A; Hesse, M; St Cyr, O C
2014-04-01
Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Manuscript assesses current and near-future space weather assetsCurrent assets unreliable for forecasting of severe geomagnetic stormsNear-future assets will not improve the situation.
Posner, A; Hesse, M; St Cyr, O C
2014-01-01
Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Key Points Manuscript assesses current and near-future space weather assets Current assets unreliable for forecasting of severe geomagnetic storms Near-future assets will not improve the situation PMID:26213516
NASA Astrophysics Data System (ADS)
Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.
2017-12-01
One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.
Space weather services: now and in the future
NASA Astrophysics Data System (ADS)
Kunches, J.; Murtagh, W.
The NOAA Space Environment Center has provided continuous 24 hours per day 7 days per week space weather products and services to the United States and the international community via the International Space Environment Service for more than 30 years Over that time span an evolutionary process has occurred In the early days the products consisted of short text and coded messages to accommodate the communications technologies of the period The birth of the Internet made the sharing of graphical imagery and real-time data possible enabling service providers to communicate more information more quickly to the users Now in parallel with the advances in telecommunications the space weather user community has grown dramatically and is enunciating ever-stronger requirements back to the service providers The commercial airline community is probably the best example of an industry wanting more from space weather How are the users going to continue to change over the next 10-20 years and what services might they need How will they get this information and how might they use it This is the overall thrust of the presentation offering a look to the future and a challenge to the space weather community
NASA Astrophysics Data System (ADS)
Valach, F.; Revallo, M.; Hejda, P.; Bochníček, J.
2010-12-01
Our modern society with its advanced technology is becoming increasingly vulnerable to the Earth's system disorders originating in explosive processes on the Sun. Coronal mass ejections (CMEs) blasted into interplanetary space as gigantic clouds of ionized gas can hit Earth within a few hours or days and cause, among other effects, geomagnetic storms - perhaps the best known manifestation of solar wind interaction with Earth's magnetosphere. Solar energetic particles (SEP), accelerated to near relativistic energy during large solar storms, arrive at the Earth's orbit even in few minutes and pose serious risk to astronauts traveling through the interplanetary space. These and many other threats are the reason why experts pay increasing attention to space weather and its predictability. For research on space weather, it is typically necessary to examine a large number of parameters which are interrelated in a complex non-linear way. One way to cope with such a task is to use an artificial neural network for space weather modeling, a tool originally developed for artificial intelligence. In our contribution, we focus on practical aspects of the neural networks application to modeling and forecasting selected space weather parameters.
Four top tier challenges for Space Weather Research for the next decade
NASA Astrophysics Data System (ADS)
Spann, James
2017-04-01
The science of space weather is that which (1) develops the knowledge and understanding to predict conditions in space that impact life and society, and (2) leads to operational solutions that protect assets and systems to the benefit of society. Advances over the past decades in this area of research have yielded amazing discoveries and significant strides toward fulfilling the promise of an operational solution to space weather, and have facilitated the enterprise to make its way into the realm of national and international policy. Even if the resources, technologies, and political will were available to take advantage of this progress, our current lack of understanding of space weather would prevent the implementation of a fully operational system. This talk will highlight four distinct areas of research that, if fully understood, could enable operational solutions to space weather impacts, given sufficient resources and political will. These areas are (a) trigger of solar variability, (b) acceleration of mass and energy in interplanetary space, (c) geoeffectiveness of solar wind, and (d) ionospheric variability. A brief description, technical challenges, and possible pathways to resolution will be offered for each of these areas.
Transforming the "Valley of Death" into a "Valley of Opportunity"
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Merceret, Francis J.; O'Brien, T. P.; Roeder, William P.; Huddleston, Lisa L.; Bauman, William H., III
2014-01-01
Transitioning technology from research to operations (23 R2O) is difficult. The problem's importance is exemplified in the literature and in every failed attempt to do so. Although the R2O gap is often called the "valley of death", a recent a Space Weather editorial called it a "Valley of Opportunity". There are significant opportunities for space weather organizations to learn from the terrestrial experience. Dedicated R2O organizations like those of the various NOAA testbeds and collaborative "proving ground" projects take common approaches to improving terrestrial weather forecasting through the early transition of research capabilities into the operational environment. Here we present experience-proven principles for the establishment and operation of similar space weather organizations, public or private. These principles were developed and currently being demonstrated by NASA at the Applied Meteorology Unit (AMU) and the Short-term Prediction Research and Transition (SPoRT) Center. The AMU was established in 1991 jointly by NASA, the U.S. Air Force (USAF) and the National Weather Service (NWS) to provide tools and techniques for improving weather support to the Space Shuttle Program (Madura et al., 2011). The primary customers were the USAF 45th Weather Squadron (45 WS) and the NWS Spaceflight Meteorology Group (SMG who provided the weather observing and forecast support for Shuttle operations). SPoRT was established in 2002 to transition NASA satellite and remote-sensing technology to the NWS. The continuing success of these organizations suggests the common principles guiding them may be valuable for similar endeavors in the space weather arena.
HF-START: A Regional Radio Propagation Simulator
NASA Astrophysics Data System (ADS)
Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.
2017-12-01
HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.
Real-Time and Near Real-Time Data for Space Weather Applications and Services
NASA Astrophysics Data System (ADS)
Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.
2015-12-01
Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.
Using DSG to Build the Capability of Space Weather Forecasting in Deep Space
NASA Astrophysics Data System (ADS)
DeLuca, E. E.; Golub, L.; Korreck, K.; Savage, S.; McKenzie, D. D.; Rachmeler, L.; Winebarger, A.; Martens, P.
2018-02-01
The prospect of astronaut missions to deep space and off the Sun-Earth line raises new challenges for space weather awareness and forecasting. We need to identify the requirements and pathways that will allow us to protect human life and equipment.
Technical Workshop: Advanced Helicopter Cockpit Design
NASA Technical Reports Server (NTRS)
Hemingway, J. C. (Editor); Callas, G. P. (Editor)
1984-01-01
Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.
A Prototype Windflow Modeling System for Tactical Weather Support Operations.
1987-05-07
a system of numerical models that covers the mesoscale from horizontal scales of 200 km down to 5 km. Veazey and Tabor 2 1 used the windflow model to...821785 West Conference, Long Beach, Calif. 21. Veazey , D.R., and Tabor, P.A. (1985) Meteorological sensor density on the battlefield, Workshop on
Third Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1990-01-01
Papers presented at the Third Annual Workshop on Space Operations Automation and Robotics (SOAR '89), hosted by the NASA Lyndon B. Johnson Space Center at Houston, Texas, on July 25 to 27, 1989, are given. Approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Also held were panel discussions on Air Force/NASA Artificial Intelligence Overview and Expert System Verification and Validation.
International Workshop on Vibration Isolation Technology for Microgravity Science Applications
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F. (Editor)
1992-01-01
The International Workshop on Vibration Isolation Technology for Microgravity Science Applications was held on April 23-25, 1991 at the Holiday Inn in Middleburg Heights, Ohio. The main objective of the conference was to explore vibration isolation requirements of space experiments and what level of vibration isolation could be provided both by present and planned systems on the Space Shuttle and Space Station Freedom and by state of the art vibration isolation technology.
The Effects of Space Weathering at UV Wavelengths: S-Class Asteroids
NASA Technical Reports Server (NTRS)
Hendrix, Amanda R.; Vilas, Faith
2006-01-01
We present evidence that space weathering manifests itself at near-UV wavelengths as a bluing of the spectrum, in contrast with the spectral reddening that has been seen at visible-near-IR wavelengths. Furthermore, the effects of space weathering at UV wavelengths tend to appear with less weathering than do the longer wavelength effects, suggesting that the UV wavelength range is a more sensitive indicator of weathering, and thus age. We report results from analysis of existing near-UV (approx.220-350 nm) measurements of S-type asteroids from the International Ultraviolet Explorer and the Hubble Space Telescope and comparisons with laboratory measurements of meteorites to support this hypothesis. Composite spectra of S asteroids are produced by combining UV spacecraft data with ground-based longer wavelength data. At visible-near-IR wavelengths, S-type asteroids are generally spectrally redder (and darker) than ordinary chondrite meteorites, whereas the opposite is generally true at near-UV wavelengths. Similarly, laboratory measurements of lunar samples show that lunar soils (presumably more weathered) are spectrally redder at longer wavelengths, and spectrally bluer at near-UV wavelengths, than less weathered crushed lunar rocks. The UV spectral bluing may be a result of the addition of nanophase iron to the regolith through the weathering process. The UV bluing is most prominent in the 300-400 nm range, where the strong UV absorption edge is degraded with weathering.
The Affording Mars Workshop: Background and Recommendations
NASA Technical Reports Server (NTRS)
Thronson, Harley A.; Carberry, Christopher
2014-01-01
A human mission to Mars is the stated "ultimate" goal for NASA and is widely believed by the public to be the most compelling destination for America's space program. However, widely cited enormous costs - perhaps as much as a trillion dollars for a many-decade campaign - seem to be an impossible hurdle, although political and budget instability over many years may be equally challenging. More recently, a handful of increasingly detailed architectures for initial Mars missions have been developed by commercial companies that have estimated costs much less than widely believed and roughly comparable with previous major human space flight programs: the Apollo Program, the International Space Station, and the space shuttle. Several of these studies are listed in the bibliography to the workshop report. As a consequence of these new scenarios, beginning in spring, 2013 a multiinstitutional planning team began developing the content and invitee list for a winter workshop that would critically assess concepts, initiatives, technology priorities, and programmatic options to reduce significantly the costs of human exploration of Mars. The output of the workshop - findings and recommendations - would be presented in a number of forums and discussed with national leaders in human space flight. It would also be made available to potential international partners. This workshop was planned from the start to be the first in a series. Subsequent meetings, conferences, and symposia will concentrate on topics not able to be covered in December. In addition, to make progress in short meeting, a handful of ground rules were adopted by the planning team and agreed to by the participants. Perhaps the two most notable such ground rules were (1) the Space Launch System (SLS) and Orion would be available during the time frame considered by the participants and (2) the International Space Station (ISS) would remain the early linchpin in preparing for Mars exploration over the coming decade. The workshop was organized around three topical breakout sessions: 1. The ISS and the path to Mars: The critical coming decade 2. Affordability and sustainability: what does it mean and what are its implications within guidelines established at the start of the workshop? 3. Notional sequence(s) of cost-achievable missions for the 2020s to 2030s, including capability objectives at each stage and opportunities for coordinated robotic partnerships.
Space Weathering in the Mercurian Environment
NASA Technical Reports Server (NTRS)
Noble, S. K.; Pieters, C. M.
2001-01-01
Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W
2015-01-01
Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.
Strategies and Innovative Approaches for the Future of Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Hoeksema, J. T.
2012-12-01
The real and potential impacts of space weather have been well documented, yet neither the required research and operations programs, nor the data, modeling and analysis infrastructure necessary to develop and sustain a reliable space weather forecasting capability for a society are in place. The recently published decadal survey "Solar and Space Physics: A Science for a Technological Society" presents a vision for the coming decade and calls for a renewed national commitment to a comprehensive program in space weather and climatology. New resources are imperative. Particularly in the current fiscal environment, implementing a responsible strategy to address these needs will require broad participation across agencies and innovative approaches to make the most of existing resources, capitalize on current knowledge, span gaps in capabilities and observations, and focus resources on overcoming immediate roadblocks.
Space Weather Effects Produced by the Ring Current Particles
NASA Astrophysics Data System (ADS)
Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael
2017-11-01
One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).
OAST Technology for the Future. Volume 3 - Critical Technologies, Themes 5-8
NASA Technical Reports Server (NTRS)
1988-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the 5 ace environment. A secondary objective was to review the current NASA (In-Reach and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.
Space Weather Editors in Transition: Hail and Farewell
NASA Astrophysics Data System (ADS)
Knipp, Delores J.
2017-02-01
I hope you will join me in welcoming Dr. Daniel Welling of University of Michigan and Dr. T. Paul O'Brien of the Aerospace Corporation to the Space Weather (SWE) editorial team. Dan and Paul have answered the call to fill the shoes of two departing editors: Dr. Howard Singer and Dr. Barbara Giles. Dan brings insight related to space weather model development, while Paul brings expertise in the geospace radiation environment.
Alteration of Lunar Rock Surfaces through Interaction with the Space Environment
NASA Technical Reports Server (NTRS)
Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.
2014-01-01
Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.
The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment
NASA Astrophysics Data System (ADS)
Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.
2017-12-01
Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.
NASA Technical Reports Server (NTRS)
1976-01-01
The Outlook for Space Study, consideration of National needs and OAST technology goals were factors in the selection of the following themes for candidate technical initiative and supporting program plans: space power station; search for extraterrestrial life; industrialization of space; global service station; exploration of the solar system; and advanced space transportation system. An overview is presented of the Space Theme Workshop activities in developing technology needs, program requirements, and proposed plans in support of each theme. The unedited working papers used by team members are included.
Next generation of space based sensor for application in the SSA space weather domain.
NASA Astrophysics Data System (ADS)
Jansen, Frank; Kudela, Karel; Behrens, Joerg
Next generation of space based sensor for application in the SSA space weather domain. F. Jansen1, K. Kudela2, J. Behrens1 and NESTEC consortium3 1DLR, Bremen, Germany 2IEP SAS Kosice, Slovakia 3NESTEC consortium members (DLR Bremen, DESY Hamburg, MPS Katlenburg-Lindau, CTU Prague, University of Twente, IEP-SAS Kosice, UCL/MSSL, University of Manchester, University of Surrey, Hermanus Magnetic Observatory, North-West University Potchefsroom, University of Montreal) High energy solar and galactic cosmic rays have twofold importance for the SSA space weather domain. Cosmic rays have dangerous effects for space, air and ground based assets, but on the other side cosmic rays are direct measure tools for real time space weather warning. A review of space weather related SSA results from operating global cosmic ray networks (especially those by neutron monitors and by muon directional telescopes), its limitations and main questions to be solved, is presented. Especially those recent results, received in real time and with high temporal resolution, are reviewed and discussed. In addition the relevance of these monitors and telescopes in forecasting geomagnetic disturbances are checked. Based on this study result, a next generation of highly miniaturized hybrid silicon pixel device (Medipix sensor) will be described for the following, beyond state-of-the-art application: a SSA satellite for high energy solar and galactic cosmic ray spectrum measurement, with a space plasma environment data package and CME real time imaging by means of cosmic rays. All data management and processing will be carried out on the satellite in real time. Insofar a high reduction of data and transmission to ground station of finalized space weather relevant data and images are foreseen.
Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2015-12-01
NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school teachers and undergraduate students who may or may not have adequate exposure to fundamental concepts of the key components of the modern earth system and their interactions. This is an online course that will be delivered using Blackboard platform available at Jackson State University.
Pre-Service Teachers Institute
2008-07-18
The Pre-Service Teachers Institute sponsored by Jackson (Miss.) State University participated in an agencywide Hubble Space Telescope workshop at Stennis Space Center on July 18. Twenty-five JSU junior education majors participated in the workshop, a site tour and educational presentations by Karma Snyder of the NASA SSC Engineering & Safety Center and Anne Peek of the NASA SSC Deputy Science & Technology Division.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... observers based on available space. DATES: The workshop will be held September 26-27, 2011, and begin each... prioritize the knowledge gaps and challenges in mixtures research specific to each of the following... close sooner if the 85 spaces for observers are filled. At that time, persons wishing to attend the...
Pre-Service Teachers Institute
NASA Technical Reports Server (NTRS)
2008-01-01
The Pre-Service Teachers Institute sponsored by Jackson (Miss.) State University participated in an agencywide Hubble Space Telescope workshop at Stennis Space Center on July 18. Twenty-five JSU junior education majors participated in the workshop, a site tour and educational presentations by Karma Snyder of the NASA SSC Engineering & Safety Center and Anne Peek of the NASA SSC Deputy Science & Technology Division.
Direct Loan Overview Workshop. Participant's Guide.
ERIC Educational Resources Information Center
Department of Education, Washington, DC.
This training guide for a one-day workshop provides an introduction to the William D. Ford Federal Direct Loan Program for administrative personnel at higher educations institutions. The seven sections of the guide, each corresponding to a single workshop session, include activity sheets, questions for participants to answer, and space for notes.…
Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review
NASA Technical Reports Server (NTRS)
Kreins, E. R. (Editor)
1979-01-01
The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.
Space Photovoltaic Research and Technology Conference
NASA Technical Reports Server (NTRS)
1991-01-01
The Eleventh Space Photovoltaic Research and Technology conference was held at NASA Lewis Research Center from May 7 to 9, 1991. The papers and workshop summaries presented here report remarkable progress on a wide variety of approaches in space photovoltaics, both near and far term applications. Papers were presented in a variety of technical areas, including multijunction cell technology, GaAs and InP cells, system studies, cell and array development, and photovoltaics for conversion of laser radiation. Three workshops were held to discuss thin film cell development, III-V cell development, and space environmental effects.
An Examination of the Space Weathering Patina of Lunar Rock 76015
NASA Technical Reports Server (NTRS)
Noble, S.; Chrisoffersen, R.; Rahman, Z.
2011-01-01
Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.
2006-06-28
KENNEDY SPACE CENTER, FLA. - Under the watchful eyes of the media, an upper-level weather balloon begins its lift into the sky. The release of the balloon at the Cape Canaveral weather station in Florida was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral forecast facility in Florida, media were able to meet members of the weather team who review data used for forecasts as part of a tour of the facility. The team will play a role in the July 1 launch of Space Shuttle Discovery on mission STS-121. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. NASA Deputy Administrator Fred Gregory (left) moderates the panel presentation during the One NASA Leader-Led Workshop about the Agencys Transformation and implementation strategies. Seated at right are panel members Lynn Cline, deputy associate administrator for Space Operations, Adm. Craig Steidle, associate administrator for Exploration Systems, and Woodrow Whitlow Jr., Kennedy deputy director. The workshop included senior leadership in the Agency who talked about ongoing Transformation activities and Kennedys role in the Vision for Space Exploration.
Characterizing Space Weather Effects in the Post-DMSP Era
NASA Astrophysics Data System (ADS)
Groves, K. M.
2015-12-01
Space weather generally refers to heliophysical phenomena or events that produce a negative impact on manmade systems. While many space weather events originate with impulsive disturbances on the sun, others result from complex internal interactions in the ionosphere-thermosphere system. The reliance of mankind on satellite-based services continues to increase rapidly, yet the global capacity for sensing space weather in the ionosphere seems headed towards decline. A number of recent ionospheric-focused space-based missions are either presently, or soon-to-be, no longer available, and the end of the multi-decade Defense Meteorological Satellite Program is now in sight. The challenge facing the space weather community is how to maintain or increase sensing capabilities in an operational environment constrained by a decreasing numbers of sensors. The upcoming launch of COSMIC-2 in 2016/2018 represents the most significant new capability planned for the future. GNSS RO data has some benefit for background ionospheric models, particularly over regions where ground-based GNSS TEC measurements are unavailable, but the space weather community has a dire need to leverage such missions for far more knowledge of the ionosphere, and specifically for information related to space weather impacts. Meanwhile, the number of ground-based GNSS sensors worldwide has increased substantially, yet progress instrumenting some vastly undersampled regions, such as Africa, remains slow. In fact, the recent loss of support for many existing ground stations in such areas under the former Scintillation Network Decision Aid (SCINDA) program may actually result in a decrease in such sensing sites over the next 1-2 years, abruptly reversing a positive trend established over the last decade. Here we present potential solutions to the challenges these developments pose to the space weather enterprise. Specific topics include modeling advances required to detect and accurately characterize irregularities and associated scintillations from GNSS RO measurements, the exploitation of existing/planned radio beacons for improved bottomside definition and scintillations, and an affordable approach to leverage existing ground stations to expand sensing capacity at critical locations in otherwise data-sparse regions.
14 CFR 121.652 - Landing weather minimums: IFR: All certificate holders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Landing weather minimums: IFR: All certificate holders. 121.652 Section 121.652 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Rules § 121.652 Landing weather minimums: IFR: All certificate holders. (a) If the pilot in command of...
14 CFR 121.652 - Landing weather minimums: IFR: All certificate holders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Landing weather minimums: IFR: All certificate holders. 121.652 Section 121.652 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Rules § 121.652 Landing weather minimums: IFR: All certificate holders. (a) If the pilot in command of...
14 CFR 121.652 - Landing weather minimums: IFR: All certificate holders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Landing weather minimums: IFR: All certificate holders. 121.652 Section 121.652 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Rules § 121.652 Landing weather minimums: IFR: All certificate holders. (a) If the pilot in command of...
14 CFR 121.652 - Landing weather minimums: IFR: All certificate holders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Landing weather minimums: IFR: All certificate holders. 121.652 Section 121.652 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Rules § 121.652 Landing weather minimums: IFR: All certificate holders. (a) If the pilot in command of...
14 CFR 121.652 - Landing weather minimums: IFR: All certificate holders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Landing weather minimums: IFR: All certificate holders. 121.652 Section 121.652 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Rules § 121.652 Landing weather minimums: IFR: All certificate holders. (a) If the pilot in command of...
Results Outbrief from the 2014 CombustionLab Workshop
NASA Technical Reports Server (NTRS)
Urban, David
2015-01-01
On October 24-25, 2014, NASA Headquarters and the NASA Glenn Research Center sponsored the CombustionLab Workshop in Pasadena, CA as part of the 30th Annual Meeting of the American Society for Gravitational and Space Research. The two-day event brought together scientists and engineers from academia, industry, other government agencies, and international space agencies. The goal of the workshop was to identify key engineering drivers and research priorities, and to provide overall recommendations for the development of the next generation of combustion science experiments for the International Space Station (ISS). The workshop was divided in to 6 topical areas: Droplets, Sprays and Aerosols; Non-Premixed Flames; Premixed Flames; High Pressure and Supercritical Reacting Systems; Fire Safety; Heterogeneous Reaction Processes. Each of these areas produced summary findings which were assembled into a report and were integrated into the NASA budget planning process. The summary results of this process are presented with implementation plans and options for the future.
Increasing Scientific Literacy at Minority Serving Institutions Nationwide
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Moran, J. M.; Mills, E. W.; Nugnes, K. A.
2012-12-01
It is vital to increase the scientific literacy of all students, including those at minority serving institutions (MSIs). With support from NSF, NASA, and NOAA, the American Meteorological Society (AMS) Education Program has developed scientifically authentic, introductory, undergraduate courses that engage students in the geosciences through the use of real-world environmental data. AMS Climate, Weather, and Ocean Studies have already been adopted by more than 600 institutions across the U.S. With additional support from NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the first AMS Climate Studies Diversity Project was held in May 2012 in Washington, D.C. Thirty faculty members from 16 different states, Puerto Rico, and Washington, D.C. attended the week-long workshop. They were immersed in the course materials, received presentations from high-level speakers such as Dr. Thomas Karl, Rear Admiral David Titley, and Dr. Peter Hildebrand, and were trained as change agents for their local institution. Afterwards, faculty work within their MSI to introduce and enhance geoscience curricula and offer the AMS Climate Studies course in the year following workshop attendance. They are also encouraged to implement the AMS Weather and Ocean Studies courses. Subsequent workshops will be held throughout the next 3 years, targeting 100 MSIs. The AMS Climate Studies Diversity Project followed the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects. Evaluation results are extremely favorable with 96% of the participants rating the workshop as outstanding and all would recommend the workshop to other AMS Climate Studies faculty. More in depth results will be discussed in our presentation. AMS Climate Studies explores the fundamental science of Earth's climate system while addressing the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, participants use the AMS Conceptual Energy Model to differentiate between climate variability and climate change. Additionally, the AMS Education Program, James Madison University (JMU), and Los Angeles Valley College (LAVC), are working in collaboration with the Consortium for Ocean Leadership/Integrated Ocean Drilling Program's (IODP) Deep Earth Academy (DEA) to integrate investigations of ocean core data of paleoclimates into course curricula of MSIs. In June 2012, this team participated in a workshop to gain direct experience with ocean core investigations. The goal is to form a trained team to help guide the future, large-scale integration of scientific ocean drilling paleoclimate research into existing MSI geoscience courses, and the development of new course offerings. The AMS is excited to bring meteorology, oceanography, and climate science course work to more students, strengthening the pathway towards advanced geoscience study and careers.
Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri
2015-11-01
Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse scatterers in the radiative transfer domain.[1] Kohout T. et al. (2014), Icarus 237(15), 75-83.[2] Kohout T. et al. (2015), Workshop on Space Weathering of Airless Bodies, Abstract.[3] Muinonen K. et al. (2009), JQSRT 110, 1628-1639.
Shielding Strategies for Human Space Exploration
NASA Technical Reports Server (NTRS)
Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)
1997-01-01
A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.
Multiphase Flow in Power and Propulsion Workshop Fluid Stability and Dynamics Workshop: Overview
NASA Technical Reports Server (NTRS)
McQuillen, John
2003-01-01
The short term purpose of the workshop described by this viewgraph presentation is to present a research plan and a 'roadmap' developed for strategic research for the Office of Biological and Physical Research. The long term purpose of the workshop is to conduct necessary ground-based and space-flight low gravity experiments, complemented by analyses, resulting in a documented framework for parameter prediction of needed by designers. The presentation reviews several previous workshops which were similar, and describes the differences in this workshop. The presentation also includes a prioritizing scheme for microgravity issues, which includes four priority ratings.
Notes on a Vision for the Global Space Weather Enterprise
NASA Astrophysics Data System (ADS)
Head, James N.
2015-07-01
Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.
Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Zega, T. J.; Keller, L. P.
2014-01-01
Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa.
Space Weather: Where Is The Beef?
NASA Astrophysics Data System (ADS)
Koskinen, H. E. J.
Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.
Modeling AWSoM CMEs with EEGGL: A New Approach for Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Jin, M.; Manchester, W.; van der Holst, B.; Sokolov, I.; Toth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.
2015-12-01
The major source of destructive space weather is coronal mass ejections (CMEs). However, our understanding of CMEs and their propagation in the heliosphere is limited by the insufficient observations. Therefore, the development of first-principals numerical models plays a vital role in both theoretical investigation and providing space weather forecasts. Here, we present results of the simulation of CME propagation from the Sun to 1AU by combining the analytical Gibson & Low (GL) flux rope model with the state-of-art solar wind model AWSoM. We also provide an approach for transferring this research model to a space weather forecasting tool by demonstrating how the free parameters of the GL flux rope can be prescribed based on remote observations via the new Eruptive Event Generator by Gibson-Low (EEGGL) toolkit. This capability allows us to predict the long-term evolution of the CME in interplanetary space. We perform proof-of-concept case studies to show the capability of the model to capture physical processes that determine CME evolution while also reproducing many observed features both in the corona and at 1 AU. We discuss the potential and limitations of this model as a future space weather forecasting tool.
The ESA Space Weather Applications Pilot Project
NASA Astrophysics Data System (ADS)
Glover, A.; Hilgers, A.; Daly, E.
Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field
Extreme Space Weather Events: From Cradle to Grave
NASA Astrophysics Data System (ADS)
Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel
2018-02-01
Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.
Upper-atmospheric Space and Earth Weather eXperiment (USEWX)
NASA Technical Reports Server (NTRS)
Wiley, Scott Lee
2014-01-01
This presentation is an update from the 2011 and 2012 talks given to Teachers in Space. These slides include some recent space weather issues that are hot topics, including the adding our USEWX and USEWX partners, and information relevant to GSFC researchers.
Applications of tethers in space: A review of workshop recommendations
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. (Editor)
1986-01-01
Well-organized and structured efforts of considerable magnitude involving NASA, industry, and academia have explored and defined the engineering and technological requirements of the use of tethers in space and have discovered their broad range of operational and economic benefits. The results of these efforts have produced a family of extremely promising candidate applications. The extensive efforts now in progress are gaining momentum and a series of flight demonstrations are being planned and can be expected to take place in a few years. This report provides an analysis and a review of NASA's second major workshop on Applications of Tethers in Space held in October 15 to 17, 1985, in Venice, Italy. It provides a summary of an up-to-date assessment and recommendations by the NASA Tether Applications in Space Program Planning Group, consisting of representatives of seven NASA Centers and responsible for tether applications program planning implementation as recommended by the workshop panels.
A Challenge for International Cooperation in Astronomy and Basic Space Science
NASA Astrophysics Data System (ADS)
Haubold, Hans
In 1990, the United Nations in cooperation with the European Space Agency initiated the organization of a series of annual Workshops on Basic Space Science for the benefit of astronomers and space scientists in (i) Asia and the Pacific, (ii) Latin America and the Caribbean, (iii) Africa, (iv) Western Asia, and (v) Europe. This article provides an update on accomplishments of three cycles of these workshops and their follow-up projects held for the five regions in (i) India (1991), Sri Lanka (1995), (ii) Costa Rica and Colombia (1992), Honduras (1997), (iii) Nigeria (1993), (iv) Egypt (1994), Jordan (1999), and (v) Germany (1996), France (2000). The workshop series is being considered unique and a model for the world-wide development of astronomy and space science. It has been organized based on the notion that astronomy has deep roots in virtually every human culture, that it helps to understand humanity's place in the vast scale of the Universe, and that it increases the knowledge of humanity about its origins and evolution.
International Collaboration in Space Weather Situational Awareness
NASA Astrophysics Data System (ADS)
Boteler, David; Trichtchenko, Larisa; Danskin, Donald
Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.