A First Look at the Upcoming SISO Space Reference FOM
NASA Technical Reports Server (NTRS)
Mueller, Bjorn; Crues, Edwin Z.; Dexter, Dan; Garro, Alfredo; Skuratovskiy, Anton; Vankov, Alexander
2016-01-01
Spaceflight is difficult, dangerous and expensive; human spaceflight even more so. In order to mitigate some of the danger and expense, professionals in the space domain have relied, and continue to rely, on computer simulation. Simulation is used at every level including concept, design, analysis, construction, testing, training and ultimately flight. As space systems have grown more complex, new simulation technologies have been developed, adopted and applied. Distributed simulation is one those technologies. Distributed simulation provides a base technology for segmenting these complex space systems into smaller, and usually simpler, component systems or subsystems. This segmentation also supports the separation of responsibilities between participating organizations. This segmentation is particularly useful for complex space systems like the International Space Station (ISS), which is composed of many elements from many nations along with visiting vehicles from many nations. This is likely to be the case for future human space exploration activities. Over the years, a number of distributed simulations have been built within the space domain. While many use the High Level Architecture (HLA) to provide the infrastructure for interoperability, HLA without a Federation Object Model (FOM) is insufficient by itself to insure interoperability. As a result, the Simulation Interoperability Standards Organization (SISO) is developing a Space Reference FOM. The Space Reference FOM Product Development Group is composed of members from several countries. They contribute experiences from projects within NASA, ESA and other organizations and represent government, academia and industry. The initial version of the Space Reference FOM is focusing on time and space and will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well-known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.
A First Look at the Upcoming SISO Space Reference FOM
NASA Technical Reports Server (NTRS)
Crues, Edwin; Dexter, Dan; Madden, Michael; Garro, Alfred; Vankov, Alexander; Skuratovskiy, Anton; Moller, Bjorn
2016-01-01
Simulation is increasingly used in the space domain for several purposes. One example is analysis and engineering, from the mission level down to individual systems and subsystems. Another example is training of space crew and flight controllers. Several distributed simulations have been developed for example for docking vehicles with the ISS and for mission training, in many cases with participants from several nations. Space based scenarios are also used in the "Simulation Exploration Experience", SISO's university outreach program. We have thus realized that there is a need for a distributed simulation interoperability standard for data exchange within the space domain. Based on these experiences, SISO is developing a Space Reference FOM. Members of the product development group come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The first version will focus on handling of time and space. The Space Reference FOM will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.
Four dimensional studies in earth space
NASA Technical Reports Server (NTRS)
Mather, R. S.
1972-01-01
A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.
Design and Principles Enabling the Space Reference FOM
NASA Technical Reports Server (NTRS)
Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton
2017-01-01
A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.
En Route Spacing System and Method
NASA Technical Reports Server (NTRS)
Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)
2002-01-01
A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.
En route spacing system and method
NASA Technical Reports Server (NTRS)
Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)
2002-01-01
A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.
Coordinate references for the indoor/outdoor seamless positioning
NASA Astrophysics Data System (ADS)
Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei
2018-05-01
Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
In-flight angular alignment of inertial navigation systems by means of radio aids
NASA Technical Reports Server (NTRS)
Tanner, W.
1972-01-01
The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.
NASA Technical Reports Server (NTRS)
Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.
2016-01-01
Distributed and Real-Time Simulation plays a key-role in the Space domain being exploited for missions and systems analysis and engineering as well as for crew training and operational support. One of the most popular standards is the 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA). HLA supports the implementation of distributed simulations (called Federations) in which a set of simulation entities (called Federates) can interact using a Run-Time Infrastructure (RTI). In a given Federation, a Federate can publish and/or subscribes objects and interactions on the RTI only in accordance with their structures as defined in a FOM (Federation Object Model). Currently, the Space domain is characterized by a set of incompatible FOMs that, although meet the specific needs of different organizations and projects, increases the long-term cost for interoperability. In this context, the availability of a reference FOM for the Space domain will enable the development of interoperable HLA-based simulators for related joint projects and collaborations among worldwide organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA). The paper presents a first set of results achieved by a SISO standardization effort that aims at providing a Space Reference FOM for international collaboration on Space systems simulations.
Time and Space Partitioning the EagleEye Reference Misson
NASA Astrophysics Data System (ADS)
Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan
2013-08-01
We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).
NASA Astrophysics Data System (ADS)
Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham
2010-03-01
In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.
A system study of the solar power satellite concept
NASA Technical Reports Server (NTRS)
Piland, R. O.
1983-01-01
The paper summarizes a system study of the solar power satellite (SPS) concept which was conducted in the 1977-1980 time period. The system study was sponsored by the U.S. Department of Energy and the National Aeronautics and Space Administration as part of an SPS Concept Development and Evaluation Program. A reference system, developed during the study is described. The reference system was subsequently used as a basis for environmental, economic, and societal assessments. The reference system was recognized as probably not being an optimized approach. A number of alternate approaches which were studied in less depth are also described. The paper concludes with a number of observations regarding the SPS concept, and the pertinence of ongoing space technology, development, and flight programs to various aspects of the concept.
NASA Astrophysics Data System (ADS)
Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai
2015-09-01
Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.
Living in Space: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
The idea of flight and space travel are not new, but the technologies which make them possible are very recent. This booklet considers time, space, and spirit related to living in space. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts of flight and…
Geoscience laser altimeter system-stellar reference system
NASA Astrophysics Data System (ADS)
Millar, Pamela S.; Sirota, J. Marcos
1998-01-01
GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.
NASA Astrophysics Data System (ADS)
Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.
2018-01-01
The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.
Re-examination of globally flat space-time.
Feldman, Michael R
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Re-Examination of Globally Flat Space-Time
NASA Astrophysics Data System (ADS)
Feldman, Michael R.
2013-11-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Design Reference Missions for Deep-Space Optical Communication
NASA Astrophysics Data System (ADS)
Breidenthal, J.; Abraham, D.
2016-05-01
We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.
Common View Time Transfer Using Worldwide GPS and DMA Monitor Stations
NASA Technical Reports Server (NTRS)
Reid, Wilson G.; McCaskill, Thomas B.; Oaks, Orville J.; Buisson, James A.; Warren, Hugh E.
1996-01-01
Analysis of the on-orbit Navstar clocks and the Global Positioning System (GPS) monitor station reference clocks is performed by the Naval Research Laboratory using both broadcast and postprocessed precise ephemerides. The precise ephemerides are produced by the Defense Mapping Agency (DMA) for each of the GPS space vehicles from pseudo-range measurements collected at five GPS and at five DMA monitor stations spaced around the world. Recently, DMA established an additional site co-located with the US Naval Observatory precise time site. The time reference for the new DMA site is the DoD Master Clock. Now, for the first time, it is possible to transfer time every 15 minutes via common view from the DoD Master Clock to the 11 GPS and DMA monitor stations. The estimated precision of a single common-view time transfer measurement taken over a 15-minute interval was between 1.4 and 2.7 nanoseconds. Using the measurements from all Navstar space vehicles in common view during the 15-minute interval, typically 3-7 space vehicles, improved the estimate of the precision to between 0.65 and 1.13 nanoseconds. The mean phase error obtained from closure of the time transfer around the world using the 11 monitor stations and the 25 space vehicle clocks over a period of 4 months had a magnitude of 31 picoseconds. Analysis of the low noise time transfer from the DoD Master Clock to each of the monitor stations yields not only the bias in the time of the reference clock, but also focuses attention on structure in the behaviour of the reference clock not previously seen. Furthermore, the time transfer provides a a uniformly sampled database of 15-minute measurements that make possible, for the first time, the direct and exhaustive computation of the frequency stability of the monitor station reference clocks. To lend perspective to the analysis, a summary is given of the discontinuities in phase and frequency that occurred in the reference clock at the Master Control Station during the period covered by the analysis.
Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…
Nuclear Power: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
One of the most important discoveries of the twentieth century was the fission of radioactive materials. This booklet considers nuclear energy from three aspects: time; space; and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts of nuclear…
Requirements for DGPS-based TSPI system used in aircraft noise certification tests
DOT National Transportation Integrated Search
1997-04-30
This letter report addresses that portion of a noise certification applicants Differential Global Positioning System (DGPS-based), Time Space Position Information (TSPI) system which is to be used as a position reference in place of a laser tracke...
Modular Gravitational Reference Sensor (MGRS) For Astrophysics and Astronomy
NASA Astrophysics Data System (ADS)
Sun, Ke-Xun; Buchman, S.; Byer, R. L.; DeBra, D.; Goebel, J.; Allen, G.; Conklin, J.; Gerardi, D.; Higuchi, S.; Leindecker, N.; Lu, P.; Swank, A.; Torres, E.; Trillter, M.; Zoellner, A.
2009-01-01
The study of space-time for gravitational wave detection and cosmology beyond Einstein will be an important theme for astrophysics and astronomy in decades to come. Laser Interferometric Space Antenna (LISA) is designed for detecting gravitational wave in space. The Modular Gravitational Reference Sensor (MGRS) is developed as the next generation core instrument for space-time research, including gravitational wave detection beyond LISA, and an array of precision experiments in space. The MGRS provide a stable gravitational cardinal point in space-time by using a test sphere, which eliminates the need for orientation control, minimizing disturbances. The MGRS measures the space-time variation via a two step process: measurement between test mass and housing, and between housings of two spacecraft. Our Stanford group is conducting systematic research and development on the MGRS. Our initial objectives are to gain a system perspective of the MGRS, to develop component technologies, and to establish test platforms. We will review our recent progress in system technologies, optical displacement and angle sensing, diffractive optics, proof mass characterization, UV LED charge management system and space qualification, thermal control and sensor development. Some highlights of our recent results are: Demonstration of the extreme radiation hardness of UV LED which sustained 2 trillion protons per square centimeter; measurement of mass center offset down to 300 nm, and measurement of small angle 0.2 nrad per root hertz using a compact grating angular sensor. The Stanford MGRS program has made exceptional contribution to education of next generation scientists and engineers. We have undergraduate and graduate students in aeronautical and astronautic engineering, applied physics, cybernetics, electrical engineering, mechanical engineering, and physics. We have also housed a number of high school students in our labs for education and public outreach.
GPS Block 2R Time Standard Assembly (TSA) architecture
NASA Technical Reports Server (NTRS)
Baker, Anthony P.
1990-01-01
The underlying philosophy of the Global Positioning System (GPS) 2R Time Standard Assembly (TSA) architecture is to utilize two frequency sources, one fixed frequency reference source and one system frequency source, and to couple the system frequency source to the reference frequency source via a sample data loop. The system source is used to provide the basic clock frequency and timing for the space vehicle (SV) and it uses a voltage controlled crystal oscillator (VCXO) with high short term stability. The reference source is an atomic frequency standard (AFS) with high long term stability. The architecture can support any type of frequency standard. In the system design rubidium, cesium, and H2 masers outputting a canonical frequency were accommodated. The architecture is software intensive. All VCXO adjustments are digital and are calculated by a processor. They are applied to the VCXO via a digital to analog converter.
The Gene: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
It has only been since the late nineteenth century that people have understood the mechanics of heredity and the discoveries of genes and DNA are even more recent. This booklet considers three aspects of genetics; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several…
The Expanding Universe: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
Nearly every culture has made important discoveries about the universe. Most cultures have searched for a better understanding of the cosmos and how the earth and human life relate. The discussion in this booklet considers time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought.…
Natural Resources: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
Many experts have predicted a global crisis for the end of the twentieth century because of dwindling supplies of natural resources such as minerals, oil, gas, and soil. This booklet considers three aspects of natural resources, time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and…
Implementing system simulation of C3 systems using autonomous objects
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1987-01-01
The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-10
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
Space time neural networks for tether operations in space
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles
1993-01-01
A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.
Re-Examination of Globally Flat Space-Time
Feldman, Michael R.
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of “dark energy,” “dark matter,” and “dark flow.” Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at “large enough” scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of “dark energy,” “dark matter,” and “dark flow.” In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems. PMID:24250790
The Thaayorre think of Time Like They Talk of Space.
Gaby, Alice
2012-01-01
Around the world, it is common to both talk and think about time in terms of space. But does our conceptualization of time simply reflect the space/time metaphors of the language we speak? Evidence from the Australian language Kuuk Thaayorre suggests not. Kuuk Thaayorre speakers do not employ active spatial metaphors in describing time. But this is not to say that spatial language is irrelevant to temporal construals: non-linguistic representations of time are shown here to covary with the linguistic system of describing space. This article contrasts two populations of ethnic Thaayorre from Pormpuraaw - one comprising Kuuk Thaayorre/English bilinguals and the other English-monolinguals - in order to distinguish the effects of language from environmental and other factors. Despite their common physical, social, and cultural context, the two groups differ in their representations of time in ways that are congruent with the language of space in Kuuk Thaayorre and English, respectively. Kuuk Thaayorre/English bilinguals represent time along an absolute east-to-west axis, in alignment with the high frequency of absolute frame of reference terms in Kuuk Thaayorre spatial description. The English-monolinguals, in contrast, represent time from left-to-right, aligning with the dominant relative frame of reference in English spatial description. This occurs in the absence of any east-to-west metaphors in Kuuk Thaayorre, or left-to-right metaphors in English. Thus the way these two groups think about time appears to reflect the language of space and not the language of time.
NASA Astrophysics Data System (ADS)
Coulot, David; Richard, Jean-Yves
2017-04-01
Many major indicators of climate change are monitored with space observations (sea level rise from satellite altimetry, ice melting from dedicated satellites, etc.). This monitoring is highly dependent on references (positions and velocities of ground observing instruments, orbits of satellites, etc.) that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. For this reason, in the framework of the Global Geodetic Observing System (GGOS), stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination (Combination at Observation Level - COL) of the space-geodetic measurements used to compute the official references of the International Earth Rotation and Reference Systems Service (IERS). The GEODESIE project aims at (i) determining highly-accurate global and consistent references (time series of Terrestrial Reference Frames and Celestial Reference Frames, of Earth's Orientation Parameters, and orbits of Earth's observation satellites) and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references (orbits of satellite altimeters, Terrestrial Reference Frames and related vertical velocities of stations) will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available on a Website designed and opened in the Summer of 2017. This project, supported by the French Agence Nationale de la Recherche (ANR) for the period 2017-2020, will be an unprecedented opportunity to provide the French Groupe de Recherche de Géodésie Spatiale (GRGS) with complete simulation and data processing capabilities to prepare the future arrival of space missions such as the European Geodetic Reference Antenna in SPace (E-GRASP) and to significantly contribute to the GGOS with accurate references.
Solar power satellite system definition study, phase 2. Volume 2: Reference system description
NASA Technical Reports Server (NTRS)
1979-01-01
System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.
NASA Technical Reports Server (NTRS)
1981-01-01
Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.
Multimegawatt electric propulsion system design considerations
NASA Technical Reports Server (NTRS)
Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.
1991-01-01
Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.
Comments on dual-mode nuclear space power and propulsion system concepts
NASA Technical Reports Server (NTRS)
Layton, J. Preston; Grey, Jerry
1991-01-01
Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.
Extended canonical field theory of matter and space-time
NASA Astrophysics Data System (ADS)
Struckmeier, J.; Vasak, D.; matter, H. Stoecker Field theory of; space-time
2015-11-01
Any physical theory that follows from an action principle should be invariant in its form under mappings of the reference frame in order to comply with the general principle of relativity. The required form-invariance of the action principle implies that the mapping must constitute a particular extended canonical transformation. In the realm of the covariant Hamiltonian formulation of field theory, the term ``extended'' implies that not only the fields but also the space-time geometry is subject to transformation. A canonical transformation maintains the general form of the action principle by simultaneously defining the appropriate transformation rules for the fields, the conjugate momentum fields, and the transformation rule for the Hamiltonian. Provided that the given system of fields exhibits a particular global symmetry, the associated extended canonical transformation determines an amended Hamiltonian that is form-invariant under the corresponding local symmetry. This will be worked out for a Hamiltonian system of scalar and vector fields that is presupposed to be form-invariant under space-time transformations xμ\\mapsto Xμ with partial Xμ/partial xν=const., hence under global space-time transformations such as the Poincaré transformation. The corresponding amended system that is form-invariant under local space-time transformations partial Xμ/partial xν≠qconst. then describes the coupling of the fields to the space-time geometry and thus yields the dynamics of space-time that is associated with the given physical system. Non-zero spin matter determines thereby the space-time curvature via a well-defined source term in a covariant Poisson-type equation for the Riemann tensor.
Single-mode fiber systems for deep space communication network
NASA Technical Reports Server (NTRS)
Lutes, G.
1982-01-01
The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Borutzki, S. E.; Kirk, A.
1984-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.
NASA Astrophysics Data System (ADS)
Pela, F.; Tsugawa, R. K.; Andreoli, L. J.
2004-12-01
The National Polar-Orbiting NPOESS, a tri-agency program, supports missions of the Department of Commerce (DOC)/National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA). NPOESS provides a critical, timely, reliable, and high quality space-based sensing capability to acquire and process global and regional environmental imagery and specialized meteorological, climatic, terrestrial, oceanographic, solar-geophysical, and other data products. These products are delivered to national weather and environmental facilities operated by NOAA and DoD, to NASA, and to environmental remote sensing science community users to support civil and military functions. These data are also provided in real time to field terminals deployed worldwide. The NPOESS architecture is built on a foundation of affordability, and the three pillars of data quality, latency, availability. Affordability refers to an over-arching awareness of cost to provide the best value to the government for implementing a converged system; some dimensions of cost include the cost for system development and implementation, the balance between development costs and operation and maintenance costs, and the fiscal year expenditure plans that meet schedule commitments. Data quality is characterized in terms of the attributes associated with Environmental Data Records (EDRs), and the products that are delivered to the four US Operational Centrals and field users. These EDRs are generated by the system using raw data from the space-borne sensors and spacecraft, in conjunction with science algorithms and calibration factors. Data latency refers to the time period between the detection of energy by a space-borne sensor to the delivery of a corresponding EDR. The system was designed to minimize data latency, and hence provide users with timely data. Availability refers to both data availability and system operational availability. Data availability is ensured by the way data is stored and routed throughout the system, on the spacecraft and on the ground, so that it can be retrieved and resent if the first transmittal is not successful. Operational availability is a measure of how well around-the-clock operations are supported, through the careful deployment of hot spares and fault tolerance of the system. Both types of availability are very high for the NPOESS architecture. Overall, the NPOESS architecture successfully delivers to the government a best-value solution featuring high data quality, low data latency, and high data/system availability.
Adhesive Bonding for Optical Metrology Systems in Space Applications
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus
2015-05-01
Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.
On the usefulness of relativistic space-times for the description of the Earth's gravitational field
NASA Astrophysics Data System (ADS)
Soffel, Michael; Frutos, Francisco
2016-12-01
The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
CLOCS (Computer with Low Context-Switching Time) Operating System Reference Documents
1988-05-06
system are met. In sum, real-time constraints make programming harder in genera420], because they add a whole new dimension - the time dimension - to ...be preempted until it allows itself to be. More is Stored; Less is Computed Alan Jay Smith, of Berkeley, has said that any program can be made five...times as swift to run, at the expense of five times the storage space. While his numbers may be questioned, his premise may not: programs can be made
Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe
NASA Astrophysics Data System (ADS)
Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim
2017-11-01
The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.
A reference model for space data system interconnection services
NASA Astrophysics Data System (ADS)
Pietras, John; Theis, Gerhard
1993-03-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
A reference model for space data system interconnection services
NASA Technical Reports Server (NTRS)
Pietras, John; Theis, Gerhard
1993-01-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2003-04-01
A new theory of space is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the concept of movement represents a key to understanding of the essence of space. The starting-point of the theory is represented by the following philosophical (dialectical materialistic) principles. (a) The principle of the materiality (of the objective reality) of the Nature: the Nature (the Universe) is a system (a set) of material objects (particles, bodies, fields); each object has properties, features, and the properties, the features are inseparable characteristics of material object and belong only to material object. (b) The principle of the existence of material object: an object exists as the objective reality, and movement is a form of existence of object. (c) The principle (definition) of movement of object: the movement is change (i.e. transition of some states into others) in general; the movement determines a direction, and direction characterizes the movement. (d) The principle of existence of time: the time exists as the parameter of the system of reference. These principles lead to the following statements expressing the essence of space. (1) There is no space in general, and there exist space only as a form of existence of the properties and features of the object. It means that the space is a set of the measures of the object (the measure is the philosophical category meaning unity of the qualitative and quantitative determinacy of the object). In other words, the space of the object is a set of the states of the object. (2) The states of the object are manifested only in a system of reference. The main informational property of the unitary system researched physical object + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem researched physical object (for example, the coordinates of the object M); the parameters characterize the system of reference (for example, the system of coordinates S). (3) Each parameter of the object is its measure. Total number of the mutually independent parameters of the object is called dimension of the space of the object. (4) The set of numerical values (i.e. the range, the spectrum) of each parameter is the subspace of the object. (The coordinate space, the momentum space and the energy space are examples of the subspaces of the object). (5) The set of the parameters of the object is divided into two non intersecting (opposite) classes: the class of the internal parameters and the class of the non internal (i.e. external) parameters. The class of the external parameters is divided into two non intersecting (opposite) subclasses: the subclass of the absolute parameters (characterizing the form, the sizes of the object) and the subclass of the non absolute (relative) parameters (characterizing the position, the coordinates of the object). (6) Set of the external parameters forms the external space of object. It is called geometrical space of object. (7) Since a macroscopic object has three mutually independent sizes, the dimension of its external absolute space is equal to three. Consequently, the dimension of its external relative space is also equal to three. Thus, the total dimension of the external space of the macroscopic object is equal to six. (8) In general case, the external absolute space (i.e. the form, the sizes) and the external relative space (i.e. the position, the coordinates) of any object are mutually dependent because of influence of a medium. The geometrical space of such object is called non Euclidean space. If the external absolute space and the external relative space of some object are mutually independent, then the external relative space of such object is the homogeneous and isotropic geometrical space. It is called Euclidean space of the object. Consequences: (i) the question of true geometry of the Universe is incorrect; (ii) the theory of relativity has no physical meaning.
NASA Technical Reports Server (NTRS)
Deininger, William D.; Vondra, Robert J.
1987-01-01
The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.
Pen-based computers: Computers without keys
NASA Technical Reports Server (NTRS)
Conklin, Cheryl L.
1994-01-01
The National Space Transportation System (NSTS) is comprised of many diverse and highly complex systems incorporating the latest technologies. Data collection associated with ground processing of the various Space Shuttle system elements is extremely challenging due to the many separate processing locations where data is generated. This presents a significant problem when the timely collection, transfer, collation, and storage of data is required. This paper describes how new technology, referred to as Pen-Based computers, is being used to transform the data collection process at Kennedy Space Center (KSC). Pen-Based computers have streamlined procedures, increased data accuracy, and now provide more complete information than previous methods. The end results is the elimination of Shuttle processing delays associated with data deficiencies.
Theory and Realization of Global Terrestrial Reference Systems
NASA Technical Reports Server (NTRS)
Ma, C.; Bolotin, S.; Gipson, J.; Gordon, D.; Le Bail, K.; MacMillan, D.
2010-01-01
Comparison of realizations of the terrestrial reference frame. IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We examined both results for VLBI sites using the full geodetic VLBI data set with respect to site positions and velocities and time series of station positions, baselines and Earth orientation parameters. One of the difficulties encountered was matching episodic breaks and periods of non-linear motion of the two realizations with the VLBI models. Our analysis and conclusions will be discussed.
Coherent Frequency Reference System for the NASA Deep Space Network
NASA Technical Reports Server (NTRS)
Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.
2010-01-01
The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.
Electric propulsion options for the SP-100 reference mission
NASA Technical Reports Server (NTRS)
Hardy, T. L.; Rawlin, V. K.; Patterson, M. J.
1987-01-01
Analyses were performed to characterize and compare electric propulsion systems for use on a space flight demonstration of the SP-100 nuclear power system. The component masses of resistojet, arcjet, and ion thruster systems were calculated using consistent assumptions and the maximum total impulse, velocity increment, and thrusting time were determined, subject to the constraint of the lift capability of a single Space Shuttle launch. From the study it was found that for most systems the propulsion system dry mass was less than 20 percent of the available mass for the propulsion system. The maximum velocity increment was found to be up to 2890 m/sec for resistojet, 3760 m/sec for arcjet, and 23 000 m/sec for ion thruster systems. The maximum thruster time was found to be 19, 47, and 853 days for resistojet, arcjet, and ion thruster systems, respectively.
The Extended HANDS Characterization and Analysis of Metric Biases
NASA Astrophysics Data System (ADS)
Kelecy, T.; Knox, R.; Cognion, R.
The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.
Trajectory specification for high capacity air traffic control
NASA Technical Reports Server (NTRS)
Paielli, Russell A. (Inventor)
2010-01-01
Method and system for analyzing and processing information on one or more aircraft flight paths, using a four-dimensional coordinate system including three Cartesian or equivalent coordinates (x, y, z) and a fourth coordinate .delta. that corresponds to a distance estimated along a reference flight path to a nearest reference path location corresponding to a present location of the aircraft. Use of the coordinate .delta., rather than elapsed time t, avoids coupling of along-track error into aircraft altitude and reduces effects of errors on an aircraft landing site. Along-track, cross-track and/or altitude errors are estimated and compared with a permitted error bounding space surrounding the reference flight path.
An Introduction to the Global Space-based Inter-Calibration System from a EUMETSAT Perspective
NASA Astrophysics Data System (ADS)
Wagner, S. C.; Hewison, T.; Roebeling, R. A.; Koenig, M.; Schulz, J.; Miu, P.
2012-04-01
The Global Space-based Inter-Calibration System (GSICS) (Goldberg and al. 2011) is an international collaborative effort which aims to monitor, improve and harmonize the quality of observations from operational weather and environmental satellites of the Global Observing System (GOS). GSICS aims at ensuring consistent accuracy among space-based observations worldwide for climate monitoring, weather forecasting, and environmental applications. This is achieved through a comprehensive calibration strategy, which involves monitoring instrument performances, operational inter-calibration of satellite instruments, tying the measurements to absolute references and standards, and recalibration of archived data. A major part of this strategy involves direct comparison of collocated observations from pairs of satellite instruments, which are used to systematically generate calibration functions to compare and correct the calibration of monitored instruments to references. These GSICS Corrections are needed for accurately integrating data from multiple observing systems into both near real-time and re-analysis products, applications and services. This paper gives more insight into the activities carried out by EUMETSAT as a GSICS Processing and Research Centre. Currently these are closely bound to the in-house development and operational implementation of calibration methods for solar and thermal band channels of geostationary and polar-orbiting satellites. They include inter-calibration corrections for Meteosat imagers using reference instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite for solar band channels, the Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A and, for historic archive data, the High-resolution InfraRed Sounder (HIRS). Additionally, bias monitoring is routinely performed, allowing users to visualise the calibration accuracy of the instruments in near real-time. These activities are based on principles and protocols defined by the GSICS Research Working Group and Data Management Working Group, which require assessment of the calibration uncertainties to ensure the traceability to community references.
NASA Astrophysics Data System (ADS)
Goldstein, N.; Dressler, R. A.; Richtsmeier, S. S.; McLean, J.; Dao, P. D.; Murray-Krezan, J.; Fulcoly, D. O.
2013-09-01
Recent ground testing of a wide area camera system and automated star removal algorithms has demonstrated the potential to detect, quantify, and track deep space objects using small aperture cameras and on-board processors. The camera system, which was originally developed for a space-based Wide Area Space Surveillance System (WASSS), operates in a fixed-stare mode, continuously monitoring a wide swath of space and differentiating celestial objects from satellites based on differential motion across the field of view. It would have greatest utility in a LEO orbit to provide automated and continuous monitoring of deep space with high refresh rates, and with particular emphasis on the GEO belt and GEO transfer space. Continuous monitoring allows a concept of change detection and custody maintenance not possible with existing sensors. The detection approach is equally applicable to Earth-based sensor systems. A distributed system of such sensors, either Earth-based, or space-based, could provide automated, persistent night-time monitoring of all of deep space. The continuous monitoring provides a daily record of the light curves of all GEO objects above a certain brightness within the field of view. The daily updates of satellite light curves offers a means to identify specific satellites, to note changes in orientation and operational mode, and to queue other SSA assets for higher resolution queries. The data processing approach may also be applied to larger-aperture, higher resolution camera systems to extend the sensitivity towards dimmer objects. In order to demonstrate the utility of the WASSS system and data processing, a ground based field test was conducted in October 2012. We report here the results of the observations made at Magdalena Ridge Observatory using the prototype WASSS camera, which has a 4×60° field-of-view , <0.05° resolution, a 2.8 cm2 aperture, and the ability to view within 4° of the sun. A single camera pointed at the GEO belt provided a continuous night-long record of the intensity and location of more than 50 GEO objects detected within the camera's 60-degree field-of-view, with a detection sensitivity similar to the camera's shot noise limit of Mv=13.7. Performance is anticipated to scale with aperture area, allowing the detection of dimmer objects with larger-aperture cameras. The sensitivity of the system depends on multi-frame averaging and an image processing algorithm that exploits the different angular velocities of celestial objects and SOs. Principal Components Analysis (PCA) is used to filter out all objects moving with the velocity of the celestial frame of reference. The resulting filtered images are projected back into an Earth-centered frame of reference, or into any other relevant frame of reference, and co-added to form a series of images of the GEO objects as a function of time. The PCA approach not only removes the celestial background, but it also removes systematic variations in system calibration, sensor pointing, and atmospheric conditions. The resulting images are shot-noise limited, and can be exploited to automatically identify deep space objects, produce approximate state vectors, and track their locations and intensities as a function of time.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
Moving Word Learning to a Novel Space: A Dynamic Systems View of Referent Selection and Retention
ERIC Educational Resources Information Center
Samuelson, Larissa K.; Kucker, Sarah C.; Spencer, John P.
2017-01-01
Theories of cognitive development must address both the issue of how children bring their knowledge to bear on behavior in-the-moment, and how knowledge changes over time. We argue that seeking answers to these questions requires an appreciation of the dynamic nature of the developing system in its full, reciprocal complexity. We illustrate this…
Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction
NASA Astrophysics Data System (ADS)
Sun, He; Kasdin, N. Jeremy
2018-01-01
Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2017-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)
The NASA master directory: Quick reference guide
NASA Technical Reports Server (NTRS)
Satin, Karen (Editor); Kanga, Carol (Editor)
1989-01-01
This is a quick reference guide to the NASA Master Directory (MD), which is a free, online, multidisciplinary directory of space and Earth science data sets (NASA and non-NASA data) that are of potential interest to the NASA-sponsored research community. The MD contains high-level descriptions of data sets, other data systems and archives, and campaigns and projects. It provides mechanisms for searching for data sets by important criteria such as geophysical parameters, time, and spatial coverage, and provides information on ordering the data. It also provides automatic connections to a number of data systems such as the NASA Climate Data System, the Planetary Data System, the NASA Ocean Data System, the Pilot Land Data System, and others. The MD includes general information about many data systems, data centers, and coordinated data analysis projects, It represents the first major step in the Catalog Interoperability project, whose objective is to enable researchers to quickly and efficiently identify, obtain information about, and get access to space and Earth science data. The guide describes how to access, use, and exit the MD and lists its features.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
Reference Specifications for SAVOIR Avionics Elements
NASA Astrophysics Data System (ADS)
Hult, Torbjorn; Lindskog, Martin; Roques, Remi; Planche, Luc; Brunjes, Bernhard; Dellandrea, Brice; Terraillon, Jean-Loup
2012-08-01
Space industry and Agencies have been recognizing already for quite some time the need to raise the level of standardisation in the spacecraft avionics systems in order to increase efficiency and reduce development cost and schedule. This also includes the aspect of increasing competition in global space business, which is a challenge that European space companies are facing at all stages of involvement in the international markets.A number of initiatives towards this vision are driven both by the industry and ESA’s R&D programmes. However, today an intensified coordination of these activities is required in order to achieve the necessary synergy and to ensure they converge towards the shared vision. It has been proposed to federate these initiatives under the common Space Avionics Open Interface Architecture (SAVOIR) initiative. Within this initiative, the approach based on reference architectures and building blocks plays a key role.Following the principles outlined above, the overall goal of the SAVOIR is to establish a streamlined onboard architecture in order to standardize the development of avionics systems for space programmes. This reflects the need to increase efficiency and cost-effectiveness in the development process as well as account the trend towards more functionality implemented by the onboard building blocks, i.e. HW and SW components, and more complexity for the overall space mission objectives.
Environmental control/life support system for Space Station
NASA Technical Reports Server (NTRS)
Miller, C. W.; Heppner, D. B.; Schubert, F. H.; Dahlhausen, M. J.
1986-01-01
The functional, operational, and design load requirements for the Environmental Control/Life Support System (ECLSS) are described. The ECLSS is divided into two groups: (1) an atmosphere management group and (2) a water and waste management group. The interaction between the ECLSS and the Space Station Habitability System is examined. The cruciform baseline station design, the delta and big T module configuration, and the reference Space Station configuration are evaluated in terms of ECLSS requirements. The distribution of ECLSS equipment in a reference Space Station configuration is studied as a function of initial operating conditions and growth orbit capabilities. The benefits of water electrolysis as a Space Station utility are considered.
Distributed Arrays and Signal Processing for the TechSat21 Space-Based Radar
2009-04-01
lIlustrating the derivation of minimum aperture size and coherent integration time ............. 25 B 4. Global coordinate system and satellite-based...work of Dr. Robert Mailloux. Dr. Peter Franchi . and Dr. Scott Santarelli. VII Summary The TechSat2l space-based radar concept, suggested by AFRUVS...Linearization for small motions around a reference point in a global circular orbit leads to the Hill equations, derived in 1878, and alternatively named
NASA Astrophysics Data System (ADS)
Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.
2017-12-01
Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period 2017-2020, will be an unprecedented opportunity to provide the French Groupe de Recherche de Géodésie Spatiale (GRGS) with complete simulation and data processing capabilities to prepare the future arrival of space missions such as the European Geodetic Reference Antenna in SPace (E-GRASP) and to significantly contribute to the GGOS with accurate references.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2001-01-24
An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191
The Space Technology-7 Disturbance Reduction Systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad
2004-01-01
The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
Report of the panel on international programs
NASA Technical Reports Server (NTRS)
Anderson, Allen Joel; Fuchs, Karl W.; Ganeka, Yasuhiro; Gaur, Vinod; Green, Andrew A.; Siegfried, W.; Lambert, Anthony; Rais, Jacub; Reighber, Christopher; Seeger, Herman
1991-01-01
The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations.
NASA Technical Reports Server (NTRS)
Creech, Steve; Sumrall, Phil; Cockrell, Charles E., Jr.; Burris, Mike
2009-01-01
As part of NASA s Constellation Program to resume exploration beyond low Earth orbit (LEO), the Ares V heavy-lift cargo launch vehicle as currently conceived will be able to send more crew and cargo to more places on the Moon than the Apollo Program Saturn V. (Figure 1) It also has unprecedented cargo mass and volume capabilities that will be a national asset for science, commerce, and national defense applications. Compared to current systems, it will offer approximately five times the mass and volume to most orbits and locations. The Columbia space shuttle accident, the resulting investigation, the Vision for Space Exploration, and the Exploration Systems Architecture Study (ESAS) broadly shaped the Constellation architecture. Out of those events and initiatives emerged an architecture intended to replace the space shuttle, complete the International Space Station (ISS), resume a much more ambitious plan to explore the moon as a stepping stone to other destinations in the solar system. The Ares I was NASA s main priority because of the goal to retire the Shuttle. Ares V remains in a concept development phase, evolving through hundreds of configurations. The current reference design was approved during the Lunar Capabilities Concept Review/Ares V Mission Concept Review (LCCR/MCR) in June 2008. This reference concept serves as a starting point for a renewed set of design trades and detailed analysis into its interaction with the other components of the Constellation architecture and existing launch infrastructure. In 2009, the Ares V team was heavily involved in supporting the Review of U.S. Human Space Flight Plans Committee. Several alternative designs for Ares V have been supplied to the committee. This paper will discuss the origins of the Ares V design, the evolution to the current reference configuration, and the options provided to the review committee.
Space station propulsion requirements study
NASA Technical Reports Server (NTRS)
Wilkinson, C. L.; Brennan, S. M.
1985-01-01
Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2015-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).
Locating binding poses in protein-ligand systems using reconnaissance metadynamics
Söderhjelm, Pär; Tribello, Gareth A.; Parrinello, Michele
2012-01-01
A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin–benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations. PMID:22440749
Locating binding poses in protein-ligand systems using reconnaissance metadynamics.
Söderhjelm, Pär; Tribello, Gareth A; Parrinello, Michele
2012-04-03
A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin-benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations.
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
Modal-space reference-model-tracking fuzzy control of earthquake excited structures
NASA Astrophysics Data System (ADS)
Park, Kwan-Soon; Ok, Seung-Yong
2015-01-01
This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Xie, Yi
2010-11-01
We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.
Benioff, Paul
2009-01-01
Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices. he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames. he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less
Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century
NASA Technical Reports Server (NTRS)
Houts, Mike
2008-01-01
The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.
Evaluation of Design Assurance Regulations for Safety of Space Navigation Services
NASA Astrophysics Data System (ADS)
Ratti, B.; Sarno, M.; De Andreis, C.
2005-12-01
The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.
Control system design for the large space systems technology reference platform
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1982-01-01
Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zeng, Luan
2017-11-01
Binocular stereoscopic vision can be used for space-based space targets near observation. In order to solve the problem that the traditional binocular vision system cannot work normally after interference, an online calibration method of binocular stereo measuring camera with self-reference is proposed. The method uses an auxiliary optical imaging device to insert the image of the standard reference object into the edge of the main optical path and image with the target on the same focal plane, which is equivalent to a standard reference in the binocular imaging optical system; When the position of the system and the imaging device parameters are disturbed, the image of the standard reference will change accordingly in the imaging plane, and the position of the standard reference object does not change. The camera's external parameters can be re-calibrated by the visual relationship of the standard reference object. The experimental results show that the maximum mean square error of the same object can be reduced from the original 72.88mm to 1.65mm when the right camera is deflected by 0.4 degrees and the left camera is high and low with 0.2° rotation. This method can realize the online calibration of binocular stereoscopic vision measurement system, which can effectively improve the anti - jamming ability of the system.
On the definition and use of the ecliptic in modern astronomy
NASA Astrophysics Data System (ADS)
Capitaine, N.; Soffel, M.
2015-08-01
The ecliptic was a fundamental reference plane for astronomy from antiquity to the realization and use of the FK5 reference system. The situation has changed considerably with the adoption of the International Celestial Reference system (ICRS) by the IAU in 1998 and the IAU resolutions on reference systems that were adopted from 2000 to 2009. First, the ICRS has the property of being independent of epoch, ecliptic or equator. Second, the IAU 2000 resolutions, which specified the systems of space-time coordinates within the framework of General Relativity, for the solar system (the Barycentric Celestial Reference System, BCRS) and the Earth (the Geocentric Celestial Reference System, GCRS), did not refer to any ecliptic and did not provide a definition of a GCRS ecliptic. These resolutions also provided the definition of the pole of the nominal rotation axis (the Celestial intermediate pole, CIP) and of new origins on the equator (the Celestial and Terrestrial intermediate origins, CIO and TIO), which do not require the use of an ecliptic. Moreover, the models and standards adopted by the IAU 2006 and IAU 2009 resolutions are largely referred to the ICRS, BCRS, GCRS as well as to the new pole and origins. Therefore, the ecliptic has lost much of its importance. We review the consequences of these changes and improvements in the definition and use of the ecliptic and we discuss whether the concept of an ecliptic is still needed for some specific use in modern astronomy.
Space Shuttle 2 advanced space transportation system, volume 2
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference.
Lunar Navigation Determination System - LaNDS
NASA Technical Reports Server (NTRS)
Quinn, David; Talabac, Stephen
2012-01-01
A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.
Moving to a Modernized Height Reference System in Canada: Rationale, Status and Plans
NASA Astrophysics Data System (ADS)
Veronneau, M.; Huang, J.
2007-05-01
A modern society depends on a common coordinate reference system through which geospatial information can be interrelated and exploited reliably. For height measurements this requires the ability to measure mean sea level elevations easily, accurately, and at the lowest possible cost. The current national reference system for elevations, the Canadian Geodetic Vertical Datum of 1928 (CGVD28), offers only partial geographic coverage of the Canadian territory and is affected by inaccuracies that are becoming more apparent as users move to space- based technologies such as GPS. Furthermore, the maintenance and expansion of the national vertical network using spirit-levelling, a costly, time consuming and labour intensive proposition, has only been minimally funded over the past decade. It is now generally accepted that the most sustainable alternative for the realization of a national vertical datum is a gravimetric geoid model. This approach defines the datum in relation to an ellipsoid, making it compatible with space-based technologies for positioning. While simplifying access to heights above mean sea level all across the Canadian territory, this approach imposes additional demands on the quality of the geoid model. These are being met by recent and upcoming space gravimetry missions that have and will be measuring the Earth`s gravity field with increasing and unprecedented accuracy. To maintain compatibility with the CGVD28 datum materialized at benchmarks, the current first-order levelling can be readjusted by constraining geoid heights at selected stations of the Canadian Base Network. The new reference would change CGVD28 heights of benchmarks by up to 1 m across Canada. However, local height differences between benchmarks would maintain a relative precision of a few cm or better. CGVD28 will co-exist with the new height reference as long as it will be required, but it will undoubtedly disappear as benchmarks are destroyed over time. The adoption of GNSS technologies for positioning should naturally move users to the new height reference and offer the possibility of transferring heights over longer distances, within the precision of the geoid model. This transition will also reduce user dependency on a dense network of benchmarks and offer the possibility for geodetic agencies to provide the reference frame with a reduced number of 3D control points. While the rationale for moving to a modernized height system is easily understood, the acceptance of the new system by users will only occur gradually as they adopt new technologies and procedures to access the height reference. A stakeholder consultation indicates user readiness and an implementation plan is starting to unfold. This presentation will look at the current state of the geoid model and control networks that will support the modernized height system. Results of the consultation and the recommendations regarding the roles and responsibilities of the various stakeholders involved in implementing the transition will also be reported.
Real Time Correction of Aircraft Flight Fonfiguration
NASA Technical Reports Server (NTRS)
Schipper, John F. (Inventor)
2009-01-01
Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.
Towards a Refined Realisation of the Terrestrial Reference System
NASA Astrophysics Data System (ADS)
Angermann, D.; Drewes, H.; Meisel, B.; Kruegel, M.; Tesmer, V.
2004-12-01
Global reference frames provide the framework for scientific investigations of the Earth's system (e.g. plate tectonics, sea level change, seasonal and secular loading signals, atmosphere dynamics, Earth orientation excitation), as well as for many practical applications (e.g. surveying and navigation). Today, space geodetic techniques allow to determine geodetic parameters (e.g. station positions, Earth rotation) with a precision of a few millimeters (or even better). However, this high accuracy is not reflected by current realisations of the terrestrial reference system. To fully exploit the potential of the space geodetic observations for investigations of various global and regional, short-term, seasonal and secular phenomena of the Earth's system, the reference frame must be realised with the highest accuracy, spatial and temporal consistency and stability over decades. Furthermore, future progress in Earth sciences will fundamentally depend on understanding the Earth as a system, into which the three areas of geodetic research (geometry/deformation, Earth rotation, gravity) are to be integrated. The presentation focusses on various aspects that must be considered for a refined realisation of the terrestrial reference system, such as the development of suitable methods for the combination of the contributing space geodetic observations, the realisation of the TRF datum and the parameterisation of site motions. For this purpose we investigated time series of station positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions, and compared the results at co-location sites and with other studies. Furthermore, we present results obtained from a TRS realisation based on epoch (weekly/daily) normal equations with station positions and daily Earth Orientation Parameters (EOP) using five years (1999-2004) of VLBI, SLR, GPS and DORIS data. This refined approach has major advantages compared to past TRF realisations based on multi-year solutions with station positions at a given epoch and constant velocities, as for instance non-linear effects of site positions and datum parameters can be considered, and consistency between TRF and EOPs can be achieved. First results of this new approach are promising.
Space vehicle electrical power processing distribution and control study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Krausz, A.
1972-01-01
A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).
Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames
NASA Astrophysics Data System (ADS)
Cognola, G.
1980-06-01
The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations
NASA Astrophysics Data System (ADS)
Smith, Lesley Jane
2011-09-01
Spatial data and imagery generators are set to become tomorrow's key players in the information society. This is why satellite owners and operators are examining new revenue-producing models for developing space-related products and services. The use and availability of broadband internet width and satellite data-based services will continue to increase in the future. With the capacity to deliver real time precision downstream data, space agencies and the satellite industry can respond to the demand for high resolution digital space information which, with the appropriate technology, can be integrated into a variety of web-based applications. At a time when the traditional roles of space agencies are becoming more hybrid, largely as a result of the greater drive towards commercial markets, new value-added markets for space-related information products are continuing to attract attention. This paper discusses whether traditional data policies on space data access and IP licensing schemes stand to remain the feasible prototype for distributing and marketing space data, and how this growth market might benefit from looking at an 'up and running' global IP management system already operating to manage end user digital demand. PrefaceThe terminology describing the various types of spatial data and space-based information is not uniformly used within the various principles, laws and policies that govern space data. For convenience only this paper refers to primary or raw data gathered by the space-based industry as spatial or raw data, and the data as processed and sold on or distributed by ground-based companies as space information products and services. In practise, spatial data range from generic to specific data sets, digital topography, through to pictures and imagery services at various resolutions, with 3-D perspectives underway. The paper addresses general IP considerations relating to spatial data, with some reference to remote sensing itself. Exact IP details will depend at all times on the final product and service in question.
Model-based framework for multi-axial real-time hybrid simulation testing
NASA Astrophysics Data System (ADS)
Fermandois, Gaston A.; Spencer, Billie F.
2017-10-01
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controlled at the interface between substructures.
Changing Our Perspective on Space: Place Mathematics as a Human Endeavour
ERIC Educational Resources Information Center
Owens, Kay
2010-01-01
This paper collates some of the systematic ways that different cultural groups refer to space. In some cases, space is more strongly identified in terms of place than in school Indo-European mathematics approaches. The affinity to place does not reduce the efficient, abstract, mathematical system behind the reference but it does strengthen its…
Three-dimensional reproducibility of natural head position.
Weber, Diana W; Fallis, Drew W; Packer, Mark D
2013-05-01
Although natural head position has proven to be reliable in the sagittal plane, with an increasing interest in 3-dimensional craniofacial analysis, a determination of its reproducibility in the coronal and axial planes is essential. This study was designed to evaluate the reproducibility of natural head position over time in the sagittal, coronal, and axial planes of space with 3-dimensional imaging. Three-dimensional photographs were taken of 28 adult volunteers (ages, 18-40 years) in natural head position at 5 times: baseline, 4 hours, 8 hours, 24 hours, and 1 week. Using the true vertical and horizontal laser lines projected in an iCAT cone-beam computed tomography machine (Imaging Sciences International, Hatfield, Pa) for orientation, we recorded references for natural head position on the patient's face with semipermanent markers. By using a 3-dimensional camera system, photographs were taken at each time point to capture the orientation of the reference points. By superimposing each of the 5 photographs on stable anatomic surfaces, changes in the position of the markers were recorded and assessed for parallelism by using 3dMDvultus (3dMD, Atlanta, Ga) and software (Dolphin Imaging & Management Solutions, Chatsworth, Calif). No statistically significant differences were observed between the 5 time points in any of the 3 planes of space. However, a statistically significant difference was observed between the mean angular deviations of 3 reference planes, with a hierarchy of natural head position reproducibility established as coronal > axial > sagittal. Within the parameters of this study, natural head position was found to be reproducible in the sagittal, coronal, and axial planes of space. The coronal plane had the least variation over time, followed by the axial and sagittal planes. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pressler, David E.
2012-03-01
A great discrepancy exists - the speed of light and the neutrino speed must be identical; as indicated by supernova1987A; yet, OPERA predicts faster-than-light neutrinos. Einstein's theories are based on the invariance of the speed of light, and no privileged Galilean frame of reference exists. Both of these hypotheses are in error and must be reconciled in order to solve the dilemma. The Michelson-Morley Experiment was misinterpreted - my Neoclassical Theory postulates that BOTH mirrors of the interferometer physically and absolutely move towards its center. The result is a three-directional-Contraction, (x, y, z axis), an actual distortion of space itself; a C-Space condition. ``PRESSLER'S LAW OF C-SPACE: The speed of light, c, will always be measured the same speed in all three directions (˜300,000 km/sec), in ones own inertial reference system, and will always be measured as having a different speed in all other inertial frames which are at a different kinetic energy level or at a location with a different strength gravity field'' Thus, the faster you go, motion, or the stronger the gravity field the smaller you get in all three directions. OPERA results are explained; at the surface of Earth, the strength of gravity field is at maximum -- below the earth's surface, time and space is less distorted; therefore, time is absolutely faster accordingly. Reference OPERA's preprint: Neutrino's faster time-effect due to altitude difference; (10-13ns) x c (299792458m) = 2.9 x 10-5 m/ns x distance (730085m) + 21.8m.) This is consistent with the OPERA result.
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Tanimura, Yoshitaka
2015-04-01
We consider a quantum mechanical system represented in phase space (referred to hereafter as "Wigner space"), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time, which represents an inverse temperature. This is an extension of a previous work, in which we studied a spin-boson system, to a Brownian system. It is shown that the QHFP in real time obtained from a correlated thermal equilibrium state of the total system possesses the same form as those obtained from a factorized initial state. A modified terminator for the hierarchal equations of motion is introduced to treat the non-Markovian case more efficiently. Using the imaginary-time QHFP, numerous thermodynamic quantities, including the free energy, entropy, internal energy, heat capacity, and susceptibility, can be evaluated for any potential. These equations allow us to treat non-Markovian, non-perturbative system-bath interactions at finite temperature. Through numerical integration of the real-time QHFP for a harmonic system, we obtain the equilibrium distributions, the auto-correlation function, and the first- and second-order response functions. These results are compared with analytically exact results for the same quantities. This provides a critical test of the formalism for a non-factorized thermal state and elucidates the roles of fluctuation, dissipation, non-Markovian effects, and system-bath coherence. Employing numerical solutions of the imaginary-time QHFP, we demonstrate the capability of this method to obtain thermodynamic quantities for any potential surface. It is shown that both types of QHFP equations can produce numerical results of any desired accuracy. The FORTRAN source codes that we developed, which allow for the treatment of Wigner space dynamics with any potential form (TanimuranFP15 and ImTanimuranFP15), are provided as the supplementary material.
Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.
Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon
2009-01-01
Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.
Direct-to-digital holography reduction of reference hologram noise and fourier space smearing
Voelkl, Edgar
2006-06-27
Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.
NASA Astrophysics Data System (ADS)
Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia
2013-08-01
The Global Geodetic Observing System (GGOS) requires sub-mm accuracy, automated and continual determinations of the so-called local tie vectors at co-location stations. Co-location stations host instrumentation for several space geodetic techniques and the local tie surveys involve the relative geometry of the reference points of these instruments. Thus, these reference points need to be determined in a common coordinate system, which is a particular challenge for rotating equipment like radio telescopes for geodetic Very Long Baseline Interferometry. In this work we describe a concept to achieve automated and continual determinations of radio telescope reference points with sub-mm accuracy. We developed a monitoring system, including Java-based sensor communication for automated surveys, network adjustment and further data analysis. This monitoring system was tested during a monitoring campaign performed at the Onsala Space Observatory in the summer of 2012. The results obtained in this campaign show that it is possible to perform automated determination of a radio telescope reference point during normal operations of the telescope. Accuracies on the sub-mm level can be achieved, and continual determinations can be realized by repeated determinations and recursive estimation methods.
The Federated Satellite Systems paradigm: Concept and business case evaluation
NASA Astrophysics Data System (ADS)
Golkar, Alessandro; Lluch i Cruz, Ignasi
2015-06-01
This paper defines the paradigm of Federated Satellite Systems (FSS) as a novel distributed space systems architecture. FSS are networks of spacecraft trading previously inefficiently allocated and unused resources such as downlink bandwidth, storage, processing power, and instrument time. FSS holds the promise to enhance cost-effectiveness, performance and reliability of existing and future space missions, by networking different missions and effectively creating a pool of resources to exchange between participants in the federation. This paper introduces and describes the FSS paradigm, and develops an approach integrating mission analysis and economic assessments to evaluate the feasibility of the business case of FSS. The approach is demonstrated on a case study on opportunities enabled by FSS to enhance space exploration programs, with particular reference to the International Space Station. The application of the proposed methodology shows that the FSS concept is potentially able to create large commercial markets of in-space resources, by providing the technical platform to offer the opportunity for spacecraft to share or make use of unused resources within their orbital neighborhood. It is shown how the concept is beneficial to satellite operators, space agencies, and other stakeholders of the space industry to more flexibly interoperate space systems as a portfolio of assets, allowing unprecedented collaboration among heterogeneous types of missions.
Maintenance of Time and Frequency in the DSN Using the Global Positioning System
NASA Technical Reports Server (NTRS)
Clements, P. A.; Kirk, A.; Borutzki, S. E.
1985-01-01
The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.
Continuation of research in software for space operations support
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1989-01-01
Software technologies relevant to workstation executives are discussed. Evaluations of problems, potential or otherwise, seen with IBM's Workstation Executive (WEX) 2.5 preliminary design and applicable portions of the 2.5 critical design are presented. Diverse graphics requirements of the Johnson Space Center's Mission Control Center Upgrade (MCCU) are also discussed. The key is to use tools that are portable, compatible with the X window system, and best suited to the requirements of the associated application. This will include a User Interface Language (UIL), an interactive display builder, and a graphic plotting/modeling system. Work sheets are provided for POSIX 1003.4 real-time extensions and the requirements for the Center's automated information systems security plan, referred to as POSIX 1003.6, are discussed.
NASA Technical Reports Server (NTRS)
1980-01-01
Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.
Earth orbital experiment program and requirements study, volume 1, sections 1 - 6
NASA Technical Reports Server (NTRS)
1971-01-01
A reference manual for planners of manned earth-orbital research activity is presented. The manual serves as a systems approach to experiment and mission planning based on an integrated consideration of candidate research programs and the appropriate vehicle, mission, and technology development requirements. Long range goals and objectives for NASA activities during the 1970 to 1980 time period are analyzed. The useful and proper roles of manned and automated spacecraft for implementing NASA experiments are described. An integrated consideration of NASA long range goals and objectives, the system and mission requirements, and the alternative implementation plans are developed. Specific areas of investigation are: (1) manned space flight requirements, (2) space biology, (3) spaceborne astronomy, (4) space communications and navigation, (5) earth observation, (6) supporting technology development requirements, (7) data management system matrices, (8) instrumentation matrices, and (9) biotechnology laboratory experiments.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan
2013-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony
2012-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
ERIC Educational Resources Information Center
Lavoie, Brian; Dempsey, Lorcan; Connaway, Lynn Silipigni
2006-01-01
If librarians want to improve their visibility and value in the increasingly crowded digital information spaces, where users expect good results without expending much time or effort, they must learn to repurpose data to create added value. Since librarians already possess valuable data sources, like circulation statistics, reference transactions,…
Analysis of automatic repeat request methods for deep-space downlinks
NASA Technical Reports Server (NTRS)
Pollara, F.; Ekroot, L.
1995-01-01
Automatic repeat request (ARQ) methods cannot increase the capacity of a memoryless channel. However, they can be used to decrease the complexity of the channel-coding system to achieve essentially error-free transmission and to reduce link margins when the channel characteristics are poorly predictable. This article considers ARQ methods on a power-limited channel (e.g., the deep-space channel), where it is important to minimize the total power needed to transmit the data, as opposed to a bandwidth-limited channel (e.g., terrestrial data links), where the spectral efficiency or the total required transmission time is the most relevant performance measure. In the analysis, we compare the performance of three reference concatenated coded systems used in actual deep-space missions to that obtainable by ARQ methods using the same codes, in terms of required power, time to transmit with a given number of retransmissions, and achievable probability of word error. The ultimate limits of ARQ with an arbitrary number of retransmissions are also derived.
Reference Frames in Relativistic Space-Time
NASA Astrophysics Data System (ADS)
Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.
Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.
Origins Space Telescope: Science Case and Design Reference Mission for Concept 1
NASA Astrophysics Data System (ADS)
Meixner, Margaret; Cooray, Asantha; Pope, Alexandra; Armus, Lee; Vieira, Joaquin Daniel; Milam, Stefanie N.; Melnick, Gary; Leisawitz, David; Staguhn, Johannes G.; Bergin, Edwin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The science case for OST covers four themes: Tracing the Signature of Life and the Ingredients of Habitable Worlds; Charting the Rise of Metals, Dust and the First Galaxies, Unraveling the Co-evolution of Black Holes and Galaxies and Understanding Our Solar System in the Context of Planetary System Formation. Using a set of proposed observing programs from the community, we estimate a design reference mission for OST mission concept 1. The mission will complete significant programs in these four themes and have time for other programs from the community. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu.
Quick acquisition and recognition method for the beacon in deep space optical communications.
Wang, Qiang; Liu, Yuefei; Ma, Jing; Tan, Liying; Yu, Siyuan; Li, Changjiang
2016-12-01
In deep space optical communications, it is very difficult to acquire the beacon given the long communication distance. Acquisition efficiency is essential for establishing and holding the optical communication link. Here we proposed a quick acquisition and recognition method for the beacon in deep optical communications based on the characteristics of the deep optical link. To identify the beacon from the background light efficiently, we utilized the maximum similarity between the collecting image and the reference image for accurate recognition and acquisition of the beacon in the area of uncertainty. First, the collecting image and the reference image were processed by Fourier-Mellin. Second, image sampling and image matching were applied for the accurate positioning of the beacon. Finally, the field programmable gate array (FPGA)-based system was used to verify and realize this method. The experimental results showed that the acquisition time for the beacon was as fast as 8.1s. Future application of this method in the system design of deep optical communication will be beneficial.
Space shuttle propulsion estimation development verification
NASA Technical Reports Server (NTRS)
Rogers, Robert M.
1989-01-01
The application of extended Kalman filtering to estimating the Space Shuttle Propulsion performance, i.e., specific impulse, from flight data in a post-flight processing computer program is detailed. The flight data used include inertial platform acceleration, SRB head pressure, SSME chamber pressure and flow rates, and ground based radar tracking data. The key feature in this application is the model used for the SRB's, which is a nominal or reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are also included for an integrated system model. Assuming uncertainty within the propulsion system model and attempts to estimate its deviations represent a new application of parameter estimation for rocket powered vehicles. Illustrations from the results of applying this estimation approach to several missions show good quality propulsion estimates.
NASA Technical Reports Server (NTRS)
Albus, James S.; Mccain, Harry G.; Lumia, Ronald
1989-01-01
The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.
Making intelligent systems team players. A guide to developing intelligent monitoring systems
NASA Technical Reports Server (NTRS)
Land, Sherry A.; Malin, Jane T.; Thronesberry, Carroll; Schreckenghost, Debra L.
1995-01-01
This reference guide for developers of intelligent monitoring systems is based on lessons learned by developers of the DEcision Support SYstem (DESSY), an expert system that monitors Space Shuttle telemetry data in real time. DESSY makes inferences about commands, state transitions, and simple failures. It performs failure detection rather than in-depth failure diagnostics. A listing of rules from DESSY and cue cards from DESSY subsystems are included to give the development community a better understanding of the selected model system. The G-2 programming tool used in developing DESSY provides an object-oriented, rule-based environment, but many of the principles in use here can be applied to any type of monitoring intelligent system. The step-by-step instructions and examples given for each stage of development are in G-2, but can be used with other development tools. This guide first defines the authors' concept of real-time monitoring systems, then tells prospective developers how to determine system requirements, how to build the system through a combined design/development process, and how to solve problems involved in working with real-time data. It explains the relationships among operational prototyping, software evolution, and the user interface. It also explains methods of testing, verification, and validation. It includes suggestions for preparing reference documentation and training users.
NASA Technical Reports Server (NTRS)
1997-01-01
Kennedy Space Center specialists aided Space, Energy, Time Saving (SETS) Systems, Inc. in working out the problems they encountered with their new electronic "tankless" water heater. The flow switch design suffered intermittent problems. Hiring several testing and engineering firms produced only graphs, printouts, and a large expense, but no solutions. Then through the Kennedy Space Center/State of Florida Technology Outreach Program, SETS was referred to Michael Brooks, a 21-year space program veteran and flowmeter expert. Run throughout Florida to provide technical service to businesses at no cost, the program applies scientific and engineering expertise originally developed for space applications to the Florida business community. Brooks discovered several key problems, resulting in a new design that turned out to be simpler, yielding a 63 percent reduction in labor and material costs over the old design.
NASA Astrophysics Data System (ADS)
Marchand, R.; Purschke, D.; Samson, J.
2013-03-01
Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft frame reference. Restrictions: Low Earth orbits, altitudes between 150 and 2000 km. Running time: Approximately two seconds to parameterize a full orbit with 1000 points.
Analysis and testing of a space crane articulating joint testbed
NASA Technical Reports Server (NTRS)
Sutter, Thomas R.; Wu, K. Chauncey
1992-01-01
The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.
Deep space communication - A one billion mile noisy channel
NASA Technical Reports Server (NTRS)
Smith, J. G.
1982-01-01
Deep space exploration is concerned with the study of natural phenomena in the solar system with the aid of measurements made at spacecraft on deep space missions. Deep space communication refers to communication between earth and spacecraft in deep space. The Deep Space Network is an earth-based facility employed for deep space communication. It includes a network of large tracking antennas located at various positions around the earth. The goals and achievements of deep space exploration over the past 20 years are discussed along with the broad functional requirements of deep space missions. Attention is given to the differences in space loss between communication satellites and deep space vehicles, effects of the long round-trip light time on spacecraft autonomy, requirements for the use of massive nuclear power plants on spacecraft at large distances from the sun, and the kinds of scientific return provided by a deep space mission. Problems concerning a deep space link of one billion miles are also explored.
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Hufenbach, Bernhard; Junichiro, Kawaguchi; Piedboeuf, Jean-Claude; Schade, Britta; Lorenzoni, Andrea; Curtis, Jeremy; Hae-Dong, Kim
2010-01-01
The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy: The Framework for Coordination developed by fourteen space agencies and released in May 2007. Several ISECG participating space agencies have been studying concepts for human exploration of the moon that allow individual and collective goals and objectives to be met. This 18 month study activity culminated with the development of the ISECG Reference Architecture for Human Lunar Exploration. The reference architecture is a series of elements delivered over time in a flexible and evolvable campaign. This paper will describe the reference architecture and how it will inform near-term and long-term programmatic planning within interested agencies. The reference architecture is intended to serve as a global point of departure conceptual architecture that enables individual agency investments in technology development and demonstration, International Space Station research and technology demonstration, terrestrial analog studies, and robotic precursor missions to contribute towards the eventual implementation of a human lunar exploration scenario which reflects the concepts and priorities established to date. It also serves to create opportunities for partnerships that will support evolution of this concept and its eventual realization. The ISECG Reference Architecture for Human Lunar Exploration (commonly referred to as the lunar gPoD) reflects the agency commitments to finding an effective balance between conducting important scientific investigations of and from the moon, as well as demonstrating and mastering the technologies and capabilities to send humans farther into the Solar System. The lunar gPoD begins with a robust robotic precursor phase that demonstrates technologies and capabilities considered important for the success of the campaign. Robotic missions will inform the human missions and buy down risks. Human exploration will start with a thorough scientific investigation of the polar region while allowing the ability to demonstrate and validate the systems needed to take humans on more ambitious lunar exploration excursions. The ISECG Reference Architecture for Human Lunar Exploration serves as a model for future cooperation and is documented in a summary report and a comprehensive document that also describes the collaborative international process that led to its development. ISECG plans to continue with architecture studies such as this to examine an open transportation architecture and other destinations, with expanded participation from ISECG agencies, as it works to inform international partnerships and advance the Global Exploration Strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M R
1980-11-01
A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledgemore » regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).« less
Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission
NASA Astrophysics Data System (ADS)
Kuzmicz-Cieslak, M.; Pavlis, E. C.
2011-12-01
The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.
A Reference Architecture for Space Information Management
NASA Technical Reports Server (NTRS)
Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.
2006-01-01
We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
The Calibration Reference Data System
NASA Astrophysics Data System (ADS)
Greenfield, P.; Miller, T.
2016-07-01
We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.
NASA Technical Reports Server (NTRS)
1981-01-01
A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.
Nonlinear techniques for forecasting solar activity directly from its time series
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.; Cooley, J.
1992-01-01
Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.
Nonlinear techniques for forecasting solar activity directly from its time series
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.; Cooley, J.
1993-01-01
This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.
The space transportation system and its impact on Latin American development
NASA Technical Reports Server (NTRS)
Diaz, F. R. C.
1985-01-01
The three components of the Space Transportation System: the space shuttle, the permanent orbital space station and the transorbital vehicle are described. The stages of completion of the various plans are discussed and the impact of the project's implementation is discussed with particular reference to Latin America and with special emphasis on the telecommunications sector.
Design of H2-O2 space shuttle APU. Volume 1: APU design
NASA Technical Reports Server (NTRS)
Harris, E.
1974-01-01
The H2-O2 space shuttle auxiliary power unit (APU) program is a NASA-Lewis effort aimed at hardware demonstration of the technology required for potential use on the space shuttle. It has been shown that a hydrogen-oxygen power unit (APU) system is an attractive alternate to the space shuttle baseline hydrazine APU system for minimum weight. It has the capability for meeting many of the heat sink requirements for the space shuttle vehicle, thereby reducing the amount of expendable evaporants required for cooling in the baseline APU. Volume 1 of this report covers preliminary design and analysis of the current reference system and detail design of the test version of this reference system. Combustor test results are also included. Volume 2 contains the results of the analysis of an initial version of the reference system and the computer printouts of system performance. The APU consists of subsystems for propellant feed and conditioning, turbopower, and control. Propellant feed and conditioning contains all heat exchangers, valves, and the combustor. The turbopower subsystem contains a two-stage partial-admission pressure-modulated, 400-hp, 63,000-rpm turbine, a 0-to 4-g lubrication system, and a gearbox with output pads for two hydraulic pumps and an alternator (alternator not included on test unit). The electronic control functions include regulation of speed and system temperatures; and start-and-stop sequences, overspeed (rpm) and temperature limits, failsafe provisions, and automatic shutdown provisions.
NASA Technical Reports Server (NTRS)
Helms, W. Jason; Pohlkamp, Kara M.
2011-01-01
The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems
NASA Astrophysics Data System (ADS)
Pawlicki, Ted
1988-03-01
Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.
Fractal and multifractal models for extreme bursts in space plasmas.
NASA Astrophysics Data System (ADS)
Watkins, Nicholas; Chapman, Sandra; Credgington, Dan; Rosenberg, Sam; Sanchez, Raul
2010-05-01
Space plasmas may be said to show at least two types of "universality". One type arises from the fact that plasma physics underpins all astrophysical systems, while another arises from the generic properties of coupled nonlinear physical systems, a branch of the emerging science of complexity. Much work in complexity science is contributing to the physical understanding of the ways by which complex interactions in such systems cause driven or random perturbations to be nonlinearly amplified in amplitude and/or spread out over a wide range of frequencies. These mechanisms lead to non-Gaussian fluctuations and long-ranged temporal memory (referred to by Mandelbrot as the "Noah" and "Joseph" effects, respectively). This poster discusses a standard toy model (linear fractional stable motion, LFSM) which combines the Noah and Joseph effects in a controllable way. I will describe how LFSM is being used to explore the interplay of the above two effects in the distribution of bursts above thresholds, with applications to extreme events in space time series. I will describe ongoing work to improve the accuracy of maximum likelihood-based estimation of burst size and waiting time distributions for LFSM first reported in Watkins et al [Space Science Review, 2005; PRE, 2009]. The relevance of turbulent cascades to space plasmas necessitates comparison between this model and multifractal models, and early results will be described [Watkins et al, PRL comment, 2009].
Flight Test Results from Real-Time Relative Global Positioning System Flight Experiment on STS-69
NASA Technical Reports Server (NTRS)
Park, Young W.; Brazzel, Jack P., Jr.; Carpenter, J. Russell; Hinkel, Heather D.; Newman, James H.
1996-01-01
A real-time global positioning system (GPS) Kalman filter has been developed to support automated rendezvous with the International Space Station (ISS). The filter is integrated with existing Shuttle rendezvous software running on a 486 laptop computer under Windows. In this work, we present real-time and postflight results achieved with the filter on STS-69. The experiment used GPS data from an Osborne/Jet propulsion Laboratory TurboRouge receiver carried on the Wake Shield Facility (WSF) free flyer and a Rockwell Collins 3M receiver carried on the Orbiter. Real time filter results, processed onboard the Shuttle and replayed in near-time on the ground, are based on single vehicle mode operation and on 5 to 20 minute snapshots of telemetry provided by WSF for dual-vehicle mode operation. The Orbiter and WSF state vectors calculated using our filter compare favorably with precise reference orbits determined by the University of Texas Center for Space Research. The lessons learned from this experiment will be used in conjunction with future experiments to mitigate the technology risk posed by automated rendezvous and docking to the ISS.
Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Erzberger, Heinz
2017-01-01
Trajectory Specification is the explicit bounding and control of aircraft trajectories such that the position at any point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. Assuming conformance, Trajectory Specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure; hence it can help to achieve the high level of safety and reliability needed for ATC automation. It can also reduce the reliance on tactical backup systems during normal operation. This paper applies it to the terminal area around a major airport and presents algorithms and software for detecting and resolving conflicts. A representative set of pairwise conflicts was generated, and a fast-time simulation was run on them. All conflicts were successfully resolved in real time, demonstrating the computational feasibility of the concept.
The detection of planetary systems from Space Station - A star observation strategy
NASA Technical Reports Server (NTRS)
Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.
1987-01-01
A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.
Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2011-01-01
Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.
System Engineering Issues for Avionics Survival in the Space Environment
NASA Technical Reports Server (NTRS)
Pavelitz, Steven
1999-01-01
This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.
Buildup of spatial information over time and across eye-movements.
Zimmermann, Eckart; Morrone, M Concetta; Burr, David C
2014-12-15
To interact rapidly and effectively with our environment, our brain needs access to a neural representation of the spatial layout of the external world. However, the construction of such a map poses major challenges, as the images on our retinae depend on where the eyes are looking, and shift each time we move our eyes, head and body to explore the world. Research from many laboratories including our own suggests that the visual system does compute spatial maps that are anchored to real-world coordinates. However, the construction of these maps takes time (up to 500ms) and also attentional resources. We discuss research investigating how retinotopic reference frames are transformed into spatiotopic reference-frames, and how this transformation takes time to complete. These results have implications for theories about visual space coordinates and particularly for the current debate about the existence of spatiotopic representations. Copyright © 2014 Elsevier B.V. All rights reserved.
Space Construction System Analysis. Part 2: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
A detailed, end-to-end analysis of the activities, techniques, equipment and Shuttle provisions required to construct a reference project system is described. Included are: platform definition; construction analysis; cost and programmatics; and space construction experiments concepts.
Satellite power system: Concept development and evaluation program, reference system report
NASA Technical Reports Server (NTRS)
1979-01-01
The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.
Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking
NASA Astrophysics Data System (ADS)
Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan
2016-06-01
SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
NASA Technical Reports Server (NTRS)
Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel
1990-01-01
Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.
Study on the calibration and optimization of double theodolites baseline
NASA Astrophysics Data System (ADS)
Ma, Jing-yi; Ni, Jin-ping; Wu, Zhi-chao
2018-01-01
For the double theodolites measurement system baseline as the benchmark of the scale of the measurement system and affect the accuracy of the system, this paper puts forward a method for calibration and optimization of the double theodolites baseline. Using double theodolites to measure the known length of the reference ruler, and then reverse the baseline formula. Based on the error propagation law, the analyses show that the baseline error function is an important index to measure the accuracy of the system, and the reference ruler position, posture and so on have an impact on the baseline error. The optimization model is established and the baseline error function is used as the objective function, and optimizes the position and posture of the reference ruler. The simulation results show that the height of the reference ruler has no effect on the baseline error; the posture is not uniform; when the reference ruler is placed at x=500mm and y=1000mm in the measurement space, the baseline error is the smallest. The experimental results show that the experimental results are consistent with the theoretical analyses in the measurement space. In this paper, based on the study of the placement of the reference ruler, for improving the accuracy of the double theodolites measurement system has a reference value.
State of Art in space weather observational activities and data management in Europe
NASA Astrophysics Data System (ADS)
Stanislawska, Iwona
One of the primary scientific and technical goals of space weather is to produce data in order to investigate the Sun impact on the Earth and its environment. Studies based on data mining philosophy yield increase the knowledge of space weather physical properties, modelling capabilities and gain applications of various procedures in space weather monitoring and forecasting. Exchanging tailored individually and/or jointly data between different entities, storing of the databases and making data accessible for the users is the most important task undertaken by investigators. National activities spread over Europe is currently consolidated pursuant to the terms of effectiveness and individual contributions embedded in joint integrated efforts. The role of COST 724 Action in animation of such a movement is essential. The paper focuses on the analysis of the European availability in the Internet near-real time and historical collections of the European ground based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The structure of the content is supplied according to the following selection: (1) observations, raw and/or corrected, updated data, (2) resolution, availability of real-time and historical data, (3) products, as the results of models and theory including (a) maps, forecasts and alerts, (b) resolution, availability of real-time and historical data, (4) platforms to deliver data. Characterization of the networking of stations, observatories and space related monitoring systems of data collections is integrated part of the paper. According to these provisions operational systems developed for these purposes is presented and analysed. It concerns measurements, observations and parameters from the theory and models referred to local, regional collections, European and worldwide networks. Techniques used by these organizations to generate the digital content are identified. As the reference pan-European and some national data centres and bases are described and compared with currently available data information provided worldwide and by relevant entities outside Europe. Current, follow up and expected future European space weather observational activities and data management perspectives in respect to European main lines of policy is the subject of the conclusions.
Aperture Averaging of Scintillation for Space-to-Ground Optical Communication Applications.
1983-08-15
SCINTILLATION FOR SPACE-TO-GROUND OPTICAL COMUNICATION APPLICATIONS ........................ 5 REFERENCES...theoretical investigations necessary for the evaluation and applica- tion of scientific advances to now military space systems. Versatility and flexibility...systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that con
NASA Astrophysics Data System (ADS)
Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan
2018-02-01
Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.
Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution
NASA Technical Reports Server (NTRS)
Paielli, Russ; Erzberger, Heinz
2017-01-01
Trajectory specification is the explicit bounding and control of aircraft trajectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on the terminal area and presents algorithms and software for spacing arrivals and deconflicting both arrivals and departures.
Design of a final approach spacing tool for TRACON air traffic control
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh
1989-01-01
This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.
On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.
Yamazaki, Keisuke
2012-07-01
Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.
On the Execution Control of HLA Federations using the SISO Space Reference FOM
NASA Technical Reports Server (NTRS)
Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.
2017-01-01
In the Space domain the High Level Architecture (HLA) is one of the reference standard for Distributed Simulation. However, for the different organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA) and their industrial partners, it is difficult to implement HLA simulators (called Federates) able to interact and interoperate in the context of a distributed HLA simulation (called Federation). The lack of a common FOM (Federation Object Model) for the Space domain is one of the main reasons that precludes a-priori interoperability between heterogeneous federates. To fill this lack a Product Development Group (PDG) has been recently activated in the Simulation Interoperability Standards Organization (SISO) with the aim to provide a Space Reference FOM (SRFOM) for international collaboration on Space systems simulations. Members of the PDG come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The paper presents an overview of the ongoing Space Reference FOM standardization initiative by focusing on the solution provided for managing the execution of an SRFOM-based Federation.
Danescu, Radu; Ciurte, Anca; Turcu, Vlad
2014-02-11
The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image.
Update on VLBA Astrometry of Cassini
NASA Astrophysics Data System (ADS)
Jones, Dayton L.; Folkner, William M.; Jacobson, Robert A.; Jacobs, Christopher S.; Romney, Jon; Dhawan, Vivek; Fomalont, Edward B.
2015-01-01
The NRAO Very Long Baseline Array (VLBA) has been used to measure positions of the Cassini spacecraft 2-3 times per year during the decade since it arrived at Saturn. Combining these measurements with fits for Cassini's orbit about Saturn from Doppler tracking by the NASA Deep Space Network provides accurate positions for the Saturn system barycenter in the inertial International Celestial Reference Frame (ICRF) at each observing epoch. These positions in turn help to improve our knowledge of Saturn's orbit and thus the planetary ephemeris on which future interplanetary spacecraft navigation, pulsar timing, and studies of solar system dynamics depend. This observational program will continue to the end of Cassini's mission in 2017, thereby covering as large a fraction of Saturn's orbital period as possible. A multi-year period of accurate astrometry also increases the range of times over which ephemeris improvements can be extrapolated. Our current residuals with respect to JPL's DE430 ephemeris are approximately 0.2 mas in right ascension and 0.3 mas in declination. The primary error sources are residual troposphere delay calibration errors and uncertainties in the ICRF positions of some of our phase reference sources. The reference source position uncertainties are being reduced by continuing VLBI observations. Similar VLBI techniques will be applied to the Juno spacecraft when it begins orbiting Jupiter in 2016, thereby improving the orbit for this planet as well. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support from the NASA Planetary Astronomy Program is gratefully acknowledged. The VLBA is a facility of the National Radio Astronomy Observatory, which is operated by Associated Universities, Inc, under a cooperative agreement with the National Science Foundation.
FAST at MACH 20: clinical ultrasound aboard the International Space Station.
Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A
2005-01-01
Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.
Telecommunications Systems Design Techniques Handbook
NASA Technical Reports Server (NTRS)
Edelson, R. E. (Editor)
1972-01-01
The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.
Moon view period tabulations (with station masking) for Manned Space Flight Network stations, book 1
NASA Technical Reports Server (NTRS)
Gattie, M. M.; Williams, R. L.
1970-01-01
The times during which MSFN stations can view the moon are tabulated. Station view periods for each month are given. All times and dates refer to Greenwich Mean Time. AOS and LOS refer to the center of the moon at zero degrees elevation for moon rise and set, respectively.
Large space telescope, phase A. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.
Space Transportation System Thermal Environmental Flux Reference Book
NASA Technical Reports Server (NTRS)
1979-01-01
The information necessary to estimate the thermal environment in which proposed instruments will be expected to operate is presented in curves and tables which indicate the magnitude of the environmental fluxes which can be expected for various space transportation system missions.
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The derivation of an approximate error characteristic equation describing the transient system error response is given, along with a procedure for selecting adaptive gain parameters so as to relate to the transient error response. A detailed example of the application and implementation of these methods for a space shuttle type vehicle is included. An extension of the characteristic equation technique is used to provide an estimate of the magnitude of the maximum system error and an estimate of the time of occurrence of this maximum after a plant parameter disturbance. Techniques for relaxing certain stability requirements and the conditions under which this can be done and still guarantee asymptotic stability of the system error are discussed. Such conditions are possible because the Lyapunov methods used in the stability derivation allow for overconstraining a problem in the process of insuring stability.
NASA Technical Reports Server (NTRS)
Lukash, James A.; Daley, Earl
2011-01-01
This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.
Mobile robot motion estimation using Hough transform
NASA Astrophysics Data System (ADS)
Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu
2018-05-01
This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.
Prevent: what is pre-criminal space?
Goldberg, David; Jadhav, Sushrut; Younis, Tarek
2017-01-01
Prevent is a UK-wide programme within the government's anti-terrorism strategy aimed at stopping individuals from supporting or taking part in terrorist activities. NHS England's Prevent Training and Competencies Framework requires health professionals to understand the concept of pre-criminal space. This article examines pre-criminal space, a new term which refers to a period of time during which a person is referred to a specific Prevent-related safeguarding panel, Channel. It is unclear what the concept of pre-criminal space adds to the Prevent programme. The term should be either clarified or removed from the Framework. PMID:28811915
The optical antenna system design research on earth integrative network laser link in the future
NASA Astrophysics Data System (ADS)
Liu, Xianzhu; Fu, Qiang; He, Jingyi
2014-11-01
Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.
NASA Technical Reports Server (NTRS)
Johnson, Kathy A.; Shek, Molly
2003-01-01
Astronauts in a space station are to some extent like patients in an intensive care unit (ICU). Medical support of a mission crew will require acquisition, transmission, distribution, integration, and archiving of significant amounts of data. These data are acquired by disparate systems and will require timely, reliable, and secure distribution to different communities for the execution of various tasks of space missions. The goal of the Comprehensive Medical Information System (CMIS) Project at Johnson Space Center Flight Medical Clinic is to integrate data from all Medical Operations sources, including the reference information sources and the electronic medical records of astronauts. A first step toward the full CMIS implementation is to integrate and organize the reference information sources and the electronic medical record with the Flight Surgeons console. In order to investigate this integration, we need to understand the usability problems of the Flight Surgeon's console in particular and medical information systems in general. One way to achieve this understanding is through the use of user and task analyses whose general purpose is to ensure that only the necessary and sufficient task features that match users capacities will be included in system implementations. The goal of this summer project was to conduct user and task analyses employing cognitive engineering techniques to analyze the task of the Flight Surgeons and Biomedical Engineers (BMEs) while they worked on Console. The techniques employed were user interviews, observations and a questionnaire to collect data for which a hierarchical task analysis and an information resource assessment were performed. They are described in more detail below. Finally, based on our analyses, we make recommendations for improvements to the support structure.
2013-06-30
Void, Behind you, Quantum Leaping, The space between spaces when a geographic reference is provided, we identified several categories of challenges to... consciously opt-in to include geolocation in times of crisis. In addition, 10% of tweets in our sample included place references in the text and that
Interference between Space and Time Estimations: From Behavior to Neurons.
Marcos, Encarni; Genovesio, Aldo
2017-01-01
Influences between time and space can be found in our daily life in which we are surrounded by numerous spatial metaphors to refer to time. For instance, when we move files from one folder to another in our computer a horizontal line that grows from left to right informs us about the elapsed and remaining time to finish the procedure and, similarly, in our communication we use several spatial terms to refer to time. Although with some differences in the degree of interference, not only space has an influence on time but both magnitudes influence each other. Indeed, since our childhood our estimations of time are influenced by space even when space should be irrelevant and the same occurs when estimating space with time as distractor. Such interference between magnitudes has also been observed in monkeys even if they do not use language or computers, suggesting that the two magnitudes are tightly coupled beyond communication and technology. Imaging and lesion studies have indicated that same brain areas are involved during the processing of both magnitudes and have suggested that rather than coding the specific magnitude itself the brain represents them as abstract concepts. Recent neurophysiological studies in prefrontal cortex, however, have shown that the coding of absolute and relative space and time in this area is realized by independent groups of neurons. Interestingly, instead, a high overlap was observed in this same area in the coding of goal choices across tasks. These results suggest that rather than during perception or estimation of space and time the interference between the two magnitudes might occur, at least in the prefrontal cortex, in a subsequent phase in which the goal has to be chosen or the response provided.
The method of Ritz applied to the equation of Hamilton. [for pendulum systems
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1976-01-01
Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.
Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V
2011-07-01
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
NASA Technical Reports Server (NTRS)
1982-01-01
The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.
The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version
NASA Technical Reports Server (NTRS)
Leslie, F. W.; Justus, C. G.
2011-01-01
Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.
Space Weathering on Airless Bodies.
Pieters, Carle M; Noble, Sarah K
2016-10-01
Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.
Space Weathering on Airless Bodies
Pieters, Carle M.; Noble, Sarah K.
2018-01-01
Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. PMID:29862145
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
A review of crew appliance related literature was made to provide background engineering information for development of conceptual appliance systems for the shuttle orbiter and the modular space station. From this review, a file containing abstracts of 299 appliance-related documents coded according to subject was developed along with a computerized bibliography of 682 references. Trade studies were conducted using information from these references to determine the optimum concepts to satisfy the shuttle and space station mission requirements. An appliance system was devised for each vehicle which has minimum impact to the respective environmental control system with the smallest possible weight, volume, and electrical penalty. Engineering parameters for each appliance concept considered are presented along with the total thermal and electrical loads and weight and volume penalties for each of the optimized appliance systems.
Dark matter: a problem in relativistic metrology?
NASA Astrophysics Data System (ADS)
Lusanna, Luca
2017-05-01
Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least part of what is called dark matter in all its astrophysical signatures.
CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS
NASA Technical Reports Server (NTRS)
Noll, Carey; Michael, Patrick
2016-01-01
The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.
The Rockwell SR-100G reactor turboelectric space power system
NASA Technical Reports Server (NTRS)
Anderson, R. V.
1985-01-01
During FY 1982 and 1983, Rockwell International performed system and subsystem studies for space reactor power systems. These studies drew on the expertise gained from the design and flight of the SNAP-10A space nuclear reactor system. These studies, performed for the SP-100 Program, culminated in the selection of a reactor-turboelectric (gas Brayton) system for the SP-100 application; this system is called the SR-100G. This paper describes the features of the system and provides references where more detailed information can be obtained.
An autonomous rendezvous and docking system using cruise missile technologies
NASA Technical Reports Server (NTRS)
Jones, Ruel Edwin
1991-01-01
In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.
NASA Technical Reports Server (NTRS)
Karmarkar, J. S.
1972-01-01
Proposal of an algorithmic procedure, based on mathematical programming methods, to design compensators for hyperstable discrete model-reference adaptive systems (MRAS). The objective of the compensator is to render the MRAS insensitive to initial parameter estimates within a maximized hypercube in the model parameter space.
NASA Technical Reports Server (NTRS)
1972-01-01
The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.
The dynamics and control of solar-sail spacecraft in displaced lunar orbits
NASA Astrophysics Data System (ADS)
Wawrzyniak, Geoffrey George
Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the structure of the solution space is not well known. Because of their simplicity and speed, the FDM is used to populate a survey to assist in the understanding of the available design space. Trajectories generated by FDMs can also be used to initialize other nonlinear BVP solvers. Any solution is only as accurate as the model used to generate it, especially when the trajectory is dynamically unstable, certainly the case when an orbit is purposefully offset from the Moon. Perturbations, such as unmodeled gravitational forces, variations in the solar flux, as well as mis-modeling of the sail and bus properties, all shift the spacecraft off the reference trajectory and, potentially, into a regime from which the vehicle is unrecoverable. Therefore, some type of flight-path control is required to maintain the vehicle near the reference path. Reference trajectories, supplied by FDMs, are used to develop guidance algorithms based on other, more accurate, numerical procedures, such as multiple shooting. The primary motivation of this investigation is to determine what level of technology is required to displace a solar sail spacecraft sufficiently such that a vehicle equipped with a sail supplies a continuous relay between the Earth and an outpost at the lunar south pole. To accomplish this objective, numerical methods to generate reference orbits that meet mission constraints are examined, as well as flight-path control strategies to ensure that a sailcraft follows those reference trajectories. A survey of the design space is also performed to highlight vehicle-performance and ground-based metrics critical to a mission that monitors the lunar south pole at all times. Finally, observations about the underlying dynamical structure of solar sail motion in a multi-body system are summarized.
High performance VLSI telemetry data systems
NASA Technical Reports Server (NTRS)
Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.
1990-01-01
NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.
Danescu, Radu; Ciurte, Anca; Turcu, Vlad
2014-01-01
The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image. PMID:24521941
A unifying model of concurrent spatial and temporal modularity in muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2014-02-01
Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.
Space station automation of common module power management and distribution, volume 2
NASA Technical Reports Server (NTRS)
Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.
1990-01-01
The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.
Systems Engineering Case Studies: Synopsis of the Learning Principles
2010-05-17
Engineering Case Study HST refers to the Hubble Space Telescope Systems Engineering Case Study TBMCS refers to the Theater Battle Management Core System...going to orbit undetected in spite of substantial evidence that could have been used to prevent this occurrence. TBMCS /1 Requirements Definition...baseline was volatile up to system acceptance, which took place after TBMCS passed operational test and evaluation. TBMCS /2 System Architecture The
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Space Technology 7 Disturbance Reduction System - precision control flight Validation
NASA Technical Reports Server (NTRS)
Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.;
2005-01-01
The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.
An adaptive load-following control system for a space nuclear power system
NASA Astrophysics Data System (ADS)
Metzger, John D.; El-Genk, Mohamed S.
An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.
Solar power satellite system definition study. Volume 3: Reference system description, phase 1
NASA Technical Reports Server (NTRS)
1979-01-01
An analysis of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed including the structure, power distribution, thermal control, and energy storage. Space construction and support systems are described including the work support facilities and construction equipment. An assessment of the space transportation system for the satellite and the ground receiving station is presented.
Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts
NASA Technical Reports Server (NTRS)
1982-01-01
Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.
2002-10-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
2002-10-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
2002-10-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
NASA Technical Reports Server (NTRS)
Soosaar, K.
1982-01-01
Some performance requirements and development needs for the design of large space structures are described. Areas of study include: (1) dynamic response of large space structures; (2) structural control and systems integration; (3) attitude control; and (4) large optics and flexibility. Reference is made to a large space telescope.
Integration of a Motion Capture System into a Spacecraft Simulator for Real-Time Attitude Control
2016-08-16
Attitude Control* Benjamin L. Reifler University at Buffalo, Buffalo, New York 1st Lt Dylan R. Penn Air Force Research Laboratory, Kirtland Air Force...author was an intern at the Air Force Research Laboratory ( AFRL ) Space Vehicles Directorate. 1 DISTRIBUTION A. Approved for public release: distribution...expertise on this project. I would also like to thank the AFRL Scholars program for the opportunity to participate in this research. References [1
NASA Astrophysics Data System (ADS)
Mlynczak, M. G.; Russell, J. M., III; Hunt, L. A.; Christensen, A. B.; Paxton, L. J.; Woods, T. N.; Niciejewski, R.; Yee, J. H.
2016-12-01
The past 40 years have been a true golden age for space-based observations of the Earth's middle atmosphere (stratosphere to thermosphere). Numerous instruments and missions have been developed and flown to explore the thermal structure, chemical composition, and energy budget of the middle atmosphere. A primary motivation for these observations was the need to understand the photochemistry of stratospheric ozone and its potential depletion by anthropogenic means. As technology evolved, observations were extended higher and higher, into regions previously unobserved from space by optical remote sensing techniques. In the 1990's, NASA initiated the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamcis (TIMED) mission to explore one of the last frontiers of the atmosphere - the region between 60 and 180 km - then referred to as "the ignorosphere." Today, we have 15 years of detailed observations from this remarkable satellite and its 4 instruments, and are recognizing rapid climate change that is occurring above 60 km. The upcoming ICON and GOLD missions will afford new opportunities for scientific discovery by combining data from all three missions. However, it has become clear that continued observations beyond TIMED are required to understand the upper atmosphere as a system that is fully coupled from the edge of Space to the surface of the Earth. In this talk we will review the current status of knowledge of the basic state properties of the thermosphere-ionosphere-mesosphere (TIME) system and will discuss future observations that are required to obtain a comprehensive understanding of the entire TIME system, especially the effects of long term change that are already underway.
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido
2016-01-01
The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.
The Perfect Mate for Safe Fueling
NASA Technical Reports Server (NTRS)
2004-01-01
Referred to as the "lifeline for any space launch vehicle" by NASA Space Launch Initiative Program Manager Warren Wiley, an umbilical is a large device that transports power, communications, instrument readings, and fluids such as propellants, pressurization gases, and coolants from one source to another. Numerous launch vehicles, planetary systems, and rovers require umbilical "mating". This process is a driving factor for dependable and affordable space access. With future-generation space vehicles in mind, NASA recently designed a smart, automated method for quickly and reliably mating and demating electrical and fluid umbilical connectors. The new umbilical concept is expected to replace NASA s traditional umbilical systems that release at vehicle lift-off (T-0). The idea is to increase safety by automatically performing hazardous tasks, thus reducing potential failure modes and the time and labor hours necessary to prepare for launch. The new system will also be used as a test bed for quick disconnect development and for advance control and leak detection. It incorporates concepts such as a secondary mate plate, robotic machine vision, and compliant motor motion control, and is destined to advance usage of automated umbilicals in a variety of aerospace and commercial applications.
EnEx-RANGE - Robust autonomous Acoustic Navigation in Glacial icE
NASA Astrophysics Data System (ADS)
Heinen, Dirk; Eliseev, Dmitry; Henke, Christoph; Jeschke, Sabina; Linder, Peter; Reuter, Sebastian; Schönitz, Sebastian; Scholz, Franziska; Weinstock, Lars Steffen; Wickmann, Stefan; Wiebusch, Christopher; Zierke, Simon
2017-03-01
Within the Enceladus Explorer Initiative of the DLR Space Administration navigation technologies for a future space mission are in development. Those technologies are the basis for the search for extraterrestrial life on the Saturn moon Enceladus. An autonomous melting probe, the EnEx probe, aims to extract a liquid sample from a water reservoir below the icy crust. A first EnEx probe was developed and demonstrated in a terrestrial scenario at the Bloodfalls, Taylor Glacier, Antarctica in November 2014. To enable navigation in glacier ice two acoustic systems were integrated into the probe in addition to conventional navigation technologies. The first acoustic system determines the position of the probe during the run based on propagation times of acoustic signals from emitters at reference positions at the glacier surface to receivers in the probe. The second system provides information about the forefield of the probe. It is based on sonographic principles with phased array technology integrated in the probe's melting head. Information about obstacles or sampling regions in the probe's forefield can be acquired. The development of both systems is now continued in the project EnEx-RANGE. The emitters of the localization system are replaced by a network of intelligent acoustic enabled melting probes. These localize each other by means of acoustic signals and create the reference system for the EnEx probe. This presentation includes the discussion of the intelligent acoustic network, the acoustic navigation systems of the EnEx probe and results of terrestrial tests.
NASA Technical Reports Server (NTRS)
O'Handley, D.; Swan, P.; Sadeh, W.
1992-01-01
U.S. space policy is discussed in terms of present and planned activities in the solar system and beyond to develop a concept for expanding space travel. The history of space exploration is briefly reviewed with references to the Mariner II, Apollo, and Discoverer programs. Attention is given to the issues related to return trips to the moon, sprint vs repetitive missions to Mars, and the implications of propulsion needs. The concept of terraforming other bodies within the solar system so that they can support human activity is identified as the next major phase of exploration. The following phase is considered to be the use of robotic or manned missions that extend beyond the solar system. Reference is given to a proposed Thousand Astronomical Units mission as a precursor to exploratory expansion into the universe, and current robotic mission activities are mentioned.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2016-08-01
Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.
Time scales in the context of general relativity.
Guinot, Bernard
2011-10-28
Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers.
Global reference frame: Intercomparison of results (SLR, VLBI and GPS)
NASA Technical Reports Server (NTRS)
Ma, Chopo; Watkins, Michael M.; Heflin, M.
1994-01-01
The terrestrial reference frame (TRF) is realized by a set of positions and velocities derived from a combination of the three space geodetic techniques, SLR, VLBI and GPS. The standard International TRF is constructed by the International Earth Rotation Service in such a way that it is stable with time and the addition of new data. An adopted model for overall plate motion, NUVEL-1 NNR, defines the conceptual reference frame in which all the plates are moving. In addition to the measurements made between reference points within the space geodetic instruments, it is essential to have accurate, documented eccentricity measurements from the instrument reference points to ground monuments. Proper local surveys between the set of ground monuments at a site are also critical for the use of the space geodetic results. Eccentricities and local surveys are, in fact, the most common and vexing sources of error in the use of the TRF for such activities as collocation and intercomparison.
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
2000-08-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, the completed space vehicle is undergoing thermal vacuum environment testing. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation.)
2003-07-11
The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
NASA Technical Reports Server (NTRS)
2003-01-01
The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Binary-space-partitioned images for resolving image-based visibility.
Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J
2004-01-01
We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.
Real-time failure control (SAFD)
NASA Technical Reports Server (NTRS)
Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.
1990-01-01
The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.
Focus control system for stretched-membrane mirror module
Butler, B.L.; Beninga, K.J.
1991-05-21
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.
Focus control system for stretched-membrane mirror module
Butler, Barry L.; Beninga, Kelly J.
1991-01-01
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-12-01
The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW ofmore » electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.« less
Increasing the Operational Value of Event Messages
NASA Technical Reports Server (NTRS)
Li, Zhenping; Savkli, Cetin; Smith, Dan
2003-01-01
Assessing the health of a space mission has traditionally been performed using telemetry analysis tools. Parameter values are compared to known operational limits and are plotted over various time periods. This presentation begins with the notion that there is an incredible amount of untapped information contained within the mission s event message logs. Through creative advancements in message handling tools, the event message logs can be used to better assess spacecraft and ground system status and to highlight and report on conditions not readily apparent when messages are evaluated one-at-a-time during a real-time pass. Work in this area is being funded as part of a larger NASA effort at the Goddard Space Flight Center to create component-based, middleware-based, standards-based general purpose ground system architecture referred to as GMSEC - the GSFC Mission Services Evolution Center. The new capabilities and operational concepts for event display, event data analyses and data mining are being developed by Lockheed Martin and the new subsystem has been named GREAT - the GMSEC Reusable Event Analysis Toolkit. Planned for use on existing and future missions, GREAT has the potential to increase operational efficiency in areas of problem detection and analysis, general status reporting, and real-time situational awareness.
Relativistic compression and expansion of experiential time in the left and right space.
Vicario, Carmelo Mario; Pecoraro, Patrizia; Turriziani, Patrizia; Koch, Giacomo; Caltagirone, Carlo; Oliveri, Massimiliano
2008-03-05
Time, space and numbers are closely linked in the physical world. However, the relativistic-like effects on time perception of spatial and magnitude factors remain poorly investigated. Here we wanted to investigate whether duration judgments of digit visual stimuli are biased depending on the side of space where the stimuli are presented and on the magnitude of the stimulus itself. Different groups of healthy subjects performed duration judgment tasks on various types of visual stimuli. In the first two experiments visual stimuli were constituted by digit pairs (1 and 9), presented in the centre of the screen or in the right and left space. In a third experiment visual stimuli were constituted by black circles. The duration of the reference stimulus was fixed at 300 ms. Subjects had to indicate the relative duration of the test stimulus compared with the reference one. The main results showed that, regardless of digit magnitude, duration of stimuli presented in the left hemispace is underestimated and that of stimuli presented in the right hemispace is overestimated. On the other hand, in midline position, duration judgments are affected by the numerical magnitude of the presented stimulus, with time underestimation of stimuli of low magnitude and time overestimation of stimuli of high magnitude. These results argue for the presence of strict interactions between space, time and magnitude representation on the human brain.
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
NASA Technical Reports Server (NTRS)
Kuhn, A. E.
1975-01-01
A dispersion analysis considering 3 sigma uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for the baseline reference mission (BRM) 1 of the space shuttle orbiter. The dispersion analysis is based on the nominal trajectory for the BRM 1. State vector and performance dispersions (or variations) which result from the indicated 3 sigma uncertainties were studied. The dispersions were determined at major mission events and fixed times from lift-off (time slices) and the results will be used to evaluate the capability of the vehicle to perform the mission within a 3 sigma level of confidence and to determine flight performance reserves. A computer program is given that was used for dynamic flight simulations of the space shuttle orbiter.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
In this volume, volume 4 (of five volumes), the discussion is focussed on the system models and related data references and has the following subsections: space shuttle main engine, integrated solid rocket booster, orbiter auxiliary power units/hydraulics, and electrical power system.
ERIC Educational Resources Information Center
Eddy, William F.; Mockus, Audris
1994-01-01
Describes animation algorithms for creating smooth functions of time- and space-varying phenomenon. The incidence of the disease mumps from 1968-88 in the United States is used to demonstrate the algorithms. Figures that illustrate the findings are included. (14 references) (KRN)
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.
2017-08-01
In this article we have based on the laws of physics to illustrate the enigma time as creating our physical space (i.e., the universe). We have shown that without time there would be no physical substances, no space and no life. In reference to Einstein's energy equation, we see that energy and mass can be traded, and every mass can be treated as an Energy Reservoir. We have further shown that physical space cannot be embedded in absolute empty space and cannot have any absolute empty subspace in it. Since all physical substances existed with time, our cosmos is created by time and every substance including our universe is coexisted with time. Although time initiates the creation, it is the physical substances which presented to us the existence of time. We are not alone with almost absolute certainty. Someday we may find a right planet, once upon a time, had harbored a civilization for a short period of light years.
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
A finite state projection algorithm for the stationary solution of the chemical master equation
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
National Space Transportation System Reference. Volume 2: Operations
NASA Technical Reports Server (NTRS)
1988-01-01
An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.
Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.
2016-12-01
Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.
A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning
Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo
2015-01-01
In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665
The Superior Lambert Algorithm
NASA Astrophysics Data System (ADS)
der, G.
2011-09-01
Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most numerical integration methods.
An ultra-stable iodine-based frequency reference for space applications
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Braxmaier, Claus; Doeringshoff, Klaus; Keetman, Anja; Reggentin, Matthias; Kovalchuk, Evgeny; Peters, Achim
2012-07-01
Future space missions require for ultra-stable optical frequency references. Examples are the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the SpaceTime Asymmetry Research (STAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission exploring Earth's gravity. As high long-term frequency stability is required, lasers stabilized to atomic or molecular transitions are preferred, also offering an absolute frequency reference. Frequency stabilities in the 10 ^{-15} domains at longer integration times (up to several hours) are demonstrated in laboratory experiments using setups based on Doppler-free spectroscopy. Such setups with a frequency stability comparable to the hydrogen maser in the microwave domain, have the potential to be developed space compatible on a relatively short time scale. Here, we present the development of ultra-stable optical frequency references based on modulation-transfer spectroscopy of molecular iodine. Noise levels of 2\\cdot10 ^{-14} at an integration time of 1 s and below 3\\cdot10 ^{-15} at integration times between 100 s and 1000 s are demonstrated with a laboratory setup using an 80 cm long iodine cell in single-pass configuration in combination with a frequency-doubled Nd:YAG laser and standard optical components and optomechanic mounts. The frequency stability at longer integration times is (amongst other things) limited by the dimensional stability of the optical setup, i.e. by th pointing stability of the two counter-propagating beams overlapped in the iodine cell. With the goal of a future space compatible setup, a compact frequency standard on EBB (elegant breadboard) level was realized. The spectroscopy unit utilizes a baseplate made of Clearceram-HS, a glass ceramics with an ultra-low coefficient of thermal expansion of 2\\cdot10 ^{-8} K ^{-1}. The optical components are joint to the baseplate using adhesive bonding technology, which was developed in a cooperation of HTWG Konstanz and Astrium Friedrichshafen. This setup ensures a higher long-term frequency stability due to enhanced pointing stability. Also, it takes into account space mission related criteria such as compactness, robustness, MAIVT and environmental influences (shock, vibration and thermal tests). The assembly-integration technology was already successfully environmentally tested and demonstrated in a previous setup of a compact fiber-coupled heterodyne interferometer, which serves as a demonstrator for the optical readout of the LISA gravitational reference sensor. We present first measurements of the EBB setup and a first design of an iodine frequency standard on engineering model (EM) level. The EM-setup is based on the EBB experience, but features smaller dimensions by using a multipass iodine cell and less optical components. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number 50 QT 1102 is highly appreciated.
Electronic systems failures and anomalies attributed to electromagnetic interference
NASA Technical Reports Server (NTRS)
Leach, R. D. (Editor); Alexander, M. B. (Editor)
1995-01-01
The effects of electromagnetic interference can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are electrically compatible is an important engineering function necessary to assure mission success. This reference publication will acquaint the reader with spacecraft electronic systems failures and anomalies caused by electromagnetic interference and will show the importance of electromagnetic compatibility activities in conjunction with space flight programs. It is also hoped that the report will illustrate that evolving electronic systems are increasingly sensitive to electromagnetic interference and that NASA personnel must continue to diligently pursue electromagnetic compatibility on space flight systems.
Magnetic control systems for large spacecraft with applications to space telescope
NASA Technical Reports Server (NTRS)
Dougherty, H.; Machnick, J.; Nakashima, A.; Henry, J.; Tompetrini, K.
1981-01-01
Magnetic control systems for large space vehicles offer the advantage of a simple, reliable, low cost augmentation to the primary control system. When used for momentum management, a magnetic torque source offers a long life and noncontaminant environment when compared to a mass expulsion torque source. These qualities make such systems suitable for employment with the Space Telescope, which is a long life, high performance vehicle with optics and scientific instruments which would be degraded by contamination due to mass expulsion products. The various applications of magnetic systems on the Space Telescope are considered. The future trend in magnetic control of large space vehicles lies in providing a known three axis reference for backup operations, such as recovery of the primary control mode.
Hale, Thomas C.; Telschow, Kenneth L.
1998-01-01
A vibration detection assembly is described which includes an emitter of light which has object and reference beams, the object beam reflected off of a vibrating object of interest; and a photorefractive substance having a given response time and which passes the reflected object beam and the reference beam, the reference beam and the object beam interfering within the photorefractive substance to create a space charge field which develops within the response time of the photorefractive substance.
Hale, T.C.; Telschow, K.L.
1998-10-27
A vibration detection assembly is described which includes an emitter of light which has object and reference beams, the object beam reflected off of a vibrating object of interest; and a photorefractive substance having a given response time and which passes the reflected object beam and the reference beam, the reference beam and the object beam interfering within the photorefractive substance to create a space charge field which develops within the response time of the photorefractive substance. 6 figs.
Trajectory Specification for Automation of Terminal Air Traffic Control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.
2016-01-01
"Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.
Deconvolution of time series in the laboratory
NASA Astrophysics Data System (ADS)
John, Thomas; Pietschmann, Dirk; Becker, Volker; Wagner, Christian
2016-10-01
In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.
Systems Challenges for Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Hunt, James L.; Laruelle, Gerard; Wagner, Alain
1997-01-01
This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.
1975-01-01
Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.
Effects of Relativity Lead to"Warp Speed" Computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J.-L.
A scientist at Lawrence Berkeley National Laboratory has discovered that a previously unnoticed consequence of Einstein's special theory of relativity can lead to speedup of computer calculations by orders of magnitude when applied to the computer modeling of a certain class of physical systems. This new finding offers the possibility of tackling some problems in a much shorter time and with far more precision than was possible before, as well as studying some configurations in every detail for the first time. The basis of Einstein's theory is the principle of relativity, which states that the laws of physics are themore » same for all observers, whether the 'observer' is a turtle 'racing' with a rabbit, or a beam of particles moving at near light speed. From the invariance of the laws of physics, one may be tempted to infer that the complexity of a system is independent of the motion of the observer, and consequently, a computer simulation will require the same number of mathematical operations, independently of the reference frame that is used for the calculation. Length contraction and time dilation are well known consequences of the special theory of relativity which lead to very counterintuitive effects. An alien observing human activity through a telescope in a spaceship traveling in the Vicinity of the earth near the speed of light would see everything flattened in the direction of propagation of its spaceship (for him, the earth would have the shape of a pancake), while all motions on earth would appear extremely slow, slowed almost to a standstill. Conversely, a space scientist observing the alien through a telescope based on earth would see a flattened alien almost to a standstill in a flattened spaceship. Meanwhile, an astronaut sitting in a spaceship moving at some lower velocity than the alien spaceship with regard to earth might see both the alien spaceship and the earth flattened in the same proportion and the motion unfolding in each of them at the same speed. Let us now assume that each protagonist (the alien, the space scientist and the astronaut) is to run a computer simulation describing the motion of all of them in a single calculation. In order to model a physical system on a computer, scientists often divide space and time into small chunks. Since the computer must calculated some things for each chunk, having a large system containing numerous small chunks translates to long calculations requiring many computational steps on supercomputers. Let us assume that each protagonist of our intergalactic story uses the space and time slicing as described and chooses to perform the calculation in its own frame of reference. For the alien and the space scientist, the slicing of space and time results in an exceedingly large number of chunks, due to the wide disparity of spatial and time scales needed to describe both their own environment and motion together with the other extremely flattened environment and slowed motion. Since the disparity of scales is reduced for the astronaut, who is traveling at an intermediate velocity, the number of computer operations needed to complete the calculation in his frame of reference will be significantly lower, possibly by many orders of magnitude. Analogously, the new discovery at Lawrence Berkeley National Laboratory shows that there exists a frame of reference minimizing the number of computational operations needed for studying the interaction of beams of particles or light (lasers) interacting at, or near, light speed with other particles or with surrounding structures. Speedups ranging from ten to a million times or more are predicted for the modeling of beams interacting with electron clouds, such as those in the upcoming Large Hadron Collider 'atom smasher' accelerator at CERN (Switzerland), and in free electron lasers and tabletop laser wakefield accelerators. The discovery has surprised many physicists and was received initially with much skepticism. It sounded too much like a 'free lunch'. Yet, the demonstration of a speedup of a stunning one thousand times in a test simulation of a particle beam interacting with a background of electrons (see image), has proven that the effect is real and can be applied successfully, at least to some problems. Work is being actively pursued at Berkeley Lab and elsewhere to validate the feasibility of the method for a wider range of applications, as well as to apply the already successful method to more problems, where it might help getting better understanding of some processes and eventually lead to new findings.« less
NASA Astrophysics Data System (ADS)
Martini, Luiz Cesar
2014-04-01
This article results from Introducing the Dimensional Continuous Space-Time Theory that was published in reference 1. The Dimensional Continuous Space-Time Theory shows a series of facts relative to matter, energy, space and concludes that empty space is inelastic, absolutely stationary, motionless, perpetual, without possibility of deformation neither can it be destroyed or created. A elementary cell of empty space or a certain amount of empty space can be occupied by any quantity of energy or matter without any alteration or deformation. As a consequence of these properties and being a integral part of the theory, the principles of Relativity Theory must be changed to become simple and intuitive.
Astrobiology Workshop: Leadership in Astrobiology
NASA Technical Reports Server (NTRS)
DeVincenzi, D. (Editor); Briggs, G.; Cohen, M.; Cuzzi, J.; DesMarais, D.; Harper, L.; Morrison, D.; Pohorille, A.
1996-01-01
Astrobiology is defined in the 1996 NASA Strategic Plan as 'The study of the living universe.' At NASA's Ames Research Center, this endeavor encompasses the use of space to understand life's origin, evolution, and destiny in the universe. Life's origin refers to understanding the origin of life in the context of the origin and diversity of planetary systems. Life's evolution refers to understanding how living systems have adapted to Earth's changing environment, to the all-pervasive force of gravity, and how they may adapt to environments beyond Earth. Life's destiny refers to making long-term human presence in space a reality, and laying the foundation for understanding and managing changes in Earth's environment. The first Astrobiology Workshop brought together a diverse group of researchers to discuss the following general questions: Where and how are other habitable worlds formed? How does life originate? How have the Earth and its biosphere influenced each other over time? Can terrestrial life be sustained beyond our planet? How can we expand the human presence to Mars? The objectives of the Workshop included: discussing the scope of astrobiology, strengthening existing efforts for the study of life in the universe, identifying new cross-disciplinary programs with the greatest potential for scientific return, and suggesting steps needed to bring this program to reality. Ames has been assigned the lead role for astrobiology by NASA in recognition of its strong history of leadership in multidisciplinary research in the space, Earth, and life sciences and its pioneering work in studies of the living universe. This initial science workshop was established to lay the foundation for what is to become a national effort in astrobiology, with anticipated participation by the university community, other NASA centers, and other agencies. This workshop (the first meeting of its kind ever held) involved life, Earth, and space scientists in a truly interdisciplinary sharing of ideas related to life in the universe, and by all accounts was a resounding success.
Analysis of Site Position Time Series Derived From Space Geodetic Solutions
NASA Astrophysics Data System (ADS)
Angermann, D.; Meisel, B.; Kruegel, M.; Tesmer, V.; Miller, R.; Drewes, H.
2003-12-01
This presentation deals with the analysis of station coordinate time series obtained from VLBI, SLR, GPS and DORIS solutions. We also present time series for the origin and scale derived from these solutions and discuss their contribution to the realization of the terrestrial reference frame. For these investigations we used SLR and VLBI solutions computed at DGFI with the software systems DOGS (SLR) and OCCAM (VLBI). The GPS and DORIS time series were obtained from weekly station coordinates solutions provided by the IGS, and from the joint DORIS analysis center (IGN-JPL). We analysed the time series with respect to various aspects, such as non-linear motions, periodic signals and systematic differences (biases). A major focus is on a comparison of the results at co-location sites in order to identify technique- and/or solution related problems. This may also help to separate and quantify possible effects, and to understand the origin of still existing discrepancies. Technique-related systematic effects (biases) should be reduced to the highest possible extent, before using the space geodetic solutions for a geophysical interpretation of seasonal signals in site position time series.
UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation
NASA Astrophysics Data System (ADS)
Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.
2015-08-01
There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five institutes- processing GNSS, SLR and VLBI observation data for EOP evaluation- combination of GLONASS satellites orbit/clocks.The paper will deliver more detailed and particular information on Russian legal reference frames.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.
Performance Testing of a Liquid Metal Pump for In-Space Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt
2011-01-01
Fission surface power (FSP) systems could be used to provide power on the surface of the moon, Mars, or other planets and moons of our solar system. Fission power systems could provide excellent performance at any location, including those near the poles or other permanently shaded regions, and offer the capability to provide on demand power at any time, even at large distances from the sun. Fission-based systems also offer the potential for outposts, crew and science instruments to operate in a power-rich environment. NASA has been exploring technologies with the goal of reducing the cost and technical risk of employing FSP systems. A reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system is also readily extensible for use on Mars, where it would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Detailed development of the FSP concept and the reference mission are documented in various other reports. The development discussed in this paper prepares the way for testing of the Technology Demonstration Unit (TDU), which is a 10 kWe end-to-end test of FSP technologies intended to raise the entire FSP system to technology readiness level (TRL) 6. The Early Flight Fission Test Facility (EFF-TF) was established by NASA s Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a nonnuclear test methodology. This includes fabrication and testing at both the module/component level and at near prototypic reactor components and configurations allowing for realistic thermal-hydraulic evaluations of systems. The liquid-metal pump associated with the FSP system must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National Laboratory (INL) was tasked with the modeling, design, and fabrication of an ALIP suitable for the FSP reference mission. A prototypic ALIP was fabricated under the direction of INL and shipped to MSFC for inclusion in the Technology Demonstration Unit (TDU), a quarter-scale end-to-end reactor simulator system that is scheduled for testing at NASA-GRC. Before inclusion in the TDU, the ALIP was tested in the ALIP test circuit (ATC), which is a rig developed and operated at MSFC for the specific purpose of providing accurate quantification of liquid metal pump performance. Data showing the pump performance curves (pressure, flowrate, and pump efficiency) are presented for various operating power levels, demonstrating the full performance envelope of the pump.
International Space Station Increment-4/5 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2003-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.
A comparison of the effects of 2 cattle-cooling systems on dairy cows in a desert environment.
Ortiz, X A; Smith, J F; Bradford, B J; Harner, J P; Oddy, A
2010-10-01
An experiment was conducted to investigate the effects of operation time and size of Korral Kool (KK; Korral Kool Inc., Mesa, AZ) systems on core body temperature (CBT) of dairy cows. Two KK systems were compared: a system with 1.29-m-diameter, 3-hp fans spaced 6 m apart (referred to as small) and a system with 1.52-m-diameter, 5-hp fans spaced 8 m apart (referred to as big). Forty-eight multiparous Holstein cows were assigned randomly to 8 pens (4 big, 4 small), and pens were assigned randomly to a sequence of treatments (KK operated for 21 or 24 h/d) in a switchback design. A complementary calorimetric analysis was developed to investigate the cooling area under the KK units of the big and small systems. Twenty-five sensors distributed equally under the KK units measured ambient temperature at 5-min intervals for 2 h. Average ambient temperature was 35.0±0.6°C and relative humidity was 45±8%. There were significant treatment effects on mean CBT: cows on the small 24-h treatment had a lower mean CBT than cows on the small 21-h treatment (39.22 vs. 39.36±0.14°C), and cows on the big 24-h treatment had a lower mean CBT than cows on the big 21-h treatment (38.95 vs. 39.09±0.13°C). A significant treatment by time interaction was observed. The greatest difference between systems occurred at 0100 h; treatment means at this time were 39.05, 39.01, 39.72, and 39.89±0.16°C for the big 24-h, big 21-h, small 24-h, and small 21-h treatments, respectively. At certain times of day, the big system reduced CBT more than the small system. These results show that CBT of multiparous cows decreased when KK system operational time was increased from 21 to 24 h regardless of the size of the KK cooling system used. The calorimetric analysis showed that even though the big system resulted in lower mean ambient temperatures than the small system, the distance between units in the big system should be decreased to reduce the variation in temperature under the big units. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pointing History Engine for the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Bayard, David; Ahmed, Asif; Brugarolas, Paul
2007-01-01
The Pointing History Engine (PHE) is a computer program that provides mathematical transformations needed to reconstruct, from downlinked telemetry data, the attitude of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility) as a function of time. The PHE also serves as an example for development of similar pointing reconstruction software for future space telescopes. The transformations implemented in the PHE take account of the unique geometry of the Spitzer telescope-pointing chain, including all data on relative alignments of components, and all information available from attitude-determination instruments. The PHE makes it possible to coordinate attitude data with observational data acquired at the same time, so that any observed astronomical object can be located for future reference and re-observation. The PHE is implemented as a subroutine used in conjunction with telemetry-formatting services of the Mission Image Processing Laboratory of NASA s Jet Propulsion Laboratory to generate the Boresight Pointing History File (BPHF). The BPHF is an archival database designed to serve as Spitzer s primary astronomical reference documenting where the telescope was pointed at any time during its mission.
Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment
NASA Technical Reports Server (NTRS)
Ashby, N.
2003-01-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.
Optimal control for wind turbine system via state-space method
NASA Astrophysics Data System (ADS)
Shanoob, Mudhafar L.
Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on using type 1 servo system that depends on the full state feedback variables and tracking error. The LQR improves the transient stability and time response of the wind turbine system in all three-disturbance scenarios. The results of both methods are deeply explained in the simulation section.
Video-Game-Like Engine for Depicting Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Upchurch, Paul R.
2009-01-01
GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.
A model of head-related transfer functions based on a state-space analysis
NASA Astrophysics Data System (ADS)
Adams, Norman Herkamp
This dissertation develops and validates a novel state-space method for binaural auditory display. Binaural displays seek to immerse a listener in a 3D virtual auditory scene with a pair of headphones. The challenge for any binaural display is to compute the two signals to supply to the headphones. The present work considers a general framework capable of synthesizing a wide variety of auditory scenes. The framework models collections of head-related transfer functions (HRTFs) simultaneously. This framework improves the flexibility of contemporary displays, but it also compounds the steep computational cost of the display. The cost is reduced dramatically by formulating the collection of HRTFs in the state-space and employing order-reduction techniques to design efficient approximants. Order-reduction techniques based on the Hankel-operator are found to yield accurate low-cost approximants. However, the inter-aural time difference (ITD) of the HRTFs degrades the time-domain response of the approximants. Fortunately, this problem can be circumvented by employing a state-space architecture that allows the ITD to be modeled outside of the state-space. Accordingly, three state-space architectures are considered. Overall, a multiple-input, single-output (MISO) architecture yields the best compromise between performance and flexibility. The state-space approximants are evaluated both empirically and psychoacoustically. An array of truncated FIR filters is used as a pragmatic reference system for comparison. For a fixed cost bound, the state-space systems yield lower approximation error than FIR arrays for D>10, where D is the number of directions in the HRTF collection. A series of headphone listening tests are also performed to validate the state-space approach, and to estimate the minimum order N of indiscriminable approximants. For D = 50, the state-space systems yield order thresholds less than half those of the FIR arrays. Depending upon the stimulus uncertainty, a minimum state-space order of 7≤N≤23 appears to be adequate. In conclusion, the proposed state-space method enables a more flexible and immersive binaural display with low computational cost.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.
1982-01-01
A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.
[Design and development of an online system of parasite's images for training and evaluation].
Yuan-Chun, Mao; Sui, Xu; Jie, Wang; Hua-Yun, Zhou; Jun, Cao
2017-08-08
To design and develop an online training and evaluation system for parasitic pathogen recognition. The system was based on a Parasitic Diseases Specimen Image Digitization Construction Database by using MYSQL 5.0 as the system of database development software, and PHP 5 as the interface development language. It was mainly used for online training and evaluation of parasitic pathology diagnostic techniques. The system interface was designed simple, flexible, and easy to operate for medical staff. It enabled full day and 24 hours accessible to online training study and evaluation. Thus, the system broke the time and space constraints of the traditional training models. The system provides a shared platform for the professional training of parasitic diseases, and a reference for other training tasks.
Annual Geocenter Motion from Space Geodesy and Models
NASA Astrophysics Data System (ADS)
Ries, J. C.
2013-12-01
Ideally, the origin of the terrestrial reference frame and the center of mass of the Earth are always coincident. By construction, the origin of the reference frame is coincident with the mean Earth center of mass, averaged over the time span of the satellite laser ranging (SLR) observations used in the reference frame solution, within some level of uncertainty. At shorter time scales, tidal and non-tidal mass variations result in an offset between the origin and geocenter, called geocenter motion. Currently, there is a conventional model for the tidally-coherent diurnal and semi-diurnal geocenter motion, but there is no model for the non-tidal annual variation. This annual motion reflects the largest-scale mass redistribution in the Earth system, so it essential to observe it for a complete description of the total mass transport. Failing to model it can also cause false signals in geodetic products such as sea height observations from satellite altimeters. In this paper, a variety of estimates for the annual geocenter motion are presented based on several different geodetic techniques and models, and a ';consensus' model from SLR is suggested.
National Standard of the Russian Federation for Space Debris Mitigation
NASA Astrophysics Data System (ADS)
Loginov, S.; Yakovlev, M.; Mikhailov, M.; Popkova, L.
2009-03-01
Normative and technical document that define requirements for the mitigation of human-produced near-earth space pollution develops in Russian Federation.NATIONAL STANDARD of the Russian Federation GOST R 52925-2008 «SPACE TECHNOLOGY ITEMS. General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution» was approved in 2008 and entered into force since 1st January of 2009. Requirements of this standard harmonized with requirements of «UN SPACE DEBRIS MITIGATION GUIDELINESÈ»This standard consists of six parts:- Scope;- References to Standards;- Terms & Definitions;- Abbreviations;- General Provisions;- General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution.
Satellite power system: Engineering and economic analysis summary
NASA Technical Reports Server (NTRS)
1976-01-01
A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.
Fundamental Principles of Proper Space Kinematics
NASA Astrophysics Data System (ADS)
Wade, Sean
It is desirable to understand the movement of both matter and energy in the universe based upon fundamental principles of space and time. Time dilation and length contraction are features of Special Relativity derived from the observed constancy of the speed of light. Quantum Mechanics asserts that motion in the universe is probabilistic and not deterministic. While the practicality of these dissimilar theories is well established through widespread application inconsistencies in their marriage persist, marring their utility, and preventing their full expression. After identifying an error in perspective the current theories are tested by modifying logical assumptions to eliminate paradoxical contradictions. Analysis of simultaneous frames of reference leads to a new formulation of space and time that predicts the motion of both kinds of particles. Proper Space is a real, three-dimensional space clocked by proper time that is undergoing a densification at the rate of c. Coordinate transformations to a familiar object space and a mathematical stationary space clarify the counterintuitive aspects of Special Relativity. These symmetries demonstrate that within the local universe stationary observers are a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and Uncertainty the use of the imaginary number i is restricted for application to the labeling of mass as either material or immaterial. This material phase difference accounts for both the perceived constant velocity of light and its apparent statistical nature. The application of Proper Space Kinematics will advance more accurate representations of microscopic, oscopic, and cosmological processes and serve as a foundation for further study and reflection thereafter leading to greater insight.
Attenuation Drift in the Micro-Computed Tomography System at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, Alex A.; Brown, William; Seetho, Isaac
2016-01-12
The maximum allowable level of drift in the linear attenuation coefficients (μ) for a Lawrence Livermore National Laboratory (LLNL) micro-computed tomography (MCT) system was determined to be 0.1%. After ~100 scans were acquired during the period of November 2014 to March 2015, the drift in μ for a set of six reference materials reached or exceeded 0.1%. Two strategies have been identified to account for or correct the drift. First, normalizing the 160 kV and 100 kV μ data by the μ of water at the corresponding energy, in contrast to conducting normalization at the 160 kV energy only, significantlymore » compensates for measurement drift. Even after the modified normalization, μ of polytetrafluoroethylene (PTFE) increases linearly with scan number at an average rate of 0.00147% per scan. This is consistent with PTFE radiation damage documented in the literature. The second strategy suggested is the replacement of the PTFE reference with fluorinated ethylene propylene (FEP), which has the same effective atomic number (Ze) and electron density (ρe) as PTFE, but is 10 times more radiation resistant. This is important as effective atomic number and electron density are key parameters in analysis. The presence of a material with properties such as PTFE, when taken together with the remaining references, allows for a broad range of the (Ze, ρe) feature space to be used in analysis. While FEP is documented as 10 times more radiation resistant, testing will be necessary to assess how often, if necessary, FEP will need to be replaced. As radiation damage to references has been observed, it will be necessary to monitor all reference materials for radiation damage to ensure consistent x-ray characteristics of the references.« less
The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance
NASA Astrophysics Data System (ADS)
Cheng, P.; Cheng, Y.; Bei, J.
2017-12-01
China Geodetic Coordinate System 2000 (CGCS2000) was first officially declared as the national standard coordinate system on July 1, 2008. This reference frame was defined in the ITRF97 frame at epoch 2000.0 and included 2600 GPS geodetic control points. The paper discusses differences between China Geodetic Coordinate System 2000 (CGCS2000) and later updated ITRF versions, such as ITRF2014,in terms of technical implementation and maintenance. With the development of the Beidou navigation satellite system, especially third generation of BDS with signal global coverage in the future, and with progress of space geodetic technology, it is possible for us to establish a global millimeter-level reference frame based on space geodetic technology including BDS. The millimeter reference frame implementation concerns two factors: 1) The variation of geocenter motion estimation, and 2) the site nonlinear motion modeling. In this paper, the geocentric inversion methods are discussed and compared among results derived from various technical methods. Our nonlinear site movement modeling focuses on singular spectrum analysis method, which is of apparent advantages over earth physical effect modeling. All presented in the paper expected to provide reference to our future CGCS2000 maintenance.
2003-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)
2000-08-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, Stanford engineer, Chris Gray, is inspecting the number 4 gyro under monochromatic light. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Stanford University.)
NASA Astrophysics Data System (ADS)
Mazurova, Elena; Mikhaylov, Aleksandr
2013-04-01
The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.
Applications of massively parallel computers in telemetry processing
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; Pritchard, Jim; Knoble, Gordon
1994-01-01
Telemetry processing refers to the reconstruction of full resolution raw instrumentation data with artifacts, of space and ground recording and transmission, removed. Being the first processing phase of satellite data, this process is also referred to as level-zero processing. This study is aimed at investigating the use of massively parallel computing technology in providing level-zero processing to spaceflights that adhere to the recommendations of the Consultative Committee on Space Data Systems (CCSDS). The workload characteristics, of level-zero processing, are used to identify processing requirements in high-performance computing systems. An example of level-zero functions on a SIMD MPP, such as the MasPar, is discussed. The requirements in this paper are based in part on the Earth Observing System (EOS) Data and Operation System (EDOS).
CTAS: Computer intelligence for air traffic control in the terminal area
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
1992-01-01
A system for the automated management and control of arrival traffic, referred to as the Center-TRACON Automation System (CTAS), has been designed by the ATC research group at NASA Ames research center. In a cooperative program, NASA and the FAA have efforts underway to install and evaluate the system at the Denver and Dallas/Ft. Worth airports. CTAS consists of three types of integrated tools that provide computer-generated intelligence for both Center and TRACON controllers to guide them in managing and controlling arrival traffic efficiently. One tool, the Traffic Management Advisor (TMA), establishes optimized landing sequences and landing times for aircraft arriving in the center airspace several hundred miles from the airport. In TRACON, TMA frequencies missed approach aircraft and unanticipated arrivals. Another tool, the Descent Advisor (DA), generates clearances for the center controllers handling at crossing times provided by TMA. In the TRACON, the final approach spacing tool (FAST) provides heading and speed clearances that produce and accurately spaced flow of aircraft on the final approach course. A data base consisting of aircraft performance models, airline preferred operational procedures and real time wind measurements contribute to the effective operation of CTAS. Extensive simulator evaluations of CTAS have demonstrated controller acceptance, delay reductions, and fuel savings.
Artist's Concept of Gravity Probe-B
NASA Technical Reports Server (NTRS)
2002-01-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Artist's Concept of Gravity Probe-B
NASA Technical Reports Server (NTRS)
2002-01-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Artist's Concept of Gravity Probe-B
NASA Technical Reports Server (NTRS)
2002-01-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
JPL space robotics: Present accomplishments and future thrusts
NASA Astrophysics Data System (ADS)
Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.
1994-10-01
Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.
JPL space robotics: Present accomplishments and future thrusts
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.
1994-01-01
Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.
Flat-space quantum gravity in the AdS / CFT correspondence
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.
2016-03-22
Motivated by the task of understanding microscopic dynamics of an evolving black hole, we present a scheme describing gauge-fixed continuous time evolution of quantum gravitational processes in asymptotically flat spacetime using the algebra of conformal field theory operators. This allows us to study the microscopic dynamics of the Hawking emission process, although obtaining a full S-matrix may require a modification of the minimal scheme. The role of the operator product expansion is to physically interpret the resulting time evolution by decomposing the Hilbert space of the states for the entire system into those for smaller subsystems. We translate the picturemore » of an evaporating black hole previously proposed by the authors into predictions for nonperturbative properties of the conformal field theories that have weakly coupled dual gravitational descriptions. Finally, we also discuss a possible relationship between the present scheme and a reference frame change in the bulk.« less
NASA Astrophysics Data System (ADS)
Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)
2010-08-01
We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.
Space construction system analysis. Part 2: Platform definition
NASA Technical Reports Server (NTRS)
Hart, R. J.; Myers, H. L.; Abramson, R. D.; Dejong, P. N.; Donavan, R. D.; Greenberg, H. S.; Indrikis, J.; Jandrasi, J. S.; Manoff, M.; Mcbaine, C. K.
1980-01-01
The top level system requirements are summarized and the accompanying conceptual design for an engineering and technology verification platform (ETVP) system is presented. An encompassing statement of the system objectives which drive the system requirements is presented and the major mission and subsystem requirements are described with emphasis on the advanced communications technology mission payload. The platform design is defined and used as a reference configuration for an end to space construction analyses. The preferred construction methods and processes, the important interactions between the platform design and the construction system design and operation, and the technology development efforts required to support the design and space construction of the ETVP are outlined.
SysML: A Language for Space System Engineering
NASA Astrophysics Data System (ADS)
Mazzini, S.; Strangapede, A.
2008-08-01
This paper presents the results of an ESA/ESTEC internal study, performed with the support of INTECS, about modeling languages to support Space System Engineering activities and processes, with special emphasis on system requirements identification and analysis. The study was focused on the assessment of dedicated UML profiles, their positioning alongside the system and software life cycles and associated methodologies. Requirements for a Space System Requirements Language were identified considering the ECSS-E-10 and ECSS-E_40 processes. The study has identified SysML as a very promising language, having as theoretical background the reference system processes defined by the ISO15288, as well as industrial practices.
Supportability Challenges, Metrics, and Key Decisions for Future Human Spaceflight
NASA Technical Reports Server (NTRS)
Owens, Andrew C.; de Weck, Olivier L.; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce
2017-01-01
Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human space flight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability { defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems { will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human space flight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of pro- posed strategies for managing supportability is presented (including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares - along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human space flight.
NASA Astrophysics Data System (ADS)
Feria, Erlan H.
2008-04-01
In this third of a multi-paper series the discovery of a space dual for the laws of motion is reported and named the laws of retention. This space-time duality in physics is found to inherently surface from a latency-information theory (LIT) that is treated in the first two papers of this multi-paper series. A motion-coder and a retention-coder are fundamental elements of a LIT's recognition-communication system. While a LIT's motion-coder addresses motion-time issues of knowledge motion, a LIT's retention-coder addresses retention-space issues of knowledge retention. For the design of a motion-coder, such as a modulation-antenna system, the laws of motion in physics are used while for the design of a retention-coder, such as a write/read memory, the newly advanced laws of retention can be used. Furthermore, while the laws of motion reflect a configuration of space certainty, the laws of retention reflect a passing of time uncertainty. Since the retention duals of motion concepts are too many to cover in a single publication, the discussion will be centered on the retention duals for Newton's Principia and the gravitational law, Coulomb's electrical law, Maxwell's equations, Einstein's relativity theory, quantum mechanics, and the uncertainty principle. Furthermore the retention duals will be illustrated with an uncharged and non-rotating black hole (UNBH). A UNBH is the retention dual of a vacuum since the UNBH and vacuum offer, from a theoretical perspective, the least resistance to knowledge retention and motion, respectively. Using this space-time duality insight it will be shown that the speed of light in a vacuum of c M=2.9979 x 10 8 meters/sec has a retention dual, herein called the pace of dark in a UNBH of c R=6.1123 x 10 63 secs/m 3 where 'pace' refers to the expected retention-time per retention-space for the 'dark' knowledge residing in a black hole.
In-Space Transportation for GEO Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.
1999-01-01
This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Shuttle/spacelab contamination environment and effects handbook
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Payton, R. M.; Papazian, H. A.
1986-01-01
This handbook is intended to assist users of the Spacelab/Space Transportation System by providing contamination environments and effects information that may be of value in planning, designing, manufacturing, and operating a space flight experiment. A summary of available molecular and particulate contamination data on the Space Transportation System and its facilities is presented. Contamination models, contamination effects, and protection methods information are also presented. In addition to contamination, the effects of the space environments at STS altitudes on spacecraft materials are included. Extensive references, bibliographies, and contacts are provided.
NASA Technical Reports Server (NTRS)
Davidoff, Larry D.; Reichert, Jack M.
1999-01-01
NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
Alexander, David M; Trengove, Chris; van Leeuwen, Cees
2015-11-01
An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.
Space-based augmentation for global navigation satellite systems.
Grewal, Mohinder S
2012-03-01
This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
NASA Astrophysics Data System (ADS)
Dixon, W. G.
1982-11-01
Preface; 1. The physics of space and time; 2. Affine spaces in mathematics and physics; 3. Foundations of dynamics; 4. Relativistic simple fluids; 5. Electrodynamics of polarisable fluids; Appendix: Vector and dyadic notation in three dimensions; Publications referred to in the text; Summary and index of symbols and conventions; Subject index.
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
2000-04-12
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Data analysis and interpretation related to space system/environment interactions at LEO altitude
NASA Technical Reports Server (NTRS)
Raitt, W. John; Schunk, Robert W.
1991-01-01
Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter.
NASA Astrophysics Data System (ADS)
Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.
2010-07-01
A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.
Does movement influence representations of time and space?
2017-01-01
Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensorimotor experiences. If true, then the execution of whole-body movements should result in modulations of temporal and spatial reference frames. To scrutinize this hypothesis, in two experiments participants either walked forward, backward or stood on a treadmill and responded either to an ambiguous temporal question (Experiment 1) or an ambiguous spatial question (Experiment 2) at the end of the walking manipulation. Results confirmed the ambiguousness of the questions in the control condition. Nevertheless, despite large power, walking forward or backward did not influence the answers or response times to the temporal (Experiment 1) or spatial (Experiment 2) question. A follow-up Experiment 3 indicated that this is also true for walking actively (or passively) in free space (as opposed to a treadmill). We explore possible reasons for the null-finding as concerns the modulation of temporal and spatial reference frames by movements and we critically discuss the methodological and theoretical implications. PMID:28376130
Does movement influence representations of time and space?
Loeffler, Jonna; Raab, Markus; Cañal-Bruland, Rouwen
2017-01-01
Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensorimotor experiences. If true, then the execution of whole-body movements should result in modulations of temporal and spatial reference frames. To scrutinize this hypothesis, in two experiments participants either walked forward, backward or stood on a treadmill and responded either to an ambiguous temporal question (Experiment 1) or an ambiguous spatial question (Experiment 2) at the end of the walking manipulation. Results confirmed the ambiguousness of the questions in the control condition. Nevertheless, despite large power, walking forward or backward did not influence the answers or response times to the temporal (Experiment 1) or spatial (Experiment 2) question. A follow-up Experiment 3 indicated that this is also true for walking actively (or passively) in free space (as opposed to a treadmill). We explore possible reasons for the null-finding as concerns the modulation of temporal and spatial reference frames by movements and we critically discuss the methodological and theoretical implications.
Sensitivity of the Asteroid Redirect Robotic Mission (ARRM) to Launch Date and Asteroid Stay Time
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Burke, Laura M.; McCarty, Steven L.; Strange, Nathan J.; Qu, Min; Shen, Haijun; Vavrina, Matthew A.
2017-01-01
National Aeronautics and Space Administrations (NASAs) proposed Asteroid Redirect Mission (ARM) is being designed to robotically capture and then redirect an asteroidal boulder into a stable orbit in the vicinity of the moon, where astronauts would be able to visit and study it. The current reference trajectory for the robotic portion, ARRM, assumes a launch on a Delta-IV H in the end of the calendar year 2021, with a return for astronaut operations in cislunar space in 2026. The current baseline design allocates 245 days of stay time at the asteroid for operations and boulder collection. This paper outlines analysis completed by the ARRM mission design team to understand the sensitivity of the reference trajectory to launch date and asteroid stay time.
Sensitivity of the Asteroid Redirect Robotic Mission (ARRM) to Launch Date and Asteroid Stay Time
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Burke, Laura M.; McCarty, Steven L.; Strange, Nathan J.; Qu, Min; Shen, Haijun; Vavrina, Matthew A.
2017-01-01
National Aeronautics and Space Administrations (NASAs) proposed Asteroid Redirect Mission (ARM) is being designed to robotically capture and then redirect an asteroidal boulder mass into a stable orbit in the vicinity of the moon, where astronauts would be able to visit and study it. The current reference trajectory for the robotic portion, ARRM, assumes a launch on a Delta IV H in the end of the calendar year 2021, with a return for astronaut operations in cislunar space in 2026. The current baseline design allocates 245 days of stay time at the asteroid for operations and boulder collection. This paper outlines analysis completed by the ARRM mission design team to understand the sensitivity of the reference trajectory to launch date and asteroid stay time.
Flexbus — an attractive technical solution for small missions
NASA Astrophysics Data System (ADS)
Settelmeyer, Eckard; Lampen, Martin; Hartmann, Ralf; Lippner, Gerhard
1996-11-01
Responding to the demand for a 'faster, cheaper, better' implementation of space related services, Domier Satellitensysteme GmbH has established and exercised an approach for the development and production of satellites and the corresponding ground equipment for small missions, referred to as Flexbus. It allows to support space service customers starting from mission engineering via design, development and manufacturing of the necessary hardware, the launch service and ending with the hand-over of the operational system. Flexbus harmonises a modular component concept with a sound design and development approach, as a whole providing the means to offer high quality products in a fairly short time and for competitive pricing. This paper will outline the major features of the Flexbus approach and describe application examples.
Elexbus — An attractive technical solution for small mission opportunities
NASA Astrophysics Data System (ADS)
Seltelmeyer, Eckard; Lampen, Martin; Hartmann, Ralf; Lippncr, Gerhard
Responding to the demand for a 'faster, cheaper, better' implementation of space related services. Dornier Satellitensysteme GmbH has established and exercised an approach for the development and production of satellites and the corresponding ground equipment for small missions, referred to as Flexbus. It allows to support space service customers starting from mission engineering via design, development and manufacturing of the necessary hardware, the launch service and ending with the hand-over of the operational system. Flexbus harmonises a modular component concept with a sound design and development approach, as a whole providing the means to offer high quality products in a fairly short time and for competitive pricing. This paper will outline the major features of the Flexbus approach and describe application examples.
Ultra-stable clock laser system development towards space applications.
Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe
2016-09-26
The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.
Time and Space in Tzeltal: Is the Future Uphill?
Brown, Penelope
2012-01-01
Linguistic expressions of time often draw on spatial language, which raises the question of whether cultural specificity in spatial language and cognition is reflected in thinking about time. In the Mayan language Tzeltal, spatial language relies heavily on an absolute frame of reference utilizing the overall slope of the land, distinguishing an “uphill/downhill” axis oriented from south to north, and an orthogonal “crossways” axis (sunrise-set) on the basis of which objects at all scales are located. Does this absolute system for calculating spatial relations carry over into construals of temporal relations? This question was explored in a study where Tzeltal consultants produced temporal expressions and performed two different non-linguistic temporal ordering tasks. The results show that at least five distinct schemata for conceptualizing time underlie Tzeltal linguistic expressions: (i) deictic ego-centered time, (ii) time as an ordered sequence (e.g., “first”/“later”), (iii) cyclic time (times of the day, seasons), (iv) time as spatial extension or location (e.g., “entering/exiting July”), and (v) a time vector extending uphillwards into the future. The non-linguistic task results showed that the “time moves uphillwards” metaphor, based on the absolute frame of reference prevalent in Tzeltal spatial language and thinking and important as well in the linguistic expressions for time, is not strongly reflected in responses on these tasks. It is argued that systematic and consistent use of spatial language in an absolute frame of reference does not necessarily transfer to consistent absolute time conceptualization in non-linguistic tasks; time appears to be more open to alternative construals. PMID:22787451
Space Congress, 29th, Cocoa Beach, FL, Apr. 21-24, 1992, Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The present volume on the quest for new frontiers in space discusses weather impacts on space operations, planning for the performance of future space bases, a new guidance and control unit for the Titan IV vehicle, and nondestructive evaluation of Shuttle Columbia tiles. Attention is given to Space Shuttle payload accommodations and trends in customer demands, a generic propellants transfer unit, making space part of general education, space station on-orbit solar array loads during assembly, and dimensional stability of the attitude reference assembly on SSF. Topics addressed include National Launch System payload accommodations and launch operations, the integrated factory/launch site processing concept, Pioneer 10 interstellar studies, and the role of advanced nuclear propulsion systems in precursor interstellar missions. Also discussed are legal challenges in realizing interstellar initiatives, Mars transportation system synthesis, and NASA's commercial space program.
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
NASA Astrophysics Data System (ADS)
Dungan, J. L.; Wang, W.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.
2009-12-01
In support of NACP, we are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to evaluate uncertainties among ecosystem models, satellite datasets, and in-situ measurements. The models used in the experiment include public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. The reference datasets include MODIS Gross Primary Production (GPP) and Net Primary Production (NPP) products, Fluxnet measurements, and other observational data. The simulation results and the reference datasets are consistently processed and systematically compared in the climate (temperature-precipitation) space; in particular, an alternative to the Taylor diagram is developed to facilitate model-data intercomparisons in multi-dimensional space. The key findings of this study indicate that: the simulated GPP/NPP fluxes are in general agreement with observations over forests, but are biased low (underestimated) over non-forest types; large uncertainties of biomass and soil carbon stocks are found among the models (and reference datasets), often induced by seemingly “small” differences in model parameters and implementation details; the simulated Net Ecosystem Production (NEP) mainly responds to non-respiratory disturbances (e.g. fire) in the models and therefore is difficult to compare with flux data; and the seasonality and interannual variability of NEP varies significantly among models and reference datasets. These findings highlight the problem inherent in relying on only one modeling approach to map surface carbon fluxes and emphasize the pressing necessity of expanded and enhanced monitoring systems to narrow critical structural and parametrical uncertainties among ecosystem models.
NASA Astrophysics Data System (ADS)
Murrieta Mendoza, Alejandro
Aircraft reference trajectory is an alternative method to reduce fuel consumption, thus the pollution released to the atmosphere. Fuel consumption reduction is of special importance for two reasons: first, because the aeronautical industry is responsible of 2% of the CO2 released to the atmosphere, and second, because it will reduce the flight cost. The aircraft fuel model was obtained from a numerical performance database which was created and validated by our industrial partner from flight experimental test data. A new methodology using the numerical database was proposed in this thesis to compute the fuel burn for a given trajectory. Weather parameters such as wind and temperature were taken into account as they have an important effect in fuel burn. The open source model used to obtain the weather forecast was provided by Weather Canada. A combination of linear and bi-linear interpolations allowed finding the required weather data. The search space was modelled using different graphs: one graph was used for mapping the different flight phases such as climb, cruise and descent, and another graph was used for mapping the physical space in which the aircraft would perform its flight. The trajectory was optimized in its vertical reference trajectory using the Beam Search algorithm, and a combination of the Beam Search algorithm with a search space reduction technique. The trajectory was optimized simultaneously for the vertical and lateral reference navigation plans while fulfilling a Required Time of Arrival constraint using three different metaheuristic algorithms: the artificial bee's colony, and the ant colony optimization. Results were validated using the software FlightSIMRTM, a commercial Flight Management System, an exhaustive search algorithm, and as flown flights obtained from flightawareRTM. All algorithms were able to reduce the fuel burn, and the flight costs. None None None None None None None
Di Bucchianico, Giuseppe; Camplone, Stefania; Picciani, Stefano; Vallese, Valeria
2012-01-01
The widespread sense of spatial disorientation that can be experienced in many public places (buildings and open spaces),generally depends on a design approach that doesn't take into account both the "communication skills" of the different parts of the spatial organization, both the variability of people and their ways of interacting with environments, orienteering themselves. Nevertheless, "not find the way" often has some obvious practical costs (loss of time, failure to achieve a target) and some more intangible, but no less important, emotional costs. That's why the design of signage systems must take into account both the specificities of places and the extreme variability of its users. The paper presents the results of a study on this specific issue. In particular, the study focuses on the description of some tools useful for the analysis and design of a signage system that is truly "for All".
Local effects of redundant terrestrial and GPS-based tie vectors in ITRF-like combinations
NASA Astrophysics Data System (ADS)
Abbondanza, Claudio; Altamimi, Zuheir; Sarti, Pierguido; Negusini, Monia; Vittuari, Luca
2009-11-01
Tie vectors (TVs) between co-located space geodetic instruments are essential for combining terrestrial reference frames (TRFs) realised using different techniques. They provide relative positioning between instrumental reference points (RPs) which are part of a global geodetic network such as the international terrestrial reference frame (ITRF). This paper gathers the set of very long baseline interferometry (VLBI)-global positioning system (GPS) local ties performed at the observatory of Medicina (Northern Italy) during the years 2001-2006 and discusses some important aspects related to the usage of co-location ties in the combinations of TRFs. Two measurement approaches of local survey are considered here: a GPS-based approach and a classical approach based on terrestrial observations (i.e. angles, distances and height differences). The behaviour of terrestrial local ties, which routinely join combinations of space geodetic solutions, is compared to that of GPS-based local ties. In particular, we have performed and analysed different combinations of satellite laser ranging (SLR), VLBI and GPS long term solutions in order to (i) evaluate the local effects of the insertion of the series of TVs computed at Medicina, (ii) investigate the consistency of GPS-based TVs with respect to space geodetic solutions, (iii) discuss the effects of an imprecise alignment of TVs from a local to a global reference frame. Results of ITRF-like combinations show that terrestrial TVs originate the smallest residuals in all the three components. In most cases, GPS-based TVs fit space geodetic solutions very well, especially in the horizontal components (N, E). On the contrary, the estimation of the VLBI RP Up component through GPS technique appears to be awkward, since the corresponding post fit residuals are considerably larger. Besides, combination tests including multi-temporal TVs display local effects of residual redistribution, when compared to those solutions where Medicina TVs are added one at a time. Finally, the combination of TRFs turns out to be sensitive to the orientation of the local tie into the global frame.
VLBI-based Products - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters
2005-04-22
References [1] Janson S, Helvajian H and Robinson E 1993 The concept of nanosatellite for revolutionary, low-cost space systems 44th International...technologies J. Micromech. Microeng. 8 54–6 [4] Helvajian H 1997 Microengineering Technology for Space Systems (Reston, VA: AIAA) [5] Ketsdever A D 2000 System...nanosatellite applications (POSTPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew D. Ketsdever (AFRL/PRSA); Riki H . Lee and
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
NASA Astrophysics Data System (ADS)
Suomalainen, Emilia; Erkman, Suren
Space life support systems can be taken as kinds of miniature models of industrial systems found on Earth. The term "industrial" is employed here in a generic sense, referring to all human technological activities. The time scale as well as the physical scope of space life support systems is reduced compared to most terrestrial systems and so is consequently their complexity. These systems can thus be used as a kind of a "laboratory of sustainability" to examine concerns related to the environmental sustainability of industrial systems and in particular to their resource use. Two air revitalisation systems, ARES and BIORAT, were chosen as the test cases of our study. They represent respectively a physico-chemical and a biological life support system. In order to analyse the sustainability of these systems, we began by constructing a generic system representation applicable to both these systems (and to others). The metabolism of the systems was analysed by performing Material Flow Analyses—MFA is a tool frequently employed on terrestrial systems in the field of industrial ecology. Afterwards, static simulation models were developed for both ARES and BIORAT, focusing, firstly, on the oxygen balances of the systems and, secondly, on the total mass balances. It was also necessary to define sustainability indicators adapted to space life support systems in order to evaluate and to compare the performances of ARES and BIORAT. The defined indicators were partly inspired from concepts used in Material Flow Accounting and they were divided into four broad categories: 1. recycling and material use efficiency, 2. autarky and coverage time, 3. resource use and waste creation, and 4. system mass and energy consumption. The preliminary results of our analyses show that the performance of BIORAT is superior compared to ARES in terms of the defined resource use indicators. BIORAT seems especially effective in reprocessing carbon dioxide created by human metabolism. The performances of ARES and BIORAT are somewhat closer in terms of material use efficiency and resource intensity. However, the excellence of BIORAT in terms of resource use is countered by the fact that its energy consumption is greater than that of ARES by a factor of ten.
Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.
2017-01-01
The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp
2015-04-14
We consider a quantum mechanical system represented in phase space (referred to hereafter as “Wigner space”), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time, which represents an inverse temperature. This is an extension of a previous work, in which we studied a spin-boson system, to a Brownian system. It is shown that the QHFP in real time obtained from a correlated thermal equilibrium state of the total system possesses the same form as those obtained from a factorized initial state. A modified terminator for themore » hierarchal equations of motion is introduced to treat the non-Markovian case more efficiently. Using the imaginary-time QHFP, numerous thermodynamic quantities, including the free energy, entropy, internal energy, heat capacity, and susceptibility, can be evaluated for any potential. These equations allow us to treat non-Markovian, non-perturbative system-bath interactions at finite temperature. Through numerical integration of the real-time QHFP for a harmonic system, we obtain the equilibrium distributions, the auto-correlation function, and the first- and second-order response functions. These results are compared with analytically exact results for the same quantities. This provides a critical test of the formalism for a non-factorized thermal state and elucidates the roles of fluctuation, dissipation, non-Markovian effects, and system-bath coherence. Employing numerical solutions of the imaginary-time QHFP, we demonstrate the capability of this method to obtain thermodynamic quantities for any potential surface. It is shown that both types of QHFP equations can produce numerical results of any desired accuracy. The FORTRAN source codes that we developed, which allow for the treatment of Wigner space dynamics with any potential form (TanimuranFP15 and ImTanimuranFP15), are provided as the supplementary material.« less
Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
NASA Technical Reports Server (NTRS)
Bedingfield, Keith, L.; Leach, Richard D.; Alexander, Margaret B. (Editor)
1996-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. This primer provides a brief overview of the natural space environment - definition, related programmatic issues, and effects on various spacecraft subsystems. The primary focus, however, is to catalog, through representative case histories, spacecraft failures and anomalies attributed to the natural space environment. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).
Competition Between Transients in the Rate of Approach to a Fixed Point
NASA Astrophysics Data System (ADS)
Day, Judy; Rubin, Jonathan E.; Chow, Carson C.
2009-01-01
The goal of this paper is to provide and apply tools for analyzing a specific aspect of transient dynamics not covered by previous theory. The question we address is whether one component of a perturbed solution to a system of differential equations can overtake the corresponding component of a reference solution as both converge to a stable node at the origin, given that the perturbed solution was initially farther away and that both solutions are nonnegative for all time. We call this phenomenon tolerance, for its relation to a biological effect. We show using geometric arguments that tolerance will exist in generic linear systems with a complete set of eigenvectors and in excitable nonlinear systems. We also define a notion of inhibition that may constrain the regions in phase space where the possibility of tolerance arises in general systems. However, these general existence theorems do not not yield an assessment of tolerance for specific initial conditions. To address that issue, we develop some analytical tools for determining if particular perturbed and reference solution initial conditions will exhibit tolerance.
Development of web tools to disseminate space geodesy data-related products
NASA Astrophysics Data System (ADS)
Soudarin, Laurent; Ferrage, Pascale; Mezerette, Adrien
2015-04-01
In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). A database was created to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Lammers, Michael L.
2004-01-01
The Global Positioning System Subsystem (GPS) for International Space Station (ISS) was activated April 12,2002 following the installation of the SO truss segment that included the GPS antennas on Shuttle mission STS-110. The ISS GPS receiver became the primary source for position, velocity, and attitude information for ISS two days after activation. The GPS receiver also provides a time reference for manual control of ISS time, and will be used for automatic time updates after problems are resolved with the output from the receiver. After two years of on-orbit experience, the GPS continues to be used as the primary navigation source for ISS; however, enough problems have surfaced that the firmware in the GPS attitude code has had to be totally rewritten and new algorithms developed, the firmware that processed the time output from the GPS receiver had to be rewritten, while the GPS navigation code has had minor revisions. The factors contributing to the delivery of a GPS receiver for use on ISS that requires extensive operator intervention to function are discussed. Observations from two years worth of GPS solutions will also be discussed. The technical solutions to the anomalous GPS receiver behavior will be discussed.
Expert system isssues in automated, autonomous space vehicle rendezvous
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Bochsler, Daniel C.
1987-01-01
The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.
The Long-Wave Infrared Earth Image as a Pointing Reference for Deep-Space Optical Communications
NASA Astrophysics Data System (ADS)
Biswas, A.; Piazzolla, S.; Peterson, G.; Ortiz, G. G.; Hemmati, H.
2006-11-01
Optical communications from space require an absolute pointing reference. Whereas at near-Earth and even planetary distances out to Mars and Jupiter a laser beacon transmitted from Earth can serve as such a pointing reference, for farther distances extending to the outer reaches of the solar system, the means for meeting this requirement remains an open issue. We discuss in this article the prospects and consequences of utilizing the Earth image sensed in the long-wave infrared (LWIR) spectral band as a beacon to satisfy the absolute pointing requirements. We have used data from satellite-based thermal measurements of Earth to synthesize images at various ranges and have shown the centroiding accuracies that can be achieved with prospective LWIR image sensing arrays. The nonuniform emissivity of Earth causes a mispointing bias error term that exceeds a provisional pointing budget allocation when using simple centroiding algorithms. Other issues related to implementing thermal imaging of Earth from deep space for the purposes of providing a pointing reference are also reported.
Using the Deep Space Atomic Clock for Navigation and Science.
Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L
2018-06-01
Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.
Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications
NASA Astrophysics Data System (ADS)
Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.
2014-12-01
Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.
Science Goals for the PARCS mission on the International Space Station
NASA Astrophysics Data System (ADS)
Ashby, Neil; Hollberg, Leo; Jefferts, Steven; Klipstein, William; Seidel, David; Sullivan, Donald
2003-05-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. This presentation concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5×10-14 at one second, and uncertainties below 10-16 are projected. The relativistic frequency shift should be measurable at least 40 times better than the previous best measurement made by Gravity Probe A. Significant improvements in testing fundamental assumptions of relativity theory, such as local position invariance (LPI), are expected. PARCS is scheduled for launch in 2007 and may very well fly with the Stanford superconducting microwave oscillator (SUMO) which will allow a Kennedy-Thorndike-type experiment with an improvement of better than three orders of magnitude compared to previous best results. PARCS will also provide a much-improved realization of the second, and a stable time reference in space. PARCS is a joint project by the National Institue of Standards and Technology (NIST), the University of Colorado (CU) and NASA's Jet Propulsion Laboratory (JPL).
NASA Astrophysics Data System (ADS)
Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa
Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.
The Necessity of Real-Time: Fact and Fiction in Digital Reference Systems.
ERIC Educational Resources Information Center
Lankes, R. David; Shostack, Pauline
2002-01-01
Discussion of digital reference services and the use of real-time versus asynchronous services such as email focuses on data from the AskERIC digital reference service to demonstrate that asynchronous services are not only useful but may have greater utility than real-time systems. (Author/LRW)
NASA Astrophysics Data System (ADS)
Chitnis, E. V.
The paper describes the role of space communication in promoting national development with special reference to experiments conducted in India, namely SITE (1975-1976), STEP (1977-1979) and APPLE (1981 onwards). The impact of these experiments in economic, cultural and educational terms are discussed, pointing out social implications involved in using advance space communication technology for instruction and information in the areas of education, national integration and development. The paper covers special requirements which arise when a communication system covers backward and remote rural areas in a developing country. The impact on the population measured by conducting social surveys has been discussed - especially the gains of predominently illiterate new media - participants have been highlighted. Possibilities of improving skills of teachers, the quality of the primary and higher education have been covered. The preparation required both on ground as well as space to derive benefits of space technology are considered. A profile of INSAT which marks the culmination of the experimental phase and the beginning of operational domestic satellite system is sketched.
Construction of CASCI-type wave functions for very large active spaces.
Boguslawski, Katharina; Marti, Konrad H; Reiher, Markus
2011-06-14
We present a procedure to construct a configuration-interaction expansion containing arbitrary excitations from an underlying full-configuration-interaction-type wave function defined for a very large active space. Our procedure is based on the density-matrix renormalization group (DMRG) algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space. Since the dimension of the Hilbert space scales binomially with the size of the active space, a sophisticated Monte Carlo sampling routine is employed. This sampling algorithm can also construct such configuration-interaction-type wave functions from any other type of tensor network states. The configuration-interaction information obtained serves several purposes. It yields a qualitatively correct description of the molecule's electronic structure, it allows us to analyze DMRG wave functions converged for the same molecular system but with different parameter sets (e.g., different numbers of active-system (block) states), and it can be considered a balanced reference for the application of a subsequent standard multi-reference configuration-interaction method.
Multi-GNSS signal-in-space range error assessment - Methodology and results
NASA Astrophysics Data System (ADS)
Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André
2018-06-01
The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.
NASA Technical Reports Server (NTRS)
Sen, S.; Kaukler, W. F.; Curreri, P. A.
1999-01-01
Solidification phenomenon which occur at the solid/liquid (s/I) interface play a major role in the determination of structure and hence the technologically important properties of a casting. However, metals being opaque, conclusions related to several important phenomenon such as boundary layer thickness, morphological evolution, and eutectic and cell spacing are deduced from quenching experiments and subsequent post solidification metallographic analysis. Consequently, limited information is obtained about the dynamics of the process. This paper will discuss the recent efforts at the Space Science Laboratory, NASA Marshall Space Flight Center, to view and quantify in-situ and in real time the dynamics of the solidification process and to measure interfacial undercooling. First, a high resolution x-ray transmission microscope (XTM) has been developed to monitor fundamental interfacial phenomena during directional solidification of metals and alloys. The XTM operates in the range of 10-100 KeV and through projection is capable of achieving magnification of up to 16OX. Secondly, an innovative collapsible furnace has been designed to quantify interfacial undercooling by measuring the temperature of a moving s/I interface in reference to a fixed s/l interface. This measurement technique is non-intrusive in nature and is based on the Seebeck principle. In this paper real time results obtained to characterize the dynamics of irregular eutectic spacing will be presented. As an example fiber to lamella or plate transition in the Al-Al2Au eutectic system will be discussed. Further, a resolution limit of 25 micron has permitted viewing in real time morphological instability and cellular growth in Al-Au and Al-Ag systems. Simultaneously, a systematic investigation has been carried out to measure interfacial undercooling for Pb-1 wt.% Sn at and near the marginal stability regime. In conjunction with the XTM observations this study attempts to validate existing relationships between undercooling and growth velocity during plane front growth, marginal stability regime, and stable cellular growth.
Services, architectures, and protocols for space data systems
NASA Technical Reports Server (NTRS)
Helgert, Hermann J.
1991-01-01
The author presents a comprehensive discussion of three major aspects of the work of the Consultative Committee for Space Data Systems (CCSDS), a worldwide cooperative effort of national space agencies. The author examines the CCSDS space data communications network concept on which the data communications facilities of future advanced orbiting systems will be based. He derives the specifications of an open communications architecture as a reference model for the development of services and protocols that support the transfer of information over space data communications networks. Detailed specifications of the communication services and information transfer protocols that have reached a high degree of maturity and stability are offered. The author also includes a complete list of currently available CCSDS standards and supporting documentation.
Study of a Solar Sensor for use in Space Vehicle Orientation Control Systems
NASA Technical Reports Server (NTRS)
Spencer, Paul R.
1961-01-01
The solar sensor described herein may be used for a variety of space operations requiring solar orientation. The use of silicon solar cells as the sensing elements provides the sensor with sufficient capability to withstand the hazards of a space environment. A method of arranging the cells in a sensor consists simply of mounting them at a large angle to the base. The use of an opaque shield placed between the cells and perpendicular to the base enhances the small-angle sensitivity while adding slightly to the bulk of the sensor. The difference in illumination of these cells as the result of an oblique incidence of the light rays from the reference source causes an electrical error signal which, when used in a battery-bridge circuit, requires a minimum of electrical processing for use in a space-vehicle orientation control system. An error which could occur after prolonged operation of the sensor is that resulting from asymmetrical aging of opposite cells. This could be periodically corrected with a balance potentiometer. A more routine error in the sensor is that produced by reflected earth radiation. This error may be eliminated over a large portion of the operation time by restricting the field of view and, consequently, the capture capability. A more sophisticated method of eliminating this error is to use separate sensors, for capture and fine pointing, along with a switching device. An experimental model has been constructed and tested to yield an output sensitivity of 1.2 millivolts per second of arc with a load resistance of 1,000 ohms and a reference light source of approximately 1,200 foot-candles delivered at the sensor.
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, Sev; Dufour, Jean-Francois
2012-08-01
The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.
The Architect's Guide to Mechanical Systems.
ERIC Educational Resources Information Center
Andrews, F. T.
The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, Kevin W.; Royer, Michael P.; David, Aurelien
A system for evaluating the color rendition of light sources was recently published as IES TM-30-15 IES Method for Evaluating Light Source Color Rendition. The system includes a fidelity index (Rf) to quantify similarity to a reference illuminant, a relative-gamut index (Rg) to quantify saturation relative to a reference illuminant, and a color vector icon that visually presents information about color rendition. The calculation employs CAM02-UCS and uses a newly-developed set of reflectance functions, comprising 99 color evaluation samples (CES). The CES were down-selected from 105,000 real object samples and are uniformly distributed in color space (fairly representing different colors)more » and wavelength space (avoiding artificial increase of color rendition values by selective optimization).« less
DECOMPOSITION OF THE PARTICLE AND CONNECTION OF PARTICLES IN THE TERMINI OF THE MOMENTUM SPACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernikov, N.A.
1958-01-01
>Geometric and algebraic notions and ideas are used to obtain a geometric interpretation of the kinematics of nuclear reactions. Thus, extended analytic calculations combined with the transition from one reference system to another, are replaced by simple formulas of the hyperbolic trigonometry. Let a particle move with the velocity a in a reference system which moves with the velocity o. Then the modulus of the three-dimensional impulse of the particle is p/sub 0a/ = m c sh oa-bar/c, where m is the resting miss, c is the velocity of the light, oa-bar is the distance of the points o andmore » a in the momentum space. The kinetic energy epsilon /sub oa/ of the particle in the system o is epsilon / sub oa/=m c/sup 2/STAoa-bar/c-1!. Then the ratio epsilon /sub oa/m is the area divided by 2 pi of a circle of radius oa in the momentum space. (TCO)« less
FPGA-Based Networked Phasemeter for a Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Rao, Shanti
2009-01-01
A document discusses a component of a laser metrology system designed to measure displacements along the line of sight with precision on the order of a tenth the diameter of an atom. This component, the phasemeter, measures the relative phase of two electrical signals and transfers that information to a computer. Because the metrology system measures the differences between two optical paths, the phasemeter has two inputs, called measure and reference. The reference signal is nominally a perfect square wave with a 50- percent duty cycle (though only rising edges are used). As the metrology system detects motion, the difference between the reference and measure signal phases is proportional to the displacement of the motion. The phasemeter, therefore, counts the elapsed time between rising edges in the two signals, and converts the time into an estimate of phase delay. The hardware consists of a circuit board that plugs into a COTS (commercial, off-the- shelf) Spartan-III FPGA (field-programmable gate array) evaluation board. It has two BNC inputs, (reference and measure), a CMOS logic chip to buffer the inputs, and an Ethernet jack for transmitting reduced-data to a PC. Two extra BNC connectors can be attached for future expandability, such as external synchronization. Each phasemeter handles one metrology channel. A bank of six phasemeters (and two zero-crossing detector cards) with an Ethernet switch can monitor the rigid body motion of an object. This device is smaller and cheaper than existing zero-crossing phasemeters. Also, because it uses Ethernet for communication with a computer, instead of a VME bridge, it is much easier to use. The phasemeter is a key part of the Precision Deployable Apertures and Structures strategic R&D effort to design large, deployable, segmented space telescopes.
The environmental zero-point problem in evolutionary reaction norm modeling.
Ergon, Rolf
2018-04-01
There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state-space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero-point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state-space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero-point problem is present in all types of reaction norm models, parametrized as well as function-valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.
NASA Astrophysics Data System (ADS)
Lake, Kayll
2010-12-01
The title immediately brings to mind a standard reference of almost the same title [1]. The authors are quick to point out the relationship between these two works: they are complementary. The purpose of this work is to explain what is known about a selection of exact solutions. As the authors state, it is often much easier to find a new solution of Einstein's equations than it is to understand it. Even at first glance it is very clear that great effort went into the production of this reference. The book is replete with beautifully detailed diagrams that reflect deep geometric intuition. In many parts of the text there are detailed calculations that are not readily available elsewhere. The book begins with a review of basic tools that allows the authors to set the notation. Then follows a discussion of Minkowski space with an emphasis on the conformal structure and applications such as simple cosmic strings. The next two chapters give an in-depth review of de Sitter space and then anti-de Sitter space. Both chapters contain a remarkable collection of useful diagrams. The standard model in cosmology these days is the ICDM model and whereas the chapter on the Friedmann-Lemaître-Robertson-Walker space-times contains much useful information, I found the discussion of the currently popular a representation rather too brief. After a brief but interesting excursion into electrovacuum, the authors consider the Schwarzschild space-time. This chapter does mention the Swiss cheese model but the discussion is too brief and certainly dated. Space-times related to Schwarzschild are covered in some detail and include not only the addition of charge and the cosmological constant but also the addition of radiation (the Vaidya solution). Just prior to a discussion of the Kerr space-time, static axially symmetric space-times are reviewed. Here one can find a very interesting discussion of the Curzon-Chazy space-time. The chapter on rotating black holes is rather brief and, for example, does not contain reference to the insights found by Pretorius and Israel [2]. This is perhaps justifiable in view of the many specialized texts devoted to the Kerr space-time (e.g. [3]). The large clear diagrams that one becomes accustomed to in this book show off the Taub-NUT (and related) space-times in the next chapter. After perhaps a somewhat standard discussion of stationary axially symmetric space-times, there is a very informative discussion of accelerating black holes. For example, the global structure of the C-metric is considered in detail. This is followed by a brief discussion of solutions for uniformly accelerating particles. The discussion of the Plebański-Demiański solutions contains two very useful flow charts that help to systematize two rather complex families of solutions. After a somewhat brief discussion of plane and pp-waves, the authors give an extensive discussion of the Kunt solutions. I note here that after this text was in production the importance of the Kunt space-times as regards the characterization of space-times by scalar curvature invariants was made clear [4]. The discussion of the Robinson-Trautman solutions that follows is extensive, containing, for example, details of the singularity structure and of the global structure. The final formal chapter in this text covers colliding plane waves. This contains, for example, discussions of the Khan-Penrose, Ferrari-Ibañez and Chandrasekhar-Xanthopoulos solutions. The text ends with a `final miscellany'. This covers a number of interesting topics, but I found the discussion of the Lemaître-Tolman solutions rather weak (compare e.g. [5]). The book has two quite useful appendices covering 2-spaces and 3-spaces of constant curvature. To conclude, I will quote from the dust jacket: `The book is an invaluable resource for both graduate students and academic researchers working in gravitational physics'. I highly recommend it. References [1] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein's Field Equations (Second Edition) (Cambridge: Cambridge University Press) [2] Pretorius F and Israel W 1998 Class. Quantum Grav.15 2289 [3] Wiltshire D, Visser M and Scott S (ed) 2008 The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge: Cambridge University Press) [4] Coley A, Hervik S and Pelavas N 2009 Class. Quantum Grav. 26 025013 [5] Plebański J and Krasiński A 2006 An Introduction to General Relativity and Cosmology (Cambridge: Cambridge University Press)
The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change
NASA Astrophysics Data System (ADS)
Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.
2015-12-01
The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.
On the motion of a quantum particle in the spinning cosmic string space–time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanabadi, H., E-mail: h.hasanabadi@shahroodut.ac.ir; Afshardoost, A.; Zarrinkamar, S.
2015-05-15
We analyze the energy spectrum and the wave function of a particle subjected to magnetic field in the spinning cosmic string space–time and investigate the influence of the spinning reference frame and topological defect on the system. To do this we solve Schrödinger equation in the spinning cosmic string background. In our work, instead of using an approximation in the calculations, we use the quasi-exact ansatz approach which gives the exact solutions for some primary levels. - Highlights: • Solving the Schrödinger equation in the spinning cosmic string space time. • Proposing a quasi-exact analytical solution to the general formmore » of the corresponding equation. • Generalizing the previous works.« less
Challenges for Life Support Systems in Space Environments, Including Food Production
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2012-01-01
Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew's diet. As humans venture further into space, regenerative life support technologies will becom e more important, and gathering accurate data on their performance an d reliabilities will require long lead times. As we learn more about sustainable living in space, we almost certainly learn more about sust ainable living on Earth.
Zahmatkesh, Maryam; Exworthy, Mark
2016-06-18
Decentralisation continues to re-appear in health system reform across the world. Evaluation of these reforms reveals how research on decentralisation continues to evolve. In this paper, we examine the theoretical foundations and empirical references which underpin current approaches to studying decentralisation in health systems. © 2016 by Kerman University of Medical Sciences.
Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel
2014-06-03
Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.
Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.
1979-05-01
techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program
Human Integration Design Processes (HIDP)
NASA Technical Reports Server (NTRS)
Boyer, Jennifer
2014-01-01
The purpose of the Human Integration Design Processes (HIDP) document is to provide human-systems integration design processes, including methodologies and best practices that NASA has used to meet human systems and human rating requirements for developing crewed spacecraft. HIDP content is framed around human-centered design methodologies and processes in support of human-system integration requirements and human rating. NASA-STD-3001, Space Flight Human-System Standard, is a two-volume set of National Aeronautics and Space Administration (NASA) Agency-level standards established by the Office of the Chief Health and Medical Officer, directed at minimizing health and performance risks for flight crews in human space flight programs. Volume 1 of NASA-STD-3001, Crew Health, sets standards for fitness for duty, space flight permissible exposure limits, permissible outcome limits, levels of medical care, medical diagnosis, intervention, treatment and care, and countermeasures. Volume 2 of NASASTD- 3001, Human Factors, Habitability, and Environmental Health, focuses on human physical and cognitive capabilities and limitations and defines standards for spacecraft (including orbiters, habitats, and suits), internal environments, facilities, payloads, and related equipment, hardware, and software with which the crew interfaces during space operations. The NASA Procedural Requirements (NPR) 8705.2B, Human-Rating Requirements for Space Systems, specifies the Agency's human-rating processes, procedures, and requirements. The HIDP was written to share NASA's knowledge of processes directed toward achieving human certification of a spacecraft through implementation of human-systems integration requirements. Although the HIDP speaks directly to implementation of NASA-STD-3001 and NPR 8705.2B requirements, the human-centered design, evaluation, and design processes described in this document can be applied to any set of human-systems requirements and are independent of reference missions. The HIDP is a reference document that is intended to be used during the development of crewed space systems and operations to guide human-systems development process activities.
FPGA-based real-time swept-source OCT systems for B-scan live-streaming or volumetric imaging
NASA Astrophysics Data System (ADS)
Bandi, Vinzenz; Goette, Josef; Jacomet, Marcel; von Niederhäusern, Tim; Bachmann, Adrian H.; Duelk, Marcus
2013-03-01
We have developed a Swept-Source Optical Coherence Tomography (Ss-OCT) system with high-speed, real-time signal processing on a commercially available Data-Acquisition (DAQ) board with a Field-Programmable Gate Array (FPGA). The Ss-OCT system simultaneously acquires OCT and k-clock reference signals at 500MS/s. From the k-clock signal of each A-scan we extract a remap vector for the k-space linearization of the OCT signal. The linear but oversampled interpolation is followed by a 2048-point FFT, additional auxiliary computations, and a data transfer to a host computer for real-time, live-streaming of B-scan or volumetric C-scan OCT visualization. We achieve a 100 kHz A-scan rate by parallelization of our hardware algorithms, which run on standard and affordable, commercially available DAQ boards. Our main development tool for signal analysis as well as for hardware synthesis is MATLAB® with add-on toolboxes and 3rd-party tools.
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.
1988-01-01
Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.
Failures and anomalies attributed to spacecraft charging
NASA Technical Reports Server (NTRS)
Leach, R. D.; Alexander, M. B. (Editor)
1995-01-01
The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).
Human Exploration of Mars Design Reference Architecture 5.0
NASA Technical Reports Server (NTRS)
Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.
2009-01-01
This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.
Space Station flight telerobotic servicer functional requirements development
NASA Technical Reports Server (NTRS)
Oberright, John; Mccain, Harry; Whitman, Ruth I.
1987-01-01
The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
Cell biology experiments conducted in space
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1977-01-01
A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less
NASA Astrophysics Data System (ADS)
Stone, Michael
The following sections are included: * Introduction * Free Fermi Fields * Free Bosons * The Bosonization Rules * A Quantum Pythagoras Theorem * Appendix 1A. Complex Coordinates * Appendix IB. Conformal Symmetry * References
Cross support overview and operations concept for future space missions
NASA Technical Reports Server (NTRS)
Stallings, William; Kaufeler, Jean-Francois
1994-01-01
Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.
18-Degree-of-Freedom Controller Design for the ST7 Disturbance Reduction System
NASA Technical Reports Server (NTRS)
Markley, F. L.; Maghami, P. G.; Houghton, M. B.; Hsu, O. C.
2003-01-01
The Space Technology 7 experiment will perform an on-orbit system-level validation of a Disturbance Reduction System employing gravitational reference sensors and micronewton colloidal thrusters to maintain a spacecraft s position with respect to free-floating test masses in the gravitational reference sensors to less than 10 nm/dHz over the frequency range 1 to 30 mHz. This paper presents the design and analysis of the control system that closes the loop between the gravitational reference sensors and the micronewton thrusters while incorporating star tracker data at low frequencies. The effects of disturbances and actuation and measurement noise are evaluated in a eighteen-degree-of-freedom model.
A future large-aperture UVOIR space observatory: reference designs
NASA Astrophysics Data System (ADS)
Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice
2015-09-01
Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.
A Future Large-Aperture UVOIR Space Observatory: Reference Designs
NASA Technical Reports Server (NTRS)
Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice
2015-01-01
Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.
Finding Out Critical Points For Real-Time Path Planning
NASA Astrophysics Data System (ADS)
Chen, Wei
1989-03-01
Path planning for a mobile robot is a classic topic, but the path planning under real-time environment is a different issue. The system sources including sampling time, processing time, processes communicating time, and memory space are very limited for this type of application. This paper presents a method which abstracts the world representation from the sensory data and makes the decision as to which point will be a potentially critical point to span the world map by using incomplete knowledge about physical world and heuristic rule. Without any previous knowledge or map of the workspace, the robot will determine the world map by roving through the workspace. The computational complexity for building and searching such a map is not more than O( n2 ) The find-path problem is well-known in robotics. Given an object with an initial location and orientation, a goal location and orientation, and a set of obstacles located in space, the problem is to find a continuous path for the object from the initial position to the goal position which avoids collisions with obstacles along the way. There are a lot of methods to find a collision-free path in given environment. Techniques for solving this problem can be classified into three approaches: 1) the configuration space approach [1],[2],[3] which represents the polygonal obstacles by vertices in a graph. The idea is to determine those parts of the free space which a reference point of the moving object can occupy without colliding with any obstacles. A path is then found for the reference point through this truly free space. Dealing with rotations turns out to be a major difficulty with the approach, requiring complex geometric algorithms which are computationally expensive. 2) the direct representation of the free space using basic shape primitives such as convex polygons [4] and overlapping generalized cones [5]. 3) the combination of technique 1 and 2 [6] by which the space is divided into the primary convex region, overlap region and obstacle region, then obstacle boundaries with attribute values are represented by the vertices of the hypergraph. The primary convex region and overlap region are represented by hyperedges, the centroids of overlap form the critical points. The difficulty is generating segment graph and estimating of minimum path width. The all techniques mentioned above need previous knowledge about the world to make path planning and the computational cost is not low. They are not available in an unknow and uncertain environment. Due to limited system resources such as CPU time, memory size and knowledge about the special application in an intelligent system (such as mobile robot), it is necessary to use algorithms that provide the good decision which is feasible with the available resources in real time rather than the best answer that could be achieved in unlimited time with unlimited resources. A real-time path planner should meet following requirements: - Quickly abstract the representation of the world from the sensory data without any previous knowledge about the robot environment. - Easily update the world model to spell out the global-path map and to reflect changes in the robot environment. - Must make a decision of where the robot must go and which direction the range sensor should point to in real time with limited resources. The method presented here assumes that the data from range sensors has been processed by signal process unite. The path planner will guide the scan of range sensor, find critical points, make decision where the robot should go and which point is poten- tial critical point, generate the path map and monitor the robot moves to the given point. The program runs recursively until the goal is reached or the whole workspace is roved through.
Local oscillator distribution using a geostationary satellite
NASA Technical Reports Server (NTRS)
Bardin, Joseph; Weinreb, Sander; Bagri, Durga
2004-01-01
A satellite communication system suitable for distribution of local oscillator reference signals for a widely spaced microwave array has been developed and tested experimentally. The system uses a round-trip correction method of the satellite This experiment was carried out using Telstar-5, a commercial Ku-band geostationary satellite. For this initial experiment, both earth stations were located at the same site to facilitate direct comparison of the received signals. The local oscillator reference frequency was chosen to be 300MHz and was sent as the difference between two Ku-band tones. The residual error after applying the round trip correction has been measured to be better than 3psec for integration times ranging from 1 to 2000 seconds. For integration times greater then 500 seconds, the system outperforms a pair of hydrogen masers with the limitation believed to be ground-based equipment phase stability. The idea of distributing local oscillators using a geostationary satellite is not new; several researchers experimented with this technique in the eighties, but the achieved accuracy was 3 to 100 times worse than the present results. Since substantially and the performance of various components has improved. An important factor is the leasing of small amounts of satellite communication bandwidth. We lease three 100kHz bands at approximately one hundredth the cost of a full 36 MHz transponder. Further tests of the system using terminal separated by large distances and comparison tests with two hydrogen masers and radio interferometry is needed.
Time Distribution Using SpaceWire in the SCaN Testbed on ISS
NASA Technical Reports Server (NTRS)
Lux, James P.
2012-01-01
A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.
Solar power satellite system definition study. Volume 5: Space transportation analysis, phase 3
NASA Technical Reports Server (NTRS)
1980-01-01
A small Heavy Lift Launch Vehicle (HLLV) for the Solar Power Satellites (SPS) System was analyzed. It is recommended that the small HLLV with a payload of 120 metric tons be adopted as the SPS launch vehicle. The reference HLLV, a shuttle-derived option with a payload of 400 metric tons, should serve as a backup and be examined further after initial flight experience. The electric orbit transfer vehicle should be retained as the reference orbit-to-orbit cargo system.
High-Performance Optical Frequency References for Space
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus
2016-06-01
A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.
2001-08-01
The Gravity Probe B (GP-B) payload was hoisted by crane to the transportation truck in the W.W. Hansen Experimental Physics Laboratory in Stanford, California for shipment to the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004, the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University, along with major subcontractor Lockheed Martin Corporation. (Photo Credit: Stanford University)
NASA Technical Reports Server (NTRS)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
NASA Technical Reports Server (NTRS)
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Completed Gravity Probe B Undergoes Thermal Vacuum Testing
NASA Technical Reports Server (NTRS)
2000-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, the completed space vehicle is undergoing thermal vacuum environment testing. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation.)
Gravity Probe B Completed With Solar Arrays
NASA Technical Reports Server (NTRS)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
NASA Technical Reports Server (NTRS)
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.
2006-12-01
Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using the STARS (Solar-terrestrial data Analysis and Reference System). The STARS is a data analysis system for satellite and ground-based observation data for solar-terrestrial physics.
Relative Photometry of HAT-P-1b Occultations
NASA Astrophysics Data System (ADS)
Béky, Bence; Holman, Matthew J.; Gilliland, Ronald L.; Bakos, Gáspár Á.; Winn, Joshua N.; Noyes, Robert W.; Sasselov, Dimitar D.
2013-06-01
We present Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph observations of two occultations of the transiting exoplanet HAT-P-1b. By measuring the planet to star flux ratio near opposition, we constrain the geometric albedo of the planet, which is strongly linked to its atmospheric temperature gradient. An advantage of HAT-P-1 as a target is its binary companion ADS 16402 A, which provides an excellent photometric reference, simplifying the usual steps in removing instrumental artifacts from HST time-series photometry. We find that without this reference star, we would need to detrend the lightcurve with the time of the exposures as well as the first three powers of HST orbital phase, and this would introduce a strong bias in the results for the albedo. However, with this reference star, we only need to detrend the data with the time of the exposures to achieve the same per-point scatter, therefore we can avoid most of the bias associated with detrending. Our final result is a 2σ upper limit of 0.64 for the geometric albedo of HAT-P-1b between 577 and 947 nm.
Marshall Space Flight Center 1960-1985: 25th anniversary report
NASA Technical Reports Server (NTRS)
1985-01-01
The Marshall Space FLight Center marks its 25th aniversary with a record of notable achievements. These accomplishments are the essence of the Marshall Center's history. Behind the scenes of the space launches and missions, however, lies the story of challenges faced and problems solved. The highlights of that story are presented. The story is organized not as a straight chronology but as three parallel reviews of the major assignments: propulsion systems and launch vehicles, space science research and technology, and manned space systems. The general goals were to reach space, to know and understand the space environment, and to inhabit and utilize space for the benefit of mankind. Also included is a chronology of major events, presented as a fold-out chart for ready reference.
Phase change references for in-flight recalibration of orbital thermometry
NASA Astrophysics Data System (ADS)
Topham, T. S.; Latvakoski, H.; Watson, M.
2013-09-01
Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.
SolSTUS: Solar Source Thermal Upper Stage
NASA Astrophysics Data System (ADS)
This paper was written by members of the Utah State University (USU) Space Systems Design class, fall quarter 1993. The class is funded by NASA and administered by the University Space Research Association (USRA). The focus of the class is to give students some experience in design of space systems and as a source of original ideas for NASA. This paper is a summary of the work done by members of the Space Systems Design class during the opening phase of the course. The class was divided into groups to work on different areas of the Solar Thermal Rocket (STR) booster in order to produce a design reference mission that would identify the key design issues. The design reference mission focused upon a small satellite mission to Mars. There are several critical components in a Solar Thermal Rocket. STR's produce a very low thrust, but have a high specific impulse, meaning that they take longer to reach the desired orbit, but use a lot less fuel in doing it. The complexity of the rocket is discussed in this paper. Some of the more critical design problems discussed are: (1) the structural and optical complexity of collecting and focusing sunlight onto a specific point, (2) long term storage of fuel (liquid hydrogen), (3) attitude control while thrusting in an elliptical orbit and orienting the mirrors to collect sunlight, and (4) power and communications for the rocket and it's internal systems. The design reference mission discussed here is a very general mission to Mars. A first order trajectory design has been done and a possible basic science payload for Mars has been suggested. This paper summarizes the design reference mission (DRM) formulated by the USU students during fall quarter and identifies major design challenges that will confront the design team during the next two quarters here at USU.
SolSTUS: Solar Source Thermal Upper Stage
NASA Technical Reports Server (NTRS)
1994-01-01
This paper was written by members of the Utah State University (USU) Space Systems Design class, fall quarter 1993. The class is funded by NASA and administered by the University Space Research Association (USRA). The focus of the class is to give students some experience in design of space systems and as a source of original ideas for NASA. This paper is a summary of the work done by members of the Space Systems Design class during the opening phase of the course. The class was divided into groups to work on different areas of the Solar Thermal Rocket (STR) booster in order to produce a design reference mission that would identify the key design issues. The design reference mission focused upon a small satellite mission to Mars. There are several critical components in a Solar Thermal Rocket. STR's produce a very low thrust, but have a high specific impulse, meaning that they take longer to reach the desired orbit, but use a lot less fuel in doing it. The complexity of the rocket is discussed in this paper. Some of the more critical design problems discussed are: (1) the structural and optical complexity of collecting and focusing sunlight onto a specific point, (2) long term storage of fuel (liquid hydrogen), (3) attitude control while thrusting in an elliptical orbit and orienting the mirrors to collect sunlight, and (4) power and communications for the rocket and it's internal systems. The design reference mission discussed here is a very general mission to Mars. A first order trajectory design has been done and a possible basic science payload for Mars has been suggested. This paper summarizes the design reference mission (DRM) formulated by the USU students during fall quarter and identifies major design challenges that will confront the design team during the next two quarters here at USU.
Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches
NASA Technical Reports Server (NTRS)
Bigler, Mark; Boyer, Roger L.
2015-01-01
For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort. Key Words: PRA, space launches, human space program, ascent abort, spacecraft, launch vehicles
Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl
2016-01-01
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682
Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl
2016-01-01
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.
Historical Trends in Ground-Based Optical Space Surveillance System Design
NASA Astrophysics Data System (ADS)
Shoemaker, M.; Shroyer, L.
In the spirit of the 50th anniversary of the launch of the first man-made satellite, an historical overview of ground-based optical space surveillance systems is provided. Specific emphasis is given on gathering metrics to analyze design trends. The subject of space surveillance spans the history of spaceflight: from the early tracking cameras at missile ranges, the first observations of Sputnik, to the evolution towards highly capable commercial off-the-shelf (COTS) systems, and much in between. Whereas previous reviews in the literature have been limited in scope to specific time periods, operational programs, countries, etc., a broad overview of a wide range of sources is presented. This review is focused on systems whose primary design purpose can be classified as Space Object Identification (SOI) or Orbit Determination (OD). SOI systems are those that capture images or data to determine information about the satellite itself, such as attitude, features, and material composition. OD systems are those that produce estimates of the satellite position, usually in the form of orbital elements or a time history of tracking angles. Systems are also categorized based on the orbital regime in which their targets reside, which has been simplified in this study to either Low Earth Orbit (LEO) or Geosynchronous Earth Orbit (GEO). The systems are further classified depending on the industry segment (government/commercial or academic), and whether the program is foreign or domestic. In addition to gathering metrics on systems designed solely for man-made satellite observations, it is interesting to find examples of other systems being similarly used. Examples include large astronomical telescopes being used for GEO debris surveys and anomaly resolution for deep-space probes. Another interesting development is the increase in number and capability of COTS systems, some of which are specifically marketed to consumers as satellite trackers. After describing the results of the literature review and presenting further information on various systems, we gather specific metrics on the optical design. Technical specifications, such as aperture and field of view (FOV), are plotted with time to ascertain trends in ground system design. Aperture is a useful metric because it gives insight into the light-gathering capability, as well as the overall size and complexity of the system. The size of the FOV can indicate user priorities or system performance, such as tracking capability of the mount for SOI systems and star detection ability in OD systems that use celestial references for position measurements. The review is restricted to systems that use natural sunlight to illuminate targets, for the simple reason of having commonality between systems that span half a century, particularly recent COTS systems.
Analysis of the DORIS, GNSS, SLR, VLBI and gravimetric time series at the GGOS core sites
NASA Astrophysics Data System (ADS)
Moreaux, G.; Lemoine, F. G.; Luceri, V.; Pavlis, E. C.; MacMillan, D. S.; Bonvalot, S.; Saunier, J.
2017-12-01
Since June 2016 and the installation of a new DORIS station in Wettzell (Germany), four geodetic sites (Badary, Greenbelt, Wettzell and Yarragadee) are equipped with the four space geodetic techniques (DORIS, GNSS, SLR and VLBI). In line with the GGOS (Global Geodetic Observing System) objective of achieving a terrestrial reference frame at the millimetric level of accuracy, the combination centers of the four space techniques initiated a joint study to assess the level of agreement among these space geodetic techniques. In addition to the four sites, we will consider all the GGOS core sites including the seven sites with at least two space geodetic techniques in addition to DORIS. Starting from the coordinate time series, we will estimate and compare the mean positions and velocities of the co-located instruments. The temporal evolution of the coordinate differences will also be evaluated with respect to the local tie vectors and discrepancies will be investigated. Then, the analysis of the signal content of the time series will be carried out. Amplitudes and phases of the common signals among the techniques, and eventually from gravity data, will be compared. The first objective of this talk is to describe our joint study: the sites, the data, and the objectives. The second purpose is to present the first results obtained from the GGAO (Goddard Geophysical and Astronomic Observatory) site of Greenbelt.
The influence of micro-vibration on space-borne Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Bai, Shaojun; Hou, Lizhou; Ke, Junyu
2014-11-01
The space-borne Fourier Transform Spectrometers (FTS) are widely used for atmospheric studies and planetary explorations. An adapted version of the classical Michelson interferometer have succeeded in several space missions, which utilized a rotating arm carrying a pair of cube corner retro-reflectors to produce a variable optical path difference (OPD), and a metrology laser source to generate the trigger signals. One characteristic of this kind of FTS is that it is highly sensitive to micro-vibration disturbances. However, a variety of mechanical disturbances are present as the satellite is in orbit, such as flying wheels, pointing mechanisms and cryocoolers. Therefore, this paper investigates the influence of micro-vibration on the space-borne FTS. Firstly, the interferogram of metrology laser under harmonic disturbances is analyzed. The results show that the zero crossings of interferogram shift periodically, and it gives rise to ghost lines in the retrieved spectra. The amplitudes of ghost lines increase rapidly with the increasing of micro-vibration levels. As to the system that employs the constant OPD sampling strategy, the effect of zero-crossing shifting is reduced significantly. Nevertheless, the time delays between the reference signal and the main signal acquisition are inevitable because of the electronic circuit. Thus, the effect of time delays on the interferogram and eventually on the spectra is simulated. The analysis suggests that the amplitudes of ghost line in spectra increase with the increasing of time delay intervals.
Gravity Probe B Gyroscope Rotor
NASA Technical Reports Server (NTRS)
2003-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)
Program Model Checking: A Practitioner's Guide
NASA Technical Reports Server (NTRS)
Pressburger, Thomas T.; Mansouri-Samani, Masoud; Mehlitz, Peter C.; Pasareanu, Corina S.; Markosian, Lawrence Z.; Penix, John J.; Brat, Guillaume P.; Visser, Willem C.
2008-01-01
Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools.
Absolute vs. relative error characterization of electromagnetic tracking accuracy
NASA Astrophysics Data System (ADS)
Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet
2010-02-01
Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.
Chinese-English Aviation and Space Dictionary.
ERIC Educational Resources Information Center
Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.
The Aviation and Space Dictionary is the second of a series of Chinese-English technical dictionaries under preparation by the Foreign Technology Division, United States Air Force Systems Command. The purpose of the series is to provide rapid reference tools for translators, abstracters, and research analysts concerned with scientific and…
Current Trends and Challenges in Satellite Laser Ranging
NASA Astrophysics Data System (ADS)
Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.
2016-12-01
Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and greatly enhancing efficiency. Discussions are ongoing with some missions that will allow the SLR network stations to provide crucial, but energy-safe, range measurements to optically vulnerable satellites. New retro-reflector designs are improving the signal link and enable daylight ranging that is now the norm for many stations. We discuss many of these laser ranging activities and some of the tough challenges that the SLR network currently faces.
Reference results for time-like evolution up to
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Carrazza, Stefano; Nocera, Emanuele R.
2015-03-01
We present high-precision numerical results for time-like Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution in the factorisation scheme, for the first time up to next-to-next-to-leading order accuracy in quantum chromodynamics. First, we scrutinise the analytical expressions of the splitting functions available in the literature, in both x and N space, and check their mutual consistency. Second, we implement time-like evolution in two publicly available, entirely independent and conceptually different numerical codes, in x and N space respectively: the already existing APFEL code, which has been updated with time-like evolution, and the new MELA code, which has been specifically developed to perform the study in this work. Third, by means of a model for fragmentation functions, we provide results for the evolution in different factorisation schemes, for different ratios between renormalisation and factorisation scales and at different final scales. Our results are collected in the format of benchmark tables, which could be used as a reference for global determinations of fragmentation functions in the future.
The Space Launch System and Missions to the Outer Solar System
NASA Astrophysics Data System (ADS)
Klaus, Kurt K.; Post, Kevin
2015-11-01
Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and commitment that permeated the planetary exploration community during the early years of robotic exploration.
Considerations in development of expert systems for real-time space applications
NASA Technical Reports Server (NTRS)
Murugesan, S.
1988-01-01
Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications.
Precision displacement reference system
Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.
2000-02-22
A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.
NASA Astrophysics Data System (ADS)
Rezzolla, L.; Ahmedov, B. J.; Miller, J. C.
2001-04-01
We present analytic solutions of Maxwell equations in the internal and external background space-time of a slowly rotating magnetized neutron star. The star is considered isolated and in vacuum, with a dipolar magnetic field not aligned with the axis of rotation. With respect to a flat space-time solution, general relativity introduces corrections related both to the monopolar and the dipolar parts of the gravitational field. In particular, we show that in the case of infinite electrical conductivity general relativistic corrections resulting from the dragging of reference frames are present, but only in the expression for the electric field. In the case of finite electrical conductivity, however, corrections resulting from both the space-time curvature and the dragging of reference frames are shown to be present in the induction equation. These corrections could be relevant for the evolution of the magnetic fields of pulsars and magnetars. The solutions found, while obtained through some simplifying assumption, reflect a rather general physical configuration and could therefore be used in a variety of astrophysical situations.
NASA Astrophysics Data System (ADS)
Rapoport, Diego L.
2011-01-01
In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown's primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard's gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation, generates the matrix logic which supersedes the classical logic of connectives and which has for particular subtheories fuzzy and quantum logics. Thus, from a primitive distinction in the vacuum plane and the axioms of the calculus of distinction, we can derive by incorporating paradox, the world conception succinctly described above.
Multilayer Insulation Ascent Venting Model
NASA Technical Reports Server (NTRS)
Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.
2017-01-01
The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.
Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions
NASA Astrophysics Data System (ADS)
Artis, Gwen R.; James, B.
2006-12-01
NASA’s In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the “aeroassist” techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each sub-system technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped “ballutes” and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.
Meteoroids and Orbital Debris: Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.
1997-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
1991-09-06
R.L. Duncombe, O.G. Franz, capabilities of the Hubble Space L.W. Fredrick, T. Gerard, Telescope fine guidance sensors P.D. Hemenway, B. McArthur, J...frame: Counterproposal to the Circular Letter no. 4 of Kovalevsky - I - .) 10. H. Eichhorn The organization of space : frames, systems and 97 standards...Heifets of REGATTA-ASTRO space astrometry program 48. W. Jin, T. Xu, Influence of systematic differences of FK4 on 280 P. Lu, and D. Liao determining
10 CFR 434.403 - Building mechanical systems and equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... required between the control valve and coil on run-outs when the control valve is located within four feet...-6 is in incorporated by reference at § 434.701. b Includes crawl spaces, both ventilated and non..., (incorporated by reference, see § 434.701), or equivalent. Test reports shall be provided in accordance with...
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos
2012-01-01
IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.
Consider the category: The effect of spacing depends on individual learning histories.
Slone, Lauren K; Sandhofer, Catherine M
2017-07-01
The spacing effect refers to increased retention following learning instances that are spaced out in time compared with massed together in time. By one account, the advantages of spaced learning should be independent of task particulars and previous learning experiences given that spacing effects have been demonstrated in a variety of tasks across the lifespan. However, by another account, spaced learning should be affected by previous learning because past learning affects the memory and attention processes that form the crux of the spacing effect. The current study investigated whether individuals' learning histories affect the role of spacing in category learning. We examined the effect of spacing on 24 2- to 3.5-year-old children's learning of categories organized by properties to which children's previous learning experiences have biased them to attend (i.e., shape) and properties to which children are less biased to attend (i.e., texture and color). Spaced presentations led to significantly better learning of shape categories, but not of texture or color categories, compared with massed presentations. In addition, generalized estimating equations analyses revealed positive relations between the size of children's "shape-side" productive vocabularies and their shape category learning and between the size of children's "against-the-system" productive vocabularies and their texture category learning. These results suggest that children's attention to and memory for novel object categories are strongly related to their individual word-learning histories. Moreover, children's learned attentional biases affected the types of categories for which spacing facilitated learning. These findings highlight the importance of considering how learners' previous experiences may influence future learning. Copyright © 2017 Elsevier Inc. All rights reserved.
The FoReVer Methodology: A MBSE Framework for Formal Verification
NASA Astrophysics Data System (ADS)
Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald
2013-08-01
The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain
NASA Astrophysics Data System (ADS)
Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof
2017-12-01
Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.
Accelerating a MPEG-4 video decoder through custom software/hardware co-design
NASA Astrophysics Data System (ADS)
Díaz, Jorge L.; Barreto, Dacil; García, Luz; Marrero, Gustavo; Carballo, Pedro P.; Núñez, Antonio
2007-05-01
In this paper we present a novel methodology to accelerate an MPEG-4 video decoder using software/hardware co-design for wireless DAB/DMB networks. Software support includes the services provided by the embedded kernel μC/OS-II, and the application tasks mapped to software. Hardware support includes several custom co-processors and a communication architecture with bridges to the main system bus and with a dual port SRAM. Synchronization among tasks is achieved at two levels, by a hardware protocol and by kernel level scheduling services. Our reference application is an MPEG-4 video decoder composed of several software functions and written using a special C++ library named CASSE. Profiling and space exploration techniques were used previously over the Advanced Simple Profile (ASP) MPEG-4 decoder to determinate the best HW/SW partition developed here. This research is part of the ARTEMI project and its main goal is the establishment of methodologies for the design of real-time complex digital systems using Programmable Logic Devices with embedded microprocessors as target technology and the design of multimedia systems for broadcasting networks as reference application.
Analysis of key technologies in geomagnetic navigation
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Zhao, Yan
2008-10-01
Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.
Syntax "and" Semantics: A Teaching Model.
ERIC Educational Resources Information Center
Wolfe, Frank
In translating perception into written language, a child must learn an encoding process which is a continuation of the process of improving sensing of the world around him or her. To verbalize an object (a perception) we use frames which name a referent, locate the referent in space and time, identify its appearance and behavior, and define terms…
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
The adaption and use of research codes for performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebetrau, A.M.
1987-05-01
Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.
Rodríguez, Alfonso; Valverde, Juan; Portilla, Jorge; Otero, Andrés; Riesgo, Teresa; de la Torre, Eduardo
2018-06-08
Cyber-Physical Systems are experiencing a paradigm shift in which processing has been relocated to the distributed sensing layer and is no longer performed in a centralized manner. This approach, usually referred to as Edge Computing, demands the use of hardware platforms that are able to manage the steadily increasing requirements in computing performance, while keeping energy efficiency and the adaptability imposed by the interaction with the physical world. In this context, SRAM-based FPGAs and their inherent run-time reconfigurability, when coupled with smart power management strategies, are a suitable solution. However, they usually fail in user accessibility and ease of development. In this paper, an integrated framework to develop FPGA-based high-performance embedded systems for Edge Computing in Cyber-Physical Systems is presented. This framework provides a hardware-based processing architecture, an automated toolchain, and a runtime to transparently generate and manage reconfigurable systems from high-level system descriptions without additional user intervention. Moreover, it provides users with support for dynamically adapting the available computing resources to switch the working point of the architecture in a solution space defined by computing performance, energy consumption and fault tolerance. Results show that it is indeed possible to explore this solution space at run time and prove that the proposed framework is a competitive alternative to software-based edge computing platforms, being able to provide not only faster solutions, but also higher energy efficiency for computing-intensive algorithms with significant levels of data-level parallelism.
1993-02-01
Scientific and Technical Information EXOBIOLOGY. HEALTH. MICROBIOLOGY . MICROOR- System during September 1990. Subject coverage includes: GANISMS...Houston. TX N91-24731 National Aeronautics and Space Administration. MICROBIOLOGY ON SPACE STATION FREEDOM Washington, DCr DUANE L. PIERSON, ed...and solution INASA-SP-7011(345)) p 37 N91-16547 Beyond the Baseline 1991ý Proceedings of the Space [NASA-TP-3242) p 43 N92-33483 Microbiology on Space
Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, D. B. S.
1979-01-01
Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.
NASA Technical Reports Server (NTRS)
Muratore, John F.
2007-01-01
Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.
NASA Astrophysics Data System (ADS)
Schreiber, K. Ulrich; Kodet, Jan
2018-02-01
Highly precise time and stable reference frequencies are fundamental requirements for space geodesy. Satellite laser ranging (SLR) is one of these techniques, which differs from all other applications like Very Long Baseline Interferometry (VLBI), Global Navigation Satellite Systems (GNSS) and finally Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) by the fact that it is an optical two-way measurement technique. That means that there is no need for a clock synchronization process between both ends of the distance covered by the measurement technique. Under the assumption of isotropy for the speed of light, SLR establishes the only practical realization of the Einstein Synchronization process so far. Therefore it is a powerful time transfer technique. However, in order to transfer time between two remote clocks, it is also necessary to tightly control all possible signal delays in the ranging process. This paper discusses the role of time and frequency in SLR as well as the error sources before it address the transfer of time between ground and space. The need of an improved signal delay control led to a major redesign of the local time and frequency distribution at the Geodetic Observatory Wettzell. Closure measurements can now be used to identify and remove systematic errors in SLR measurements.
Postural compensation for vestibular loss and implications for rehabilitation.
Horak, Fay B
2010-01-01
This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.
Human Exploration of Mars Design Reference Architecture 5.0
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2010-01-01
This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.
NASA Astrophysics Data System (ADS)
Kennedy, A.
This paper summarises the wait calculation [1] of interstellar voyagers which finds the minimum time to destination given exponential growth in the rate of travel available to a civilisation. The minimum time obliges stellar system colonisers to consider departure times a significant risk factor in their voyages since a departure then to a destination will beat a departure made at any other time before or after. Generalised conclusions will be drawn about the significant impact that departures to interstellar destinations before, at, or after the minimum time will have on the economic potential of missions and on the inevitability of competition between them. There will be no international law operating in interstellar space and an ability to escape predatory actions en route, or at the destination, can only be done by precise calculations of departure times. Social and economic forces affecting the factors in the growth equation are discussed with reference to the probability of accelerating growth reaching the technological Singularity and strengthening the growth incentive trap. Islamic banking practices are discussed as a credible alternative to compounding interest bearing paper for funding the space economy in the long term and for supporting stakeholder investment in such long term mission development. The paper considers the essential free productivity of the Earth's biosphere and the capital accumulations made possible by land productivity are essential components to a viable long term space economy and that research into re-creating the costless productivity of the biosphere at a destination will determine both the mission's ultimate success and provide means of returns for stakeholders during the long build up. Conclusions of these arguments suggest that the Icarus project should ignore a robotic interstellar mission concept and develop a manned colonising mission from now.
Development of web tools to disseminate space geodesy data-related products
NASA Astrophysics Data System (ADS)
Soudarin, L.; Ferrage, P.; Mezerette, A.
2014-12-01
In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). The next step currently in progress is the creation of a database to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).
Space-to-Space Communications System
NASA Technical Reports Server (NTRS)
Tu, Kwei; Gaylor, Kent; Vitalpur, Sharada; Sham, Cathy
1999-01-01
The Space-to-Space Communications System (SSCS) is an Ultra High Frequency (UHF) Time-Division-Multiple Access (TDMA) system that is designed, developed, and deployed by the NASA Johnson Space Center (JSC) to provide voice, commands, telemetry and data services in close proximity among three space elements: International Space Station (ISS), Space Shuttle Orbiter, and Extravehicular Mobility Units (EMU). The SSCS consists of a family of three radios which are, Space-to-Space Station Radio (SSSR), Space-to-Space Orbiter Radio (SSOR), and Space-to-Space Extravehicular Mobility Radio (SSER). The SSCS can support up to five such radios at a time. Each user has its own time slot within which to transmit voice and data. Continuous Phase Frequency Shift Keying (CPFSK) carrier modulation with a burst data rate of 695 kbps and a frequency deviation of 486.5 kHz is employed by the system. Reed-Solomon (R-S) coding is also adopted to ensure data quality. In this paper, the SSCS system requirements, operational scenario, detailed system architecture and parameters, link acquisition strategy, and link performance analysis will be presented and discussed
Chaotic Transport in Circumterrestrial Orbits
NASA Astrophysics Data System (ADS)
Rosengren, Aaron Jay
2018-04-01
The slow deformation of circumterrestrial orbits in the medium region, subject to lunisolar secular resonances, is well approximated by a Hamiltonian system with 2.5 degrees of freedom. This dynamical model is referred to in the astrophysical and celestial dynamics communities as the quadrupolar, secular, hierarchical three-body problem, and, in the non-autonomous case, gives rise to the classical Kozai-Lidov mechanism. In the time-dependent model, brought about in our case by the Moon's perturbed motion, the action variables of the system may experience chaotic variations and large drifts due to the possible overlap of nearby resonances. Using variational chaos indicators, we compute high-resolution portraits of the action space, revealing the existence of tori and structures filling chaotic regions. Our refined and elaborate calculations allow us to isolate precise initial conditions near specific areas of interest and to study their asymptotic behavior in time. We highlight in particular how the drift in phase space is mediated by the complement of the numerically detected KAM tori. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, like the small body remnants of Solar system formation, they have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.
NASA Astrophysics Data System (ADS)
Tóth, Balázs; Development; Operations Teams, ESA's Science Management, Payload; Teams, Science; Industry, Space
2012-06-01
The article presents the approach of the European Space Agency to promote research in weightlessness and in particular onboard the International Space Station. In order to maximize the return on investments, a strong international scientific collaboration is encouraged. These Science Teams support the preparation and utilisation of the flight hardware and exploit the measurement data. In the domain of physical sciences the topics dealt with at the time of writing the present paper cover fundamental physics, fluid physics, material sciences research and specific preparatory studies in anticipation of space exploration missions. The present article focuses on two-phase (liquid-gas phase change) heat transfer related experiments. These activities cover evaporation driven thermocapillary convection, pool- and flow boiling, evaporation and condensation of films together with wettability realted issues on both reference and structured surfaces, and heat pipe systems. Some hardware are in an advanced state of development, the feasibility of some was studied or is under definition at the time of the preparation of this paper. The objectives of the experiments are described together with their expected capabilities. Beyond the understanding of mostly fundamental physical processes, the data of all the described experiments are intended to be used to validate theoretical approaches and numerical tools, which are often developed by the Science Teams in parallel with the the flight hardware design activities of space industry.
A dual-channel fusion system of visual and infrared images based on color transfer
NASA Astrophysics Data System (ADS)
Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong
2013-09-01
A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.
Human factors in space telepresence
NASA Technical Reports Server (NTRS)
Akin, D. L.; Howard, R. D.; Oliveria, J. S.
1983-01-01
The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing.
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
Environmental Control and Life Support Systems technology options for Space Station application
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.
1985-01-01
Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.
Investigations on the hierarchy of reference frames in geodesy and geodynamics
NASA Technical Reports Server (NTRS)
Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.
1979-01-01
Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).
NASA Technical Reports Server (NTRS)
Unger, Glenn; Kaufman, David M.; Krainak, Michael; Sanders, Glenn; Taylor, Bill; Schulze, Norman R.
1993-01-01
A technology experiment on the X-ray Timing Explorer spacecraft to determine the feasibility of Interferometric Fiber Optic Gyroscopes for space flight navigation is described. The experiment consists of placing a medium grade fiber optic gyroscope in parallel with the spacecraft's inertial reference unit. The performance of the fiber optic gyroscope will be monitored and compared to the primary mechanical gyroscope's performance throughout the two-year mission life.
Topuria, T; Gogebashvili, N; Korsantia, B
2005-11-01
During transformation from inanimate to living, change of the space position of the matter causes the change of the field, as the space does not exist without the field, therefore the time-space as the properties of material substances, should undergo certain changes. The outside inanimate system, in this case a matrix, has its own time. The living system, in this case a cell, where the matter undergoes space conformation with the change of field and space-time, has its own time and it has begun to flow more rapidly than in matrix. From the surface of the body, from different energetic reservoirs oppositely charged matter substances following from special transport systems from the life system transmitted into lifeless one and change their matter space conformation, create transmission gradient that is the gradient border of time from lifeless system into live. In the case of a human, hypothetically, the gradient system of time must be of a complex scheme counting the inter-transformation and interaction gradients of outer and inner abdominal systems. Subconscious and consciousness by means of special links and messages, information selection interact and form unique connection between the systems. Subconscious serves for accelerated time system. Conscious by means of permanent contact with the environment collects and reacts in matrix time system By interconnection of these two systems ideal adaptation with the environment takes place. Time difference gradient system is an additional energy factor, by means of which respective ordered geometrical structures special for the given types are formed. The living organism is an inter-regulated interconnection global system resulting from the changes of matter and material substances space configuration.
Face-infringement space: the frame of reference of the ventral intraparietal area.
McCollum, Gin; Klam, François; Graf, Werner
2012-07-01
Experimental studies have shown that responses of ventral intraparietal area (VIP) neurons specialize in head movements and the environment near the head. VIP neurons respond to visual, auditory, and tactile stimuli, smooth pursuit eye movements, and passive and active movements of the head. This study demonstrates mathematical structure on a higher organizational level created within VIP by the integration of a complete set of variables covering face-infringement. Rather than positing dynamics in an a priori defined coordinate system such as those of physical space, we assemble neuronal receptive fields to find out what space of variables VIP neurons together cover. Section 1 presents a view of neurons as multidimensional mathematical objects. Each VIP neuron occupies or is responsive to a region in a sensorimotor phase space, thus unifying variables relevant to the disparate sensory modalities and movements. Convergence on one neuron joins variables functionally, as space and time are joined in relativistic physics to form a unified spacetime. The space of position and motion together forms a neuronal phase space, bridging neurophysiology and the physics of face-infringement. After a brief review of the experimental literature, the neuronal phase space natural to VIP is sequentially characterized, based on experimental data. Responses of neurons indicate variables that may serve as axes of neural reference frames, and neuronal responses have been so used in this study. The space of sensory and movement variables covered by VIP receptive fields joins visual and auditory space to body-bound sensory modalities: somatosensation and the inertial senses. This joining of allocentric and egocentric modalities is in keeping with the known relationship of the parietal lobe to the sense of self in space and to hemineglect, in both humans and monkeys. Following this inductive step, variables are formalized in terms of the mathematics of graph theory to deduce which combinations are complete as a multidimensional neural structure that provides the organism with a complete set of options regarding objects impacting the face, such as acceptance, pursuit, and avoidance. We consider four basic variable types: position and motion of the face and of an external object. Formalizing the four types of variables allows us to generalize to any sensory system and to determine the necessary and sufficient conditions for a neural center (for example, a cortical region) to provide a face-infringement space. We demonstrate that VIP includes at least one such face-infringement space.
Aerocapture Benefits to Future Science Missions
NASA Technical Reports Server (NTRS)
Artis, Gwen; James, Bonnie
2006-01-01
NASA's In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the "aeroassist" techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each subsystem technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped "ballutes" and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.
The GGOS Global Space Geodesy Network and its Evolution
NASA Astrophysics Data System (ADS)
Pearlman, M. R.; Pavlis, E. C.; Ma, C.; Noll, C. E.; Neilan, R. E.; Stowers, D. A.; Wetzel, S.
2013-12-01
The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the IAG Services has been encouraging current groups to upgrade and new groups to join the activity. Simulations examine the projected accuracy and stability of the network that would exist in five- and ten-years time, were the proposed expansion to fully materialize by then. Over the last year additional sites have joined the GGOS network, and ground techniques have continued to make progress in new technology systems. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.
NASA Technical Reports Server (NTRS)
Goforth, Andre
1987-01-01
The use of computers in autonomous telerobots is reaching the point where advanced distributed processing concepts and techniques are needed to support the functioning of Space Station era telerobotic systems. Three major issues that have impact on the design of data management functions in a telerobot are covered. It also presents a design concept that incorporates an intelligent systems manager (ISM) running on a spaceborne symbolic processor (SSP), to address these issues. The first issue is the support of a system-wide control architecture or control philosophy. Salient features of two candidates are presented that impose constraints on data management design. The second issue is the role of data management in terms of system integration. This referes to providing shared or coordinated data processing and storage resources to a variety of telerobotic components such as vision, mechanical sensing, real-time coordinated multiple limb and end effector control, and planning and reasoning. The third issue is hardware that supports symbolic processing in conjunction with standard data I/O and numeric processing. A SSP that currently is seen to be technologically feasible and is being developed is described and used as a baseline in the design concept.
Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers
NASA Technical Reports Server (NTRS)
Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry
2006-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.
Littoral Combat Ship (LCS) Manpower Requirements Analysis
2004-12-01
THIS PAGE INTENTIONALLY LEFT BLANK 183 APPENDIX W. ABBREVIATIONS AND ACRONYMS AFFF Aqueous Film Forming Foam AIC Aircraft Intercept Control ASW...181 APPENDIX W. ABBREVIATIONS AND ACRONYMS ..................... 183 LIST OF REFERENCES .........................................187 INITIAL...today. For example, the installed AFFF and CO2 systems inside critical spaces such as the main engineering and ordnance spaces. The Damage
Space tug automatic docking control study. LOCDOK users manual
NASA Technical Reports Server (NTRS)
1974-01-01
A users's manual for the computer programs involved in a study of the space tug docking simulation is presented. The following subjects are considered: (1) subroutine narratives, (2) program elements, (3) system subroutines, and (4) Univac 1108 cross reference listing. The functional and operational requirements for the computer programming are explained.
Advanced optical technologies for space exploration
NASA Astrophysics Data System (ADS)
Clark, Natalie
2007-09-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems
Advanced Optical Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Clark, Natalie
2007-01-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.
Arm-Locking with the GRACE Follow-On Laser Ranging Instrument
NASA Technical Reports Server (NTRS)
Thorpe, James Ira; Mckenzie, Kirk
2016-01-01
Arm-locking is a technique for stabilizing the frequency of a laser in an inter-spacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA), arm-locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the Laser Ranging Instrument flying aboard the upcoming Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly two orders of magnitude around a Fourier frequency of 1Hz with conservative margins on the system's stability. We further demonstrate that `pulling' of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Arm locking with the GRACE follow-on laser ranging interferometer
NASA Astrophysics Data System (ADS)
Thorpe, James Ira; McKenzie, Kirk
2016-02-01
Arm locking is a technique for stabilizing the frequency of a laser in an interspacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna, arm locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the laser ranging interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment follow-on (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly 2 orders of magnitude around a Fourier frequency of 1 Hz with conservative margins on the system's stability. We further demonstrate that "pulling" of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100 MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Publications of the Space Physiology and Countermeasures Program, Neuroscience Discipline: 1980-1990
NASA Technical Reports Server (NTRS)
Dickson, Katherine J.; Wallace-Robinson, Janice; Powers, Janet V.; Hess, Elizabeth
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the neuroscience discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are space motion sickness; vestibular performance, posture, and motor coordination; vestibular physiology; central and peripheral nervous system physiology; and general performance and methodologies. General physiology references are also included.
CADDIS Volume 4. Data Analysis: Getting Started
Assembling data for an ecological causal analysis, matching biological and environmental samples in time and space, organizing data along conceptual causal pathways, data quality and quantity requirements, Data Analysis references.
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
NASA Astrophysics Data System (ADS)
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
Linear and Non-linear Information Flows In Rainfall Field
NASA Astrophysics Data System (ADS)
Molini, A.; La Barbera, P.; Lanza, L. G.
The rainfall process is the result of a complex framework of non-linear dynamical in- teractions between the different components of the atmosphere. It preserves the com- plexity and the intermittent features of the generating system in space and time as well as the strong dependence of these properties on the scale of observations. The understanding and quantification of how the non-linearity of the generating process comes to influence the single rain events constitute relevant research issues in the field of hydro-meteorology, especially in those applications where a timely and effective forecasting of heavy rain events is able to reduce the risk of failure. This work focuses on the characterization of the non-linear properties of the observed rain process and on the influence of these features on hydrological models. Among the goals of such a survey is the research of regular structures of the rainfall phenomenon and the study of the information flows within the rain field. The research focuses on three basic evo- lution directions for the system: in time, in space and between the different scales. In fact, the information flows that force the system to evolve represent in general a connection between the different locations in space, the different instants in time and, unless assuming the hypothesis of scale invariance is verified "a priori", the different characteristic scales. A first phase of the analysis is carried out by means of classic statistical methods, then a survey of the information flows within the field is devel- oped by means of techniques borrowed from the Information Theory, and finally an analysis of the rain signal in the time and frequency domains is performed, with par- ticular reference to its intermittent structure. The methods adopted in this last part of the work are both the classic techniques of statistical inference and a few procedures for the detection of non-linear and non-stationary features within the process starting from measured data.
Reliability of a Shuttle reaction timer
NASA Technical Reports Server (NTRS)
Hays, Russell D.; Mazzocca, Augustus D.; Rashid, Michael; Siconolfi, Steven F.
1992-01-01
Reaction, movement, and task times refer to the times needed to initially respond to a stimulus, make the specific movement, and complete the entire task. This study evaluated the reliability of a simple reaction timer designed to mimic a Space Shuttle task (turning on an overhead switch).
Wind Information Uplink to Aircraft Performing Interval Management Operations
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.
2016-01-01
Interval Management (IM) is an ADS-B-enabled suite of applications that use ground and flight deck capabilities and procedures designed to support the relative spacing of aircraft (Barmore et al., 2004, Murdoch et al. 2009, Barmore 2009, Swieringa et al. 2011; Weitz et al. 2012). Relative spacing refers to managing the position of one aircraft to a time or distance relative to another aircraft, as opposed to a static reference point such as a point over the ground or clock time. This results in improved inter-aircraft spacing precision and is expected to allow aircraft to be spaced closer to the applicable separation standard than current operations. Consequently, if the reduced spacing is used in scheduling, IM can reduce the time interval between the first and last aircraft in an overall arrival flow, resulting in increased throughput. Because IM relies on speed changes to achieve precise spacing, it can reduce costly, low-altitude, vectoring, which increases both efficiency and throughput in capacity-constrained airspace without negatively impacting controller workload and task complexity. This is expected to increase overall system efficiency. The Flight Deck Interval Management (FIM) equipment provides speeds to the flight crew that will deliver them to the achieve-by point at the controller-specified time, i.e., assigned spacing goal, after the target aircraft crosses the achieve-by point (Figure 1.1). Since the IM and target aircraft may not be on the same arrival procedure, the FIM equipment predicts the estimated times of arrival (ETA) for both the IM and target aircraft to the achieve-by point. This involves generating an approximate four-dimensional trajectory for each aircraft. The accuracy of the wind data used to generate those trajectories is critical to the success of the IM operation. There are two main forms of uncertainty in the wind information used by the FIM equipment. The first is the accuracy of the forecast modeling done by the weather provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.
Challenges to plant growing in space.
Langhans, R W; Dreesen, D R
1988-04-01
Picture yourself a million miles from earth; it's lunch time. What will you eat: meat, fish, bread, fresh vegetables (cooked or uncooked), or food from a tube? What will happen to the waste products from the processed food or even from yourself? What will you breathe? These and hundreds of detailed questions must be answered. At present, we have little knowledge about a totally closed environment life support system (CELSS). We have developed in this paper a list of references that are pertinent to the problem. It is divided into subject areas and listed chronologically, rather than alphabetically.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Challenges to plant growing in space
NASA Technical Reports Server (NTRS)
Langhans, R. W.; Dreesen, D. R.
1988-01-01
Picture yourself a million miles from earth; it's lunch time. What will you eat: meat, fish, bread, fresh vegetables (cooked or uncooked), or food from a tube? What will happen to the waste products from the processed food or even from yourself? What will you breathe? These and hundreds of detailed questions must be answered. At present, we have little knowledge about a totally closed environment life support system (CELSS). We have developed in this paper a list of references that are pertinent to the problem. It is divided into subject areas and listed chronologically, rather than alphabetically.
USDA-ARS?s Scientific Manuscript database
For decades, the importance of evapotranspiration processes has been recognized in many disciplines, including hydrologic and drainage studies, irrigation systems design and management. A wide number of equations have been proposed to estimate crop reference evapotranspiration, ET0, based on the var...
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
NASA Technical Reports Server (NTRS)
Grey, J. (Editor); Krop, C.
1979-01-01
Papers are presented on the various technological, political, economic, environmental and social aspects of large manufacturing facilities in space. Specific topics include the potential global market for satellite solar power stations in 2025, the electrostatic separation of lunar soil, methods for extraterrestrial materials processing, the socio-political status of efforts toward the development of space manufacturing facilities, the financing of space industrialization, the optimization of space manufacturing systems, the design and project status of Mass Driver Two, and the use of laser-boosted lighter-than-air-vehicles as heavy-lift launch vehicles. Attention is also given to systems integration in the development of controlled ecological life support systems, the design of a space manufacturing facility to use lunar materials, high performance solar sails, the environmental effects of the satellite power system reference design, the guidance, trajectory and capture of lunar materials ejected from the moon by mass driver, the relative design merits of zero-gravity and one-gravity space environments, consciousness alteration in space and the prospecting and retrieval of asteroids.
NASA Astrophysics Data System (ADS)
Brunet, P.; Gloaguen, E.
2014-12-01
Designing and monitoring of geothermal systems is a complex task which requires a multidisciplinary approach. Deep geothermal reservoir models are prone to greater uncertainty, with a lack of direct data and lower resolution of surface geophysical methods. However, recent technical advances have enabled the potential use of permanent downhole vertical resistivity arrays for monitoring fluid injection. As electrical resistivity is sensitive to temperature changes, such data could provide valuable information for deep geothermal reservoir characterization. The objective of this study is to assess the potential of time-lapse cross-borehole ERT to constrain 3D realizations of geothermal reservoir properties. The synthetic case of a permeable geothermal reservoir in a sedimentary basin was set up, as a confined deep and saline sandstone aquifer with intermediate reservoir temperatures (150ºC), depth (1 km) and 30m thickness. The reservoir permeability distribution is heterogeneous, as the result of a fluvial depositional environment. The ERT monitoring system design is a triangular arrangement of 3 wells at 150 m spacing, including 1 injection and 1 extraction well. The optimal number and spacing of electrodes of the ERT array design is site-specific and has been assessed through a sensibility study. Dipole-dipole and pole-pole electrode configurations were used. The study workflow was the following: 1) Generation of a reference reservoir model and 100 stochastic realizations of permeability; 2) Simulation of saturated single-phase flow and heat transport of reinjection of cooled formation fluid (50ºC) with TOUGH2 software; 3) Time-lapse forward ERT modeling on the reference model and all realizations (observed and simulated apparent resistivity change); 4) heuristic optimization on ERT computed and calculated data. Preliminary results show significant reduction of parameter uncertainty, hence realization space, with assimilation of cross-borehole ERT data. Loss in sensitivity of ERT between boreholes is compensated here by the stochastic modeling approach, rather than using a deterministic inversion scheme. Our results suggest stochastic reservoir simulations, together with assimilation of cross-borehole ERT data, could be useful tools for design and monitoring of deep geothermal systems.
Hazards to space workers from ionizing radiation
NASA Technical Reports Server (NTRS)
Lyman, J. T.
1980-01-01
A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System.
RS-34 Phoenix In-Space Propulsion System Applied to Active Debris Removal Mission
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Burnside, Christopher G.
2014-01-01
In-space propulsion is a high percentage of the cost when considering Active Debris Removal mission. For this reason it is desired to research if existing designs with slight modification would meet mission requirements to aid in reducing cost of the overall mission. Such a system capable of rendezvous, close proximity operations, and de-orbit of Envisat class resident space objects has been identified in the existing RS-34 Phoenix. RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC has obtained permission from the USAF to obtain all the remaining RS-34 stages for re-use opportunities. The MSFC Advanced Concepts Office (ACO) was commissioned to lead a study for evaluation of the Rocketdyne produced RS-34 propulsion system as it applies to an active debris removal design reference mission for resident space object targets including Envisat. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy payloads at multiple orbital locations. The RS-34 Concept Study lead by sought to further understand application for a similar orbital debris design reference mission to provide propulsive capability for rendezvous, close proximity operations to support the capture phase of the mission, and deorbit of single or multiple large class resident space objects. Multiple configurations varying the degree of modification were identified to trade for dry mass optimization and propellant load. The results of the RS-34 Phoenix Concept Study show that the system is technically sufficient to successfully support all of the missions to rendezvous, capture, and de-orbit targets including Envisat and Hubble Space Telescope. The results and benefits of the RS-34 Orbital Debris Application Concept Study are presented in this paper.
NASA Technical Reports Server (NTRS)
1971-01-01
The design and development of a communications/navigation facility for operation aboard space stations and space shuttles are discussed. The objectives of the facility are as follows: (1) to develop and demonstrate satellite and spacecraft technology applicable to space communications, navigation, and traffic control, (2) to optimize the use of the electromagnetic spectrum for communications and navigation satellite systems, and (3) to provide fundamental understanding of the space communications and navigation sciences to permit application of this discipline to government and industry.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin;
2006-01-01
This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine
2008-01-01
NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the digital domain (such as statistical averaging of the reference pixels themselves) zeroes out the high-variance components, and the counterpart components in the active pixels remain uncorrected. This paper describes how the new methodology was demonstrated through analysis of fast-varying noise components using the Hilbert-Huang Transform Data Processing System tool (HHT-DPS) developed at NASA and the high-level programming language MATLAB (Trademark of MathWorks Inc.), as well as alternative methods for correcting for the high-variance noise component, using an HgCdTe sensor data. The NASA Hubble Space Telescope data post-processing, as well as future deep-space cosmology projects on-board instrument data processing from all the sensor channels, would benefit from this effort.
NASA Astrophysics Data System (ADS)
Karimabadi, Homa
2012-03-01
Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.
Requirements and approach for a space tourism launch system
NASA Astrophysics Data System (ADS)
Penn, Jay P.; Lindley, Charles A.
2003-01-01
Market surveys suggest that a viable space tourism industry will require flight rates about two orders of magnitude higher than those required for conventional spacelift. Although enabling round-trip cost goals for a viable space tourism business are about 240/pound (529/kg), or 72,000/passenger round-trip, goals should be about 50/pound (110/kg) or approximately 15,000 for a typical passenger and baggage. The lower price will probably open space tourism to the general population. Vehicle reliabilities must approach those of commercial aircraft as closely as possible. This paper addresses the development of spaceplanes optimized for the ultra-high flight rate and high reliability demands of the space tourism mission. It addresses the fundamental operability, reliability, and cost drivers needed to satisfy this mission need. Figures of merit similar to those used to evaluate the economic viability of conventional commercial aircraft are developed, including items such as payload/vehicle dry weight, turnaround time, propellant cost per passenger, and insurance and depreciation costs, which show that infrastructure can be developed for a viable space tourism industry. A reference spaceplane design optimized for space tourism is described. Subsystem allocations for reliability, operability, and costs are made and a route to developing such a capability is discussed. The vehicle's ability to satisfy the traditional spacelift market is also shown.
Optical monitoring of QSO in the framework of the Gaia space mission
NASA Astrophysics Data System (ADS)
Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.
2015-08-01
The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.
Remote sensing and the Mississippi high accuracy reference network
NASA Technical Reports Server (NTRS)
Mick, Mark; Alexander, Timothy M.; Woolley, Stan
1994-01-01
Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael;
2014-01-01
The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.
Size and shape of Brain may be such as to take advantage of two Dimensions of Time
NASA Astrophysics Data System (ADS)
Kriske, Richard
2014-03-01
This author had previously Theorized that there are two non-commuting Dimensions of time. One is Clock Time and the other is Information Time (which we generally refer to as Information, like Spin Up or Spin Down). When time does not commute with another Dimension of Time, one takes the Clock Time at one point in space and the Information time is not known; that is different than if one takes the Information time at that point and the Clock time is not known--This is not explicitly about time but rather space. An example of this non-commutation is that if one knows the Spin at one point and the Time at one point of space then simultaneosly, one knows the Spin at another point of Space and the Time there (It is the same time), it is a restatement of the EPR paradox. As a matter of fact two Dimensions of Time would prove the EPR paradox. It is obvious from that argument that if one needed to take advantage of Information, then a fairly large space needs to be used, a large amount of Energy needs to be Generated and a symmetry needs to be established in Space-like the lobes of a Brain in order to detect the fact that the Tclock and Tinfo are not Commuting. This Non-Commuting deposits a large amount of Information simultaneously in that space, and synchronizes the time there.
An ultra-stable optical frequency reference for space
NASA Astrophysics Data System (ADS)
Schuldt, T.; Döringshoff, K.; Kovalchuk, E.; Pahl, J.; Gohlke, M.; Weise, D.; Johann, U.; Peters, A.; Braxmaier, C.
2017-11-01
We realized ultra-stable optical frequency references on elegant breadboard (EBB) and engineering model (EM) level utilizing Doppler-free spectroscopy of molecular iodine near 532nm. A frequency stability of about 1•10-14 at an integration time of 1 s and below 5•10-15 at integration times between 10 s and 100 s was achieved. These values are comparable to the currently best laboratory setups. Both setups use a baseplate made of glass material where the optical components are joint using a specific assembly-integration technology. Compared to the EBB setup, the EM setup is further developed with respect to compactness and mechanical and thermal stability. The EM setup uses a baseplate made of fused silica with dimensions of 380 x 180 x 40 mm3 and a specifically designed 100 x 100 x 30 mm3 rectangular iodine cell in nine-pass configuration with a specific robust cold finger design. The EM setup was subjected to thermal cycling and vibrational testing. Applications of such an optical frequency reference in space can be found in fundamental physics, geoscience, Earth observation, and navigation & ranging. One example is the proposed mSTAR (mini SpaceTime Asymmetry Research) mission, dedicated to perform a Kennedy-Thorndike experiment on a satellite in a sunsynchronous low-Earth orbit. By comparing an iodine standard to a cavity-based frequency reference and integration over 2 year mission lifetime, the Kennedy-Thorndike coefficient will be determined with up to two orders of magnitude higher accuracy than the current best ground experiment. In a current study, the compatibility of the payload with the SaudiSat-4 host vehicle is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matysiak, W; Yeung, D; Hsi, W
2014-06-01
Purpose: We present a study of dosimetric consequences on doses in water in modeling in-air proton fluence independently along principle axes for rotated elliptical spots. Methods: Phase-space parameters for modeling in-air fluence are the position sigma for the spatial distribution, the angle sigma for the angular distribution, and the correlation between position and angle distributions. Proton spots of the McLaren proton therapy system were measured at five locations near the isocenter for the energies of 180 MeV and 250 MeV. An elongated elliptical spot rotated with respect to the principle axes was observed for the 180 MeV, while a circular-likemore » spot was observed for the 250 MeV. In the first approach, the phase-space parameters were derived in the principle axes without rotation. In the second approach, the phase space parameters were derived in the reference frame with axes rotated to coincide with the major axes of the elliptical spot. Monte-Carlo simulations with derived phase-space parameters using both approaches to tally doses in water were performed and analyzed. Results: For the rotated elliptical 180 MeV spots, the position sigmas were 3.6 mm and 3.2 mm in principle axes, but were 4.3 mm and 2.0 mm when the reference frame was rotated. Measured spots fitted poorly the uncorrelated 2D Gaussian, but the quality of fit was significantly improved after the reference frame was rotated. As a Result, phase space parameters in the rotated frame were more appropriate for modeling in-air proton fluence of 180 MeV protons. Considerable differences were observed in Monte Carlo simulated dose distributions in water with phase-space parameters obtained with the two approaches. Conclusion: For rotated elliptical proton spots, phase-space parameters obtained in the rotated reference frame are better for modeling in-air proton fluence, and can be introduced into treatment planning systems.« less
Horneck, G; Facius, R; Reichert, M; Rettberg, P; Seboldt, W; Manzey, D; Comet, B; Maillet, A; Preiss, H; Schauer, L; Dussap, C G; Poughon, L; Belyavin, A; Reitz, G; Baumstark-Khan, C; Gerzer, R
2003-01-01
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Horneck, G.; Facius, R.; Reichert, M.; Rettberg, P.; Seboldt, W.; Manzey, D.; Comet, B.; Maillet, A.; Preiss, H.; Schauer, L.;
2003-01-01
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Zixuan; Bian, Fuling
2008-10-01
Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.
Simulator evaluation of the final approach spacing tool
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.
1990-01-01
The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a 4-D trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST was implemented on a high performance workstation. It can be operated as a stand-alone in the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experienced TRACON controllers in a real-time air traffic control simulation. Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.
Gravity in the Brain as a Reference for Space and Time Perception.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2015-01-01
Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.
Chart links solar, geophysical events with impacts on space technologies
NASA Astrophysics Data System (ADS)
Davenport, George R.
While developing a Space Weather Training Program for Air Force Space Command and the 50th Weather Squadron, both based in Colorado, ARINC Incorporated produced a flowchart that correlates solar and geophysical events with their impacts on Air Force systems.Personnel from both organizations collaborated in the development of the flowchart and provided many comments and suggestions. The model became the centerpiece of the Space Environment Impacts Reference Pamphlet, as well as the formal Space Weather Training Program. Although it is not a numerical or computer model, the flowchart became known as the “Space Environmental Impacts Model.”
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.