Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
A charging model for three-axis stabilized spacecraft
NASA Technical Reports Server (NTRS)
Massaro, M. J.; Green, T.; Ling, D.
1977-01-01
A charging model was developed for geosynchronous, three-axis stabilized spacecraft when under the influence of a geomagnetic substorm. The differential charging potentials between the thermally coated or blanketed outer surfaces and metallic structure of a spacecraft were determined when the spacecraft was immersed in a dense plasma cloud of energetic particles. The spacecraft-to-environment interaction was determined by representing the charged particle environment by equivalent current source forcing functions and by representing the spacecraft by its electrically equivalent circuit with respect to the plasma charging phenomenon. The charging model included a sun/earth/spacecraft orbit model that simulated the sum illumination conditions of the spacecraft outer surfaces throughout the orbital flight on a diurnal as well as a seasonal basis. Transient and steady-state numerical results for a three-axis stabilized spacecraft are presented.
Radiating dipole model of interference induced in spacecraft circuitry by surface discharges
NASA Technical Reports Server (NTRS)
Metz, R. N.
1984-01-01
Spacecraft in geosynchronous orbit can be charged electrically to high voltages by interaction with the space plasma. Differential charging of spacecraft surfaces leads to arc and blowoff discharging. The discharges are thought to upset interior, computer-level circuitry. In addition to capacitive or electrostatic effects, significant inductive and less significant radiative effects of these discharges exist and can be modeled in a dipole approximation. Flight measurements suggest source frequencies of 5 to 50 MHz. Laboratory tests indicate source current strengths of several amperes. Electrical and magnetic fields at distances of many centimeters from such sources can be as large as tens of volts per meter and meter squared, respectively. Estimates of field attenuation by spacecraft walls and structures suggest that interior fields may be appreciable if electromagnetic shielding is much thinner than about 0.025 mm (1 mil). Pickup of such fields by wires and cables interconnecting circuit components could be a source of interference signals of several volts amplitude.
Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity
NASA Technical Reports Server (NTRS)
Inouye, G. T.
1981-01-01
Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.
Dynamic performance of an aero-assist spacecraft - AFE
NASA Technical Reports Server (NTRS)
Chang, Ho-Pen; French, Raymond A.
1992-01-01
Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.
Fully-Coupled Dynamical Jitter Modeling of Momentum Exchange Devices
NASA Astrophysics Data System (ADS)
Alcorn, John
A primary source of spacecraft jitter is due to mass imbalances within momentum exchange devices (MEDs) used for fine pointing, such as reaction wheels (RWs) and variable-speed control moment gyroscopes (VSCMGs). Although these effects are often characterized through experimentation in order to validate pointing stability requirements, it is of interest to include jitter in a computer simulation of the spacecraft in the early stages of spacecraft development. An estimate of jitter amplitude may be found by modeling MED imbalance torques as external disturbance forces and torques on the spacecraft. In this case, MED mass imbalances are lumped into static and dynamic imbalance parameters, allowing jitter force and torque to be simply proportional to wheel speed squared. A physically realistic dynamic model may be obtained by defining mass imbalances in terms of a wheel center of mass location and inertia tensor. The fully-coupled dynamic model allows for momentum and energy validation of the system. This is often critical when modeling additional complex dynamical behavior such as flexible dynamics and fuel slosh. Furthermore, it is necessary to use the fully-coupled model in instances where the relative mass properties of the spacecraft with respect to the RWs cause the simplified jitter model to be inaccurate. This thesis presents a generalized approach to MED imbalance modeling of a rigid spacecraft hub with N RWs or VSCMGs. A discussion is included to convert from manufacturer specifications of RW imbalances to the parameters introduced within each model. Implementations of the fully-coupled RW and VSCMG models derived within this thesis are released open-source as part of the Basilisk astrodynamics software.
Environmental Verification Experiment for the Explorer Platform (EVEEP)
NASA Technical Reports Server (NTRS)
Norris, Bonnie; Lorentson, Chris
1992-01-01
Satellites and long-life spacecraft require effective contamination control measures to ensure data accuracy and maintain overall system performance margins. Satellite and spacecraft contamination can occur from either molecular or particulate matter. Some of the sources of the molecular species are as follows: mass loss from nonmetallic materials; venting of confined spacecraft or experiment volumes; exhaust effluents from attitude control systems; integration and test activities; and improper cleaning of surfaces. Some of the sources of particulates are as follows: leaks or purges which condense upon vacuum exposure; abrasion of movable surfaces; and micrometeoroid impacts. The Environmental Verification Experiment for the Explorer Platform (EVEEP) was designed to investigate the following aspects of spacecraft contamination control: materials selection; contamination modeling of existing designs; and thermal vacuum testing of a spacecraft with contamination monitors.
Realtime Knowledge Management (RKM): From an International Space Station (ISS) Point of View
NASA Technical Reports Server (NTRS)
Robinson, Peter I.; McDermott, William; Alena, Richard L.
2004-01-01
We are developing automated methods to provide realtime access to spacecraft domain knowledge relevant a spacecraft's current operational state. The method is based upon analyzing state-transition signatures in the telemetry stream. A key insight is that documentation relevant to a specific failure mode or operational state is related to the structure and function of spacecraft systems. This means that diagnostic dependency and state models can provide a roadmap for effective documentation navigation and presentation. Diagnostic models consume the telemetry and derive a high-level state description of the spacecraft. Each potential spacecraft state description is matched against the predictions of models that were developed from information found in the pages and sections in the relevant International Space Station (ISS) documentation and reference materials. By annotating each model fragment with the domain knowledge sources from which it was derived we can develop a system that automatically selects those documents representing the domain knowledge encapsulated by the models that compute the current spacecraft state. In this manner, when the spacecraft state changes, the relevant documentation context and presentation will also change.
Mathematical Modeling Of A Nuclear/Thermionic Power Source
NASA Technical Reports Server (NTRS)
Vandersande, Jan W.; Ewell, Richard C.
1992-01-01
Report discusses mathematical modeling to predict performance and lifetime of spacecraft power source that is integrated combination of nuclear-fission reactor and thermionic converters. Details of nuclear reaction, thermal conditions in core, and thermionic performance combined with model of swelling of fuel.
Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek; Brownlee, Donald E.; Economou, Thanasis E.; Tuzzolino, Anthony J.; Green, Simon F.
2004-01-01
We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.
Interplanetary baseline observations of type 3 solar radio bursts. [by Helios satellites
NASA Technical Reports Server (NTRS)
Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.
1977-01-01
Simultaneous observations of type III radio bursts using spacecraft separated by several tenths of an AU were made using the solar orbiters HELIOS-A and -B. The burst beginning at 1922 UT on March 28, 1976, was located from the intersection of the source directions measured at each spacecraft, and from the burst arrival time differences. Wide baseline observations give the radial distance of the source at each observing frequency. Consequently, coronal electron densities and exciter velocity were determined directly, without the need to assume a density model as is done with single spacecraft observations. The separation of HELIOS-A and -B also provided the first measurements of burst directivity at low frequencies. For the March 28 burst, the intensity observed from near the source longitude (HELIOS-B) was significantly greater than from 60 W of the source (HELIOS-A).
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.
2000-01-01
Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.
NASA Technical Reports Server (NTRS)
Brown, J. C.; Carlaw, V. A.; Cromwell, D.; Kane, S. R.
1983-01-01
The thick target, hard solar X-ray source height structure is predicted for the case of a beam that is injected vertically downward, having a power law spectrum, being dominated by Coulomb collisional energy losses, and being structurally characterized by the ratio of hard X-ray flux from an upper part of the source to that from the entire source. These predictions are compared with the flux ratios at 150 and 350 keV which were observed by two spacecraft for five events in which the solar limb occults part of the source for one spacecraft. The energy dependence of the occultation ratio is found to be inconsistent with that predicted by the model, and it is concluded that noncollisional losses must be significant in beam dynamics.
NASA Technical Reports Server (NTRS)
Anderson, Kinsey A.
1991-01-01
The objective of this grant was to measure the spatial structure and directivity of the hard X-ray and low energy gamma-ray (100 keV-2 MeV) continuum sources in solar flares using stereoscopic observations made with spectrometers aboard the Pioneer Venus Orbiter (PVO) and Third International Sun Earth Explorer (ISEE-3) spacecraft. Since the hard X-ray emission is produced by energetic electrons through the bremsstrahlung process, the observed directivity can be directly related to the 'beaming' of electrons accelerated during the flare as they propagate from the acceleration region in the corona to the chromosphere/transition region. Some models (e.g., the thick-target model) predict that most of the impulsive hard X-ray/low energy gamma-ray source is located in the chromosphere, the effective height of the X-ray source above the photosphere increasing with the decrease in the photon energy. This can be verified by determining the height-dependence of the photon source through stereoscopic observations of those flares which are partially occulted from the view of one of the two spacecraft. Thus predictions about beaming of electrons as well as their spatial distributions could be tested through the analysis proposed under this grant.
NASA Technical Reports Server (NTRS)
Adams, Mitzi; HabashKrause, Linda
2012-01-01
Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown here.
Interplanetary baseline observations of type III solar radio bursts
NASA Technical Reports Server (NTRS)
Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.
1977-01-01
Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters Helios-A and Helios-B. The burst beginning at 19:22 UT on March 28, 1976, has been located from the intersection of the source directions measured at each spacecraft and from burst arrival-time differences. The source positions range from 0.03 AU from the sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory and the exciter velocity (0.13c) were determined directly without the need to assume a density model, as has been done with single-spacecraft observations. The separation of Helios-A and -B has also provided measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (Helios-B) was 3-10dB greater than that from 60 deg west of the source (Helios-A)
Spacecraft camera image registration
NASA Technical Reports Server (NTRS)
Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)
1987-01-01
A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).
A Solar Wind Source Tracking Concept for Inner Heliosphere Constellations of Spacecraft
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Li, Yan; Arge, C. N.; Hoeksema, Todd; Zhao, Xuepu
2003-09-01
During the next decade, a number of spacecraft carrying in-situ particles and fields instruments, including the twin STEREO spacecraft, ACE, WIND, and possibly Triana, will be monitoring the solar wind in the inner heliosphere. At the same time, several suitably instrumented planetary missions, including Nozomi, Mars Express, and Messenger will be in either their cruise or orbital phases which expose them at times to interplanetary conditions and/or regions affected by the solar wind interaction. In addition to the mutual support role for the individual missions that can be gained from this coincidence, this set provides an opportunity for evaluating the challenges and tools for a future targeted heliospheric constellation mission. In the past few years the capability of estimating the solar sources of the local solar wind has improved, in part due to the ability to monitor the full-disk magnetic field of the Sun on an almost continuous basis. We illustrate a concept for a model and web-based display that routinely updates the estimated sources of the solar wind arriving at inner heliospheric spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lario, D.; Kwon, R.-Y.; Raouafi, N. E.
We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fastmore » halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.« less
NASA Astrophysics Data System (ADS)
Froger, Etienne
1993-05-01
A description of the electromagnetic behavior of a satellite subjected to an electric discharge is given using a specially developed numerical code. One of the particularities of vacuum discharges, obtained by irradiation of polymers, is the intense emission of electrons into the spacecraft environment. Electromagnetic radiation, associated with the trajectories of the particles around the spacecraft, is considered as the main source of the interference observed. In the absence of accurate orbital data and realistic ground tests, the assessment of these effects requires numerical simulation of the interaction between this electron source and the spacecraft. This is done by the GEODE particle code which is applied to characteristic configurations in order to estimate the spacecraft response to a discharge, which is simulated from a vacuum discharge model designed in laboratory. The spacecraft response to a current injection is simulated by the ALICE numerical three dimensional code. The comparison between discharge and injection effects, from the results given by the two codes, illustrates the representativity of electromagnetic susceptibility tests and the main parameters for their definition.
Estimation of Nutation Time Constant Model Parameters for On-Axis Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Schlee, Keith; Sudermann, James
2008-01-01
Calculating an accurate nutation time constant for a spinning spacecraft is an important step for ensuring mission success. Spacecraft nutation is caused by energy dissipation about the spin axis. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and can be simulated using a forced motion spin table. Mechanical analogs, such as pendulums and rotors, are typically used to simulate propellant slosh. A strong desire exists for an automated method to determine these analog parameters. The method presented accomplishes this task by using a MATLAB Simulink/SimMechanics based simulation that utilizes the Parameter Estimation Tool.
Electrostatic Structure and Double-Probe Performance in Tenuous Plasmas
NASA Astrophysics Data System (ADS)
Cully, C. M.; Ergun, R. E.
2006-12-01
Many in-situ plasma instruments are affected by the local electrostatic structure surrounding the spacecraft. In order to better understand this structure, we have developed a fully 3-dimensional self-consistent model that uses realistic spacecraft geometry, including thin (<1 mm) wires and long (>100m) booms, with open boundary conditions. One of the more surprising results is that in tenuous plasmas, the charge on the booms can dominate over the charge on the spacecraft body. For instruments such as electric field double probes and boom-mounted low-energy particle detectors, this challenges the existing paradigm: long booms do not allow the probes to escape the spacecraft potential. Instead, the potential structure simply expands as the boom is deployed. We then apply our model to the double-probe Electric Field and Waves (EFW) instruments on Cluster, and predict the magnitudes of the main error sources. The overall error budget is consistent with experiment, and the model yields some additional interesting insights. We show that the charge in the photoelectron cloud is relatively unimportant, and that the spacecraft potential is typically underestimated by about 20% by double-probe experiments.
(abstract) Application of Non-coherent Data Types for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
1995-01-01
Several options are being examined to reduce the costs of spacecraft and deep space missions. One such option is to fly spacecraft in a non-coherent mode, that is, the spacecraft does not carry a transponder and cannot coherently return a Doppler signal. Historically, such one-way data has not been used as the sole data type due to the instability of the onboard oscillator, the use of S-band frequencies, and the corresponding larger error sources which could not be modeled. However, with the advent of high-speed work stations and more sophisticated modeling ability, the possibility of using one-way data is being re-examined. This paper addresses the navigation performance of various one-way data types for use in interplanetary missions.
Space Environment Effects on Materials : An Overview
NASA Technical Reports Server (NTRS)
Garrett, Henry B.
2006-01-01
A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.
ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources
NASA Technical Reports Server (NTRS)
Meyer, Marit
2014-01-01
Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.
ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison
NASA Technical Reports Server (NTRS)
Krisko, P. H.; Flegel, S.
2014-01-01
The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.
Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.
2004-01-01
In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.
Stability analysis of spacecraft power systems
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.
1990-01-01
The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.
Use of the Moon for spacecraft calibration over 350-2500 nm
Kieffer, H.H.; Anderson, J.M.
1998-01-01
The Moon is the only natural object outside the Earth's atmosphere that is within the dynamic range of most imaging instruments on Earth-orbiting spacecraft. The excellent photometric stability of the Lunar surface will allow its use as a long-term instrument calibration source once the dependence of Lunar spectral radiance on phase and libration angles are well characterized. A program to provide this characterization is underway. Observations are being made in 23 bands within 350-950 nm, 7 of which correspond closely with spacecraft instrument bands. Observations in nine bands within 950-2500 nm began recently. Although at this time the absolute Lunar radiance model is preliminary and uncertainties are larger than most instrument calibration goals, changes in spacecraft instrument sensitivity can be precisely monitored and absolute calibration can be applied retroactively as the accuracy of the Lunar spectral radiance model improves. Several space-based imaging systems have already begun using the Moon for calibration and the EOS AM-1 platform will make periodic attitude maneuvers for Lunar and space calibration.
Spacecraft thermal balance testing using infrared sources
NASA Technical Reports Server (NTRS)
Tan, G. B. T.; Walker, J. B.
1982-01-01
A thermal balance test (controlled flux intensity) on a simple black dummy spacecraft using IR lamps was performed and evaluated, the latter being aimed specifically at thermal mathematical model (TMM) verification. For reference purposes the model was also subjected to a solar simulation test (SST). The results show that the temperature distributions measured during IR testing for two different model attitudes under steady state conditions are reproducible with a TMM. The TMM test data correlation is not as accurate for IRT as for SST. Using the standard deviation of the temperature difference distribution (analysis minus test) the SST data correlation is better by a factor of 1.8 to 2.5. The lower figure applies to the measured and the higher to the computer-generated IR flux intensity distribution. Techniques of lamp power control are presented. A continuing work program is described which is aimed at quantifying the differences between solar simulation and infrared techniques for a model representing the thermal radiating surfaces of a large communications spacecraft.
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
The Near-Earth Meteoroid Flux, Speed Distribution, and Uncertainty
NASA Technical Reports Server (NTRS)
Moorhead, Althea; Cooke, William J.; Brown, Peter G.; Campbell-Brown, Margaret; Moser, Danielle E.
2016-01-01
Meteoroids are known to pose a threat to spacecraft; they can puncture components, disturb spacecraft attitude, and possibly create secondary electrical effects. Accurate environment models are therefore critical for mitigating meteoroid-related risks. While there are several meteoroid environment models available for assessing spacecraft risk, the uncertainties associated with these models are not well understood. Because meteoroid properties are derived from indirect observations such as meteors and impact craters, the uncertainty in the meteoroid flux is potentially quite large. We combine existing meteoroid flux measurements with new radar and optical meteor data to improve our characterization of the meteoroid flux onto the Earth and its velocity distribution. We use data extracted from the NASA all-sky network, the Canadian Automated Meteor Observatory, and the Canadian Meteor Orbit Radar. We improve our characterization of the observed meteoroid speed distribution by incorporating modern descriptions of the ionization efficiency (e.g., Thomas et al., 2016). We also present estimates of the uncertainties associated with our meteoroid flux distribution. Finally, we discuss the implications for spacecraft. Our model is constrained by the cratering rate on the space-facing surface of LDEF, and thus the risk posed to spacecraft by meteoroid-induced physical damage is the least uncertain component of our model. Other sources of risk, however, may vary. For instance, a lower average meteoroid speed would require a higher meteoroid mass flux in order to match the LDEF crater counts, leading to higher predicted rates of attitude disturbances.
NASA Technical Reports Server (NTRS)
Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor); Sheikh, Suneel I. (Inventor)
2015-01-01
A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.
General Mission Analysis Tool (GMAT) Architectural Specification. Draft
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Conway, Darrel, J.
2007-01-01
Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux and Macintosh computers by the development and analysis teams working on the project. The system can be run using either a graphical user interface, written using the open source wxWidgets framework, or from a text console. The GMAT source code was written using open source tools. GSFC has released the code using the NASA open source license.
Modeling Laser Effects on Imaging Spacecraft Using the SSM
NASA Astrophysics Data System (ADS)
Buehler, P.; Smith, J.; Farmer, J.; Bonn, D.
The Satellite Survivability Module (SSM) is an end-to-end, physics-based, performance prediction model for directed energy engagement of orbiting spacecraft. Two engagement types are currently supported: laser engagement of the focal plane array of an imaging spacecraft; and Radio Frequency (RF) engagement of spacecraft components. For laser engagements, the user creates a spacecraft, its optical system, any protection techniques used by the optical system, a laser threat, and an atmosphere through which the laser will pass. For RF engagements, the user creates a spacecraft (as a set of subsystem components), any protection techniques, and an RF source. SSM then models the engagement and its impact on the spacecraft using four impact levels: degradation, saturation, damage, and destruction. Protection techniques, if employed, will mitigate engagement effects. SSM currently supports several two laser and three RF protection techniques. SSM allows the user to create and implement a variety of "what if" scenarios. Satellites can be placed in a variety of orbits. Threats can be placed anywhere on the Earth. Satellites and threats can be mixed and matched to examine possibilities. Protection techniques for a particular spacecraft can be turned on or off individually; and can be arranged in any order to simulate more complicated protection schemes. Results can be displayed as 2-D or 3-D visualizations, or as textual reports. In order to test SSM capabilities, the Ball team used it to model engagement scenarios for a space experiment scheduled for the 2011 time frame. SSM was created by Ball Aerospace & Technologies Corp. Systems Engineering Solutions in Albuquerque, New Mexico as an add-on module for the Satellite Tool Kit (STK). The current version of SSM (1.0) interfaces with STK through the Programmer's Library (STK/PL). Future versions of SSM will employ STK/Connect to provide the user access to STK functionality. The work is currently funded by the Air Force Research Laboratory, Space Vehicles directorate at Kirtland AFB, New Mexico, under contract number FA9453-06-C-0096.
Laser interferometer space antenna dynamics and controls model
NASA Astrophysics Data System (ADS)
Maghami, Peiman G.; Tupper Hyde, T.
2003-05-01
A 19 degree-of-freedom (DOF) dynamics and controls model of a laser interferometer space antenna (LISA) spacecraft has been developed. This model is used to evaluate the feasibility of the dynamic pointing and positioning requirements of a typical LISA spacecraft. These requirements must be met for LISA to be able to successfully detect gravitational waves in the frequency band of interest (0.1-100 mHz). The 19-DOF model includes all rigid-body degrees of freedom. A number of disturbance sources, both internal and external, are included. Preliminary designs for the four control systems that comprise the LISA disturbance reduction system (DRS) have been completed and are included in the model. Simulation studies are performed to demonstrate that the LISA pointing and positioning requirements are feasible and can be met.
Improvements in Modeling Thruster Plume Erosion Damage to Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Soares, Carlos; Olsen, Randy; Steagall, Courtney; Huang, Alvin; Mikatarian, Ron; Myers, Brandon; Koontz, Steven; Worthy, Erica
2015-01-01
Spacecraft bipropellant thrusters impact spacecraft surfaces with high speed droplets of unburned and partially burned propellant. These impacts can produce erosion damage to optically sensitive hardware and systems (e.g., windows, camera lenses, solar cells and protective coatings). On the International Space Station (ISS), operational constraints are levied on the position and orientation of the solar arrays to mitigate erosion effects during thruster operations. In 2007, the ISS Program requested evaluation of erosion constraint relief to alleviate operational impacts due to an impaired Solar Alpha Rotary Joint (SARJ). Boeing Space Environments initiated an activity to identify and remove sources of conservatism in the plume induced erosion model to support an expanded range of acceptable solar array positions ? The original plume erosion model over-predicted plume erosion and was adjusted to better correlate with flight experiment results. This paper discusses findings from flight experiments and the methodology employed in modifying the original plume erosion model for better correlation of predictions with flight experiment data. The updated model has been successful employed in reducing conservatism and allowing for enhanced flexibility in ISS solar array operations.
UARS in-flight jitter study for EOS
NASA Technical Reports Server (NTRS)
Molnar, John; Garnek, Mike
1993-01-01
Response data collected from gyroscopes on board the Upper Atmosphere Research Satellite (UARS) provided a unique opportunity to analyze actual flight pointing jitter data. Flight modal frequencies and damping values are derived from the measured data using an Eigensystem Realization Algorithm (ERA). Flight frequencies at various solar array positions are compared to analytical predictions obtained with a Finite Element Model. The solar array modal frequencies change with position due to the modes acting about different spacecraft inertial axes. Higher order modes were difficult to identify due to the limited instrumentation. Future flight jitter studies on other spacecraft would be significantly aided by additional instrumentation. Spacecraft jitter due to continuous disturbance sources such as the 1.6 meter scanning microwave antenna, the solar array drive, and reaction wheels is presented. The solar array drive disturbance dominates the spacecraft response during normal operation.
Determination of Realistic Fire Scenarios in Spacecraft
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Ruff, Gary A.; Urban, David
2013-01-01
This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.
Elemental composition of the Martian crust.
McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B
2009-05-08
The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.
Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation
NASA Technical Reports Server (NTRS)
Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.
2016-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.
A Generic Microdisturbanace Transmissibility Model For Reaction Wheels
NASA Astrophysics Data System (ADS)
Penate Castro, Jose; Seiler, Rene
2012-07-01
The increasing demand for space missions with high- precision pointing requirements for their payload instruments is underlining the importance of studying the impact of micro-level disturbances on the overall performance of spacecraft. For example, a satellite with an optical telescope taking high-resolution images might be very sensitive to perturbations, generated by moving equipment and amplified by the structure of the equipment itself as well as that of the host spacecraft that is accommodating both, the sources of mechanical disturbances and sensitive payload instruments. One of the major sources of mechanical disturbances inside a satellite may be found with reaction wheels. For investigation of their disturbance generation and propagation characteristics, a finite element model with parametric geometry definition has been developed. The model covers the main structural features of typical reaction wheel assemblies and can be used for a transmissibility representation of the equipment. With the parametric geometry definition approach, a wide range of different reaction wheel types and sizes can be analysed, without the need for (re-)defining an individual reaction wheel configuration from scratch. The reaction wheel model can be combined with a finite element model of the spacecraft structure and the payload for an end-to-end modelling and simulation of the microdisturbance generation and propagation. The finite element model has been generated in Patran® Command Language (PCL), which provides a powerful and time-efficient way to change parameters in the model, for creating a new or modifying an existing geometry, without requiring comprehensive manual interactions in the modelling pre-processor. As part of the overall modelling approach, a tailored structural model of the mechanical ball bearings has been implemented, which is one of the more complex problems to deal with, among others, due to the anisotropic stiffness and damping characteristics. Together, with the time and frequency domain representations of the local sources of the disturbance forces and moments (e.g. due to rotor unbalance), the new model enables adequate estimation of the disturbances at the mechanical interface of a reaction wheel with a transmissibility representation, furthermore the analysis of their propagation in a host structure and their effects on a payload item.
New meteoroid model predictions for directional impacts on LDEF
NASA Technical Reports Server (NTRS)
Divine, Neil; Agueero, Rene C.
1993-01-01
An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (Helios, Pioneer, Galileo, Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space. For a spacecraft in geocentric orbit the effects of gravitational focussing and shielding by the Earth have been newly derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on LDEF.
NASA's Space Environments and Effects (SEE) Program: The Pursuit of Tomorrow's Space Technology
NASA Technical Reports Server (NTRS)
Pearson, Steven D.; Hardage, Donna M.
1998-01-01
A hazard to all spacecraft orbiting the earth and exploring the unknown in deep space is the existence of a harsh and ever changing environment with its subsequent effects. Some of these environmental hazards, such as plasma, extreme thermal excursions, meteoroids, and ionizing radiation result from natural sources, whereas others, such as orbital debris and neutral contamination are induced by the presence of spacecraft themselves. The subsequent effects can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and advocates technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will provide an overview of the Program's purpose, goals, database management and technical activities. In particular, the SEE Program has been very active in developing improved ionizing radiation models and developing related flight experiments which should aid in determining the effect of the radiation environment on modern electronics.
Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis
NASA Technical Reports Server (NTRS)
Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.
2004-01-01
This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.
In-flight wobble identification for Galileo
NASA Technical Reports Server (NTRS)
Lai, J. Y.; Wong, E. C.
1984-01-01
To achieve in-flight wobble compensation for Galileo, wobble identification is implemented using star scanner data or automatic gain control (AGC) signal as measurement in all-spin mode. The star scanner provides spacecraft attitude in inertial space while the AGC signal provides the spacecraft pointing relative to earth. A linear observation model is defined for each sensor which is being applied to a Kalman Estimator. It can be shown from simulation that better result can be achieved using a combined set of data than any one sensor alone due to correlation reduction among error sources.
Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette
2010-01-01
The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1-sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.
Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette
2010-01-01
The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1 sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.
Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
INTRODUCTION: The meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers.
Cross Section Calculations and Comparison to Experiment
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Ford, W. P.; Dewet, W. C.; Werneth, C. M.
2016-01-01
Understanding fragmentation of galactic cosmic ray nuclei in collisions within spacecraft structures and human tissues is an important element in assessing biological risk to crew members from this radiation source. Over the past four decades, various models have been developed to describe these important processes. Some models invoke semi-classical concepts based upon geometric descriptions of collisions between spherical nuclei.
Plasma source for spacecraft potential control
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1983-01-01
A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.
Voyager spacecraft electrostatic discharge testing
NASA Technical Reports Server (NTRS)
Whittlesey, A.; Inouye, G.
1980-01-01
The program of environmental testing undergone by the Voyager spacecraft in order to simulate the transient voltage effects of electrostatic discharges expected in the energetic plasma environment of Jupiter is reported. The testing consists of studies of the electrostatic discharge characteristics of spacecraft dielectrics in a vacuum-chamber-electron beam facility, brief piece part sensitivity tests on such items as a MOSFET multiplexer and the grounding of the thermal blanket, and assembly tests of the magnetometer boom and the science boom. In addition, testing of a complete spacecraft was performed using two arc sources to simulate long and short duration discharge sources for successive spacecraft shielding and grounding improvements. Due to the testing program, both Voyager 1 and Voyager 2 experienced tolerable electrostatic discharge-caused transient anomalies in science and engineering subsystems, however, a closer duplication of the spacecraft environment is necessary to predict and design actual spacecraft responses more accurately.
NASA Astrophysics Data System (ADS)
He, H.-Q.; Zhou, G.; Wan, W.
2017-06-01
A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.
42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems
NASA Technical Reports Server (NTRS)
Stoneking, Eric
2018-01-01
Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.
Multi-Mission Power Analysis Tool (MMPAT) Version 3
NASA Technical Reports Server (NTRS)
Wood, Eric G.; Chang, George W.; Chen, Fannie C.
2012-01-01
The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture.
Simulation gravity modeling to spacecraft-tracking data - Analysis and application
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Zisk, S. H.
1978-01-01
It is proposed that line-of-sight gravity measurements derived from spacecraft-tracking data can be used for quantitative subsurface density modeling by suitable orbit simulation procedures. Such an approach avoids complex dynamic reductions and is analogous to the modeling of conventional surface gravity data. This procedure utilizes the vector calculations of a given gravity model in a simplified trajectory integration program that simulates the line-of-sight gravity. Solutions from an orbit simulation inversion and a dynamic inversion on Doppler observables compare well (within 1% in mass and size), and the error sources in the simulation approximation are shown to be quite small. An application of this technique is made to lunar crater gravity anomalies by simulating the complete Bouguer correction to several large young lunar craters. It is shown that the craters all have negative Bouguer anomalies.
New meteoroid model predictions for directional impacts on LDEF
NASA Technical Reports Server (NTRS)
Divine, Neil; Aguero, Rene C.
1992-01-01
An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (helios, Pioneer, Galileo, and Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space (Divine, 1992, in preparation). For a spacecraft in geocentric orbit, the effects of gravitational focusing and shielding by the Earth were derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on the Long Duration Exposure Facility (LDEF).
A general model for attitude determination error analysis
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Seidewitz, ED; Nicholson, Mark
1988-01-01
An overview is given of a comprehensive approach to filter and dynamics modeling for attitude determination error analysis. The models presented include both batch least-squares and sequential attitude estimation processes for both spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief description of a dynamics model of strapdown gyros, but it does not cover other sensor models. Model parameters can be chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process, or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on this choice is that the time evolution of the consider parameters must not depend on any of the solve-for parameters. The result of an error analysis is an indication of the contributions of the various error sources to the uncertainties in the determination of the spacecraft solve-for parameters. The model presented gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due to measurement noise, the uncertainty due to dynamic noise (also known as process noise or measurement noise), the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.
NASA Technical Reports Server (NTRS)
Stoll, John C.
1995-01-01
The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.
Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Ben
2014-01-01
The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.
Stochastic Analysis of Orbital Lifetimes of Spacecraft
NASA Technical Reports Server (NTRS)
Sasamoto, Washito; Goodliff, Kandyce; Cornelius, David
2008-01-01
A document discusses (1) a Monte-Carlo-based methodology for probabilistic prediction and analysis of orbital lifetimes of spacecraft and (2) Orbital Lifetime Monte Carlo (OLMC)--a Fortran computer program, consisting of a previously developed long-term orbit-propagator integrated with a Monte Carlo engine. OLMC enables modeling of variances of key physical parameters that affect orbital lifetimes through the use of probability distributions. These parameters include altitude, speed, and flight-path angle at insertion into orbit; solar flux; and launch delays. The products of OLMC are predicted lifetimes (durations above specified minimum altitudes) for the number of user-specified cases. Histograms generated from such predictions can be used to determine the probabilities that spacecraft will satisfy lifetime requirements. The document discusses uncertainties that affect modeling of orbital lifetimes. Issues of repeatability, smoothness of distributions, and code run time are considered for the purpose of establishing values of code-specific parameters and number of Monte Carlo runs. Results from test cases are interpreted as demonstrating that solar-flux predictions are primary sources of variations in predicted lifetimes. Therefore, it is concluded, multiple sets of predictions should be utilized to fully characterize the lifetime range of a spacecraft.
Galileo spacecraft power management and distribution system
NASA Technical Reports Server (NTRS)
Detwiler, R. C.; Smith, R. L.
1990-01-01
The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.
3D thermography for improving temperature measurements in thermal vacuum testing
NASA Astrophysics Data System (ADS)
Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.
2017-09-01
The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun simulator. The results are presented here with estimated temperature measurement uncertainties and defined confidence levels according to the internationally accepted Guide to Uncertainty of Measurement as used in the IEC/ISO17025 test and measurement standard. This work is understood to represent the first application of well-understood thermal imaging theory, commercial photogrammetry software, and open-source ray-tracing software (adapted to realize the Planck function for thermal wavebands and target emission), and to produce from these elements a complete system for determining true surface temperatures for complex spacecraft-testing applications.
X-Ray Detection and Processing Models for Spacecraft Navigation and Timing
NASA Technical Reports Server (NTRS)
Sheikh, Suneel; Hanson, John
2013-01-01
The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse timing model. A discrepancy provides an estimate of the spacecraft position offset, since an error in position will relate to the measured time offset of a pulse along the line of sight to the pulsar. XNAV researchers have been developing additional enhanced approaches to process the photon TOAs to arrive at an estimate of spacecraft position, including those using maximum-likelihood estimation, digital phase locked loops, and "single photon processing" schemes that utilize all available time data associated with each photon. Using pulsars from separate, non-coplanar locations provides range and range-rate measurements in each pulsar s direction. Combining these different pulsar measurements solves for offsets in position and velocity in three dimensions, and provides accurate overall navigation for deep space vehicles.
ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison
NASA Technical Reports Server (NTRS)
Krisko, Paula H.; Flegel, S.
2010-01-01
The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.
Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta
NASA Astrophysics Data System (ADS)
Heritier, K. L.; Henri, P.; Vallières, X.; Galand, M.; Odelstad, E.; Eriksson, A. I.; Johansson, F. L.; Altwegg, K.; Behar, E.; Beth, A.; Broiles, T. W.; Burch, J. L.; Carr, C. M.; Cupido, E.; Nilsson, H.; Rubin, M.; Vigren, E.
2017-07-01
The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov-Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Rosetta Plasma Consortium (RPC)-Mutual Impedance Probe (MIP) and RPC-LAngmuir Probe (LAP) during the descent from a cometocentric distance of 20 km down to the surface. Data set from both instruments have been cross-calibrated for redundancy and accuracy. To analyse this data set, we have developed a model driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-COmetary Pressure Sensor total neutral density. The two ionization sources considered are solar extreme ultraviolet radiation and energetic electrons. The latter are estimated from the RPC-Ion and Electron Sensor (IES) and corrected for the spacecraft potential probed by RPC-LAP. We have compared the results of the model to the electron densities measured by RPC-MIP and RPC-LAP at the location of the spacecraft. We find good agreement between observed and modelled electron densities. The energetic electrons have access to the surface of the nucleus and contribute as the main ionization source. As predicted, the measurements exhibit a peak in the ionospheric density close to the surface. The location and magnitude of the peak are estimated analytically. The measured ionospheric densities cannot be explained with a constant outflow velocity model. The use of a neutral model with an expanding outflow is critical to explain the plasma observations.
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
Trace chemical contaminant generation rates for spacecraft contamination control system design
NASA Technical Reports Server (NTRS)
Perry, J. L.
1995-01-01
A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1979-01-01
A set of standard telemetry protocols for downlink data flow facilitating the end-to-end transport of instrument data from the spacecraft to the user in real time is proposed. The direct switching of data by autonomous message 'packets' that are assembled by the source instrument on the spacecraft is discussed. The data system consists thus of a format on a message rather than word basis, and such packet telemetry would include standardized protocol headers. Standards are being developed within the NASA End-to-End Data System (NEEDS) program for the source packet and transport frame protocols. The source packet protocol contains identification of both the sequence number of the packet as it is generated by the source and the total length of the packet, while the transport frame protocol includes a sequence count defining the serial number of the frame as it is generated by the spacecraft data system, and a field specifying any 'options' selected in the format of the frame itself.
NASA Technical Reports Server (NTRS)
Ashman, B. W.; Veldman, J. L.; Axelrad, P.; Garrison, J. L.; Winternitz, L. B.
2016-01-01
In the rendezvous and docking of spacecraft, GNSS signals can reflect off the target vehicle and cause large errors in the chaser vehicle receiver at ranges below a few hundred meters. It has been proposed that the additional ray paths, or multipath, be used as a source of information about the state of the target relative to the receiver. With Hubble Servicing Mission 4 as a case study, electromagnetic ray tracing has been used to construct a model of reflected signals from known geometry. Oscillations in the prompt correlator power due to multipath, known as multipath fading, are studied as a means of model validation. Agreement between the measured and simulated multipath fading serves to confirm the presence of signals reflected off the target spacecraft that might be used for relative navigation.
NASA Technical Reports Server (NTRS)
Ashman, Ben; Veldman, Jeanette; Axelrad, Penina; Garrison, James; Winternitz, Luke
2016-01-01
In the rendezvous and docking of spacecraft, GNSS signals can reflect off the target vehicle and cause prohibitively large errors in the chaser vehicle receiver at ranges below 200 meters. It has been proposed that the additional ray paths, or multipath, be used as a source of information about the state of the target relative to the receiver. With Hubble Servicing Mission 4 as a case study, electromagnetic ray tracing has been used to construct a model of reflected signals from known geometry. Oscillations in the prompt correlator power due to multipath, known as multipath fading, are studied as a means of model validation. Agreement between the measured and simulated multipath fading serves to confirm the presence of signals reflected off the target spacecraft that might be used for relative navigation.
Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less
Use of Very Long Baseline Array Interferometric Data for Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Antreasian, P.; Border, J.; Benson, J.; Dhawan, V.; Fomalont, E.; Graat, E.; Jacobson, R.; Lanyi, G.; McElrath, T.;
2006-01-01
The main VLBI technique that is used at JPL is known as the Delta Differential One-way Ranging ((Delta)DOR). Two DSN antennas simultaneously track a source, and alternate between sources. The signals recorded at the antennas from each source are correlated to obtain the delay in arrival to the two antennas, and the delays are differenced to remove common-source errors. An alternative technique is to use carrier phase differences between antennas. This is routinely done by the Very Large Baseline Array (VLBA) as part of source imaging. The VLBA capabilities are used for scientific research, but also have the potential to be used for navigation. Two main experiments were performed with the VLBA and JPL spacecraft. This paper describes and analyzes these experiments and discusses the possible uses of VLBA tracking for spacecraft navigation.
Simple Benchmark Specifications for Space Radiation Protection
NASA Technical Reports Server (NTRS)
Singleterry, Robert C. Jr.; Aghara, Sukesh K.
2013-01-01
This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.
ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison
NASA Technical Reports Server (NTRS)
Krisko, P. H.; Flegel, S.
2012-01-01
The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publicly released within the last year. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper describes the population generation and categorization of both ORDEM 3.0 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population verification. Fluxes on spacecraft for chosen orbits are presented and discussed. Future collaborative analysis is noted.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul
1995-01-01
Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.
Assessment and control of spacecraft electromagnetic interference
NASA Technical Reports Server (NTRS)
1972-01-01
Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.
Spacecraft Power. America in Space: The First Decade.
ERIC Educational Resources Information Center
Corliss, William R.
The various electric power sources suitable for use aboard spacecraft are described in this booklet. These power sources include batteries, fuel cells, solar cells, RTGs (radioisotope thermoelectric generator), and nuclear fission power plants. The introductory sections include a discussion of power requirements and the anatomy of a space power…
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Meteoroid Environment Modeling: The Meteoroid Engineering Model and Shower Forecasting
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
The meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers. Section II describes MEM in more detail and describes our current efforts to improve its characteristics for a future release. Section III describes the annual shower forecast and highlights recent improvements made to its algorithm and inputs.
Modeling of spacecraft charging
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1977-01-01
Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.
Preliminary Experimental Results for Charge Drag in a Simulated Low Earth Orbit Environment
NASA Astrophysics Data System (ADS)
Azema-Rovira, Monica
Interest in the Low Earth Orbit (LEO) environment is growing in the science community as well as in the private sector. The number of spacecraft launched in these altitudes (150 - 700 km) keeps growing, and this region is accumulating space debris. In this scenario, the precise location of all LEO objects is a key factor to avoid catastrophic collisions and to safely perform station-keeping maneuvers. The detailed study of the atmospheric models in LEO can enhance the disturbances forces calculation of an orbiting object. Recent numerical studies indicate that one of the biggest non-conservative forces on a spacecraft is underestimated, the charge drag phenomenon. Validating these numerical models experimentally, will help to improve the numerical models for future spacecraft mission design. For this reason, the motivation of this thesis is to characterize a plasma source to later be used for charged drag measurements. The characterization has been done at the University of Colorado Colorado Springs in the Chamber for Atmospheric and Orbital Space Simulation. In the characterization process, a nano-Newton Thrust Stand has been characterized as a plasma diagnosis tool and compared with Langmuir Probe data.
Measurement of the PPN parameter γ by testing the geometry of near-Earth space
NASA Astrophysics Data System (ADS)
Luo, Jie; Tian, Yuan; Wang, Dian-Hong; Qin, Cheng-Gang; Shao, Cheng-Gang
2016-06-01
The Beyond Einstein Advanced Coherent Optical Network (BEACON) mission was designed to achieve an accuracy of 10^{-9} in measuring the Eddington parameter γ , which is perhaps the most fundamental Parameterized Post-Newtonian parameter. However, this ideal accuracy was just estimated as a ratio of the measurement accuracy of the inter-spacecraft distances to the magnitude of the departure from Euclidean geometry. Based on the BEACON concept, we construct a measurement model to estimate the parameter γ with the least squares method. Influences of the measurement noise and the out-of-plane error on the estimation accuracy are evaluated based on the white noise model. Though the BEACON mission does not require expensive drag-free systems and avoids physical dynamical models of spacecraft, the relatively low accuracy of initial inter-spacecraft distances poses a great challenge, which reduces the estimation accuracy in about two orders of magnitude. Thus the noise requirements may need to be more stringent in the design in order to achieve the target accuracy, which is demonstrated in the work. Considering that, we have given the limits on the power spectral density of both noise sources for the accuracy of 10^{-9}.
On fast X-ray rotators with long-term periodicities
NASA Technical Reports Server (NTRS)
Naranan, S.; Elsner, R. F.; Darbro, W.; Ramsey, B. D.; Leahy, D. A.; Weisskopf, M. C.; Williams, A. C.; Hardee, P. E.; Sutherland, P. G.; Grindlay, J. E.
1985-01-01
The support of previous SAS 3 spacecraft observations by new data gathered by the Monitor Proportional Counter aboard the HEAO 2 spacecraft indicates that the pulse period history of the 13.5 sec-pulsing X-ray source LMC X-4 is consistent with standard accretion and torque models only if LMC X-4 is a fast rotator for which the accretion torques nearly cancel. This result leads to a neutron star magnetic field strength estimate of about 1.2 x 10 to the 13th G. Strong evidence is noted for Her X-1's status as a fast rotator, while SMC X-1 is probably an intermediate-to-fast rotator. In the context of slaved disk models for these objects, it is noted that the precession periods expected for the companion stars are significantly longer than the observed 1-2 month time scales; slaved disk models are thereby undermined.
NASA Technical Reports Server (NTRS)
Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry
2013-01-01
Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.
Modeling the fundamental characteristics and processes of the spacecraft functioning
NASA Technical Reports Server (NTRS)
Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.
1986-01-01
The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.
SHIELDS Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania Koleva
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data frommore » LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.« less
NASA Technical Reports Server (NTRS)
2008-01-01
Calculating an accurate nutation time constant (NTC), or nutation rate of growth, for a spinning upper stage is important for ensuring mission success. Spacecraft nutation, or wobble, is caused by energy dissipation anywhere in the system. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and, if it is in a state of resonance, the NTC can become short enough to violate mission constraints. The Spinning Slosh Test Rig (SSTR) is a forced-motion spin table where fluid dynamic effects in full-scale fuel tanks can be tested in order to obtain key parameters used to calculate the NTC. We accomplish this by independently varying nutation frequency versus the spin rate and measuring force and torque responses on the tank. This method was used to predict parameters for the Genesis, Contour, and Stereo missions, whose tanks were mounted outboard from the spin axis. These parameters are incorporated into a mathematical model that uses mechanical analogs, such as pendulums and rotors, to simulate the force and torque resonances associated with fluid slosh.
The dusty ballerina skirt of Jupiter
NASA Astrophysics Data System (ADS)
Horanyi, M.; Morfill, G.; Gruen, E.
1993-12-01
We suggest a model to explain the unexpected recurrent dust events that were observed during the Jupiter encounter by the dust detector on board the Ulysses spacecraft. This model is based dust-magnetosphere interactions. Dust particles inside the Jovian magnetosphere collect electrostatic charges and their interaction with the magnetic and electric fields can lead to energization and subsequent ejection. We discuss the dusty regions (ring/halo, `gossamer' ring) and also Io as potential sources for the Ulysses events. This model favors Io as a source. The mass and velocity range of the escaping particles are compatible with the observations, and we also suggest internal periodicities to explain the recurrent nature of the Ulysses dust events.
JSC Orbital Debris Website Description
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.
Mathematical modeling of the impedance of single and multi-tube AMTEC units
NASA Technical Reports Server (NTRS)
Shields, V. B.; Williams, R. M.; Ryan, M. A.; Cortez, R.; Homer, M. L.; Kisor, A. K.; Manatt, K.
2001-01-01
AMTEC power systems are designed for use on extended space missions. During the lifetime of such missions the power available for the spacecraft will depend on the degradation of the system performance. Development of a tool that allows monitoring of the system degradation will provide an aid in dtermining the condition of the power source.
Long Term Mean Local Time of the Ascending Node Prediction
NASA Technical Reports Server (NTRS)
McKinley, David P.
2007-01-01
Significant error has been observed in the long term prediction of the Mean Local Time of the Ascending Node on the Aqua spacecraft. This error of approximately 90 seconds over a two year prediction is a complication in planning and timing of maneuvers for all members of the Earth Observing System Afternoon Constellation, which use Aqua's MLTAN as the reference for their inclination maneuvers. It was determined that the source of the prediction error was the lack of a solid Earth tide model in the operational force models. The Love Model of the solid Earth tide potential was used to derive analytic corrections to the inclination and right ascension of the ascending node of Aqua's Sun-synchronous orbit. Additionally, it was determined that the resonance between the Sun and orbit plane of the Sun-synchronous orbit is the primary driver of this error. The analytic corrections have been added to the operational force models for the Aqua spacecraft reducing the two-year 90-second error to less than 7 seconds.
Use of speckle for determining the response characteristics of Doppler imaging radars
NASA Technical Reports Server (NTRS)
Tilley, D. G.
1986-01-01
An optical model is developed for imaging optical radars such as the SAR on Seasat and the Shuttle Imaging Radar (SIR-B) by analyzing the Doppler shift of individual speckles in the image. The signal received at the spacecraft is treated in terms of a Fresnel-Kirchhoff integration over all backscattered radiation within a Huygen aperture at the earth. Account is taken of the movement of the spacecraft along the orbital path between emission and reception. The individual points are described by integration of the point source amplitude with a Green's function scattering kernel. Doppler data at each point furnishes the coordinates for visual representations. A Rayleigh-Poisson model of the surface scattering characteristics is used with Monte Carlo methods to generate simulations of Doppler radar speckle that compare well with Seasat SAR data SIR-B data.
Revamping Spacecraft Operational Intelligence
NASA Technical Reports Server (NTRS)
Hwang, Victor
2012-01-01
The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.
REACH: Real-Time Data Awareness in Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Maks, Lori; Coleman, Jason; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Missions have been proposed that will use multiple spacecraft to perform scientific or commercial tasks. Indeed, in the commercial world, some spacecraft constellations already exist. Aside from the technical challenges of constructing and flying these missions, there is also the financial challenge presented by the tradition model of the flight operations team (FOT) when it is applied to a constellation mission. Proposed constellation missions range in size from three spacecraft to more than 50. If the current ratio of three-to-five FOT personnel per spacecraft is maintained, the size of the FOT becomes cost prohibitive. The Advanced Architectures and Automation Branch at the Goddard Space Flight Center (GSFC Code 588) saw the potential to reduce the cost of these missions by creating new user interfaces to the ground system health-and-safety data. The goal is to enable a smaller FOT to remain aware and responsive to the increased amount of ground system information in a multi-spacecraft environment. Rather than abandon the tried and true, these interfaces were developed to run alongside existing ground system software to provide additional support to the FOT. These new user interfaces have been combined in a tool called REACH. REACH-the Real-time Evaluation and Analysis of Consolidated Health-is a software product that uses advanced visualization techniques to make spacecraft anomalies easy to spot, no matter how many spacecraft are in the constellation. REACH reads a real-time stream of data from the ground system and displays it to the FOT such that anomalies are easy to pick out and investigate. Data visualization has been used in ground system operations for many years. To provide a unique visualization tool, we developed a unique source of data to visualize: the REACH Health Model Engine. The Health Model Engine is rule-based software that receives real-time telemetry information and outputs "health" information related to the subsystems and spacecraft that the telemetry belong to. The Health Engine can run out-of-the-box or can be tailored with a scripting language. Out of the box, it uses limit violations to determine the health of subsystems and spacecraft; when tailored, it determines health using equations combining the values and limits of any telemetry in the spacecraft. The REACH visualizations then "roll up" the information from the Health Engine into high level, summary displays. These summary visualizations can be "zoomed" into for increasing levels of detail. Currently REACH is installed in the Small Explorer (SMEX) lab at GSFC, and is monitoring three of their five spacecraft. We are scheduled to install REACH in the Mid-sized Explorer (MIDEX) lab, which will allow us to monitor up to six more spacecraft. The process of installing and using our "research" software in an operational environment has provided many insights into which parts of REACH are a step forward and which of our ideas are missteps. Our paper explores both the new concepts in spacecraft health-and-safety visualization, the difficulties of such systems in the operational environment, and the cost and safety issues of multi-spacecraft missions.
NASA Astrophysics Data System (ADS)
Wiedenbeck, M. E.; Mason, G. M.; Cohen, C. M. S.; Nitta, N. V.; Gómez-Herrero, R.; Haggerty, D. K.
2013-01-01
A prevailing model for the origin of 3He-rich solar energetic particle (SEP) events attributes particle acceleration to processes associated with the reconnection between closed magnetic field lines in an active region and neighboring open field lines. The open field from the small reconnection volume then provides a path along which accelerated particles escape into a relatively narrow range of angles in the heliosphere. The narrow width (standard deviation <20°) of the distribution of X-ray flare longitudes found to be associated with 3He-rich SEP events detected at a single spacecraft at 1 AU supports this model. We report multispacecraft observations of individual 3He-rich SEP events that occurred during the solar minimum time period from 2007 January through 2011 January using instrumentation carried by the two Solar Terrestrial Relations Observatory spacecraft and the Advanced Composition Explorer. We find that detections of 3He-rich events at pairs of spacecraft are not uncommon, even when their longitudinal separation is >60°. We present the observations of the 3He-rich event of 2010 February 7, which was detected at all three spacecraft when they spanned 136° in heliographic longitude. Measured fluences of 3He in this event were found to have a strong dependence on longitude which is well fit by a Gaussian with standard deviation ~48° centered at the longitude that is connected to the source region by a nominal Parker spiral magnetic field. We discuss several mechanisms for distributing flare-accelerated particles over a wide range of heliographic longitudes including interplanetary diffusion perpendicular to the magnetic field, spreading of a compact cluster of open field lines between the active region and the source surface where the field becomes radial and opens out into the heliosphere, and distortion of the interplanetary field by a preceding coronal mass ejection. Statistical studies of additional 3He-rich events detected at multiple spacecraft will be needed to establish the relative importance of the various mechanisms.
JBoss Middleware for Spacecraft Trajectory Operations
NASA Technical Reports Server (NTRS)
Stensrud, Kjell; Srinivasan, Ravi; Hamm, Dustin
2008-01-01
This viewgraph presentation reviews the use of middleware for spacecraft trajectory planning. It reviews the following areas and questions: 1. Project Background - What is the environment where we are considering Open Source Middleware? 2. System Architecture - What technologies and design did we apply? 3. Testing overview - What are the quality scenarios and test points? 4. Project Conclusion - What did we learn about Open Source Middleware?
Investigation of Periodic-Disturbance Identification and Rejection in Spacecraft
2006-08-01
linear theory. Therefore, it is of interest to examine its efficacy on the current nonlinear spacecraft model. In addition, the robustness of the...School, Monterey, California 93943 Spacecraft periodic-disturbance rejection using a realistic spacecraft hardware simulator and its associated models...is investigated. The effectiveness of the dipole-type disturbance rejection filter on the current realistic nonlinear rigid-body spacecraft model is
Sources of orbital debris and the projected environment for future spacecraft
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1980-01-01
The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.
Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation
NASA Technical Reports Server (NTRS)
Yang, Yaguang; Zhou, Zhiqiang
2016-01-01
Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include: Miniature Intelligent Sensor Module; "Smart" Sensor Module; Portable Apparatus for Electrochemical Sensing of Ethylene; Increasing Linear Dynamic Range of a CMOS Image Sensor; Flight Qualified Micro Sun Sensor; Norbornene-Based Polymer Electrolytes for Lithium Cells; Making Single-Source Precursors of Ternary Semiconductors; Water-Free Proton-Conducting Membranes for Fuel Cells; Mo/Ti Diffusion Bonding for Making Thermoelectric Devices; Photodetectors on Coronagraph Mask for Pointing Control; High-Energy-Density, Low-Temperature Li/CFx Primary Cells; G4-FETs as Universal and Programmable Logic Gates; Fabrication of Buried Nanochannels From Nanowire Patterns; Diamond Smoothing Tools; Infrared Imaging System for Studying Brain Function; Rarefying Spectra of Whispering-Gallery-Mode Resonators; Large-Area Permanent-Magnet ECR Plasma Source; Slot-Antenna/Permanent-Magnet Device for Generating Plasma; Fiber-Optic Strain Gauge With High Resolution And Update Rate; Broadband Achromatic Telecentric Lens; Temperature-Corrected Model of Turbulence in Hot Jet Flows; Enhanced Elliptic Grid Generation; Automated Knowledge Discovery From Simulators; Electro-Optical Modulator Bias Control Using Bipolar Pulses; Generative Representations for Automated Design of Robots; Mars-Approach Navigation Using In Situ Orbiters; Efficient Optimization of Low-Thrust Spacecraft Trajectories; Cylindrical Asymmetrical Capacitors for Use in Outer Space; Protecting Against Faults in JPL Spacecraft; Algorithm Optimally Allocates Actuation of a Spacecraft; and Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets.
NASA Technical Reports Server (NTRS)
2001-01-01
Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.
Particle radiation transport and effects models from research to space weather operations
NASA Astrophysics Data System (ADS)
Santin, Giovanni; Nieminen, Petteri; Rivera, Angela; Ibarmia, Sergio; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Ivanchenko, Vladimir; Kruglanski, Michel; Messios, Neophytos
Assessment of risk from potential radiation-induced effects to space systems requires knowledge of both the conditions of the radiation environment and of the impact of radiation on sensi-tive spacecraft elements. During sensitivity analyses, test data are complemented by models to predict how external radiation fields are transported and modified in spacecraft materials. Radiation transport is still itself a subject of research and models are continuously improved to describe the physical interactions that take place when particles pass through shielding materi-als or hit electronic systems or astronauts, sometimes down to nanometre-scale interactions of single particles with deep sub-micron technologies or DNA structures. In recent years, though, such radiation transport models are transitioning from being a research subject by itself, to being widely used in the space engineering domain and finally being directly applied in the context of operation of space weather services. A significant "research to operations" (R2O) case is offered by Geant4, an open source toolkit initially developed and used in the context of fundamental research in high energy physics. Geant4 is also being used in the space domain, e.g. for modelling detector responses in science payloads, but also for studying the radiation environment itself, with subjects ranging from cosmic rays, to solar energetic particles in the heliosphere, to geomagnetic shielding. Geant4-based tools are now becoming more and more integrated in spacecraft design procedures, also through user friendly interfaces such as SPEN-VIS. Some examples are given by MULASSIS, offering multi-layered shielding analysis capa-bilities in realistic spacecraft materials, or GEMAT, focused on micro-dosimetry in electronics, or PLANETOCOSMICS, describing the interaction of the space environment with planetary magneto-and atmospheres, or GRAS, providing a modular and easy to use interface to various analysis types in simple or complex and realistic 3D geometry models. GRAS will also be part of the space weather SEISOP system for supplying near-real-time detailed information on the interaction of the space radiation environment with selected spacecraft elements.
Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R.; Bergamo, M.
2012-01-01
Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
NASA Astrophysics Data System (ADS)
Addari, Daniele
The term microvibrations generally refers to accelerations in the order of micro-gs and which manifest in a bandwidth from a few Hz up to say 500-1000 Hz. The need to accurately characterise this small disturbances acting on-board modern satellites, thus allowing the design of dedicated minimisation and control systems, is nowadays a major concern for the success of some space missions. The main issues related to microvibrations are the feasibility to analytically describe the microvibration sources using a series of analysis tools and test experiments and the prediction of how the dynamics of the microvibration sources couple with those of the satellite structure. In this thesis, a methodology to facilitate the modelling of these phenomena is described. Two aspects are investigated: the characterisation of the microvibration sources with a semi-empirical procedure which allows derivation of the dynamic mass properties of the source, also including the gyroscopic effect, with a significantly simpler test configuration and lower computational effort compared to traditional approaches; and the modelling of the coupled dynamics when the source is mounted on a representative supporting structure of a spacecraft, including the passive and active effects of the source, which allows prediction of the structure response at any location. The methodology has been defined conducting an extensive study, both experimental and numerical, on a reaction wheel assembly, as this is usually identified as the main contributory factor among all microvibration sources. The contributions to the state-of-the-art made during this work include: i) the development of a cantilever configured reaction wheel analytical model able to reproduce all the configurations in which the mechanism may operate and inclusive of the gyroscopic effect; ii) the reformulation of the coupling theory which allows retrieving the dynamic mass of a microvibration source over a wide range of frequencies and speeds, by means of the experimental data obtained from measurements of the forces generated when the source is rigidly secured on a dynamometric platform and measurements of the accelerations at the source mounting interface in a freefree suspended boundary condition; iii) a practical example of coupling between a reaction wheel and a honeycomb structural panel, where the coupled loads and the panel response have been estimated using the mathematical model and compared with test results, obtained during the physical microvibration testing of the structural panel, showing a good level of agreement when the gyroscopic effect is also taken into account.
Unified Simulation and Analysis Framework for Deep Space Navigation Design
NASA Technical Reports Server (NTRS)
Anzalone, Evan; Chuang, Jason; Olsen, Carrie
2013-01-01
As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.
Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair
NASA Astrophysics Data System (ADS)
Décréau, Pierrette; Kougblénou, Séna; Lointier, Guillaume; Rauch, Jean Louis; Trotignon, Jean Gabriel; Vallières, Xavier; Canu, Patrick; Rochel Grimald, Sandrine; El-Lemdani Mazouz, Farida; Darrouzet, Fabien
2014-05-01
The non-thermal continuum (NTC) radiation is a radio wave produced within the magnetosphere of a planet. It has been observed in space around Earth since the '70s, and within the magnetospheres of other planets since the late '80s. A new study using ESA's Cluster mission has shown improved precision in determining the source of various radio emissions produced by the Earth. The experiment involved tilting one of the four identical Cluster spacecraft to measure the electric field of this emission in three dimensions for the first time. Our analysis of a NTC case event pinpointed a small deviation from the generally assumed (circular) polarization of this emission. We show that classical triangulation, in this case using three of the spacecraft located thousands of kilometres apart, can lead to an erroneous source location. A second method, using the new 3D electric field measurements, indicated a source located along the plasmapause at medium geomagnetic latitude, far away from the source location estimated by triangulation. Cluster observations reveal that this NTC source emits from the flank of the plasmapause towards the polar cap. Understanding the source of NTC waves will help with the broader understanding of their generation, amplification, and propagation.
Radiometric Spacecraft Tracking for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Border, James S.; Shin, Dong K.
2008-01-01
Interplanetary spacecraft navigation relies on three types of terrestrial tracking observables.1) Ranging measures the distance between the observing site and the probe. 2) The line-of-sight velocity of the probe is inferred from Doppler-shift by measuring the frequency shift of the received signal with respect to the unshifted frequency. 3) Differential angular coordinates of the probe with respect to natural radio sources are nominally obtained via a differential delay technique of (Delta) DOR (Delta Differential One-way Ranging). The accuracy of spacecraft coordinate determination depends on the measurement uncertainties associated with each of these three techniques. We evaluate the corresponding sources of error and present a detailed error budget.
Circumsolar Energetic Particle Distribution on 2011 November 3
NASA Astrophysics Data System (ADS)
Gómez-Herrero, R.; Dresing, N.; Klassen, A.; Heber, B.; Lario, D.; Agueda, N.; Malandraki, O. E.; Blanco, J. J.; Rodríguez-Pacheco, J.; Banjac, S.
2015-01-01
Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.
Testing of a spacecraft model in a combined environment simulator
NASA Technical Reports Server (NTRS)
Staskus, J. V.; Roche, J. C.
1981-01-01
A scale model of a satellite was tested in a large vacuum facility under electron bombardment and vacuum ultraviolet radiation to investigate the charging of dielectric materials on curved surfaces. The model was tested both stationary and rotating relative to the electron sources as well as grounded through one megohm and floating relative to the chamber. Surface potential measurements are presented and compared with the predictions of computer modelling of the stationary tests. Discharge activity observed during the stationary tests is discussed and signals from sensing devices located inside and outside of the model are presented.
CERES FM-5 on the NPP Spacecraft: Continuing the Earth Radiation Budget Climate Data Record
NASA Technical Reports Server (NTRS)
Priestly, Kory; Smith, G. Louis
2009-01-01
The Clouds and the Earth's Radiant Energy System (CERES) Flight Model-5 (FM-5) instrument will fly on the NPOESS Preparatory Project (NPP) spacecraft, which has a launch-readiness date in June, 2010. This mission will continue the critical Earth Radiation Budget Climate Data Record (CDR) begun by the Earth Radiation Budget Experiment (ERBE) instruments in the mid 1980 s and continued by the CERES instruments currently flying on the EOS Terra and Aqua spacecraft. Ground calibrations have been completed for FM-5 and the instrument has been delivered for integration to the spacecraft Rigorous pre-launch ground calibration is performed on each CERES unit to achieve an accuracy goal of 1% for SW flux and 0.5% for outgoing LW flux. Any ground to flight or in-flight changes in radiometer response is monitored using a protocol employing both onboard and vicarious calibration sources and experiments. Recent studies of FM-1 through FM-4 data have shown that the SW response of space based broadband radiometers can change dramatically due to optical contamination. With these changes having most impact on optical response to blue-to UV radiance, where tungsten lamps are largely devoid of output, such changes are hard to monitor accurately using existing on-board sources. This paper outlines the lessons learned on the existing CERES sensors from 30+ years of flight experience and presents a radiometric protocol to be implemented on the FM-5 instrument to ensure that its performance exceeds the stated calibration and stability goals.
Navigation Concepts for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Long, Anne; Leung, Dominic; Kelbel, David; Beckman, Mark; Grambling, Cheryl
2003-01-01
This paper evaluates the performance that can be achieved using candidate ground and onboard navigation approaches for operation of the James Webb Space Telescope, which will be in an orbit about the Sun-Earth L2 libration point. The ground navigation approach processes standard range and Doppler measurements from the Deep Space Network The onboard navigation approach processes celestial object measurements and/or ground-to- spacecraft Doppler measurements to autonomously estimate the spacecraft s position and velocity and Doppler reference frequency. Particular attention is given to assessing the absolute position and velocity accuracy that can be achieved in the presence of the frequent spacecraft reorientations and momentum unloads planned for this mission. The ground navigation approach provides stable navigation solutions using a tracking schedule of one 30-minute contact per day. The onboard navigation approach that uses only optical quality celestial object measurements provides stable autonomous navigation solutions. This study indicates that unmodeled changes in the solar radiation pressure cross-sectional area and modeled momentum unload velocity changes are the major error sources. These errors can be mitigated by modeling these changes, by estimating corrections to compensate for the changes, or by including acceleration measurements.
Probing interferometric parallax with interplanetary spacecraft
NASA Astrophysics Data System (ADS)
Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.
2017-07-01
We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.
An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)
NASA Technical Reports Server (NTRS)
Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.
1990-01-01
Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.
Source Determination for Substorm-Related Ion Injections
NASA Technical Reports Server (NTRS)
Strangeway, Robert J.; Evans, David (Technical Monitor)
2001-01-01
The grant supported an effort to restore and analyze data from the Spacecraft Charging at High Altitude (SCATHA) spacecraft. This spacecraft, which was originally an Air Force mission, was launched into a near geo-synchronous orbit in early 1979 to, investigate the inner magnetosphere at altitudes where it was known that spacecraft can undergo significant charging events. SCATHA included an ion composition experiment (designated SC8) and in many ways was a precursor to other missions, such as the AMPTE Charge Composition Explorer.
Thermal testing by internal IR heating of the FEP module
NASA Technical Reports Server (NTRS)
Nathanson, D. M.; Efromson, R. A.; Lee, E. I.
1986-01-01
A spacecraft module, to be integrated with the FLTSATCOM spacecraft, was tested in a simulated orbit environment separate from the host spacecraft. Thermal vacuum testing of the module was accomplished using internal IR heating rather than conventional external heat sources. For this configuration, the technique produced boundary conditions expected for flight to enable verification of system performance and thermal design details.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.
2015-01-01
Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.
Independent Confirmation of the Pioneer 10 Anomalous Acceleration
NASA Technical Reports Server (NTRS)
Markwardt, Craig B.
2002-01-01
I perform an independent analysis of radio Doppler tracking data from the Pioneer 10 spacecraft for the time period 1987-1994. All of the tracking data were taken from public archive sources, and the analysis tools were developed independently by myself. I confirm that an apparent anomalous acceleration is acting on the Pioneer 10 spacecraft, which is not accounted for by present physical models of spacecraft navigation. My best fit value for the acceleration, including corrections for systematic biases and uncertainties, is (8.60 plus or minus 1.34) x 10(exp -8) centimeters per second, directed towards the Sun. This value compares favorably to previous results. I examine the robustness of my result to various perturbations of the analysis method, and find agreement to within plus or minus 5%. The anomalous acceleration is reasonably constant with time, with a characteristic variation time scale of greater than 70 yr. Such a variation timescale is still too short to rule out on-board thermal radiation effects, based on this particular Pioneer 10 data set.
High-latitude spacecraft charging in low-Earth polar orbit
NASA Astrophysics Data System (ADS)
Frooninckx, Thomas B.
Spacecraft charging within the upper ionosphere is commonly thought to be insignificant and thus has received little attention. Recent experimental evidence has shown that electric potential differences as severe as 680 volts can develop between Defense Meteorological Satellite Program (DMSP) polar-orbiting (840 kilometers) spacecraft and their high-latitude environment. To explore space vehicle charging in this region more fully, an analysis was performed using DMSP F6, F7, F8, and F9 satellite precipitating particle and ambient plasma measurements taken during the winters of 1986-87 (solar minimum) and 1989-90 (solar maximum). An extreme solar cycle dependence was discovered as charging occurred more frequently and with greater severity during the period of solar minimum. One hundred seventy charging events ranging from -46 to 1,430 volts were identified, and satellite measurements and Time Dependent Ionospheric Model (TDIM) output were used to characterize the environments which generated and inhibited these potentials. All current sources were considered to determine the cause of the solar cycle dependence.
NASA Technical Reports Server (NTRS)
1981-01-01
A convenient reference to space science and supportive data available from the National Space Science Data Center (NSSDC) is provided. Satellite data are organized by NSSDC spacecraft common name. The launch date and NSSDC ID are given. Experiments are listed alphabetically by the principal investigator or team leader. The experiment name and NSSDC ID, data set ID, data set name, data form code, quantity of data, and the time span of the data as verified by NSSDC are shown. Ground-based data, models, computer routines, and composite spacecraft data that are available from NSSDC are listed alphabetically by discipline, source, data type, data content, and data set. The data set name, data form code, quantity of data, and the time span covered where appropriate are included.
Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation
NASA Astrophysics Data System (ADS)
Malekzadeh, Maryam; Karimpour, Hossein
2018-05-01
The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.
Two-micron Laser Atmospheric Wind Sounder (LAWS) pointing/tracking study
NASA Technical Reports Server (NTRS)
Manlief, Scott
1995-01-01
The objective of the study was to identify and model major sources of short-term pointing jitter for a free-flying, full performance 2 micron LAWS system and evaluate the impact of the short-term jitter on wind-measurement performance. A fast steering mirror controls system was designed for the short-term jitter compensation. The performance analysis showed that the short-term jitter performance of the controls system over the 5.2 msec round-trip time for a realistic spacecraft environment was = 0.3 micro rad, rms, within the specified value of less than 0.5 micro rad, rms, derived in a 2 micron LAWS System Study. Disturbance modes were defined for: (1) the Bearing and Power Transfer Assembly (BAPTA) scan bearing, (2) the spacecraft reaction wheel torques, and (3) the solar array drive torques. The scan bearing disturbance was found to be the greatest contributing noise source to the jitter performance. Disturbances from the fast steering mirror reaction torques and a boom-mounted cross-link antenna clocking were also considered but were judged to be small compared to the three principal disturbance sources above and were not included in the final controls analysis.
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.
2015-05-01
A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.
2016-03-31
22 4.5.2.2 Sources and Physics of F10.7...INTRODUCTION The Sun’s strong photospheric magnetic field plays a key role in the plasma physics of the solar atmosphere and thus significantly influences...coronal and solar wind physics ; it is also the sole large-scale physical observable readily measured from Earth or spacecraft. The photospheric magnetic
Space Particle Hazard Measurement and Modeling
2016-09-01
understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations...Hudson, and B. T. Kress (2013), Direct observation of the CRAND proton radiation belt source, J. Geophys. Res. Space Physics , 118, doi:10.1002...anticritical temperature for spacecraft charging, J. Geophys Res.: Space Physics , 113, 2156-2202, doi: 10.1029/2008JA013161 2010 – Tested basic
Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics
2016-09-15
Algorithm GPS Global Positioning System HOUF Higher Order Unscented Filter IC initial conditions IMM Interacting Multiple Model IMU Inertial Measurement Unit ...sources ranging from inertial measurement units to star sensors are used to construct observations for attitude estimation algorithms. The sensor...parameters. A single vector measurement will provide two independent parameters, as a unit vector constraint removes a DOF making the problem underdetermined
Advanced Method to Estimate Fuel Slosh Simulation Parameters
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl
2005-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.
Canyval-x: Cubesat Astronomy by NASA and Yonsei Using Virtual Telescope Alignment Experiment
NASA Technical Reports Server (NTRS)
Shah, Neerav
2016-01-01
CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science.
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
Mathematical modeling of a class of multibody flexible spacecraft structures
NASA Technical Reports Server (NTRS)
Kelkar, Atul, G.
1994-01-01
A mathematical model for a general multibody flexible spacecraft is obtained. The generic spacecraft considered consists of a flexible central body to which a number of flexible multibody structures are attached. The coordinate systems used in the derivation allow effective decoupling of the translational motion of the entire spacecraft from its rotational motion about its center of mass. The derivation assumes that the deformations in the bodies are only due to elastic motions. The dynamic model derived is a closed-form vector-matrix differential equation. The model developed can be used for analysis and simulation of many realistic spacecraft configurations.
Time-dependent polar distribution of outgassing from a spacecraft
NASA Technical Reports Server (NTRS)
Scialdone, J. J.
1974-01-01
A technique has been developed to obtain a characterization of the self-generated environment of a spacecraft and its variation with time, angular position, and distance. The density, pressure, outgassing flux, total weight loss, and other important parameters were obtained from data provided by two mass measuring crystal microbalances, mounted back to back, at distance of 1 m from the spacecraft equivalent surface. A major outgassing source existed at an angular position of 300 deg to 340 deg, near the rocket motor, while the weakest source was at the antennas. The strongest source appeared to be caused by a material diffusion process which produced a directional density at 1 m distance of about 1.6 x 10 to the 11th power molecules/cu cm after 1 hr in vacuum and decayed to 1.6 x 10 to the 9th power molecules/cu cm after 200 hr. The total average outgassing flux at the same distance and during the same time span changed from 1.2 x 10 to the minus 7th power to 1.4 x to the minus 10th power g/sq cm/s. These values are three times as large at the spacecraft surface. Total weight loss was 537 g after 10 hr and about 833 g after 200 hr. Self-contamination of the spacecraft was equivalent to that in orbit at about 300-km altitude.
HVI-Test Setup for Debris Detector Verification
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter
2013-08-01
Risk assessment concerning impacting space debris or micrometeoroids with spacecraft or payloads can be performed by using environmental models such as MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured data. Such data can be obtained from ground-based or space-based radars or telescopes, or by analysis of space hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are retrieved from orbit. An additional data source is in-situ impact detectors, which are purposed for the collection of space debris and micrometeoroids impact data. In comparison to the impact data gained by analysis of the retrieved surfaces, the detected data contains additional information regarding impact time and orbit. In the past, many such in-situ detectors have been developed, with different measurement methods for the identification and classification of impacting objects. However, existing detectors have a drawback in terms of data acquisition. Generally the detection area is small, limiting the collected data as the number of recorded impacts has a linear dependence to the exposed area. An innovative impact detector concept is currently under development at the German Aerospace Centre (DLR) in Bremen, in order to increase the surface area while preserving the advantages offered by dedicated in-situ impact detectors. The Solar Generator based Impact Detector (SOLID) is not an add-on component on the spacecraft, making it different to all previous impact detectors. SOLID utilises existing subsystems of the spacecraft and adapts them for impact detection purposes. Solar generators require large panel surfaces in order to provide the spacecraft with sufficient energy. Therefore, the spacecraft solar panels provide a perfect opportunity for application as impact detectors. Employment of the SOLID method in several spacecraft in various orbits would serve to significantly increase the spatial coverage concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.
Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Eudell, A. H.; Patt, F. S.
1989-01-01
Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.
Doppler search for a gravitational background radiation with two spacecraft
NASA Astrophysics Data System (ADS)
Bertotti, B.; Iess, L.
1985-11-01
The prospect of detecting a gravitational wave background by means of a simultaneous Doppler tracking of two spacecraft are discussed. It is found that the cross spectrum of the Doppler shifts of the two spacecraft is a filtered expression of the energy density spectrum of the background. The filter function, which is expressed as a series in terms of Legendre polynomials, is obtained by an integration over the rotation group, assuming the background to be isotropic. The main noise sources are examined, and the advantages of a measurement with two spacecraft are noted.
Standardization and economics of nuclear spacecraft: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Feasibility and cost benefits of nuclear-powered standardized spacecraft were investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 2200 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification.
A unified approach to computer analysis and modeling of spacecraft environmental interactions
NASA Technical Reports Server (NTRS)
Katz, I.; Mandell, M. J.; Cassidy, J. J.
1986-01-01
A new, coordinated, unified approach to the development of spacecraft plasma interaction models is proposed. The objective is to eliminate the unnecessary duplicative work in order to allow researchers to concentrate on the scientific aspects. By streamlining the developmental process, the interchange between theories and experimentalists is enhanced, and the transfer of technology to the spacecraft engineering community is faster. This approach is called the UNIfied Spacecraft Interaction Model (UNISIM). UNISIM is a coordinated system of software, hardware, and specifications. It is a tool for modeling and analyzing spacecraft interactions. It will be used to design experiments, to interpret results of experiments, and to aid in future spacecraft design. It breaks a Spacecraft Ineraction analysis into several modules. Each module will perform an analysis for some physical process, using phenomenology and algorithms which are well documented and have been subject to review. This system and its characteristics are discussed.
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1998-01-01
Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).
Model of spacecraft atomic oxygen and solar exposure microenvironments
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Pippin, H. G.
1993-01-01
Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.
Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Parker, L. N.; Minow, J. I.; Talaat, E. R.
2016-12-01
Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.
Orbit determination strategy and results for the Pioneer 10 Jupiter mission
NASA Technical Reports Server (NTRS)
Wong, S. K.; Lubeley, A. J.
1974-01-01
Pioneer 10 is the first earth-based vehicle to encounter Jupiter and occult its moon, Io. In contributing to the success of the mission, the Orbit Determination Group evaluated the effects of the dominant error sources on the spacecraft's computed orbit and devised an encounter strategy minimizing the effects of these error sources. The encounter results indicated that: (1) errors in the satellite model played a very important role in the accuracy of the computed orbit, (2) encounter strategy was sound, (3) all mission objectives were met, and (4) Jupiter-Saturn mission for Pioneer 11 is within the navigation capability.
A Roadmap for using Agile Development in a Traditional System
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Starbird, Thomas
2006-01-01
I. Ensemble Development Group: a) Produces activity planning software for in spacecraft; b) Built on Eclipse Rich Client Platform (open source development and runtime software); c) Funded by multiple sources including the Mars Technology Program; d) Incorporated the use of Agile Development. II. Next Generation Uplink Planning System: a) Researches the Activity Planning and Sequencing Subsystem for Mars Science Laboratory (APSS); b) APSS includes Ensemble, Activity Modeling, Constraint Checking, Command Editing and Sequencing tools plus other uplink generation utilities; c) Funded by the Mars Technology Program; d) Integrates all of the tools for APSS.
Detailed Modeling of the DART Spacecraft Impact into Didymoon
NASA Astrophysics Data System (ADS)
Weaver, R.; Gisler, G.
2017-12-01
In this presentation we will model the impact of the DART spacecraft into the target Didymoon. Most previous modeling of this impact has used full density aluminum spheres with a mass of 300 kg or more recently 500 kg. Many of the published scaling laws for crater size and diameter as well as ejecta modeling assume this type of impactor. The actual spacecraft for the DART impact is not solid and does not contain a solid dedicated kinetic impactor. The spacecraft is considered the impactor. Since the spacecraft is significantly larger ( 100 x 100 x 200 cm) in size than a full density aluminum sphere (radius 35 cm) the resulting impact dynamics will be quite different. Here we model both types of impact and compare the results of the simulation for crater size, crater depth and ejecta. This allows for a comparison of the momentum enhancement factor, beta. Suggestions for improvement of the spacecraft design will be given.
Studies of the gas tori of Titan and Triton
NASA Technical Reports Server (NTRS)
Smyth, William H.
1995-01-01
Progress in the development of the model for the circumplanetary distribution of atomic hydrogen in the Saturn system produced by a Titan source is discussed. Because of the action of the solar radiation acceleration and the obliquity of Saturn, the hydrogen distribution is shown to undergo seasonal changes as the planet moves about the Sun. Preliminary model calculations show that for a continuous Titan source, the H distribution is highly asymmetric about the planet and has a density maximum near the dusk side of Saturn, qualitatively similar to the pattern recently deduced by Shemansky and Hall from observations acquired by the UVS instruments aboard the Voyager spacecrafts. The investigation of these Voyager data will be undertaken in the next project year.
Accuracy control in Monte Carlo radiative calculations
NASA Technical Reports Server (NTRS)
Almazan, P. Planas
1993-01-01
The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.
A Lunar-Based Spacecraft Propulsion Concept - The Ion Beam Sail
NASA Technical Reports Server (NTRS)
Brown, Ian G.; Lane, John E.; Youngquist, Robert C.
2006-01-01
We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios, and consider some of the constraints limiting the concept. We find that the "ion beam sail' approach can be viable and attractive for journey distances not too great, for example within the Earth-Moon system, and could potentially provide support for journeys to the inner planets.
The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent;
2014-01-01
The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.
Fundamental Physics of the Slow Solar Wind - What do we Know?
NASA Astrophysics Data System (ADS)
Ofman, L.; Abbo, L.; Antiochos, S. K.; Hansteen, V. H.; Harra, L.; Ko, Y. K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y. M.
2016-12-01
Fundamental physical properties of the slow solar wind (SSW), such as density, temperature, outflow speed, heavy ion abundances and charges states were obtained from in-situ measurements at 1AU in the past from WIND, ACE, and other spacecraft. Plasma and magnetic field measurement are available as close as 0.3 AU from Helios data, Spektr-R, and MESSENGER spacecraft. Remote sensing spectroscopic measurements are available in the corona and below from SOHO/UVCS, Hinode, and other missions. One of the major objectives of the Solar Orbiter and Solar Probe Plus missions is to study the sources of the SSW close to the Sun. The present state of understanding of the physics of the SSW is based on the combination of the existing observations, theoretical and numerical 3D MHD and multi-fluid models, that connect between the SSW sources in the corona and the heliosphere. Recently, hybrid models that combine fluid electrons and kinetic ions of the expanding solar wind were developed, and provide further insights of the local SSW plasma heating processes that related to turbulent magnetic fluctuations spectra and kinetic ion instabilities observed in the SSW plasma. These models produce the velocity distribution functions (VDFs) of the protons and heavier ions as well as the ion anisotropic temperatures. I will discuss the results of the above observations and models, and review the current status of our understanding of the fundamental physics of the SSW. I will review the open questions, and discuss how they could be addressed with near future observations and models.
NASA Technical Reports Server (NTRS)
Tinto, Massimo; Armstrong, J. W.
1991-01-01
Massive coalescing binary systems are candidate sources of gravitational radiation in the millihertz frequency band accessible to spacecraft Doppler tracking experiments. This paper discusses signal processing and detection probability for waves from coalescing binaries in the regime where the signal frequency increases linearly with time, i.e., 'chirp' signals. Using known noise statistics, thresholds with given false alarm probabilities are established for one- and two-spacecraft experiments. Given the threshold, the detection probability is calculated as a function of gravitational wave amplitude for both one- and two-spacecraft experiments, assuming random polarization states and under various assumptions about wave directions. This allows quantitative statements about the detection efficiency of these experiments and the utility of coincidence experiments. In particular, coincidence probabilities for two-spacecraft experiments are insensitive to the angle between the directions to the two spacecraft, indicating that near-optical experiments can be done without constraints on spacecraft trajectories.
Spacecraft Charging Technology, 1980
NASA Technical Reports Server (NTRS)
1981-01-01
The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.
Proceedings of the Spacecraft Charging Technology Conference
NASA Technical Reports Server (NTRS)
Pike, C. P. (Editor); Lovell, R. R. (Editor)
1977-01-01
Over 50 papers from the spacecraft charging conference are included on subjects such as: (1) geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, and (5) satellite design and test.
Strong non-radial propagation of energetic electrons in solar corona
NASA Astrophysics Data System (ADS)
Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.
2018-06-01
Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others), which may explain the origin of widespread SEP events.
NASA Astrophysics Data System (ADS)
Colace, Marco; Hackel, Stefan; Kirschner, Michael; Kahle, Ralph; Circi, Christian
2017-04-01
Satellites in Low Earth Orbit (LEO) are notably affected by the presence of the atmosphere, a predominant source of perturbations of the Keplerian motion at the altitudes of interest. For spacecraft of this class the main source of error in propagated trajectories is due to the mismodeling of the neutral density in the thermosphere and the associated drag force, which steadily decelerates orbital motion with both secular and periodic effects. Thermospheric density varies significantly with space and time because of complex interactions between solar activity and the Earth's atmosphere and magnetic field. Properly reproducing this variability by means of empirical dynamic models has always represented a difficult task but is of vital importance for orbit determination and propagation. The present study shows the influence of different atmospheric density models, predicted space weather proxies, and their related uncertainties on the orbit solutions of representative satellite missions. The study has been carried out by using a routine-like orbit propagation scenario applied to GRACE-1, Sentinel-1A, and TerraSAR-X, three LEO orbiting spacecraft with operational altitudes well spaced within the 400-700 km range. Archived space weather data predictions and some of the most recent and promising empirical atmospheric models (Naval Research Laboratory's NRLMSISE-00 and Jacchia-Bowman 2008) were used side-by-side with the well-known Jacchia 1971 model in order to assess potential gains in prediction accuracy. To evaluate the influence of solar variability on the atmospheric density models and associated orbit quality, two 2-month test time frames, in high and low solar activity periods, have been selected. The scope of the presentation is a detailed comparison of atmospheric density models and their influence on the estimated orbits of GRACE-1, Sentinel-1A and TerraSAR-X.
Enhanced Ionization Of Propellant Through Carbon Nanotube Growth On Angled Walls
2017-06-01
FEEP field emission electric propulsion MUF mass utilization factor NSTAR NASA Solar Technology Application Readiness SCATHA Spacecraft Charging at...Experiments This experiment, Spacecraft Charging at High Altitudes (SCATHA), was developed by the U.S. Air Force along with NASA [5]. A satellite was launched...propulsion system, gimbal mounted and deployed on DS1. Source: [6]. 3. DAWN A more recent use of XIPS is the DAWN Spacecraft from NASA . Orbiting the
NASA Astrophysics Data System (ADS)
Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel
2016-04-01
The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose properties are not well known.
Electrostatic Return of Contaminants
NASA Technical Reports Server (NTRS)
Rantanen, R.; Gordon, T.
2003-01-01
A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.
A Bayesian Framework for Reliability Analysis of Spacecraft Deployments
NASA Technical Reports Server (NTRS)
Evans, John W.; Gallo, Luis; Kaminsky, Mark
2012-01-01
Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.
Radiation protection and instrumentation
NASA Technical Reports Server (NTRS)
Bailey, J. V.
1975-01-01
Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.
Statistical analysis of AFE GN&C aeropass performance
NASA Technical Reports Server (NTRS)
Chang, Ho-Pen; French, Raymond A.
1990-01-01
Performance of the guidance, navigation, and control (GN&C) system used on the Aeroassist Flight Experiment (AFE) spacecraft has been studied with Monte Carlo techniques. The performance of the AFE GN&C is investigated with a 6-DOF numerical dynamic model which includes a Global Reference Atmospheric Model (GRAM) and a gravitational model with oblateness corrections. The study considers all the uncertainties due to the environment and the system itself. In the AFE's aeropass phase, perturbations on the system performance are caused by an error space which has over 20 dimensions of the correlated/uncorrelated error sources. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at entry interface (EI) and still have acceptable delta-V capability at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 380 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degrees at EI would result in a 98-percent probability of mission success.
NASA Technical Reports Server (NTRS)
Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Moser, D. E.; Blaauw, R. C.; Cooke, W. J.
2017-01-01
Meteoroids are known to damage spacecraft: they can crater or puncture components, disturb a spacecraft's attitude, and potentially create secondary electrical effects. Because the damage done depends on the speed, size, density, and direction of the impactor, accurate environment models are critical for mitigating meteoroid-related risks. Yet because meteoroid properties are derived from indirect observations such as meteors and impact craters, many characteristics of the meteoroid environment are uncertain. In this work, we present recent improvements to the meteoroid speed and density distributions. Our speed distribution is derived from observations made by the Canadian Meteor Orbit Radar. These observations are de-biased using modern descriptions of the ionization efficiency. Our approach yields a slower meteoroid population than previous analyses (see Fig. 1 for an example) and we compute the uncertainties associated with our derived distribution. We adopt a higher fidelity density distribution than that used by many older models. In our distribution, meteoroids with TJ less than 2 are assigned to a low-density population, while those with TJ greater than 2 have higher densities (see Fig. 2). This division and the distributions themselves are derived from the densities reported by Kikwaya et al. These changes have implications for the environment: for instance, the helion/antihelion sporadic sources have lower speeds than the apex and toroidal sources and originate from high-T(sub J) parent bodies. Our on-average slower and denser distributions thus imply that the helion and antihelion sources dominate the meteoroid environment even more completely than previously thought. Finally, for a given near-Earth meteoroid cratering rate, a slower meteoroid population produces a comparatively higher rate of satellite attitude disturbances.
NASA Technical Reports Server (NTRS)
Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.
1997-01-01
Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.
A thermal scale modeling study for Apollo and Apollo applications, volume 1
NASA Technical Reports Server (NTRS)
Shannon, R. L.
1972-01-01
The program is reported for developing and demonstrating the capabilities of thermal scale modeling as a thermal design and verification tool for Apollo and Apollo Applications Projects. The work performed for thermal scale modeling of STB; cabin atmosphere/spacecraft cabin wall thermal interface; closed loop heat rejection radiator; and docked module/spacecraft thermal interface are discussed along with the test facility requirements for thermal scale model testing of AAP spacecraft. It is concluded that thermal scale modeling can be used as an effective thermal design and verification tool to provide data early in a spacecraft development program.
NASA Technical Reports Server (NTRS)
El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Peroomian, V.; Frank, L. A.; Paterson, W. R.; Bosqued, J. M.
1998-01-01
On February 9, 1995, the Comprehensive Plasma Instrumentation (CPI) on the Geotail spacecraft observed a complex, structured ion distribution function near the magnetotail midplane at x approximately -30 R(sub E). On this same day the Wind spacecraft observed a quiet solar wind and an interplanetary magnetic field (IMF) that was northward for more than five hours, and an IMF B(sub y) component with a magnitude comparable to that of the RAF B(sub z) component. In this study, we determined the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time, using the time-dependent electric and magnetic fields obtained from a global MHD simulation. The Wind observations were used as input for the MHD model. The ion distribution function observed by Geotail at 1347 UT was found to consist primarily of particles from the dawn side low latitude boundary layer (LLBL) and from the dusk side LLBL; fewer than 2% of the particles originated in the ionosphere.
Model Spacecraft Construction, Units for Secondary School Industrial Arts.
ERIC Educational Resources Information Center
Dean, C. Thomas; And Others
This publication provides twelve model spacecraft construction plans for use by secondary school teachers in industrial arts classes. These models were adopted and developed from plans supplied by the National Aeronautics and Space Administration and are representative selections from the many spacecraft used in space exploration programs. Some…
Cluster Observations of Particle Injections in the Exterior Cusp
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.
2014-12-01
The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process takes place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is taking place near the exterior cusp.
Feasibility of Juno radio occultations of the Io plasma torus
NASA Astrophysics Data System (ADS)
Phipps, P. H.; Withers, P.
2016-12-01
Jupiter's magnetosphere is driven by internally produced plasma. The innermost Galilean satellite, Io, isthe dominant source of this plasma. Volcanoes on Io's surface create an atmosphere of sulfur and oxygenwhich escapes into Jupiter's magnetosphere and becomes ionized. This ionized material is trapped byJupiter's magnetic field and creates a torus of plasma centered at Io's orbital radius, called the Io plasmatorus. This torus is divided into three regions distinct in both density and composition. Densities in thistorus can be probed by spacecraft via radio occultations. A radio occultation occurs when plasma comesbetween a spacecraft and a receiver during a time when the spacecraft is sending a radio signal. The Junospacecraft, which arrived in orbit around Jupiter in July 2016, is in an orbit which will be ideal forperforming radio occultations of the Io plasma torus. We test the feasibility of using thetelecommunications system on the Juno spacecraft to perform a radio occultation. Io plasma torusdensities derived from Voyager 1 data are used in creating a model torus. Using the Ka and X-band radiofrequencies we derive vertical profiles for the total electron content of the modeled Io plasma torus. AMarkov Chain Monte Carlo fit is performed on the derived profiles to extract, for each of the torusregions, the scale height and peak total electron content. The scale height can be used to derive atemperature for the torus while the peak total electron content can be used to derive the peak electrondensity. We show that Juno radio occultation measurements of the Io plasma torus are feasible andscientifically valuable.
The search for reference sources for delta VLBI navigation of the Galileo spacecraft
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.; Linfield, R. P.
1986-01-01
A comprehensive search was made in order to identify celestial radio sources that can be used as references for navigation of the Galileo spacecraft by means of VLBI observations. The astronomical literature was seached for potential navigation sources, and several VLBI experiments were performed to determine the suitability of those sources for navigation. The results of such work performed since mid-1983 is reported. A summary is presented of the source properties required, the procedures used to identify candidate sources, and the results of the observations of these sources. The lists of souces presented are not meant to be taken directly and used for VLBI navigation, but they do provide a means of identifying the radio sources that could be used at various positions along the Galileo trajectory. Since the reference sources nearest the critical points of Jupiter encounter and probe release are rather weak, it would be extremely beneficial to use a pair of 70-m antennas for the VLBI measurements.
A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions
NASA Technical Reports Server (NTRS)
Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver L.
2016-01-01
Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.
Development of an automated electrical power subsystem testbed for large spacecraft
NASA Technical Reports Server (NTRS)
Hall, David K.; Lollar, Louis F.
1990-01-01
The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.
Control of the induced microgravity environment of the Man Tended Free Flyer (MTFF)
NASA Technical Reports Server (NTRS)
Schlund, Juergen
1988-01-01
Induced disturbance sources have been identified on board the Man Tended Free Flyer (MTFF). Vibration responses at sensitive payload/spacecraft interfaces have been predicted by the application of an empirically found spacecraft dynamic transfer function. Vibrations from fluid loops (Freon, water) and of reaction wheels are assessed to be the main contributors to the induced microgravity environment. The expected payload acceleration response amplitudes presented here are more than one hundred times higher than the admissible values given by the MTFF system requirement, not considering the structural striction-friction effects which could be avoided by appropriate design. Real responses will be significantly lower because the derivation of excitation and transmission functions are based on worst case assumptions. The results indicate that future activities must be concentrated on equipment design improvement and the implementation of vibration reduction along the disturbance transmission path. The activities must be accompanied by early equipment and assembly development tests and transmissibility measurements with the integrated spacecraft engineering and structural models in order to improve the accuracy of payload response predictions.
Spacecraft Environment Interactions
NASA Technical Reports Server (NTRS)
Garrett, Henry B.; Jun, Insoo
2011-01-01
As electronic components have grown smaller in size and power and have increased in complexity, their enhanced sensitivity to the space radiation environment and its effects has become a major source of concern for the spacecraft engineer. As a result, the description of the sources of space radiation, the determination of how that radiation propagates through material, and, ultimately, how radiation affects specific circuit components are primary considerations in the design of modern spacecraft. The objective of this paper will be to address the first 2 aspects of the radiation problem. This will be accomplished by first reviewing the natural and man-made space radiation environments. These environments include both the particulate and, where applicable, the electromagnetic (i.e., photon) environment. As the "ambient" environment is typically only relevant to the outer surface of a space vehicle, it will be necessary to treat the propagation of the external environment through the complex surrounding structures to the point inside the spacecraft where knowledge of the internal radiation environment is required. While it will not be possible to treat in detail all aspects of the problem of the radiation environment within a spacecraft, by dividing the problem into these parts-external environment, propagation, and internal environment-a basis for understanding the practical process of protecting a spacecraft from radiation will be established. The consequences of this environment will be discussed by the other presenters at this seminar.
A geometric model of a V-slit Sun sensor correcting for spacecraft wobble
NASA Technical Reports Server (NTRS)
Mcmartin, W. P.; Gambhir, S. S.
1994-01-01
A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.
Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...
2018-05-29
A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.
A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less
Overview of SDCM - The Spacecraft Design and Cost Model
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.
1988-01-01
The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.
NASA Astrophysics Data System (ADS)
Rastaetter, L.; Kuznetsova, M. M.; Zheng, Y.; Jordanova, V.; Yu, Y.; Minow, J. I.
2016-12-01
Spacecraft surface charging in Low-Earth Orbit occurs primarily in regions of low plasma density when precipitating electrons drive the spacecraft potential. Sudden changes in electric potentials occur when a spacecraft enters and leaves the sunlit region.At the Community Coordinated Modeling Center, we can employ a multitude of models of the ionosphere-thermosphere and inner magnetosphere to identify regions where spacecraft charging can occur based on thresholds of electron precipitation flux and energy and track the proximity of those areas to positions of satellites of interest. The identified regions will be validated and refined based on satellite observations. This work is in conjunction with the Spacecraft Charging Challenge organized by the GEM Workshop in collaboration with CCMC and the SHIELDS project at LANL.
Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source
NASA Astrophysics Data System (ADS)
Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.
2014-06-01
To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA method is suitable to compute the valueof the parameter C 2 .When no mathematical model of the source can be made available, estimations of the value C2 can be find in literature.In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The computation of the value C2 can be done in conjunction with the CMSA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively.Strength & stiffness design rules for spacecraft, instrumentation, units, etc. will be practiced, as mentioned in ECSS Standards and Handbooks, Launch Vehicle User's manuals, papers, books , etc. A probabilistic description of the design parameters is foreseen.As an example a simple experiment has been worked out.
Material Density Distribution of Small Debris in Earth Orbit
NASA Technical Reports Server (NTRS)
Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.
2008-01-01
Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in Earth orbit. The near Earth environment is thus parameterized by debris density percentages within subsections of that environment. This model version is used in the upgraded NASA Orbital Debris Engineering Model (ORDEM).
NASA Astrophysics Data System (ADS)
Lee, Harim; Moon, Y.-J.; Na, Hyeonock; Jang, Soojeong; Lee, Jae-Ok
2015-12-01
To prepare for when only single-view observations are available, we have made a test whether the 3-D parameters (radial velocity, angular width, and source location) of halo coronal mass ejections (HCMEs) from single-view observations are consistent with those from multiview observations. For this test, we select 44 HCMEs from December 2010 to June 2011 with the following conditions: partial and full HCMEs by SOHO and limb CMEs by twin STEREO spacecraft when they were approximately in quadrature. In this study, we compare the 3-D parameters of the HCMEs from three different methods: (1) a geometrical triangulation method, the STEREO CAT tool developed by NASA/CCMC, for multiview observations using STEREO/SECCHI and SOHO/LASCO data, (2) the graduated cylindrical shell (GCS) flux rope model for multiview observations using STEREO/SECCHI data, and (3) an ice cream cone model for single-view observations using SOHO/LASCO data. We find that the radial velocities and the source locations of the HCMEs from three methods are well consistent with one another with high correlation coefficients (≥0.9). However, the angular widths by the ice cream cone model are noticeably underestimated for broad CMEs larger than 100° and several partial HCMEs. A comparison between the 3-D CME parameters directly measured from twin STEREO spacecraft and the above 3-D parameters shows that the parameters from multiview are more consistent with the STEREO measurements than those from single view.
Modeling the space debris environment with MASTER-2009 and ORDEM2010
NASA Astrophysics Data System (ADS)
Flegel, Sven Kevin; Krisko, Paula; Gelhaus, Johannes; Wiedemann, Carsten; Moeckel, Marek; Krag, Holger; Klinkrad, Heiner; Xu, Yu-Lin; Horstman, Matthew; Matney, Mark; Vörsmann, Peter
The two software tools MASTER-2009 and ORDEM2010 are the ESA and NASA reference software tools respectively which describe the earth's debris environment. The primary goal of both programs is to allow users to estimate the object flux onto a target object for mission planning. The current paper describes the basic distinctions in the model philosophies. At the core of each model lies the method by which the object environment is established. Cen-tral to this process is the role played by the results from radar/telescope observations or impact fluxes on surfaces returned from earth orbit. The ESA Meteoroid and Space Debris Terrestrial Environment Reference Model (MASTER) is engineered to give a realistic description of the natural and the man-made particulate environment of the earth. Debris sources are simulated based on detailed lists of known historical events such as fragmentations or solid rocket motor firings or through simulation of secondary debris such as impact ejecta or the release of paint flakes from degrading spacecraft surfaces. The resulting population is then validated against historical telescope/radar campaigns using the ESA Program for Radar and Optical Observa-tion Forecasting (PROOF) and against object impact fluxes on surfaces returned from space. The NASA Orbital Debris Engineering Model (ORDEM) series is designed to provide reliable estimates of orbital debris flux on spacecraft and through telescope or radar fields-of-view. Central to the model series is the empirical nature of the input populations. These are derived from NASA orbital debris modeling but verified, where possible, with measurement data from various sources. The latest version of the series, ORDEM2010, compiles over two decades of data from NASA radar systems, telescopes, in-situ sources, and ground tests that are analyzed by statistical methods. For increased understanding of the application ranges of the two programs, the current paper provides an overview of the two models' main program features and the methods by which simulation results are presented. This paper is written in a combined effort by ESA and NASA.
NASA Technical Reports Server (NTRS)
1973-01-01
Primary goals of the Planetary Quarantine Program are defined and used to provide a basis for planning and source allocation toward the development of planetary quarantine measures for the following automated spacecrafts: Viking 1975, Pioneer F and G, and Mariner Venus-Mercury 1973.
Spacecraft Angular State Estimation After Sensor Failure
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); BarItzhack, Itzhack Y.; Harman, Richard R.
2002-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro failure in a spacecraft (SC) with a special mission profile. The source of the problem is presented, two algorithms are suggested, an observability study is carried out, and the efficiency of the algorithms is demonstrated.
Spacecraft Internal Acoustic Environment Modeling
NASA Technical Reports Server (NTRS)
Chu, Shao-Sheng R.; Allen Christopher S.
2010-01-01
Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. This paper describes the implementation of acoustic modeling for design purposes by incrementally increasing model fidelity and validating the accuracy of the model while predicting the noise of sources under various conditions. During FY 07, a simple-geometry Statistical Energy Analysis (SEA) model was developed and validated using a physical mockup and acoustic measurements. A process for modeling the effects of absorptive wall treatments and the resulting reverberation environment were developed. During FY 08, a model with more complex and representative geometry of the Orion Crew Module (CM) interior was built, and noise predictions based on input noise sources were made. A corresponding physical mockup was also built. Measurements were made inside this mockup, and comparisons were made with the model and showed excellent agreement. During FY 09, the fidelity of the mockup and corresponding model were increased incrementally by including a simple ventilation system. The airborne noise contribution of the fans was measured using a sound intensity technique, since the sound power levels were not known beforehand. This is opposed to earlier studies where Reference Sound Sources (RSS) with known sound power level were used. Comparisons of the modeling result with the measurements in the mockup showed excellent results. During FY 10, the fidelity of the mockup and the model were further increased by including an ECLSS (Environmental Control and Life Support System) wall, associated closeout panels, and the gap between ECLSS wall and mockup wall. The effect of sealing the gap and adding sound absorptive treatment to ECLSS wall were also modeled and validated.
Multi-Spacecraft Data Assimilation and Reanalysis During the THEMIS and Van Allen Probes Era
NASA Astrophysics Data System (ADS)
Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.
2013-12-01
Earth's radiation belts are a dynamic system, controlled by competition between source, acceleration, loss and transport of particles. Solar wind pressure enhancements and outward transport are responsible for loss of electrons to the magnetopause, while wave-particle interactions inside the magnetosphere, driven by solar wind pressure and velocity variations, may lead to acceleration and radial diffusion of 10's of keV to MeV energy electrons, and pitch-angle scattering loss to the atmosphere. An understanding of the mechanisms behind the observed dynamics is critical to accurate modeling and hence forecasting of radiation belt conditions, important for design, and protection of our space-borne assets. The Versatile Electron Radiation Belt (VERB) model solves the Fokker-Planck diffusion equation in three dimensional invariant coordinates, which allows one to more effectively separate adiabatic and non-adiabatic changes in the radiation belt electron population. The model includes geomagnetic storm intensity dependent parameterizations of the following dominant magnetospheric waves: day- and night-side chorus, plasmaspheric hiss (in the inner magnetosphere and inside the plume region), lightning and anthropogenic generated waves, and electro-magnetic ion cyclotron (EMIC) waves, also inside of plasmaspheric plumes. The model is used to forecast the future state of the radiation belt electron population, while real-time data may be used to update the current state of the belts through assimilation with the model. The Kalman filter provides a computationally inexpensive method to assimilate data with a model, while taking into account the errors associated with each. System identification is performed to determine the model and observational bias and errors. The Kalman filter outputs an optimal estimate of the actual system state and the Kalman-gain weighted corrections (innovation) may be used to identify systematic differences between data and the model. Careful consideration of the innovation vector may lead to a new physical understanding of the radiation belt system, which can later be used to improve our model forecasts. In the current study, we explore the radiation belt dynamics of the current era including data from the THEMIS, Van Allen Probes, GPS satellites, Akebono, NOAA and Cluster spacecraft. Intercalibration is performed between spacecraft on an individual energy channel basis, and in invariant coordinates. The global reanalysis allows an unprecedented analysis of the source-acceleration-transport-loss relationship in Earth's radiation belts. This analysis is used to refine our model capabilities, and to prepare the 3-D reanalysis for real-time data. The global 3-D reanalysis is an important step towards full-scale modeling and operational forecasting of this dynamic region of space.
Mercury's Lithospheric Magnetization
NASA Astrophysics Data System (ADS)
Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.
2017-12-01
Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (< 10 km), signals with wavelengths shorter than 40 km are not observed. These observations collectively suggest that magnetization source depths less than O(10 km) are unlikely in most regions. The minimum RMS magnetization models are used to bound the possible contributions of magnetization induced in Mercury's present field to the observed signals, regionally and over the northern hemisphere.
EMIC wave events during the four QARBM challenge intervals
NASA Astrophysics Data System (ADS)
Engebretson, M. J.; Posch, J. L.; Braun, D.; Li, W.; Angelopoulos, V.; Kellerman, A. C.; Kletzing, C.; Lessard, M.; Mann, I. R.; Tero, R.; Shiokawa, K.; Wygant, J. R.
2017-12-01
We present observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM focus group on Quantitative Assessment of Radiation Belt Modeling: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes and THEMIS spacecraft in the inner magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from the low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination reveals consistent occurrence patterns, which are then used to evaluate the effectiveness of EMIC waves in causing dropouts of radiation belt electrons during these GEM events.
Radiation dosimetry for the Gemini program
NASA Technical Reports Server (NTRS)
Richmond, R. G.
1972-01-01
The principal source of radiation for low-earth-orbit, low inclination space flights is in the area of the South Atlantic magnetic anomaly. None of the Gemini dose measurements reported in the paper are of high enough intensity to be considered hazardous. There is a trend toward larger doses as missions are flown higher and longer. Extended orbital operations between 1400 and 4400 kilometers would encounter high interior radiation levels. Pronounced spacecraft geometry effects have been measured in manned spacecraft. Instrumentation for radiation measurements on Gemini spacecraft is described.
Comparison of CME three-dimensional parameters derived from single and multi-spacecraft
NASA Astrophysics Data System (ADS)
LEE, Harim; Moon, Yong-Jae; Na, Hyeonock; Jang, Soojeong
2014-06-01
Several geometrical models (e.g., cone and flux rope models) have been suggested to infer three-dimensional parameters of CMEs using multi-view observations (STEREO/SECCHI) and single-view observations (SOHO/LASCO). To prepare for when only single view observations are available, we have made a test whether the cone model parameters from single-view observations are consistent with those from multi-view ones. For this test, we select 35 CMEs which are identified as CMEs, whose angular widths are larger than 180 degrees, by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 July when two spacecraft were separated by 90±10 degrees. In this study, we compare the 3-D parameters of these CMEs from three different methods: (1) a triangulation method using STEREO/SECCHI and SOHO/LASCO data, (2) a Graduated Cylindrical Shell (GCS) flux rope model using STEREO/SECCHI data, and (3) an ice cream cone model using SOHO/LASCO data. The parameters used for comparison are radial velocities, angular widths and source location (angle γ between the propagation direction and the plan of the sky). We find that the radial velocities and the γ-values from three methods are well correlated with one another (CC > 0.8). However, angular widths from the three methods are somewhat different with the correlation coefficients of CC > 0.4. We also find that the correlation coefficients between the locations from the three methods and the active region locations are larger than 0.9, implying that most of the CMEs are radially ejected.
The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft
NASA Technical Reports Server (NTRS)
McComas, David; Wilmot, Jonathan; Cudmore, Alan
2016-01-01
In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.
Conducted Transients on Spacecraft Primary Power Lines
NASA Technical Reports Server (NTRS)
Mc Closkey, John; Dimov, Jen
2017-01-01
One of the sources of potential interference on spacecraft primary power lines is that of conducted transients resulting from equipment being switched on and off of the bus. Susceptibility to such transients is addressed by some version of the CS06 requirement of MIL-STD-461462. This presentation provides a summary of the history of the CS06 requirement and test method, a basis for understanding of the sources of these transients, analysis techniques for determining their worst-case characteristics, and guidelines for minimizing their magnitudes and applying the requirement appropriately.
Radiation Environment of Phobos
NASA Astrophysics Data System (ADS)
Cooper, John F.; Clark, John H.; Sturner, Steven J.; Stubbs, Timothy; Wang, Yongli; Glenar, David A.; Schwadron, Nathan A.; Joyce, Colin J.; Spence, Harlan E.; Farrell, William M.
2017-10-01
The innermost Martian moon Phobos is a potential way station for the human exploration of Mars and the solar system beyond the orbit of Mars. It has a similar radiation environment to that at 1 AU for hot plasma and more energetic particles from solar, heliospheric and galactic sources. In the past two decades there have been many spacecraft measurements at 1 AU, and occasionally in the Mars orbital region around the Sun, that can be used to define a reference model for the time-averaged and time-variable radiation environments at Mars and Phobos. Yearly to hourly variance comes from the eleven-year solar activity cycle and its impact on solar energetic, heliospheric, and solar-modulated galactic cosmic ray particles. We report progress on compilation of the reference model from U.S. and international spacecraft data sources of the NASA Space Physics Data Facility and the Virtual Energetic Particle Observatory (VEPO), and from tissue-equivalent dosage rate measurements by the CRaTER instrument on the Lunar Reconnaissance Observer spacecraft now in lunar orbit. Similar dosage rate data are also available from the Mars surface via the NASA Planetary Data System archive from the Radiation Assessment Detector (RAD) instrument aboard the Mars Science Laboratory (MSL) Curiosity rover. The sub-Mars surface hemisphere of Phobos is slightly blocked from energetic particle irradiation by the body of Mars but there is a greater global variance of interplanetary radiation exposure as we have calculated from the known topography of this irregularly shaped moon. Phobos receives a relatively small flux of secondary radiation from galactic cosmic ray interactions with the Mars surface and atmosphere, and at plasma energies from pickup ions escaping out of the Mars atmosphere. The greater secondary radiation source is from cosmic ray interactions with the moon surface, which we have simulated with the GEANT radiation transport code for various cases of the surface regolith composition. We evaluate the efficiency of these materials relative to water for radiation shielding of human explorers on Phobos. The low-energy plasma environment is also considered for impact on surface charging.
Advanced very high resolution radiometer
NASA Technical Reports Server (NTRS)
1978-01-01
The program covered the design, construction, and test of a Breadboard Model, Engineering Model, Protoflight Model, Mechanical/Structural Model, and a Life Test Model. Special bench test and calibration equipment was also developed for use on the program. Initially, the instrument was to operate from a 906 n.mi. orbit and be thermally isolated from the spacecraft. The Breadboard Model and the Mechanical/Structural Model were designed and built to these requirements. The spacecraft altitude was changed to 450 n.mi., IFOVs and spectral characteristics were modified, and spacecraft interfaces were changed. The final spacecraft design provided a temperature-controlled Instrument Mounting Platform (IMP) to carry the AVHRR and other instruments. The design of the AVHRR was modified to these new requirements and the modifications were incorporated in the Engineering Model. The Protoflight Model and the Flight Models conform to this design.
NASA Astrophysics Data System (ADS)
Orton, G. S.; Fletcher, L. N.; Feuchtgruber, H.; Lellouch, E.; Moreno, R.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Swinyard, B.; Moses, J. I.; Burgdorf, M. J.; Hammel, H. B.; Line, M. R.; Sandell, G.; Dowell, C. D.
2013-12-01
Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of ';programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.
Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report
2014-09-19
i ) ’ "’"’ 2rrm" T (2) For a surface directly facing the .ram at a typical low- Earth - orbit speed of 7.500 m/ s in a 0.1 eV plasma . the surface is...of modeling the charging of spacecraft with a low- Earth -orbit plasma within Nascap-2k. This work resulted in a paper presented at the Spacecraft...approaches used to model spacecraft charging in cold. dense plasma . such as found in low- Earth -orbit The range of plasma properties under
Ambient Scattering from Ring-Symmetric Spacecraft Exhaust Plume.
1987-04-01
spacecraft is shielded from ambient scattering by its own plume. Assuming hard- speres collisions, the first-collision model is given by a simple...may change upon replacing the hard- speres approximation by a more realistic collision model. A possible modification of spacecraft charging by the
The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Kayatin, Matthew J.
2017-01-01
Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.
NASA Technical Reports Server (NTRS)
1977-01-01
The development of a framework and structure for shuttle era unmanned spacecraft projects and the development of a commonality evaluation model is documented. The methodology developed for model utilization in performing cost trades and comparative evaluations for commonality studies is discussed. The model framework consists of categories of activities associated with the spacecraft system's development process. The model structure describes the physical elements to be treated as separate identifiable entities. Cost estimating relationships for subsystem and program-level components were calculated.
Radioisotope powered alkali metal thermoelectric converter design for space systems
NASA Technical Reports Server (NTRS)
Sievers, R. K.; Bankston, C. P.
1988-01-01
The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.
Using CubeSats to Monitor Debris Flux
NASA Technical Reports Server (NTRS)
Matney, Mark
2016-01-01
Recent updates to NASA's Orbital Debris Engineering Model (ORDEM 3.0) include a population of small particles (1-2 mm in size) composed of high-density materials (e.g., steel) that drive much of the predicted risk for satellites in the 700-1000 km altitude regime. This modeled population was based on the analysis of returned surfaces of the Shuttle, which flew below 600 km altitude. The cessation of Shuttle missions, plus the lack of in situ data above 600 km means that a data source is being sought to either confirm or modify this high-density population. One possible data source would be a database of anomalous sporadic changes in spacecraft orbit/orientation that might be due to momentum transfer from small particles too small to seriously damage the spacecraft. Because the momentum imparted from an impact would be tiny, it would most likely show up in the orbital behavior of cubesats and other small satellites. While such small satellites were few in number, this was not a particularly attractive option, but now with the proliferation of cubesats in multiple orbit planes and altitudes, the possible collecting area has increased significantly. This presentation will discuss the physics of momentum-transferring impacts from hypervelocity collisions, and make predictions about rates, directions, and locations of such impacts. In addition, it will include recommendations for satellite users on what kind of data might be worth archiving and investigating.
NASA Technical Reports Server (NTRS)
Raymond, C.; Hajj, G.
1994-01-01
We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.
Xenia Spacecraft Study Addendum: Spacecraft Cost Estimate
NASA Technical Reports Server (NTRS)
Hill, Spencer; Hopkins, Randall
2009-01-01
This slide presentation reviews the Xenia spacecraft cost estimates as an addendum for the Xenia Spacecraft study. The NASA/Air Force Cost model (NAFCPOM) was used to derive the cost estimates that are expressed in 2009 dollars.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Carruth, M. R., Jr.
1979-01-01
The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.
Graphical techniques to assist in pointing and control studies of orbiting spacecraft
NASA Technical Reports Server (NTRS)
Howell, L. W.; Ruf, J. H.
1986-01-01
Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere.
Power processing methodology. [computerized design of spacecraft electric power systems
NASA Technical Reports Server (NTRS)
Fegley, K. A.; Hansen, I. G.; Hayden, J. H.
1974-01-01
Discussion of the interim results of a program to investigate the feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems. The object of the total program is to develop a flexible engineering tool which will allow the power processor designer to effectively and rapidly assess and analyze the tradeoffs available by providing, in one comprehensive program, a mathematical model, an analysis of expected performance, simulation, and a comparative evaluation with alternative designs. This requires an understanding of electrical power source characteristics and the effects of load control, protection, and total system interaction.
CEP populations observed by ISEE 1
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; Chen, Jiasheng; Fritz, Theodore A.
2006-12-01
Observations on October 30, 1978 show the ISEE 1 spacecraft passing though the high-altitude dayside northern cusp region from roughly 16:00 to 18:30 UT, during a slow solar wind period (~380 km/s). More than two orders of magnitude enhancements of the cusp energetic particle (CEP) fluxes are observed along with a depressed and turbulent local magnetic field and both ionospheric and solar wind plasma. The clock angle of the local magnetic field is different from that of the IMF, implying that the spacecraft was indeed inside the magnetosphere. The observed variations of the pitch angle distributions provide a unique opportunity to determine the structure of the cusp. The CEP fluxes were measured at about 8.5 hours MLT when the IMF had both an 8-10 nT duskward and southward component. The dawnside location of the cusp under these IMF conditions is unexpected by the existing models. No obvious time-energy dispersion is measured for the CEP fluxes. The time evolution of the phase space density as the spacecraft crossed the cusp boundary layer exhibits a positive gradient pointed to the high-altitude cusp, indicating a probable cusp source of the energetic particles. Through a careful analysis of the data available, we report the first detailed study of the equatorial orbiting ISEE 1 spacecraft passing through the high altitude cusp region.
Electromagnetic radiation generated by arcing in low density plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.
1996-01-01
An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.
International mission planning for space Very Long Baseline Interferometry
NASA Technical Reports Server (NTRS)
Ulvestad, James S.
1994-01-01
Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.
An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1993-01-01
This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation.
Charging of the Van Allen Probes: Theory and Simulations
NASA Astrophysics Data System (ADS)
Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Denton, M.
2017-12-01
The electrical charging of spacecraft has been a known problem since the beginning of the space age. Its consequences can vary from moderate (single event upsets) to catastrophic (total loss of the spacecraft) depending on a variety of causes, some of which could be related to the surrounding plasma environment, including emission processes from the spacecraft surface. Because of its complexity and cost, this problem is typically studied using numerical simulations. However, inherent unknowns in both plasma parameters and spacecraft material properties can lead to inaccurate predictions of overall spacecraft charging levels. The goal of this work is to identify and study the driving causes and necessary parameters for particular spacecraft charging events on the Van Allen Probes (VAP) spacecraft. This is achieved by making use of plasma theory, numerical simulations, and on-board data. First, we present a simple theoretical spacecraft charging model, which assumes a spherical spacecraft geometry and is based upon the classical orbital-motion-limited approximation. Some input parameters to the model (such as the warm plasma distribution function) are taken directly from on-board VAP data, while other parameters are either varied parametrically to assess their impact on the spacecraft potential, or constrained through spacecraft charging data and statistical techniques. Second, a fully self-consistent numerical simulation is performed by supplying these parameters to CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC simulations remove some of the assumptions of the theoretical model and also capture the influence of the full geometry of the spacecraft. The CPIC numerical simulation results will be presented and compared with on-board VAP data. This work will set the foundation for our eventual goal of importing the full plasma environment from the LANL-developed SHIELDS framework into CPIC, in order to more accurately predict spacecraft charging.
Flight Mechanics/Estimation Theory Symposium, 1989
NASA Technical Reports Server (NTRS)
Stengle, Thomas (Editor)
1989-01-01
Numerous topics in flight mechanics and estimation were discussed. Satellite attitude control, quaternion estimation, orbit and attitude determination, spacecraft maneuvers, spacecraft navigation, gyroscope calibration, spacecraft rendevous, and atmospheric drag model calculations for spacecraft lifetime prediction are among the topics covered.
Radio-planetary from tie from Phobos-2 VLBI data
NASA Technical Reports Server (NTRS)
Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.
1994-01-01
In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).
neoPASCAL: A Cubesat-based approach to validate Mars GCMs using a network of landed sensors
NASA Astrophysics Data System (ADS)
Moores, John; Podmore, Hugh; Lee, Regina S. K.; Haberle, Robert
2017-10-01
Beginning in the 1990s, concepts for a network of 15-20 small (12.8 kg) landers to measure surface pressure across Mars were proposed (Merrihew et al., 1996). Such distributed measurements were seen as particularly valuable as they held the promise of validating Mars Global Circulation Models (GCMs), for which the diurnal and seasonal variations in surface pressure may be diagnostically related to atmospheric parameters (Haberle et al., 1996). MicroMET, later renamed PASCAL, was a Discovery contender, however, the total mass required for the 20 landers and a support orbiter presented a challenge compared to the delivered science.In the 20 years since this concept originated, miniaturization of spacecraft systems, sensors and components has made substantial progress. Several small planetary science spacecraft based on the CubeSat design approach will launch in the next few years. Yet, only one meteorological station (REMS) currently operates on the surface of Mars. Meanwhile, the output from atmospheric models have become ever more critical for understanding key Martian geological processes including volatile transport, identifying the extent and persistence of surface brines, understanding the sources and sinks of methane and investigating the past climate of Mars, to name only a few areas.As such, it is time to reconsider the PASCAL concept. We find that modern equipment opens up payload space in the original 12.8 kg entry-vehicles from 23 g to nearly 1 kg, sufficient for adding small imagers, spectrometers and other additional or alternate payloads to examine atmosphere and surface over a wide geographic range of settings. If, instead, we seek the minimum solution for spacecraft mass, we find that a pressure-sensing vehicle would mass < 250 g at entry making these spacecraft appealing secondary payloads for future Mars missions.
The Determination of Titan Gravity Field from Doppler Tracking of the Cassini Spacecraft
NASA Technical Reports Server (NTRS)
Iess, L.; Armstrong, J. W.; Aamar, S. W.; DiBenedetto, M.; Graziani, A.; Mackenzie, R.; Racioppa, P.; Rappaport, N.; Tortora, P.
2007-01-01
In its tour of the Saturnian system, the spacecraft Cassini is carrying out measurements of the gravity field of Titan, whose knowledge is crucial for constraining the internal structure of the satellite. In the five flybys devoted to gravity science, the spacecraft is tracked in X (8.4 GHz) and Ka band (32.5 GHz) from the antennas of NASA's Deep Space Network. The use of a dual frequency downlink is used to mitigate the effects of interplanetary plasma, the largest noise source affecting Doppler measurements. Variations in the wet path delay are effectively compensated by means of advanced water vapor radiometers placed close to the ground antennas. The first three flybys occurred on February 27, 2006, December 28, 2006, and June 29, 2007. Two additional flybys are planned in July 2008 and May 2010. This paper presents the estimation of the mass and quadrupole field of Titan from the first two flybys, carried out by the Cassini Radio Science Team using a short arc orbit determination. The data from the two flybys are first independently fit using a dynamical model of the spacecraft and the bodies of the Saturnian system, and then combined in a multi-arc solution. Under the assumption that the higher degree harmonics are negligible, the estimated values of the gravity parameters from the combined, multi-arc solution are GM = 8978.1337 +/- 0.0025 km(exp 3) / s(exp 2), J (sub 2) = (2.7221 +/- 0.0185) 10 (exp -5) and C (sub 22) = (1.1159 +/- 0.0040) 10 (exp -5) The excellent agreement (within 1.7 sigma) of the results from the two flybys further increases the confidence in the solution and provides an a posteriori validation of the dynamical model.
The systems impact of a concentrated solar array on a Jupiter orbiter
NASA Technical Reports Server (NTRS)
Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.
1981-01-01
Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.
Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness
2014-10-28
AFRL-RV-PS- TR-2014-0189 AFRL-RV-PS- TR-2014-0189 DAMPING MODELS FOR SHEAR-DEFORMABLE BEAM WITH APPLICATIONS TO SPACECRAFT WIRING HARNESS ...Feb 2012 4. TITLE AND SUBTITLE Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness 5a. CONTRACT NUMBER FA9453-12...behavior of wiring harnesses . The emphasis in this project will be on the extension of the shear-beam damping model to the Timoshenko beam, a beam model
Modeling MESSENGER Observations of Calcium in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos
2012-01-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.
Comparison of field-aligned currents at ionospheric and magnetospheric altitudes
NASA Technical Reports Server (NTRS)
Spence, H. E.; Kivelson, M. G.; Walker, R. J.
1988-01-01
Using the empirical terrestrial magnetospheric magnetic field models of Tsyganenko and Usmanov (1982) and Tsyganenko (1987) the average field-aligned currents (FACs) in the magnetosphere were determined as a function of the Kp index. Three major model FAC systems were identified, namely, the dayside region 1, the nightside region 1, and the nightside polar cap. The models provide information about the sources of the current systems. Mapped ionospheric model FACs are compared with low-altitude measurements obtained by the spacecraft. It is found that low-altitude data can reveal either classic region 1/2 or more highly structured FAC patterns. Therefore, statistical results either obtained from observations or inferred from models are expected to be averages over temporally and spatially shifting patterns.
Simulating Descent and Landing of a Spacecraft
NASA Technical Reports Server (NTRS)
Balaram, J.; Jain, Abhinandan; Martin, Bryan; Lim, Christopher; Henriquez, David; McMahon, Elihu; Sohl, Garrett; Banerjee, Pranab; Steele, Robert; Bentley, Timothy
2005-01-01
The Dynamics Simulator for Entry, Descent, and Surface landing (DSENDS) software performs high-fidelity simulation of the Entry, Descent, and Landing (EDL) of a spacecraft into the atmosphere and onto the surface of a planet or a smaller body. DSENDS is an extension of the DShell and DARTS programs, which afford capabilities for mathematical modeling of the dynamics of a spacecraft as a whole and of its instruments, actuators, and other subsystems. DSENDS enables the modeling (including real-time simulation) of flight-train elements and all spacecraft responses during various phases of EDL. DSENDS provides high-fidelity models of the aerodynamics of entry bodies and parachutes plus supporting models of atmospheres. Terrain and real-time responses of terrain-imaging radar and lidar instruments can also be modeled. The program includes modules for simulation of guidance, navigation, hypersonic steering, and powered descent. Automated state-machine-driven model switching is used to represent spacecraft separations and reconfigurations. Models for computing landing contact and impact forces are expected to be added. DSENDS can be used as a stand-alone program or incorporated into a larger program that simulates operations in real time.
Viking orbiter and its Mariner inheritance
NASA Technical Reports Server (NTRS)
1984-01-01
Improvements to the design of the Mariner spacecraft resulted in the Viking spacecraft. The Viking spacecraft would consist of two major systems - an orbiter and a lander, while the lander would provide the means for safely delivering the scientific instruments to the surface, house, and provide the necessary power source and communication links for those experiments, the orbiter would transport the lander to Mars, rovide a platform for the Viking imaging system so that proposed landing sites could be surveyed and certified, relay lander science information back to Earth, and conduct scientific observations in its own right.
2002-10-18
KENNEDY SPACE CENTER, FLA. - The TDRS-J spacecraft, enclosed in a container, arrives at the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for processing. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
Widely distributed SEP events and pseudostreamers
NASA Astrophysics Data System (ADS)
Panasenco, O.; Panasenco, A.; Velli, M.
2017-12-01
Our analysis of the pseudostreamer magnetic topology reveals new interesting implications for understanding SEP acceleration in CMEs. The possible reasons for the wide distribution of some SEP events can be the presence of pseudostreamers in the vicinity of the SEP source region which creates conditions for the existence of strong longitudinal spread of energetic particles as well as an anomalous longitudinal solar wind magnetic field component. We reconstructed the 3D magnetic configurations of pseudostreamers with a potential field source surface (PFSS) model, which uses as a lower boundary condition the magnetic field derived from an evolving surface-flux transport model. In order to estimate the possible magnetic connections between the spacecraft and the SEP source region, we used the Parker spiral, ENLIL and PFSS models. We found that in cases of the wide SEP distributions a specific configuration of magnetic field appears to exist at low solar latitudes all the way around the sun, we named this phenomenon a pseudostreamers belt. It appears that the presence of the well developed pseudostreamer or, rather multiple pseudostreamers, organized into the pseudostreamer belt can be considered as a very favorable condition for wide SEP events.
Synchronous response modelling and control of an annular momentum control device
NASA Astrophysics Data System (ADS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-08-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
Synchronous response modelling and control of an annular momentum control device
NASA Technical Reports Server (NTRS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-01-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data
NASA Astrophysics Data System (ADS)
Demekhov, A. G.; Taubenschuss, U.; Santolík, O.
2017-01-01
We present results of numerical simulations of VLF chorus emissions based on the backward wave oscillator model and compare them with Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft data from the equatorial chorus source region on the early morning side at a radial distance of 6 Earth radii. Specific attention is paid to the choice of simulation parameters based on experimental data. We show that with known parameters of the geomagnetic field, plasma density, and the initial wave frequency, one can successfully reproduce individual chorus elements in the simulation. In particular, the measured growth rate, wave amplitude, and frequency drift rate are in agreement with observed values. The characteristic interval between the elements has a mismatch of factor 2. The agreement becomes perfect if we assume that the inhomogeneity scale of the magnetic field along the field line is half of that obtained from the T96 model. Such an assumption can be justified since the T96 model does not fit well for the time of chorus observations, and there is a shear in the observed field which indicates the presence of local currents.
A stochastic bioburden model for spacecraft sterilization.
NASA Technical Reports Server (NTRS)
Roark, A. L.
1972-01-01
Development of a stochastic model of the probability distribution for the random variable representing the number of microorganisms on a surface as a function of time. The first basic principle associated with bioburden estimation is that viable particles are removed from surfaces. The second notion important to the analysis is that microorganisms in environments and on surfaces occur in clumps. The last basic principle relating to bioburden modeling is that viable particles are deposited on a surface. The bioburden on a spacecraft is determined by the amount and kind of control exercised on the spacecraft assembly location, the shedding characteristics of the individuals in the vicinity of the spacecraft, its orientation, the geographical location in which the assembly takes place, and the steps in the assembly procedure. The model presented has many of the features which are desirable for its use in the spacecraft sterilization programs currently being planned by NASA.
The New NASA Orbital Debris Engineering Model ORDEM 3.0
NASA Technical Reports Server (NTRS)
Krisko, P. H.
2014-01-01
The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2000, now referred to as ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 micron through larger than 1 m in non-GEO and 10 cm through larger than 1 m in GEO are available. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours of data from existing sources and from new sources than past ORDEM versions. The object data range in size from 10 µm to larger than 1 m, and include in situ and remote measurements. The in situ data reveals material characteristics of small particles. Mass densities are grouped in ORDEM 3.0 in terms of 'high-density', represented by 7.9 g/cc, 'medium-density' represented by 2.8 g/cc and 'low-density' represented by 1.4 g/cc. Supporting models have also advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intact spacecraft and rocket bodies, mission related debris, and explosion and collision event fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific populations are added from sodium potassium droplet releases, recent major accidental and deliberate collisions, and known anomalous debris events. This paper elaborates on the upgrades of this model over previous versions. Sample validation results with remote and in situ measurements are shown, and the consequences of including material density are discussed as it relates to heightened risks to crewed and robotic spacecraft
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Subsystem radiation susceptibility analysis for deep-space missions
NASA Technical Reports Server (NTRS)
West, W. S.; Poch, W.; Holmes-Siedle, A.; Bilsky, H. W.; Carroll, D.
1971-01-01
Scientific, unmanned spacecraft on mission to Jupiter and beyond will be subjected to nuclear radiation from the natural environment and onboard nuclear power sources which may be harmful to subsystems. This report postulates these environments and discusses practical considerations to ensure confidence that the spacecraft's materials and subsystems will withstand the effects of anticipated radiation. Degradation mechanisms are discussed.
ISE structural dynamic experiments
NASA Technical Reports Server (NTRS)
Lock, Malcolm H.; Clark, S. Y.
1988-01-01
The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.
Characterize Human Forward Contamination Project
NASA Technical Reports Server (NTRS)
Rucker, Michelle
2015-01-01
Let's face it: wherever we go, we will inevitably carry along the little critters that live in and on us. Conventional wisdom has long held that it's unlikely those critters could survive the space environment, but in 2007 microscopic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the International Space Station (ISS). But what about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen-and how might they mutate with long-duration exposure? Unlike the Mars rovers that we cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? This project has four technical objectives: 1. TEST: Develop a test plan to leverage existing equipment (i.e. ISS) to characterize the kinds of organisms we can reasonably expect pressurized, crewed volumes to vent or leak overboard; 2. ANALYSIS: Develop an analysis plan to study those organisms in relevant destination environments, including spacecraft-induced conditions; 3. MODEL: Develop a modeling plan to model organism transport mechanisms in relevant destination environments; 4. SHARE: Develop a plan to disseminate findings and integrate recommendations into exploration requirements & ops. In short, we propose a system engineering approach to roadmap the necessary experiments, analysis, and modeling up front--rather than try to knit together disparate chunks of data into a sensible conclusion after the fact.
Application of Least Mean Square Algorithms to Spacecraft Vibration Compensation
NASA Technical Reports Server (NTRS)
Woodard , Stanley E.; Nagchaudhuri, Abhijit
1998-01-01
This paper describes the application of the Least Mean Square (LMS) algorithm in tandem with the Filtered-X Least Mean Square algorithm for controlling a science instrument's line-of-sight pointing. Pointing error is caused by a periodic disturbance and spacecraft vibration. A least mean square algorithm is used on-orbit to produce the transfer function between the instrument's servo-mechanism and error sensor. The result is a set of adaptive transversal filter weights tuned to the transfer function. The Filtered-X LMS algorithm, which is an extension of the LMS, tunes a set of transversal filter weights to the transfer function between the disturbance source and the servo-mechanism's actuation signal. The servo-mechanism's resulting actuation counters the disturbance response and thus maintains accurate science instrumental pointing. A simulation model of the Upper Atmosphere Research Satellite is used to demonstrate the algorithms.
Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft
NASA Technical Reports Server (NTRS)
Kane, S. R.; Hurley, K.; Mctiernan, J. M.; Laros, J. G.
1992-01-01
Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated.
NASA Technical Reports Server (NTRS)
Acton, C. H., Jr.; Ohtakay, H.
1975-01-01
Optical navigation uses spacecraft television pictures of a target body against a known star background in a process which relates the spacecraft trajectory to the target body. This technology was used in the Mariner-Venus-Mercury mission, with the optical data processed in near-real-time, simulating a mission critical environment. Optical data error sources were identified, and a star location error analysis was carried out. Several methods for selecting limb crossing coordinates were used, and a limb smear compensation was introduced. Omission of planetary aberration corrections was the source of large optical residuals.
Analyzing Dynamics of Cooperating Spacecraft
NASA Technical Reports Server (NTRS)
Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.
2004-01-01
A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.
Reduction of intensity variations on the absorbers of ideal flux concentrators
NASA Technical Reports Server (NTRS)
Greenman, P.
1980-01-01
Large nonuniformities occur in the instantaneous distribution of flux on the absorber of an ideal light concentrator when it is illuminated by a point source such as the sun. These nonuniformities may be reduced by texturing the reflecting surface with small distortions. Such distortions will also be effective if used in the primary reflector of a two-stage concentrator. Data on a model compound parabolic concentrator are presented. The suitability of such concentrators for use by spacecraft is mentioned.
Artist's Concept of the Orbiting Carbon Observatory
NASA Technical Reports Server (NTRS)
2008-01-01
Artist's concept of the Orbiting Carbon Observatory. The mission, scheduled to launch in early 2009, will be the first spacecraft dedicated to studying atmospheric carbon dioxide, the principal human-produced driver of climate change. It will provide the first global picture of the human and natural sources of carbon dioxide and the places where this important greenhouse gas is stored. Such information will improve global carbon cycle models as well as forecasts of atmospheric carbon dioxide levels and of how our climate may change in the future.Transverse Dimensions of Chorus in the Source Region
NASA Technical Reports Server (NTRS)
Santolik, O.; Gurnett, D. A.
2003-01-01
We report measurement of whistler-mode chorus by the four Cluster spacecraft at close separations. We focus our analysis on the generation region close to the magnetic equatorial plane at a radial distance of 4.4 Earth's radii. We use both linear and rank correlation analysis to define perpendicular dimensions of the sources of chorus elements below one half of the electron cyclotron frequency. Correlation is significant throughout the range of separation distances of 60-260 km parallel to the field line and 7-100 km in the perpendicular plane. At these scales, the correlation coefficient is independent for parallel separations, and decreases with perpendicular separation. The observations are consistent with a statistical model of the source region assuming individual sources as gaussian peaks of radiated power with a common half-width of 35 km perpendicular to the magnetic field. This characteristic scale is comparable to the wavelength of observed waves.
NASA Technical Reports Server (NTRS)
Pollmeier, Vincent M.; Kallemeyn, Pieter H.; Thurman, Sam W.
1993-01-01
The application of high-accuracy S/S-band (2.1 GHz uplink/2.3 GHz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two Earth encounters (8 December 1990 and 8 December 1992). Analysis of S-band ranging data from Galileo indicated that under favorable signal levels, meter-level precision was attainable. It is shown that ranginging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. Explicit modeling of ranging bias parameters for each station pass is used to largely remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle finding capabilities of the data. The accuracy achieved using the precision range filtering strategy proved markedly better when compared to post-flyby reconstructions than did solutions utilizing a traditional Doppler/range filter strategy. In addition, the navigation accuracy achieved with precision ranging was comparable to that obtained using delta-Differenced One-Way Range, an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.
A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; ...
2015-07-14
We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.
1990-01-01
The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.
NASA Technical Reports Server (NTRS)
Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael
2011-01-01
In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.
Models for Liquid Impact Onboard Sloshsat FLEVO
NASA Technical Reports Server (NTRS)
Vreeburg, Jan P. B.; Chato, David J.
2000-01-01
Orbital experiments on the behavior of liquid in spacecraft are planned. The Sloshsat free-flyer is described. Preparation of the experiments, and later evaluation, are supported by models of varying complexity. The characteristics of the models are discussed. Particular attention is given to the momentum transfer between the liquid and the spacecraft, in connection with the liquid impact that may occur at the end of a reorientation maneuver of the spacecraft.
Theoretical Foundation of Copernicus: A Unified System for Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Ocampo, Cesar; Senent, Juan S.; Williams, Jacob
2010-01-01
The fundamental methods are described for the general spacecraft trajectory design and optimization software system called Copernicus. The methods rely on a unified framework that is used to model, design, and optimize spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The trajectory model, with its associated equations of motion and maneuver models, are discussed.
Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Pour, Maria Z. A.
2016-01-01
Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.
New NASA SEE LEO Spacecraft Charging Design Guidelines: How to Survive in LEO Rather Than GEO
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
2003-01-01
It has been almost two solar cycles since the 1984 GEO Guidelines of Purvis, Garrett, Whittlesey, and Stevens were published. In that time, interest in high voltage LEO systems has increased. Correct and conventional wisdom has been that LEO conditions are sufficiently different from GEO that the GEO Guidelines (and other GEO and POLAR documents produced since then) should not be used for LEO spacecraft. Because of significant recent GEO spacecraft failures that have been shown in ground testing to be likely to also occur on LEO spacecraft, the SEE program commissioned the production of the new LEO Spacecraft Charging Design Guidelines. Now available in CD-ROM form, the LEO Guidelines highlight mitigation techniques to prevent spacecraft arcing on LEO solar arrays and other systems. We compare and contrast the mitigation techniques for LEO and GEO in this paper. We also discuss the extensive bibliography included in the LEO Guidelines, so results can be found in their primary sources.
New NASA SEE LEO Spacecraft Charging Design Guidelines: How to Survive in LEO Rather than GEO
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
2004-01-01
It has been almost two solar cycles since the GEO Guidelines of Purvis et al (1984) were published. In that time, interest in high voltage LEO systems has increased. The correct and conventional wisdom has been that LEO conditions are sufficiently different from GEO that the GEO Guidelines (and other GEO and POLAR documents produced since then) should not be used for LEO spacecraft. Because of significant recent GEO spacecraft failures that have been shown in ground testing to be likely to also occur on LEO spacecraft, the SEE program commissioned the production of the new LEO Spacecraft Charging Design Guidelines (hereafter referred to as the LEO Guidelines). Now available in CD-ROM form, the LEO Guidelines highlight mitigation techniques to prevent spacecraft arcing on LEO solar arrays and other systems. We compare and contrast the mitigation techniques for LEO and GEO in this paper. We also discuss the extensive bibliography included in the LEO Guidelines, so results can be found in their primary sources.
Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field
NASA Astrophysics Data System (ADS)
Veselov, Mikhail; Chugunin, Dmitriy
Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.
Solar radiation pressure effects on the Helios spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1976-01-01
A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.
International Space Station (ISS) Meteoroid/Orbital Debris Shielding
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.
1999-01-01
Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly
2012-01-01
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.
Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications
NASA Astrophysics Data System (ADS)
Nasir, Ali
Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and behavior of computed policies in response to the changes in design parameters. A primary case study is built from the Far Ultraviolet Spectroscopic Explorer (FUSE) mission for which component models and their probabilities of failure are based on realistic mission data. A comparison of our approach with an alternative framework for spacecraft task planning and fault management is presented in the context of the FUSE mission.
Flammability Configuration Analysis for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2014-01-01
Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.
Estimation of outgassing from an expended apogee motor and its effects on spacecraft surfaces
NASA Technical Reports Server (NTRS)
Scialdone, J. J.; Rogers, J. F.; Kruger, R.
1977-01-01
An experimental and theoretical investigation was carried out to evaluate the degradation of the solar cells and other sensitive surfaces of a spacecraft, resulting from the molecular outgassing of an expended solid propellant apogee motor. The motor, following its burnout, is retained by the spacecraft and is a source of gases and particulates which will be released mainly by the unburned propellant-to-casing insulation. The deployment of the solar array within a few minutes after the motor burn results in the interception and reflection to the surfaces of the spacecraft of the molecular outgassing and particulates. Various methods, based on some experimental data, were used to analytically assess the magnitude of the outgassing from the engine.
Interactive design and analysis of future large spacecraft concepts
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
An interactive computer aided design program used to perform systems level design and analysis of large spacecraft concepts is presented. Emphasis is on rapid design, analysis of integrated spacecraft, and automatic spacecraft modeling for lattice structures. Capabilities and performance of multidiscipline applications modules, the executive and data management software, and graphics display features are reviewed. A single user at an interactive terminal create, design, analyze, and conduct parametric studies of Earth orbiting spacecraft with relative ease. Data generated in the design, analysis, and performance evaluation of an Earth-orbiting large diameter antenna satellite are used to illustrate current capabilities. Computer run time statistics for the individual modules quantify the speed at which modeling, analysis, and design evaluation of integrated spacecraft concepts is accomplished in a user interactive computing environment.
Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus
NASA Astrophysics Data System (ADS)
Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.
2013-12-01
Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement when the physical processes are treated similarly. The comparisons considered here indicate that, with the correct parameterization of important physical effects such as photoemission and secondary electron emission, our simulation models should have the required skill to predict details of satellite-plasma interaction physics with a high level of confidence. This work was supported by the International Space Science Institute in Bern Switzerland. The potential profile around the Solar Probe Plus spacecraft in orbital flow, from the iPic3D code. The physical model includes photo- and secondary electrons and a static magnetic field.
Nonlinear modal resonances in low-gravity slosh-spacecraft systems
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1991-01-01
Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.
Mars Dust and LETKF Data Assimilation of TES Observations
NASA Astrophysics Data System (ADS)
Greybush, S. J.; Hoffman, R. N.; Wilson, R.; Kang, J.; Zhao, Y.; Hoffman, M. J.; Kalnay, E.; Miyoshi, T.
2012-12-01
Simulation and prediction of dust storms remains one of the greatest challenges in Martian meteorology. Large-scale dust storms impact all Mars operations including spacecraft observations. What makes the difference between a regional event and a planet-encircling event? What are the predictability characteristics of these events and of the transition from regional to global? We examine the meteorology, including dustiness, in the Mars reanalysis created with the GFDL Mars Global Climate Model (MGCM) Local Ensemble Transform Kalman Filter (LETKF) data assimilation system (DAS). Characterizing the distribution and temporal evolution of dust in the Martian atmosphere is a considerable challenge. Spacecraft observations are sparse and have limitations in vertical coverage, dust physical properties are not well known, and model parameterizations of surface lifting have limited success in reproducing observed variability. Methods for generating a dust reanalysis begin with satellite inferred dust information in the form of column opacities, dust profile retrievals, or the original radiances. Opacities may be estimated from a formal retrieval of the satellite data or inferred through surface brightness temperatures. The opacities have been ingested via ad hoc adjustments to model tracer fields (Conrath vertical distributions, changes to the boundary layer dust only, etc.), but could also be assimilated by the LETKF or other advanced DAS. We will present dust distributions in the most recent version of the MGCM-LETKF Mars reanalysis. Current results are from two DASs, one assuming a fixed dust distribution and one using TES opacities and updating the boundary layer dust only. In these reanalyses, a full year of Thermal Emission Spectrometer (TES) temperature profiles have been assimilated. Since an accurate characterization of the sources and sinks of dust would greatly improve our understanding of the Martian dust cycle and its representation in numerical weather prediction models, we will examine two advanced DAS techniques that have been demonstrated in terrestrial DASs and could be applied to the problem -- surface dust flux estimation and estimating the surface parameters that control the source of dust (roughness, inventories). The surface dust flux method requires no a priori information about the fluxes, and uses only atmospheric observations. For the terrestrial CO2 problem, surface sources and sinks of CO2 have been estimated using only time-dependent measurements of atmospheric CO2, temperatures, and winds, and without a priori information on the surface fluxes. This scenario is very analogous to the case of Mars. On Mars we have only information on temperature and dust opacities at spacecraft overpass locations. Results for terrestrial CO2 and plans for Mars dust will be presented. However, to improve model parameterizations of dust lifting, we need to understand not only the planetary distribution of dust but also the evolution of its sources and sinks and their relation to meteorology. The surface parameters method assumes the physical properties have a persistence or damped persistence evolution equation. These are then treated as part of the model state vector in the LETKF. This approach is then analogous to the bias correction method used in LETKF to improve the atmospheric state estimation.
Distinct sources of injections in the polar cusp observed by Cluster
NASA Astrophysics Data System (ADS)
Escoubet, C. Philippe; Reme, Henri; Dunlop, Malcolm; Daly, Patrick; Laakso, Harri; Berchem, Jean; Richard, Robert; Taylor, Matthew; Trattner, Karlheinz; Grison, Benjamin; Dandouras, Iannis; Fazakerley, Andrew; Pitout, Frederic; Masson, Arnaud
The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process takes place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions in the dispersions, we obtain an altitude of the sources of these ions between 14 and 20 RE. Using Tsyganenko model, these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 10 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere.
Chorus Whistler Wave Source Scales As Determined From Multipoint Van Allen Probe Measurements
NASA Technical Reports Server (NTRS)
Agapitov, O.; Blum, L. W.; Mozer, F. S.; Bonnell, J. W.; Wygant, J.
2017-01-01
Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s(exp -1)) aboard the two Van Allen Probes spacecraft-9 h (0800-1200 UT and 1700-2200 UT) during two consecutive apogees on 15 July 2014. The spacecraft separations varied from about 100 to 5000 km (mostly radially); measurements covered an L shell range from 3 to 6; magnetic local time 0430-0900, and magnetic latitudes were approximately 15 and approximately 5 deg during the two orbits. Using time-domain correlation techniques, the single chorus source spatial extent transverse to the background magnetic field has been determined to be about 550-650 km for upper band chorus waves with amplitudes less than 100 pT and up to 800 km for larger amplitude, lower band chorus waves. The ratio between wave amplitudes measured on the two spacecraft is also examined to reveal that the wave amplitude distribution within a single chorus element generation area can be well approximated by a Gaussian exp(-0.5 x r (exp 2)/r(sub 0)(exp 2)), with the characteristic scale r(sub 0) around 300 km. Waves detected by the two spacecraft were found to be coherent in phase at distances up to 400 km.
Near-field optical model for directed energy-propelled spacecrafts
NASA Astrophysics Data System (ADS)
Sucich, Amber; Snyder, Tomas; Hughes, Gary B.; Srinivasan, Prashant; Lubin, Philip; Zhang, Qicheng; Cohen, Alexander; Madajian, Jonathan; Brashears, Travis; Rupert, Nic
2017-09-01
Directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds. Spacecraft propulsion is provided by a large array of lasers, either in Earth orbit or stationed on the ground. The directed-energy beam is focused on the spacecraft sail, and momentum from photons in the laser beam is transferred to the spacecraft as the beam reflects off of the sail. In order for the beam to be concentrated on the spacecraft, precise phase control of all the elements across the laser array will be required. Any phase misalignments within the array will give rise to pointing fluctuations and flux asymmetry in the beam, necessitating creative approaches to spacecraft stability and beam following. In order to simulate spacecraft acceleration using an array of phase-locked lasers, a near field intensity model of the laser array is required. This paper describes a light propagation model that can be used to calculate intensity patterns for the near-field diffraction of a phased array. The model is based on the combination of complex frequencies from an array of emitters as the beams from each emitter strike a target surface. Ray-tracing geometry is used to determine the distance from each point on an emitter optical surface to each point on the target surface, and the distance is used to determine the phase contribution. Simulations are presented that explore the effects of fixed and time-varying phase mis-alignments on beam pointing, beam intensity and focusing characteristics.
Visualizing Decision-making Behaviours in Agent-based Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
North, Steve; Hennessy, Joseph F. (Technical Monitor)
2003-01-01
The authors will report initial progress on the PIAudit project as a Research Resident Associate Program. The objective of this research is to prototype a tool for visualizing decision-making behaviours in autonomous spacecraft. This visualization will serve as an information source for human analysts. The current visualization prototype for PIAudit combines traditional Decision Trees with Weights of Evidence.
NASA Technical Reports Server (NTRS)
Barnstable, Bob; Polte, Hans; Kepes, Paul; Walker, Kevin; Jacobs, Jeff; Williams, Stephen
1990-01-01
The Copernicus spacecraft, to be launched on May 4, 2009, is designed for scientific exploration of the planet Pluto. The main objectives of this exploration is to accurately determine the mass, density, and composition of the two bodies in the Pluto-Charon system. A further goal of the exploration is to obtain precise images of the system. The spacecraft will be designed for three axis stability control. It will use the latest technological advances to optimize the performance, reliability, and cost of the spacecraft. Due to the long duration of the mission, nominally 12.6 years, the spacecraft will be powered by a long lasting radioactive power source. Although this type of power may have some environmental drawbacks, currently it is the only available source that is suitable for this mission. The planned trajectory provides flybys of Jupiter and Saturn. These flybys provide an opportunity for scientific study of these planets in addition to Pluto. The information obtained on these flybys will supplement the data obtained by the Voyager and Galileo missions. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
NASA Technical Reports Server (NTRS)
1984-01-01
The mutual influence of a laser communication system and its host spacecraft and the degree to which the mutual influence limited acquisition, tracking and pointing processes were investigated. A laser klink between a low earth orbiting (LEO) satellite and a geosynchronous earth orbiting (GEO) satellite was used as a baseline. The laser link between satellites was a generic channel transferring 500 Mbps data from the LEO to GEO using the GaAlAs laser as the laser light source. Major aspects of pointing and tracking with a satelliteborne optical system were evaluated including: (1) orbital aspects such as spacecraft relative motions, point ahead, and Sun snd Moon optical noise; (2) burst errors introduced by the electronic and optical noise levels; (3) servo system design and configurations, and the noise sources such as, sensor noise, base motion disturbances, gimbal friction torque noise; (4) an evaluation of the tracking and beacon link and the type of sensors used; (5) the function of the acquisition procedure and an evaluation of the sensors employed; and (6) an estimate of the size, weight and power needed for the satellite system.
Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh
NASA Astrophysics Data System (ADS)
Deng, Mingle; Yue, Baozeng
2017-04-01
This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.
A power conditioning system for radioisotope thermoelectric generator energy sources
NASA Technical Reports Server (NTRS)
Gillis, J. A., Jr.
1974-01-01
The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.
NASA Technical Reports Server (NTRS)
Adams, Neil S.; Bollenbacher, Gary
1992-01-01
This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.
Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.
2011-01-01
This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the environment model calculations, the Bumper-II code calculates a probability of no penetration for the spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, R. W.; Dayeh, M. A.; Desai, M. I.
2016-11-10
We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinallymore » separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.« less
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Plasma distribution and spacecraft charging modeling near Jupiter
NASA Technical Reports Server (NTRS)
Goldstein, R.; Divine, N.
1977-01-01
To assess the role of spacecraft charging near Jupiter, the plasma distribution in Jupiter's magnetosphere was modeled using data from the plasma analyzer experiments on Pioneer 10 (published results) and on Pioneer 11 (preliminary results). In the model, electron temperatures are kT = 4 eV throughout, whereas proton temperatures range over 100 or equal to kT or equal to 400 eV. The model fluxes and concentrations vary over three orders of magnitude among several corotating regions, including, in order to increasing distance from Jupiter, a plasma void, plasma sphere, sporadic zone, ring current, current sheet, high latitude plasma and magnetosheath. Intermediate and high energy electrons and protons (to 100 MeV) are modeled as well. The models supply the information for calculating particle fluxes to a spacecraft in the Jovian environment. The particle balance equations (including effects of secondary and photoemission) then determine the spacecraft potential.
Evaluation of the communications impact of a low power arcjet thruster
NASA Technical Reports Server (NTRS)
Carney, Lynnette M.
1988-01-01
The interaction of a 1 kW arcjet thruster plume with a communications signal is evaluated. A two-parameter, source flow equation has been used to represent the far flow field distribution of the arcjet plume in a realistic spacecraft configuration. Modelling the plume as a plasma slab, the interaction of the plume with a 4 GHz communications signal is then evaluated in terms of signal attenuation and phase shift between transmitting and receiving antennas. Except for propagation paths which pass very near the arcjet source, the impacts to transmission appear to be negligible. The dominant signal loss mechanism is refraction of the beam rather than absorption losses due to collisions. However, significant reflection of the signal at the sharp vacuum-plasma boundary may also occur for propagation paths which pass near the source.
Liquid-metal-ion source development for space propulsion at ARC.
Tajmar, M; Scharlemann, C; Genovese, A; Buldrini, N; Steiger, W; Vasiljevich, I
2009-04-01
The Austrian Research Centers have a long history of developing indium Liquid-Metal-Ion Source (LMIS) for space applications including spacecraft charging compensators, SIMS and propulsion. Specifically the application as a thruster requires long-term operation as well as high-current operation which is very challenging. Recently, we demonstrated the operation of a cluster of single LMIS at an average current of 100muA each for more than 4800h and developed models for tip erosion and droplet deposition suggesting that such a LMIS can operate up to 20,000h or more. In order to drastically increase the current, a porous multi-tip source that allows operation up to several mA was developed. Our paper will highlight the problem areas and challenges from our LMIS development focusing on space propulsion applications.
Seasonal Variations in Mercury's Dayside Calcium Exosphere
NASA Technical Reports Server (NTRS)
Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee W.; Vervack, Ronald J., Jr.; Cassidy, Timothy A.; Sarantos, Menelaos
2014-01-01
The Mercury Atmospheric and Surface Composition Spectrometer on the MESSENGER spacecraft has observed calcium emission in Mercury's exosphere on a near-daily basis since March 2011. During MESSENGER's primary and first extended missions (March 2011 - March 2013) the dayside calcium exosphere was measured over eight Mercury years. We have simulated these data with a Monte Carlo model of exospheric source processes to show that (a) there is a persistent source of energetic calcium located in the dawn equatorial region, (b) there is a seasonal dependence in the calcium source rate, and (c) there are no obvious year-to-year variations in the near-surface dayside calcium exosphere. Although the precise mechanism responsible for ejecting the calcium has not yet been determined, the most likely process is the dissociation of Ca-bearing molecules produced in micrometeoroid impact plumes to form energetic, escaping calcium atoms.
Landsat-8 Operational Land Imager On-Orbit Radiometric Calibration
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Barsi, Julia A.
2017-01-01
The Operational Land Imager (OLI), the VIS/NIR/SWIR sensor on the Landsat-8 has been successfully acquiring Earth Imagery for more than four years. The OLI incorporates two on-board radiometric calibration systems, one diffuser based and one lamp based, each with multiple sources. For each system one source is treated as primary and used frequently and the other source(s) are used less frequently to assist in tracking any degradation in the primary sources. In addition, via a spacecraft maneuver, the OLI instrument views the moon once a lunar cycle (approx. 29 days). The integrated lunar irradiances from these acquisitions are compared to the output of a lunar irradiance model. The results from all these techniques, combined with cross calibrations with other sensors and ground based vicarious measurements are used to monitor the OLI's stability and correct for any changes observed. To date, the various techniques have other detected significant changes in the shortest wavelength OLI band centered at 443 nm and these are currently being adjusted in the operational processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchand, R.; Miyake, Y.; Usui, H.
2014-06-15
Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing results obtained with and without these effects. Simulation results are presented and compared with increasing levels of complexity in the physics of interaction between solar environmentmore » and the SPP spacecraft. The comparisons focus particularly on spacecraft floating potentials, contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. The physical effects considered include spacecraft charging, photoelectron and secondary electron emission, and the presence of a background magnetic field. Model predictions obtained with our different computational approaches are found to be in agreement within 2% when the same physical processes are taken into account and treated similarly. The comparisons thus indicate that, with the correct description of important physical effects, our simulation models should have the required skill to predict details of satellite-plasma interaction physics under relevant conditions, with a good level of confidence. Our models concur in predicting a negative floating potential V{sub fl}∼−10V for SPP at perihelion. They also predict a “saturated emission regime” whereby most emitted photo- and secondary electron will be reflected by a potential barrier near the surface, back to the spacecraft where they will be recollected.« less
Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared
NASA Technical Reports Server (NTRS)
Swenson, G.
1999-01-01
Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.
Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments
NASA Astrophysics Data System (ADS)
Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.
2013-12-01
Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.
Spacecraft contamination issues from LDEF: Issues for design
NASA Technical Reports Server (NTRS)
Pippin, Gary; Crutcher, Russ
1993-01-01
Many contamination sources have been identified on the Long Duration Exposure Facility (LDEF). Effects of contamination from these sources are being quantified and have been reported on in several papers. For a designer, the essential question is how much contamination from all sources can be tolerated without causing a given spacecraft system to degrade below a critical performance level, or fail altogether. Even a rudimentary knowledge of the mechanisms by which molecular and particulate contamination can occur will allow simple design options to be chosen to circumvent potential contamination problems and reduce contamination levels. Because of the varied nature and condition of hardware used on LDEF experiments, examples of many types of contamination were seen and these provide a useful guide to expected performance of many types of materials in space environments.
Solar maximum mission fine pointing sun sensor dawn and dusk errors flight data and model analysis
NASA Technical Reports Server (NTRS)
Kulp, D. R.
1988-01-01
SMM flight system control errors occurring at spacecraft dawn and dusk are analyzed. The errors are associated with the fine pointing sun sensor (FPSS), which is a primary component of the SMM attitude control system. It is shown that the source of the FPSS dawn/dusk distortion is the incomplete masking of sunlight reflected off the earth by the optical baffle covering the FPSS sensor heads onboard the SMM during periods of orbit dawn and dusk. For the most part, the modeled behavior of the FPSS under dawn and dusk lighting conditions matches the observed behavior in the SMM flight data.
Architecture for spacecraft operations planning
NASA Technical Reports Server (NTRS)
Davis, William S.
1991-01-01
A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed.
Space Weather Forecasting and Supporting Research in the USA
NASA Astrophysics Data System (ADS)
Pevtsov, A. A.
2017-12-01
In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.
Characterization of Multilayer Piezoelectric Actuators for Use in Active Isolation Mounts
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1997-01-01
Active mounts are desirable for isolating spacecraft science instruments from on-board vibrational sources such as motors and release mechanisms. Such active isolation mounts typically employ multilayer piezoelectric actuators to cancel these vibrational disturbances. The actuators selected for spacecraft systems must consume minimal power while exhibiting displacements of 5 to 10 micron under load. This report describes a study that compares the power consumption, displacement, and load characteristics of four commercially available multilayer piezoelectric actuators. The results of this study indicate that commercially available actuators exist that meet or exceed the design requirements used in spacecraft isolation mounts.
SERT D spacecraft study. [project planning and objectives
NASA Technical Reports Server (NTRS)
1974-01-01
The SERT D (Space Electric Rocket Test - D) study defines a possible spacecraft project that would demonstrate the use of electric ion thrusters for long-term (5 yr) station keeping and attitude control of a synchronous orbit satellite. Other mission objectives included in the study were: station walking to satellite rendezvous and inspection, use of low cost attitude sensing system, use of an advanced solar array orientation and slip ring system, and an ion thruster integrated directly with a solar array power source. The SERT D spacecraft, if launched, will become SERT 3 the third space electric thruster test.
2002-10-18
KENNEDY SPACE CENTER, FLA. - The TDRS-J spacecraft, enclosed in a container, is transported past the Vehicle Assembly Building on its way to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for processing. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
Technique to determine location of radio sources from measurements taken on spinning spacecraft
NASA Technical Reports Server (NTRS)
Fainberg, J.
1979-01-01
The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.
Low-Altitude Magnetic Topology with MAVEN SWEA and MAG
NASA Astrophysics Data System (ADS)
Mitchell, David; Xu, Shaosui; Mazelle, Christian; Luhmann, Janet; McFadden, James; Connerney, John; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew
2016-04-01
The Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) onboard the MAVEN spacecraft measure electron pitch angle and energy distributions at 2-second resolution (~8 km along the orbit track) to determine the topology of magnetic fields from both external and crustal sources. Electrons from different regions of the Mars environment can be distinguished by their energy distributions. Thus, pitch angle resolved energy spectra can be used to determine the plasma source regions sampled by a field line at large distances from the spacecraft. From 12/1/2014 to 2/15/2015, when periapsis was at high northern latitudes, SWEA observed ionospheric photoelectrons at low altitudes (140-200 km) and high solar zenith angles (120-145 degrees) on ~35% of the orbits. Since this electron population is unambiguously produced in the dayside ionosphere, these observations demonstrate that the deep Martian nightside is at times magnetically connected to the sunlit hemisphere. The BATS-R-US Mars multi-fluid MHD model suggests the presence of closed crustal magnetic field lines over the northern hemisphere that straddle the terminator and extend to high SZA. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron transport along such field lines can take place without significant attenuation. Precipitation of photoelectrons onto the night-side atmosphere should cause ionization and possibly auroral emissions in localized regions. On one orbit, the O2+ energy flux measured by STATIC correlates well with precipitating photoelectron fluxes.
NASA Technical Reports Server (NTRS)
Katz, Ira; Mandell, Myron; Roche, James C.; Purvis, Carolyn
1987-01-01
Secondary electrons control a spacecraft's response to a plasma environment. To accurately simulate spacecraft charging, the NASA Charging Analyzer Program (NASCAP) has mathematical models of the generation, emission and transport of secondary electrons. The importance of each of the processes and the physical basis for each of the NASCAP models are discussed. Calculations are presented which show that the NASCAP formulations are in good agreement with both laboratory and space experiments.
Performance Evaluation of the Gravity Probe B Design
NASA Technical Reports Server (NTRS)
Francis, Ronnie; Wells, Eugene M.
1996-01-01
This report documents the simulation of the Lockheed Martin designed Gravity Probe B (GPB) spacecraft developed tool by bd Systems Inc using the TREETOPS simulation. This study quantifies the effects of flexibility and liquid helium slosh on GPB spacecraft control performance. The TREETOPS simulation tool permits the simulation of flexible structures given that a flexible body model of the structure is available. For purposes of this study, a flexible model of the GPB spacecraft was obtained from Lockheed Martin. To model the liquid helium slosh effects, computational fluid dynamics (CFD) results' were obtained, and used to develop a dynamic model of the slosh effects. The flexible body and slosh effects were incorporated separately into the TREETOPS simulation, which places the vehicle in a 650 km circular polar orbit and subjects the spacecraft to realistic environmental disturbances and sensor error quantities. In all of the analysis conducted in this study the spacecraft is pointed at an inertially fixed guide star (GS) and is rotating at a constant rate about this line of sight.
The Hughes HS601HP spacecraft power subsystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krummann, W.; Ayvazian, H.
1998-07-01
The introduction of the Hughes HS 601HP (high power) spacecraft product line continuous the highly successful HS601 three axis stabilized geosynchronus spacecraft with increased power capabilities for larger payload applications. The enhanced power capabilities of the HS 601HP are built upon the heritage of 29 HS601 spacecraft presently in operation. The HS 601HP accommodates payload power ranges of 3 to 7 kilowatts and provides a smooth transition from the lower power HS 601 spacecraft to the HS 702 spacecraft, which has a payload capability up to 13 kilowatts. The HS 601HP spacecraft is designed for a 15 year life withmore » minimal operator interaction. The HS 601HP power subsystem provides a regulated power bus with a voltage range of 52 to 53 volts during all operational phases. The power subsystem is tailored to the specific needs of the spacecraft by selecting standard products from the HS 601HP power catalog. The solar arrays, battery, power control electronics and power distribution electronics are all modular and configurable to the requirements of the spacecraft. The HS 601HP solar array is the primary power source for the spacecraft. The solar array is comprised of two sets of planar solar panels (solar wings) which track the sun in a single spacecraft axis. The solar cells are selected from three different types based upon the spacecraft power generation requirements; silicon, single junction gallium arsenide or dual junction gallium arsenide. The maximum power capability at end of life (15 years, summer solstice) ranges from 4 to 7.7 kilowatts for the three types of solar cells. The HS 601HP battery is the power source for the spacecraft during eclipse and peak sunlight power periods. The battery is comprised of four individual battery packs connected in series to produce a single battery. Each battery pack can accommodate a maximum of eight battery cells with a capacity of 350 ampere-hours. The battery pack also provides for mounting of all electronics utilized by the battery, such as cell bypassing. The power electronics for the HS 601HP spacecraft provide for a tightly regulated power bus whether in sunlight or eclipse (battery discharge) operation. The bus voltage during sunlight is maintained by two bus voltage limiters (BVL), located on the yoke of each solar wing. The BVL maintains the regulated power bus at 52.9 volts by shunting excess solar wing power when not required by the spacecraft. The bus voltage during eclipse is maintained by two battery power controllers (BPC) located on the spacecraft bus shelf. The BPC maintains the regulated power bus at 52.2 volts during battery discharge and also provides for battery charging when excess solar array power is available. The power from the solar array or battery is distributed to the spacecraft by bus and payload power distribution units (PDU). The HS 601HP spacecraft product line now has three spacecraft in orbit. The first was launched in early November of 1997 with the second and third launched in late November and early December of 1997, respectively. The power systems are performing as designed and correlate well with the predicted performance calculations. Several more HS 601HP are scheduled to launch during 1998.« less
A shock spectra and impedance method to determine a bound for spacecraft structural loads
NASA Technical Reports Server (NTRS)
Bamford, R.; Trubert, M.
1974-01-01
A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.
Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Venus Ionosphere
NASA Astrophysics Data System (ADS)
Hart, Richard; Russell, Christopher T.; Zhang, Tielong
2016-10-01
The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15 degrees of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft.Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compares this strength to that on Earth.
Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Ionosphere of Venus
NASA Astrophysics Data System (ADS)
Hart, R. A.; Russell, C. T.; Zhang, T.
2016-12-01
The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15º of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft. Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compare it to that on Earth.
A CFD Approach to Modeling Spacecraft Fuel Slosh
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.
2009-01-01
Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally displaces the air. Using the conservation of mass, momentum, and energy equations, as well as the VOF equations, one can predict the behavior of the sloshing fluid and calculate the forces, pressure gradients, and velocity field for the entire liquid as a function of time.
Environmentally-induced discharge transient coupling to spacecraft
NASA Technical Reports Server (NTRS)
Viswanathan, R.; Barbay, G.; Stevens, N. J.
1985-01-01
The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.
Modeling and research of a space-based spacecraft infrared detection system.
Li, Wenhao; Liu, Zhaohui; Mu, You; Yang, Rui; Zhang, Xing
2017-03-20
When a spacecraft is in orbit, it is almost impossible to check its working condition. Almost all payload would generate waste heat when working, which is usually ejected by a radiator. By observing the radiator, we can catch a glimpse of a spacecraft's inner information. A thorough model of a space-based infrared detection system is analyzed, taking the radiator into account, which, to the best of our knowledge, has seldom been considered. The calculation result shows that infrared radiation reflected by spacecraft is weak compared with the spacecraft's self-radiation in 8-12 μm, and the contrast ratio between the radiator and surrounding area could be the criterion for judging the working condition of a spacecraft. The limit of detection distance is also increased due the higher temperature of the radiator.
Cluster Observations of reconnection along the dusk flank of the magnetosphere
NASA Astrophysics Data System (ADS)
Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Karlheinz; Lavraud, Benoit; Pitout, Frederic; Soucek, Jan; Richard, Robert; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick
2015-04-01
Magnetic reconnection is generally accepted to be the main process that transfers particles and energy from the solar wind to the magnetosphere. The location of the reconnection site depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is also taking place near the exterior cusp quasi-simultaneously.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Car[emter. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Carpenter, J. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
NASA Astrophysics Data System (ADS)
Orton, Glenn; Fletcher, Leigh; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphael; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy; Hofstadter, Mark; Sandell, Goran; Dowell, Charles
2014-05-01
Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the atmosphere the homopause is much higher pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 10 μbar being H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of 'programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.
A Causal, Data-driven Approach to Modeling the Kepler Data
NASA Astrophysics Data System (ADS)
Wang, Dun; Hogg, David W.; Foreman-Mackey, Daniel; Schölkopf, Bernhard
2016-09-01
Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here, we present the causal pixel model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. In addition, we use the target star’s future and past (autoregression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four tuning parameters—the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, which we set by cross-validation. We determine values for tuning parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that CPM can consistently produce low-noise light curves. In this paper, we demonstrate that pixel-level de-trending is possible while retaining transit signals, and we think that methods like CPM are generally applicable and might be useful for K2, TESS, etc., where the data are not clean postage stamps like Kepler.
On the injection of fine dust from the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Maravilla, D.; Flammer, K. R.; Mendis, D. A.
1995-01-01
Using a simple aligned dipole model of the Jovian magnetic field, and exploiting integrals of the gravito-electrodynamic equation of motion of charged dust, we obtain an analytic result which characterizes the nature of the orbits of grains of different (fixed) charge-to-mass ratios launched at different velocities from different radial distances from Jupiter. This enables us to consider various possible sources of the dust-streams emanating from Jupiter which have been observed by the Ulysses spacecraft. We conclude that Jupiter's volcanically active satellite Io is the likely source, in agreement with the earlier calculations and simulations of Horanyi et al. using a detailed three-dimensional model of the Jovian magnetosphere. Our estimates of the size range and the velocity range of these dust grains are also in good agreement with those of the above authors and are within the error bars of the observations.
The synchronous orbit magnetic field data set
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1979-01-01
The magnetic field at synchronous orbit is the result of superposition of fields from many sources such as the earth, the magnetopause, the geomagnetic tail, the ring current and field-aligned currents. In addition, seasonal changes in the orientation of the earth's dipole axis causes significant changes in each of the external sources. Main reasons for which the synchronous orbit magnetic field data set is a potentially valuable resource are outlined. The primary reason why synchronous magnetic field data have not been used more extensively in magnetic field modeling is the presence of absolute errors in the measured fields. Nevertheless, there exists a reasonably large collection of synchronous orbit magnetic field data. Some of these data can be useful in quantitative modeling of the earth's magnetic field. A brief description is given of the spacecraft, the magnetometers, the standard graphical data displays, and the digital data files.
Failure rate analysis of Goddard Space Flight Center spacecraft performance during orbital life
NASA Technical Reports Server (NTRS)
Norris, H. P.; Timmins, A. R.
1976-01-01
Space life performance data on 57 Goddard Space Flight Center spacecraft are analyzed from the standpoint of determining an appropriate reliability model and the associated reliability parameters. Data from published NASA reports, which cover the space performance of GSFC spacecraft launched in the 1960-1970 decade, form the basis of the analyses. The results of the analyses show that the time distribution of 449 malfunctions, of which 248 were classified as failures (not necessarily catastrophic), follow a reliability growth pattern that can be described with either the Duane model or a Weibull distribution. The advantages of both mathematical models are used in order to: identify space failure rates, observe chronological trends, and compare failure rates with those experienced during the prelaunch environmental tests of the flight model spacecraft.
A spacecraft attitude and articulation control system design for the Comet Halley intercept mission
NASA Technical Reports Server (NTRS)
Key, R. W.
1981-01-01
An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.
Projection-Based Reduced Order Modeling for Spacecraft Thermal Analysis
NASA Technical Reports Server (NTRS)
Qian, Jing; Wang, Yi; Song, Hongjun; Pant, Kapil; Peabody, Hume; Ku, Jentung; Butler, Charles D.
2015-01-01
This paper presents a mathematically rigorous, subspace projection-based reduced order modeling (ROM) methodology and an integrated framework to automatically generate reduced order models for spacecraft thermal analysis. Two key steps in the reduced order modeling procedure are described: (1) the acquisition of a full-scale spacecraft model in the ordinary differential equation (ODE) and differential algebraic equation (DAE) form to resolve its dynamic thermal behavior; and (2) the ROM to markedly reduce the dimension of the full-scale model. Specifically, proper orthogonal decomposition (POD) in conjunction with discrete empirical interpolation method (DEIM) and trajectory piece-wise linear (TPWL) methods are developed to address the strong nonlinear thermal effects due to coupled conductive and radiative heat transfer in the spacecraft environment. Case studies using NASA-relevant satellite models are undertaken to verify the capability and to assess the computational performance of the ROM technique in terms of speed-up and error relative to the full-scale model. ROM exhibits excellent agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) along with salient computational acceleration (up to two orders of magnitude speed-up) over the full-scale analysis. These findings establish the feasibility of ROM to perform rational and computationally affordable thermal analysis, develop reliable thermal control strategies for spacecraft, and greatly reduce the development cycle times and costs.
NASA Technical Reports Server (NTRS)
Maisel, J. E.
1984-01-01
A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.
Mathematical model of the current density for the 30-cm engineering model thruster
NASA Technical Reports Server (NTRS)
Cuffel, R. F.
1975-01-01
Mathematical models are presented for both the singly and doubly charged ion current densities downstream of the 30-cm engineering model thruster with 0.5% compensated dished grids. These models are based on the experimental measurements of Vahrenkamp at a 2-amp ion beam operating condition. The cylindrically symmetric beam of constant velocity ions is modeled with continuous radial source and focusing functions across 'plane' grids with similar angular distribution functions. A computer program is used to evaluate the double integral for current densities in the near field and to obtain a far field approximation beyond 10 grid radii. The utility of the model is demonstrated for (1) calculating the directed thrust and (2) determining the impingement levels on various spacecraft surfaces from a two-axis gimballed, 2 x 3 thruster array.
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha
1998-01-01
A fundamental goal of magnetospheric physics is to understand the transport of plasma through the solar wind-magnetosphere-ionosphere system. To attain such an understanding, we must determine the sources of the plasma, the trajectories of the particles through the magnetospheric electric and magnetic fields to the point of observation, and the acceleration processes they undergo enroute. This study employed plasma distributions observed in the near-Earth plasma sheet by Interball and Geotail spacecraft together with theoretical techniques to investigate the ion sources and the transport of plasma. We used ion trajectory calculations in magnetic and electric fields from a global Magnetohydrodynamics (MHD) simulation to investigate the transport and to identify common ion sources for ions observed in the near-Earth magnetotail by the Interball and Geotail spacecraft. Our first step was to examine a number of distribution functions and identify distinct boundaries in both configuration and phase space that are indicative of different plasma sources and transport mechanisms. We examined events from October 26, 1995, November 29-30, 1996, and December 22, 1996. During the first event Interball and Geotail were separated by approximately 10 R(sub E) in z, and during the second event the spacecraft were separated by approximately 4(sub RE). Both of these events had a strong IMF By component pointing toward the dawnside. On October 26, 1995, the IMF B(sub Z) component was northward, and on November 1-9-30, 1996, the IMF B sub Z) component was near 0. During the first event, Geotail was located near the equator on the dawn flank, while Interball was for the most part in the lobe region. The distribution function from the Coral instrument on Interball showed less structure and resembled a drifting Maxwellian. The observed distribution on Geotail, on the other hand, included a great number of structures at both low and high energies. During the third event (December 22, 1996) both spacecraft were in the plasma sheet and were separated bY approximately 20 R(sub E) in the y direction. During this event the IMF was southward.
Three dimensional ray tracing Jovian magnetosphere in the low frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.
1982-01-01
Ray tracing of the Jovian magnetosphere in the low frequency range (1+40 MHz) has resulted in a new understanding of the source mechanism for Io dependent decametric radiation (DAM). Our three dimensional ray tracing computer code has provided model DAM arcs at 10 deg. intervals of Io longitude source positions for the full 360 deg of Jovian system III longitude. In addition, particularly interesting arcs were singled out for detailed study and modelling. Dependent decametric radiation arcs are categorized according to curvature--the higher curvature arcs are apparently due to wave stimulation at a nonconstant wave normal angle, psi. The psi(f) relationship has a signature that is common to most of the higher curvature arcs. The low curvature arcs, on the other hand, are adequately modelled with a constant wave normal angle of close to 90 deg. These results imply that for higher curvature arcs observed for from Jupiter (to diminish spacecraft motion effects) the electrons providing the gyroemission are relativistically beamed.
NASA Technical Reports Server (NTRS)
Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.
1995-01-01
The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.
A Control Concept for Large Flexible Spacecraft Using Order Reduction Techniques
NASA Technical Reports Server (NTRS)
Thieme, G.; Roth, H.
1985-01-01
Results found during the investigation of control problems of large flexible spacecraft are given. A triple plate configuration of such a spacecraft is defined and studied. The model is defined by modal data derived from infinite element modeling. The order reduction method applied is briefly described. An attitude control concept with low and high authority control has been developed to design an attitude controller for the reduced model. The stability and response of the original system together with the reduced controller is analyzed.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1982-01-01
A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.
Energetic electrons in impulsive solar flares
NASA Technical Reports Server (NTRS)
Batchelor, D. A.
1984-01-01
A new analysis was made of a thermal flare model proposed by Brown, Melrose, and Spicer (1979) and Smith and Lilliequist (1979). They assumed the source of impulsive hard X-rays to be a plasma at a temperature of order 10 to the 8th power K, initially located at the apex of a coronal arch, and confined by ion-acoustic turbulence in a collisionless conduction front. Such a source would expand at approximately the ion-sound speed, C sub S = square root of (k T sub e/m sub i), until it filled the arch. Brown, Melrose, and Spicer and Smith and Brown (1980) argued that the source assumed in this model would not explain the simultaneous impulsive microwave emission. In contrast, the new results presented herein suggest that this model leads to the development of a quasi-Maxwellian distribution of electrons that explains both the hard X-ray and microwave emissions. This implies that the source sizes can be determined from observations of the optically-thick portions of microwave spectra and the temperatures obtained from associated hard X-ray observations. In this model, the burst emission would rise to a maximum in a time, t sub r, approximately equal to L/c sub s, where L is the half-length of the arch. New observations of these impulsive flare emissions were analyzed herein to test this prediction of the model. Observations made with the Solar Maximum Mission spacecraft and the Bern Radio Observatory are in good agreement with the model.
Application of First Principles Ni-Cd and Ni-H2 Battery Models to Spacecraft Operations
NASA Technical Reports Server (NTRS)
Timmerman, Paul; Bugga, Ratnakumar; DiStefano, Salvador
1997-01-01
The conclusions of the application of first principles model to spacecraft operations are: the first principles of Bi-phasic electrode presented model provides an explanation for many behaviors on voltage fading on LEO cycling.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Langel, R. A.; Slavin, J.; Lancaster, E. R.; Jones, S.
1991-01-01
Prelaunch and postlaunch calibration plans for the APAFO magnetometer experiment are presented. A study of tradeoffs between boom length and spacecraft field is described; the results are summarized. The prelaunch plan includes: calibration of the Vector Fluxgate Magnetometer (VFM), Star Sensors, and Scalar Helium Magnetometer (SHM); optical bench integration; and acquisition of basic spacecraft field data. Postlaunch calibration has two phases. In phase one, SHM data are used to calibrate the VFM, total vector magnetic field data are used to calibrate a physical model of the spacecraft field, and both calibrations are refined by iteration. In phase two, corrected vector data are transformed into geocentric coordinates, previously undetected spacecraft fields are isolated, and initial geomagnetic field models are computed. Provided the SHM is accurate to the required 1.0 nT and can be used to calibrate the VFM to the required 3.0- nT accuracy, the tradeoff study indicates that a 12 m boom and a spacecraft field model uncertainty of 5 percent together allow the 1.0 nT spacecraft field error requirement to be met.
Control Algorithms Charge Batteries Faster
NASA Technical Reports Server (NTRS)
2012-01-01
On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.
MODEL CORRELATION STUDY OF A RETRACTABLE BOOM FOR A SOLAR SAIL SPACECRAFT
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Oakley, J. D.; Kappus, K.; Whorton, M. S.; Kim, Y. K.; Rakpczy, J. M.
2005-01-01
To realize design concepts, predict dynamic behavior and develop appropriate control strategies for high performance operation of a solar-sail spacecraft, we developed a simple analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion of the vehicle is dominated by retractable booms that support the structure, our study concentrates on developing and validating a dynamic model of a long retractable boom. Extensive tests with various configurations were conducted for the 30 Meter, light-weight, retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a solar-sail spacecraft currently under construction. Experimental data were then compared with the corresponding response of the analytical model. Though mixed results were obtained, the analytical model emulates several key characteristics of the boom. The paper concludes with a detailed discussion of issues observed during the study.
Modeling and dynamic environment analysis technology for spacecraft
NASA Astrophysics Data System (ADS)
Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei
Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.
Environmental benefits of chemical propulsion
NASA Technical Reports Server (NTRS)
Hayes, Joyce A.; Goldberg, Benjamin E.; Anderson, David M.
1995-01-01
This paper identifies the necessity of chemical propulsion to satellite usage and some of the benefits accrued through monitoring global resources and patterns, including the Global Climate Change Model (GCM). The paper also summarized how the satellite observations are used to affect national and international policies. Chemical propulsion, like all environmentally conscious industries, does provide limited, controlled pollutant sources through its manufacture and usage. However, chemical propulsion is the sole source which enables mankind to launch spacecraft and monitor the Earth. The information provided by remote sensing directly affects national and international policies designed to protect the environment and enhance the overall quality of life on Earth. The resultant of chemical propulsion is the capability to reduce overall pollutant emissions to the benefit of mankind.
Preentry communications study. Outer planets atmospheric entry probe
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1976-01-01
A pre-entry communications study is presented for a relay link between a Jupiter entry probe and a spacecraft in hyperbolic orbit. Two generic communications links of interest are described: a pre-entry link to a spun spacecraft antenna, and a pre-entry link to a despun spacecraft antenna. The propagation environment of Jupiter is defined. Although this is one of the least well known features of Jupiter, enough information exists to reasonably establish bounds on the performance of a communications link. Within these bounds, optimal carrier frequencies are defined. The next step is to identify optimal relative geometries between the probe and the spacecraft. Optimal trajectories are established for both spun and despun spacecraft antennas. Given the optimal carrier frequencies, and the optimal trajectories, the data carrying capacities of the pre-entry links are defined. The impact of incorporating pre-entry communications into a basic post entry probe is then assessed. This assessment covers the disciplines of thermal control, power source, mass properties and design layout. A conceptual design is developed of an electronically despun antenna for use on a Pioneer class of spacecraft.
Toxicology of the air in closed spaces
NASA Technical Reports Server (NTRS)
Wands, R. C.
1975-01-01
Sources and identification of contaminants in artificial gas atmospheres are discussed. They include biological sources (microflora and man), materials, processes, aerosols, and malfunctions. Acute or chronic toxicity may result from spacecraft air contamination. Air quality standards are presented in tabular form.
Orbital Debris Engineering Model (ORDEM) v.3
NASA Technical Reports Server (NTRS)
Matney, Mark; Krisko, Paula; Xu, Yu-Lin; Horstman, Matthew
2013-01-01
A model of the manmade orbital debris environment is required by spacecraft designers, mission planners, and others in order to understand and mitigate the effects of the environment on their spacecraft or systems. A manmade environment is dynamic, and can be altered significantly by intent (e.g., the Chinese anti-satellite weapon test of January 2007) or accident (e.g., the collision of Iridium 33 and Cosmos 2251 spacecraft in February 2009). Engineering models are used to portray the manmade debris environment in Earth orbit. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical and statistical techniques has enabled the construction of this more comprehensive and sophisticated model. The primary output of this model is the flux [#debris/area/time] as a function of debris size and year. ORDEM may be operated in spacecraft mode or telescope mode. In the former case, an analyst defines an orbit for a spacecraft and "flies" the spacecraft through the orbital debris environment. In the latter case, an analyst defines a ground-based sensor (telescope or radar) in terms of latitude, azimuth, and elevation, and the model provides the number of orbital debris traversing the sensor's field of view. An upgraded graphical user interface (GUI) is integrated with the software. This upgraded GUI uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional flux as a function of debris size for chosen analysis orbits (or views), for example, to the more complex color-contoured two-dimensional (2D) directional flux diagrams in local spacecraft elevation and azimuth.
Automated procedure execution for space vehicle autonomous control
NASA Technical Reports Server (NTRS)
Broten, Thomas A.; Brown, David A.
1990-01-01
Increased operational autonomy and reduced operating costs have become critical design objectives in next-generation NASA and DoD space programs. The objective is to develop a semi-automated system for intelligent spacecraft operations support. The Spacecraft Operations and Anomaly Resolution System (SOARS) is presented as a standardized, model-based architecture for performing High-Level Tasking, Status Monitoring and automated Procedure Execution Control for a variety of spacecraft. The particular focus is on the Procedure Execution Control module. A hierarchical procedure network is proposed as the fundamental means for specifying and representing arbitrary operational procedures. A separate procedure interpreter controls automatic execution of the procedure, taking into account the current status of the spacecraft as maintained in an object-oriented spacecraft model.
Spacecraft Radio Scintillation and Solar System Exploration
NASA Technical Reports Server (NTRS)
Woo, Richard
1993-01-01
When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of the scintillation measurements, and to highlight some of the scientific results obtained to date. Special emphasis is placed on comparing the remote sensing features of planetary and terrestrial scintillation measurements, and on contrasting spacecraft and natural radio source scintillation measurements. I will first discuss planetary atmospheres and ionospheres, and then the solar wind.
Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger
2012-11-01
For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on very unusual properties of microbes. For ESA, this collection is an essential resource with which to evaluate the contamination potential of spacecraft-associated biology and validate new biological contamination control and reduction procedures.
Improved Solar-Radiation-Pressure Models for GPS Satellites
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz; Kuang, Da
2006-01-01
A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.
NASA Technical Reports Server (NTRS)
Mauldin, Rebecca H.
2010-01-01
In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.
Spacecraft Dynamics and Control Program at AFRPL
NASA Technical Reports Server (NTRS)
Das, A.; Slimak, L. K. S.; Schloegel, W. T.
1986-01-01
A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.
AMTD - Advanced Mirror Technology Development in Mechanical Stability
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.
Simulation and Analysis of Three-Phase Rectifiers for Aerospace Power Applications
NASA Technical Reports Server (NTRS)
Truong, Long V.; Birchenough, Arthur G.
2004-01-01
Due to the nature of planned planetary missions, fairly large advanced power systems are required for the spacecraft. These future high power spacecrafts are expected to use dynamic power conversion systems incorporating high speed alternators as three-phase AC electrical power source. One of the early design considerations in such systems is the type of rectification to be used with the AC source for DC user loads. This paper address the issues involved with two different rectification methods, namely the conventional six and twelve pulses. Two circuit configurations which involved parallel combinations of the six and twelve-pulse rectifiers were selected for the simulation. The rectifier s input and output power waveforms will be thoroughly examined through simulations. The effects of the parasitic load for power balancing and filter components for reducing the ripple voltage at the DC loads are also included in the analysis. Details of the simulation circuits, simulation results, and design examples for reducing risk from damaging of spacecraft engines will be presented and discussed.
Preliminary Design and Analysis of the GIFTS Instrument Pointing System
NASA Technical Reports Server (NTRS)
Zomkowski, Paul P.
2003-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.
Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling
NASA Astrophysics Data System (ADS)
Schum, William K.; Doolittle, Christina M.; Boyarko, George A.
2006-05-01
During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.
Determination of HCME 3-D parameters using a full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae; Lee, Harim
2016-05-01
It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.
Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels
NASA Astrophysics Data System (ADS)
Liu, Feng; Yue, Baozeng; Zhao, Liangyu
2018-02-01
A liquid-filled flexible spacecraft is essentially a time-variant fully-coupled system, whose dynamics characteristics are closely associated with its motion features. This paper focuses on the mathematical modelling and attitude control of the spacecraft coupled with fuel sloshing dynamics and flexible solar panels vibration. The slosh motion is represented by a spherical pendulum, whose motion description method is improved by using split variable operation. Benefiting from this improvement, the nonlinear lateral sloshing and the rotary sloshing as well as the rigid motion of a liquid respect to the spacecraft can be approximately described. The assumed modes discretization method has been adopted to approximate the elastic displacements of the attached panels, and the coupled dynamics is derived by using the Lagrangian formulation. A variable substitution method is proposed to obtain the apparently-uncoupled mathematical model of the rigid-flexible-liquid spacecraft. After linearization, this model can be directly used for designing Lyapunov output-feedback attitude controller (OFAC). With only torque actuators, and attitude and rate sensors installed, this kind of attitude controller, as simulation results show, is capable of not only bringing the spacecraft to the desired orientation, but also suppressing the effect of flex and slosh on the attitude motion of the spacecraft.
Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters
NASA Technical Reports Server (NTRS)
Masters, W. C.; Scheeres, D. J.; Thurman, S. W.
1994-01-01
The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.
NASA Technical Reports Server (NTRS)
Mason, G. M.; Ng, C. K.; Klecker, B.; Green, G.
1989-01-01
Impulsive solar energetic particle (SEP) events are studied to: (1) describe a distinct class of SEP ion events observed in interplanetary space, and (2) test models of focused transport through detailed comparisons of numerical model prediction with the data. An attempt will also be made to describe the transport and scattering properties of the interplanetary medium during the times these events are observed and to derive source injection profiles in these events. ISEE 3 and Helios 1 magnetic field and plasma data are used to locate the approximate coronal connection points of the spacecraft to organize the particle anisotropy data and to constrain some free parameters in the modeling of flare events.
Comparison of Spacecraft Contamination Models with Well-Defined Flight Experiment
NASA Technical Reports Server (NTRS)
Pippin, G. H.
1998-01-01
The report presents analyzed surface areas on particular experiment trays from the Long Duration Exposure Facility (LDEF) for silicone-based molecular contamination. The trays for examination were part of the Ultra-Heavy Cosmic Ray Experiment (UHCRE). These particular trays were chosen because each tray was identical to the others in construction, and the materials on each tray were well known, documented, and characterized. In particular, a known specific source of silicone contamination was present on each tray. Only the exposure conditions varied from tray to tray. The results of post-flight analyses of surfaces of three trays were compared with the predictions of the three different spacecraft molecular contamination models. Phase one tasks included: 1) documenting the detailed geometry of the hardware; 2) determining essential properties of the anodized aluminum, Velcro(Tm), silverized Teflon(Tm), silicone gaskets, and DC6-1104(Tm) silicone adhesive materials used to make the trays, tray covers, and thermal control blankets; 3) selecting and removing areas from each tray; and 4) beginning surface analysis of the selected tray walls. Phase two tasks included: 1) completion of surface analysis measurements of the selected tray surface, 2) obtaining auger depth profiles at selected locations, and 3) running versions of the ISEM, MOFLUX, and PLIMP (Plume Impingement) contamination prediction models and making comparisons with experimental results.
Structure and density of cometary nuclei
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Lowry, Stephen C.
2008-09-01
Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple’s (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy- onglomerate planetesimals, possibly held together only by self-gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker-Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA’s Rosetta mission, now en route to comet 67P/Churyumov- Gerasimenko, will provide that opportunity.
Distinct sources of particles near the cusp and the dusk flank of the magnetosphere
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M.; Dandouras, I. S.; Rème, H.; Fazakerley, A. N.; Daly, P. W.
2015-12-01
At the magnetopause, the location of the magnetic reconnection sites depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is also taking place near the exterior cusp quasi-simultaneously. A three-dimensional global magnetohydrodynamic (MHD) simulation will be used to determine the global topology of the magnetic field during the event.
Modelling of the Saturnian Kilometric Radiation (SKR)
NASA Astrophysics Data System (ADS)
Cecconi, B.; Lamy, L.; Prangé, R.; Zarka, P.; Hess, S.; Clarke, J. T.; Nichols, J.
2008-12-01
The Saturnian Kilometric Radiation (SKR), discovered by the Voyager spacecraft in the 1980's, is observed quasi-continuously by Cassini since 2003. Study of 3 years of SKR observations by RPWS (Radio and Plasma Wave Science) revealed three recurrent features of SKR dynamic spectra : (i) discrete arcs, presumably caused by the anisotropy of the radio emission pattern combined to the observer's motion, (ii) an equatorial shadow zone around the planet (observed near perikrones) and (iii) signal extinctions at high northern latitudes. We model these features using the code PRES (Planetary Radio Emission Simulator) that assumes radio emissions to be generated via the Cyclotron Maser Instability for simulating observed dynamic spectra. We show that observed arc-like structures imply radio sources in partial (~90%) corotation, located on magnetic field lines of invariant latitude 70° to 75°, and emitting at oblique angle from the local magnetic field with a cone angle that varies with frequency. Then, based on the previously demonstrated conjugacy between UV and SKR sources, we successfully model the equatorial shadow zone as well as northern latitude SKR extinctions assuming time variable radio sources distributed along field lines with footprints along the daily UV oval measured from HST images.
Solar Corona/Wind Composition and Origins of the Solar Wind
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.
2014-12-01
Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.
NASA Astrophysics Data System (ADS)
Zhao, Zhao; Zhang, Jin; Li, Hai-yang; Zhou, Jian-yong
2017-01-01
The optimization of an LEO cooperative multi-spacecraft refueling mission considering the J2 perturbation and target's surplus propellant constraint is studied in the paper. First, a mission scenario is introduced. One service spacecraft and several target spacecraft run on an LEO near-circular orbit, the service spacecraft rendezvouses with some service positions one by one, and target spacecraft transfer to corresponding service positions respectively. Each target spacecraft returns to its original position after obtaining required propellant and the service spacecraft returns to its original position after refueling all target spacecraft. Next, an optimization model of this mission is built. The service sequence, orbital transfer time, and service position are used as deign variables, whereas the propellant cost is used as the design objective. The J2 perturbation, time constraint and the target spacecraft's surplus propellant capability constraint are taken into account. Then, a hybrid two-level optimization approach is presented to solve the formulated mixed integer nonlinear programming (MINLP) problem. A hybrid-encoding genetic algorithm is adopted to seek the near optimal solution in the up-level optimization, while a linear relative dynamic equation considering the J2 perturbation is used to obtain the impulses of orbital transfer in the low-level optimization. Finally, the effectiveness of the proposed model and method is validated by numerical examples.
A spacecraft's own ambient environment: The role of simulation-based research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketsdever, Andrew D.; Gimelshein, Sergey
2014-12-09
Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over largemore » pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.« less
Naval EarthMap Observer: overview and data processing
NASA Astrophysics Data System (ADS)
Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.
1999-12-01
We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.
NASA Technical Reports Server (NTRS)
Chen, Erinna M.
2005-01-01
A significant problem in the use of electric thrusters in spacecraft is the formation of low-energy ions in the thruster plume. Low-energy ions are formed in the plume via random collisions between high-velocity ions ejected from the thruster and slow-moving neutral atoms of propellant effusing from the engine. The sputtering of spacecraft materials due to interactions with low-energy ions may result in erosion or contamination of the spacecraft. The trajectory of these ions is determined primarily by the plasma potential of the plume. Thus, accurate characterization of the plasma potential is essential to predicting low-energy ion contamination. Emissive probes were utilized to determine the plasma potential. When the ion and electron currents to the probe are balanced, the potential of such probes float to the plasma potential. Two emissive probes were fabricated; one utilizing a DC power supply, another utilizing a rectified AC power source. Labview programs were written to coordinate and automate probe motion in the thruster plume. Employing handshaking interaction, these motion programs were synchronized to various data acquisition programs to ensure precision and accuracy of the measurements. Comparing these experimental values to values from theoretical models will allow for a more accurate prediction of low-energy ion interaction.
Nuclear power sources in outer space. [spacecraft propulsion legal aspects
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1978-01-01
Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.
A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation
NASA Technical Reports Server (NTRS)
Hyman, Cody
2011-01-01
Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.
NASA Astrophysics Data System (ADS)
Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; McGuire, Robert
2015-04-01
The NASA Space Physics Data Facility and Virtual Energetic Particle Observatory (VEPO) have jointly upgraded the highly used OMNIWeb services for heliospheric solar wind data to also include energetic electron, proton, and heavier ion data in a variety of graphical browse formats. The underlying OMNI and VEPO data now span just over a half century from 1963 to the present. The new services include overlay of differential flux spectra from multiple instruments and spacecraft, scatter plots of fluxes from two user-selected energy channels, distribution function histograms of selected parameters, and spectrograms of flux vs. energy and time. Users can also overlay directional flux spectra from different angular channels. Data from most current and some past (Helios 1&2, Pioneer 10&11) heliospheric spacecraft and instruments are wholly or partially covered by these evolving new services. The traditional OMNI service of correlating magnetic field and plasma data from L1 to 1 AU solar wind sources is also being extended for other spacecraft, e.g. Voyager 1 and 2, to correlations with energetic particle channels. The user capability is, for example, demonstrated to rapidly scan through particle flux spectra from consecutive time periods for so-called “reservoir” events, in which solar energetic particle flux spectra converge in shape and amplitude from multiple spacecraft sources within the inner heliosphere. Such events are important for understanding spectral evolution of global heliospheric events and for intercalibration of flux data from multiple instruments of the same and different spacecraft. These services are accessible at http://omniweb.gsfc.nasa.gov/. SPDF and VEPO are separately accessible at http://spdf.gsfc.nasa.gov/ and http://vepo.gsfc.nasa.gov/.In the future we will propose to extend OMNIWeb particle flux data coverage to the plasma and suprathermal energy range.
Advanced spacecraft: What will they look like and why
NASA Technical Reports Server (NTRS)
Price, Humphrey W.
1990-01-01
The next century of spaceflight will witness an expansion in the physical scale of spacecraft, from the extreme of the microspacecraft to the very large megaspacecraft. This will respectively spawn advances in highly integrated and miniaturized components, and also advances in lightweight structures, space fabrication, and exotic control systems. Challenges are also presented by the advent of advanced propulsion systems, many of which require controlling and directing hot plasma, dissipating large amounts of waste heat, and handling very high radiation sources. Vehicle configuration studies for a number of theses types of advanced spacecraft were performed, and some of them are presented along with the rationale for their physical layouts.
Application of square-root filtering for spacecraft attitude control
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Schmidt, S. F.; Goka, T.
1978-01-01
Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.
Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.
2011-01-01
The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.
Models of Electron Energetics in the Enceladus Torus
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Ozak, N.; Richard, M. S.; Robertson, I. P.; Perry, M. E.; Campbell, M. E.
2010-12-01
The inner magnetosphere of Saturn contains a mixture of plasma and neutral gas, the dominant source of which is the icy satellite Enceladus. Water vapor and water dissociation products are present throughout the magnetosphere but they are particularly concentrated in a torus surrounding Saturn at the orbit of Enceladus. The Hubble Space Telescope observed OH in the torus and other neutral species (mainly water) have been measured by the Ion and Neutral Mass Spectrometer (INMS) and the Ultraviolet Imaging Spectrometer (UVIS) onboard the Cassini spacecraft. Relatively cold plasma, dominated by water group ion species, was measured by instruments onboard both the Voyager and Cassini spacecraft. The electron distribution function in this torus appears to include both a colder thermal population (seen for example by the Cassini Radio and Plasma Wave Spectrometer’s Langmuir probe -- RPWS/LP) and hotter suprathermal populations (seen by the electron spectrometer part of the Cassini plasma analyzer -- CAPS/ELS). We present a model of electron energetics in the torus. One part of this model utilizes an electron energy deposition code to determine electron fluxes versus energy. The model includes photoelectron production from the absorption of solar radiation as well as electron impact collisional processes for water and other neutral species. Another part of the model consists of an energetics code for thermal electrons that generates electron temperatures. Heating from Coulomb collisions with photoelectrons and with hot pick-up ions was included, as was cooling due to electron impact collisions with water. We show that solar radiation is the dominant source of suprathermal electrons in the core neutral torus, in agreement with recently published CAPS-ELS data. We predict electron thermal energies of about 2 eV, which is somewhat low in comparison with recently published RPWS-LP data. The implications of these results for plasma densities in the torus will also be discussed.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.
Specification of the Surface Charging Environment with SHIELDS
NASA Astrophysics Data System (ADS)
Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.
2016-12-01
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.
NASA Technical Reports Server (NTRS)
Morabito, D. D.
2002-01-01
A superior solar conjunction occurs when the sun lies near the signal path of a source as observed from the Earth. Interplanetary spacecraft sent to the planets typically encounter one or more solar conjunctions during their mission lifetimes. During these periods, the signals sent to and from the spacecraft encounter degradation due to the intervening charged particles of the solar corona.
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua
2017-07-01
We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.
Advanced two-phase heat transfer systems
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Future large spacecraft, such as the Earth Observing System (EOS) platforms, will require a significantly more capable thermal control system than is possible with current 'passive' technology. Temperatures must be controlled much more tightly over a larger surface area. Numerous heat load sources will often be located inside the body of the spacecraft without a good view to space. Power levels and flux densities may be higher than can be accommodated with traditional technology. Integration and ground testing will almost certainly be much more difficult with such larger, more complex spacecraft. For these and similar reasons, the Goddard Space Flight Center (GSFC) has been developing a new, more capable thermal control technology called capillary pumped loops (CPL's). CPL's represent an evolutionary improvement over heat pipes; they can transport much greater quantities of heat over much longer distances and can serve numerous heat load sources. In addition, CPL's can be fabricated into large cold plates that can be held to tight thermal gradients. Development of this technology began in the early 1980's and is now reaching maturity. CPL's have recently been baselined for the EOS-AM platform (1997 launch) and the COMET spacecraft (1992 launch). This presentation describes this new technology and its applications. Most of the viewgraphs are self descriptive. For those that are less clear additional comments are provided.
America in Space: The First Decade - Spacecraft Power
NASA Technical Reports Server (NTRS)
Corliss, William R.
1970-01-01
Electrical power is necessary for every manned and unmanned spacecraft, with the exception of a few special-purpose Earth satellites. It is the reliable flow and availability of electrical power that allows man to extend his personal ventures safely beyond the atmosphere and keeps unmanned scientific payloads serving as useful tools for space exploration and applications. Electric power is essential to space communications, guidance, control, tracking, telemetry, life-support systems, sensors, data handling and storage, and to assure the proper functioning of countless experimental and housekeeping systems and subsystems aboard operating spacecraft. It remains the task of the National Aeronautics and Space Administration, since NASA's founding in 1958, to fully investigate the chemical, nuclear and solar sources of energy and to see how best they can be converted to reliable spacecraft power. The research and technology of power-generating systems illustrates a seldom recognized goal of NASA - to assure this Nation a freedom of choice; the choice, in this case, being that of going where we wish to go in the atmosphere or in space. Technical capability is the key to such freedom. Power requirements and profiles are reviewed and power sources, including batteries, fuel cells, solar cell, RTGs and nuclear fission power plants in space, are highlighted.
Spacecraft on-orbit deployment anomalies - What can be done?
NASA Astrophysics Data System (ADS)
Freeman, Michael T.
1993-04-01
Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.
Particle-In-Cell Simulations on Electric Field Antenna Characteristics in the Spacecraft Environment
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.
2006-12-01
The Solar Terrestrial Physics (STP) group in Japan has organized a new magnetospheric mission named SCOPE whose objective is to investigate the scale-coupling process of plasma dynamics in the Terrestrial magnetosphere. For the sophisticated electric field measurements planned in the SCOPE mission, we have to investigate the antenna characteristics which are essential for the precise calibration of observed data. Particularly, (1) realistic antenna geometries including spacecraft body and (2) inhomogeneous plasma environment created by plasma-spacecraft interactions should be taken into consideration in the antenna analysis for application to the scientific mission. However, the analysis of the antenna impedance is very complex because the plasma is a dispersive and anisotropic medium, and thus it is too difficult to consider the realistic plasma environment near the spacecraft by the theoretical approaches. In the present study, we apply the Particle-In-Cell simulations to the antenna analysis, which enables us to treat the antenna model including a spacecraft body and analyze the effects of photoelectron emission on antenna characteristics. The present antenna model consists of perfect conducting antennas and spacecraft body, and the photoelectron emission from the sunlit surfaces is also modeled. Using these models, we first performed the electrostatic simulations and examined the photoelectron environment around the spacecraft. Next, the antenna impedance under the obtained photoelectron environment was examined by the electromagnetic simulations. Impedance values obtained in photoelectron environment were much different from those in free space, and they were analogous to the impedance characteristics of an equivalent electric circuit consisting of a resistance and capacitance connected in parallel. The validity of the obtained values has been examined by the comparison with the measurements by the scientific spacecraft.
Impacts of Microbial Growth on the Air Quality of the International Space Station
NASA Technical Reports Server (NTRS)
Macatangay, Ariel V.; Bruce, Rebekah J.
2009-01-01
An understanding of the various sources of non-methane volatile organic compounds (NMVOCs) is one facet to ensuring the habitability of crewed spacecraft. Even though the International Space Station (ISS) atmosphere is relatively well characterized in terms of what is in the atmosphere and approximately how much, linking the majority of these trace contaminants detected to their source is virtually impossible. Albeit a few of can be associated to a single source, the majority of these trace contaminants have their origins from multiple sources. On crewed spacecraft such as ISS, trace contaminants are broadly categorized as either coming from equipment, which includes systems and payloads, or from the metabolic processes of the crew members. Such widely encompassing categories clearly illustrate the difficulty in linking air contaminants to their source(s). It is well known that microbial growth in ISS can flourish if left unchecked. Although processes are in place to limit microbial growth, in reality, microbial growth has pervaded the habitable environment of ISS. This is simply a consequence of having crewed spacecraft, as humans are the largest contributor to the bioload. As with crew members, microbes also have metabolic processes which, in many ways, are comparable to human metabolism. As such, it can be expected that microbial growth can lead to the release of volatile organic compounds into the ISS atmosphere. Given a large enough microbial population, the impact to the air quality of ISS can be potentially large. A survey of the microbiology found in ISS will be presented as well as the possible types of volatile organic compounds that can result from such organisms. This will be correlated to the observations provided by ground-based analysis of ISS atmosphere samples.
Impacts of Microbial Growth on the Air Quality of the International Space Station
NASA Technical Reports Server (NTRS)
Macatangay, Ariel V.; Bruce, Rebekah J.
2010-01-01
An understanding of the various sources of non-methane volatile organic compounds (NMVOCs) is one facet to ensuring the habitability of crewed spacecraft. Even though the International Space Station (ISS) atmosphere is relatively well characterized in terms of what is in the atmosphere and approximately how much, linking the majority of these trace contaminants detected to their source is virtually impossible. Albeit a few of can be associated to a single source, the majority of these trace contaminants have their origins from multiple sources. On crewed spacecraft such as ISS, trace contaminants are broadly categorized as either coming from equipment, which includes systems and payloads, or from the metabolic processes of the crew members. Such widely encompassing categories clearly illustrate the difficulty in linking air contaminants to their source(s). It is well known that microbial growth in ISS can flourish if left unchecked. Although processes are in place to limit microbial growth, in reality, microbial growth has pervaded the habitable environment of ISS. This is simply a consequence of having crewed spacecraft, as humans are the largest contributor to the bioload. As with crew members, microbes also have metabolic processes which, in many ways, are comparable to human metabolism. As such, it can be expected that microbial growth can lead to the release of volatile organic compounds into the ISS atmosphere. Given a large enough microbial population, the impact to the air quality of ISS can be potentially large. A survey of the microbiology found in ISS will be presented as well as the possible types of volatile organic compounds that can result from such organisms. This will be correlated to the observations provided by ground-based analysis of ISS atmosphere samples
Developments in high-precision gamma-ray burst source studies
NASA Technical Reports Server (NTRS)
Cline, T. L.
1982-01-01
The source location data analyzed by the first and second interplanetary gamma ray burst spacecraft networks are reviewed. The possibilities of additional networks and of related studies in other disciplines, and the prospects for real time optical transient observations and for the definition of gamma ray burst sources by optical transient astronomy are also reviewed.
A planetary dust ring generated by impact-ejection from the Galilean satellites
NASA Astrophysics Data System (ADS)
Sachse, Manuel
2018-03-01
All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly
2011-01-01
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. The National Aeronautics and Space Administration (NASA) is currently exploring the Sabatier reaction, the Bosch reaction, and co-electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. While all three techniques have demonstrated the capacity to reduce CO2 in the laboratory, there is interest in understanding how all three techniques would perform at a system-level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily re-scaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental e orts. Comparison to experimental data is provided were available for veri cation purposes.
Properties of Coronal Shocks at the Origin of SEP events Observed by Only One Single Spacecraft
NASA Astrophysics Data System (ADS)
Lario, D.; Kwon, R.
2017-12-01
The simultaneous observation of solar energetic particle (SEP) events by multiple spacecraft distributed in the interplanetary medium depends not only on the spatial separation among the different spacecraft, but also on the properties of the particle sources and the characteristics of the SEP transport in interplanetary space. Among the SEP events observed by STEREO-A, STEREO-B and/or near-Earth spacecraft during solar cycle 24, we select SEP events observed by a single spacecraft (specifically, the SEP events observed only by near-Earth spacecraft on 2012 April 5, 2011 September 4, and 2013 August 17). We analyze whether the properties of the coronal shock associated with the origin of the events (as seen in extreme-ultraviolet and white-light coronal images) differ from those associated with SEP events observed by two or three spacecraft. For the selected events we find that the associated CMEs are, in general, narrower than those associated with SEP events observed by two or three spacecraft. The confined extension of the parent coronal shock and the absence of magnetic connection between distant spacecraft and the regions of the expanding coronal shock able to efficiently accelerate SEPs seem to be the conditions leading to intense SEP events observed only over narrow regions of interplanetary space by spacecraft magnetically connected to regions close to the parent eruption site. Weak and gradual intensity increases observed in extended regions of space might involve transport processes and/or later connections established with interplanetary shocks. Systematic analyses of a larger number of events are required before drawing firm conclusions.
NASA Technical Reports Server (NTRS)
Stensrud, Kjell C.; Hamm, Dustin
2007-01-01
NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.
Surface Penetrating Radar Simulations for Europa
NASA Technical Reports Server (NTRS)
Markus, T.; Gogineni, S. P.; Green, J. L.; Fung, S. F.; Cooper, J. F.; Taylor, W. W. L.; Garcia, L.; Reinisch, B. W.; Song, P.; Benson, R. F.
2004-01-01
The space environment above the icy surface of Europa is a source of radio noise in this frequency range from natural sources in the Jovian magnetosphere. The ionospheric and magnetospheric plasma environment of Europa affects propagation of transmitted and return signals between the spacecraft and the solid surface in a frequency-dependent manner. The ultimate resolution of the subsurface sounding measurements will be determined, in part, by a capability to mitigate these effects. We discuss an integrated multi-frequency approach to active radio sounding of the Europa ionospheric and local magnetospheric environments, based on operational experience from the Radio Plasma Imaging @PI) experiment on the IMAGE spacecraft in Earth orbit, in support of the subsurface measurement objectives.
Modeling of environmentally induced transients within satellites
NASA Technical Reports Server (NTRS)
Stevens, N. John; Barbay, Gordon J.; Jones, Michael R.; Viswanathan, R.
1987-01-01
A technique is described that allows an estimation of possible spacecraft charging hazards. This technique, called SCREENS (spacecraft response to environments of space), utilizes the NASA charging analyzer program (NASCAP) to estimate the electrical stress locations and the charge stored in the dielectric coatings due to spacecraft encounter with a geomagnetic substorm environment. This information can then be used to determine the response of the spacecraft electrical system to a surface discharge by means of lumped element models. The coupling into the electronics is assumed to be due to magnetic linkage from the transient currents flowing as a result of the discharge transient. The behavior of a spinning spacecraft encountering a severe substorm is predicted using this technique. It is found that systems are potentially vulnerable to upset if transient signals enter through the ground lines.
Integration of the Remote Agent for the NASA Deep Space One Autonomy Experiment
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Bernard, Douglas E.; Gamble, Edward B., Jr.; Kanefsky, Bob; Kurien, James; Muscettola, Nicola; Nayak, P. Pandurang; Rajan, Kanna; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes the integration of the Remote Agent (RA), a spacecraft autonomy system which is scheduled to control the Deep Space 1 spacecraft during a flight experiment in 1999. The RA is a reusable, model-based autonomy system that is quite different from software typically used to control an aerospace system. We describe the integration challenges we faced, how we addressed them, and the lessons learned. We focus on those aspects of integrating the RA that were either easier or more difficult than integrating a more traditional large software application because the RA is a model-based autonomous system. A number of characteristics of the RA made integration process easier. One example is the model-based nature of RA. Since the RA is model-based, most of its behavior is not hard coded into procedural program code. Instead, engineers specify high level models of the spacecraft's components from which the Remote Agent automatically derives correct system-wide behavior on the fly. This high level, modular, and declarative software description allowed some interfaces between RA components and between RA and the flight software to be automatically generated and tested for completeness against the Remote Agent's models. In addition, the Remote Agent's model-based diagnosis system automatically diagnoses when the RA models are not consistent with the behavior of the spacecraft. In flight, this feature is used to diagnose failures in the spacecraft hardware. During integration, it proved valuable in finding problems in the spacecraft simulator or flight software. In addition, when modifications are made to the spacecraft hardware or flight software, the RA models are easily changed because they only capture a description of the spacecraft. one does not have to maintain procedural code that implements the correct behavior for every expected situation. On the other hand, several features of the RA made it more difficult to integrate than typical flight software. For example, the definition of correct behavior is more difficult to specify for a system that is expected to reason about and flexibly react to its environment than for a traditional flight software system. Consequently, whenever a change is made to the RA it is more time consuming to determine if the resulting behavior is correct. We conclude the paper with a discussion of future work on the Remote Agent as well as recommendations to ease integration of similar autonomy projects.
LDEF Materials Results for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Whitaker, Ann F. (Compiler); Gregory, John (Compiler)
1993-01-01
These proceedings describe the application of LDEF data to spacecraft and payload design, and emphasize where space environmental effects on materials research and development is needed as defined by LDEF data. The LDEF six years of exposure of materials has proven to be by far the most comprehensive source of information ever obtained on the long-term performance of materials in the space environment. The conference provided a forum for materials scientists and engineers to review and critically assess the LDEF results from the standpoint of their relevance, significance, and impact on spacecraft design practice. The impact of the LDEF findings on materials selection and qualification, and the needs and plans for further study, were addressed from several perspectives. Many timely and needed changes and modifications in external spacecraft materials selection have occurred as a result of LDEF investigations.
NASA Technical Reports Server (NTRS)
Peterson, Laurie J.; Callahan, Michael R.
2007-01-01
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions on strategies that could be used for CEV based on previous spacecraft water systems will be made in the form of questions and recommendations.
2002-10-18
KENNEDY SPACE CENTER, FLA. -- Workers supervise the move of the suspended TDRS-J spacecraft towards a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
2002-10-18
KENNEDY SPACE CENTER, FLA. -- Workers supervise the placement of the TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
2002-10-18
KENNEDY SPACE CENTER, FLA. - Workers attach the container with the TDRS-J spacecraft inside to an overhead crane. The container will be placed on a transporter and taken to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
Atmospheric drag model calibrations for spacecraft lifetime prediction
NASA Technical Reports Server (NTRS)
Binebrink, A. L.; Radomski, M. S.; Samii, M. V.
1989-01-01
Although solar activity prediction uncertainty normally dominates decay prediction error budget for near-Earth spacecraft, the effect of drag force modeling errors for given levels of solar activity needs to be considered. Two atmospheric density models, the modified Harris-Priester model and the Jacchia-Roberts model, to reproduce the decay histories of the Solar Mesosphere Explorer (SME) and Solar Maximum Mission (SMM) spacecraft in the 490- to 540-kilometer altitude range were analyzed. Historical solar activity data were used in the input to the density computations. For each spacecraft and atmospheric model, a drag scaling adjustment factor was determined for a high-solar-activity year, such that the observed annual decay in the mean semimajor axis was reproduced by an averaged variation-of-parameters (VOP) orbit propagation. The SME (SMM) calibration was performed using calendar year 1983 (1982). The resulting calibration factors differ by 20 to 40 percent from the predictions of the prelaunch ballistic coefficients. The orbit propagations for each spacecraft were extended to the middle of 1988 using the calibrated drag models. For the Jaccia-Roberts density model, the observed decay in the mean semimajor axis of SME (SMM) over the 4.5-year (5.5-year) predictive period was reproduced to within 1.5 (4.4) percent. The corresponding figure for the Harris-Priester model was 8.6 (20.6) percent. Detailed results and conclusions regarding the importance of accurate drag force modeling for lifetime predictions are presented.
Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory
NASA Technical Reports Server (NTRS)
Weinwurm, G.; Weber, R.
2005-01-01
The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.
Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data
2005-03-01
xii ATTITUDE MODEL OF A REACTION WHEEL/ FIXED THRUSTER BASED SATELLITE USING TELEMETRY DATA I. Introduction As technology advances and spacecraft ...Earth’s horizon to determine spacecraft attitude . Sun sensors use the Sun to determine spacecraft attitude and are currently the attitude determination...wheels and the rate of rotation of the gimbal. Gravity gradient stabilization is a passive attitude control technique that is designed to use the
XML-Based SHINE Knowledge Base Interchange Language
NASA Technical Reports Server (NTRS)
James, Mark; Mackey, Ryan; Tikidjian, Raffi
2008-01-01
The SHINE Knowledge Base Interchange Language software has been designed to more efficiently send new knowledge bases to spacecraft that have been embedded with the Spacecraft Health Inference Engine (SHINE) tool. The intention of the behavioral model is to capture most of the information generally associated with a spacecraft functional model, while specifically addressing the needs of execution within SHINE and Livingstone. As such, it has some constructs that are based on one or the other.
Polar Wind Measurements with TIDE/PSI and HYDRA on the Polar Spacecraft
NASA Technical Reports Server (NTRS)
Su, Y. J.; Horwitz, J. L.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.
1998-01-01
The Thermal Ion Dynamics Experiment (TIDE) on the POLAR spacecraft has allowed sampling of the three-dimensional ion distributions with excellent energy, angular, and mass resolution. The companion Plasma Source Instrument, when operated, allows sufficient diminution of the electric potential to observe the polar wind at very high altitudes. In this presentation, we will describe the results of polar wind characteristics H+, He+, and 0+ as observed by TIDE at 5000 km and 8 RE altitudes. The relationship of the polar wind parameters with the solar zenith angle and with the day-night distance in the Solar Magnetic coordinate system will also be presented. We will compare these measurements with recent simulations of the photoelectron-driven polar wind using a couple fluid-semikinetic model. In addition, we will compare these polar wind observations with low-energy electrons sampled by the HYDRA experiment on POLAR to examine possible effects of the polar rain and photoelectrons and hopefully explain the large ion outflow velocity variations at POLAR apogee.
Navigation of the space VLBI mission-HALCA
NASA Technical Reports Server (NTRS)
You, Tung Han; Ellis, Jordan; Mottinger, Neil
1998-01-01
In February 1997, the Japanese Space Agency ISAS launched the first space VLBI satellite, HALCA, with an 8 meter diameter wire mesh antenna and radio astronomy receivers capable of observing at 1.6, 4.8, and 22 Ghz. In a 560 by 21000 km orbit with a 6 hour period and 31 degree inclination, it observes celestial radio sources in conjunction with a world wide network of ground radio telescopes as part of an international collaborative effort which includes facilities in Japan, the U.S., Canada, Australia, and Europe. JPL is providing tracking and navigation support using a dedicated subnet of 11 meter antennas as well as co-observations using the DSN 70 meter antennas. This paper describes the spacecraft dynamics model and orbit determination strategies developed to meet the stringent trajectory accuracy requirements for generating predictions for the transfer of a stable uplink frequency to the spacecraft and for determining reconstructed orbits for delivery to the NRAO VLBI correlator and the international VLBI science community.
Use of Model Payload for Europa Mission Development
NASA Technical Reports Server (NTRS)
Lewis, Kari; Klaasan, Ken; Susca, Sara; Oaida, Bogdan; Larson, Melora; Vanelli, Tony; Murray, Alex; Jones, Laura; Thomas, Valerie; Frank, Larry
2016-01-01
This paper discusses the basis for the Model Payload and how it was used to develop the mission design, observation and data acquisition strategy, needed spacecraft capabilities, spacecraft-payload interface needs, mission system requirements and operational scenarios.
Xu, Shidong; Sun, Guanghui; Sun, Weichao
2017-01-01
In this paper, the problem of robust dissipative control is investigated for uncertain flexible spacecraft based on Takagi-Sugeno (T-S) fuzzy model with saturated time-delay input. Different from most existing strategies, T-S fuzzy approximation approach is used to model the nonlinear dynamics of flexible spacecraft. Simultaneously, the physical constraints of system, like input delay, input saturation, and parameter uncertainties, are also taken care of in the fuzzy model. By employing Lyapunov-Krasovskii method and convex optimization technique, a novel robust controller is proposed to implement rest-to-rest attitude maneuver for flexible spacecraft, and the guaranteed dissipative performance enables the uncertain closed-loop system to reject the influence of elastic vibrations and external disturbances. Finally, an illustrative design example integrated with simulation results are provided to confirm the applicability and merits of the developed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Electromagnetic interaction of spacecraft with ambient environment
NASA Astrophysics Data System (ADS)
Ku, Hwar-Ching; Silver, David M.
1993-01-01
A model of the midcourse space experiment (MSX) spacecraft and its electromagnetic environment has been developed using the potential of large spacecraft in the Auroral region (POLAR) code. The geometric model has a resolution of 0.341 meters and uses six materials to simulate the electrical surface properties of MSX. The vehicle model includes features such as the major instruments, electronic boxes, radiators, a dewar and open bay, a booster attachment ring, and three different orientations of the solar panels. The electron and ion composition and temperature environment are modeled as a function of the solar activity. Additional parameters include the ram-wake orientation, the hot electron spectrum, day-night-twilight variations, latitudinal variations, and solar panel voltage biasing. Nominal low spacecraft charging cases are described. Calculation with a high peak energetic electron flux produces a ground potential of -180 volts and differential charging as high as 66 volts.
Raster-Based Approach to Solar Pressure Modeling
NASA Technical Reports Server (NTRS)
Wright, Theodore W. II
2013-01-01
An algorithm has been developed to take advantage of the graphics processing hardware in modern computers to efficiently compute high-fidelity solar pressure forces and torques on spacecraft, taking into account the possibility of self-shading due to the articulation of spacecraft components such as solar arrays. The process is easily extended to compute other results that depend on three-dimensional attitude analysis, such as solar array power generation or free molecular flow drag. The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. The parts of the components being lit depends on the orientation of the craft with respect to the Sun, as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun. The purpose of this innovation is to enable high-fidelity computation of solar pressure and power generation effects of illuminated portions of spacecraft, taking self-shading from spacecraft attitude and movable components into account. The key idea in this innovation is to compute results dependent upon complicated geometry by using an image to break the problem into thousands or millions of sub-problems with simple geometry, and then the results from the simpler problems are combined to give high-fidelity results for the full geometry. This process is performed by constructing a 3D model of a spacecraft using an appropriate computer language (OpenGL), and running that model on a modern computer's 3D accelerated video processor. This quickly and accurately generates a view of the model (as shown on a computer screen) that takes rotation and articulation of spacecraft components into account. When this view is interpreted as the spacecraft as seen by the Sun, then only the portions of the craft visible in the view are illuminated. The view as shown on the computer screen is composed of up to millions of pixels. Each of those pixels is associated with a small illuminated area of the spacecraft. For each pixel, it is possible to compute its position, angle (surface normal) from the view direction, and the spacecraft material (and therefore, optical coefficients) associated with that area. With this information, the area associated with each pixel can be modeled as a simple flat plate for calculating solar pressure. The vector sum of these individual flat plate models is a high-fidelity approximation of the solar pressure forces and torques on the whole vehicle. In addition to using optical coefficients associated with each spacecraft material to calculate solar pressure, a power generation coefficient is added for computing solar array power generation from the sum of the illuminated areas. Similarly, other area-based calculations, such as free molecular flow drag, are also enabled. Because the model rendering is separated from other calculations, it is relatively easy to add a new model to explore a new vehicle or mission configuration. Adding a new model is performed by adding OpenGL code, but a future version might read a mesh file exported from a computer-aided design (CAD) system to enable very rapid turnaround for new designs
NASA Astrophysics Data System (ADS)
Pokorný, Petr; Sarantos, Menelaos; Janches, Diego
2017-06-01
Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury’s exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury’s surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury’s surface toward the nightside during Mercury’s approach to aphelion and toward the dayside when the planet is approaching the Sun.
NASA Technical Reports Server (NTRS)
Pokorny, Petr; Sarantos, Menelaos; Janches, Diego
2017-01-01
Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury's exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury's surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury's surface toward the nightside during Mercury's approach to aphelion and toward the dayside when the planet is approaching the Sun.
ADRC for spacecraft attitude and position synchronization in libration point orbits
NASA Astrophysics Data System (ADS)
Gao, Chen; Yuan, Jianping; Zhao, Yakun
2018-04-01
This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle
NASA Astrophysics Data System (ADS)
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen
2017-04-01
Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
Adaptive relative pose control of spacecraft with model couplings and uncertainties
NASA Astrophysics Data System (ADS)
Sun, Liang; Zheng, Zewei
2018-02-01
The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.
NASA Technical Reports Server (NTRS)
Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.
2002-01-01
The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.
Singularity-free dynamic equations of spacecraft-manipulator systems
NASA Astrophysics Data System (ADS)
From, Pål J.; Ytterstad Pettersen, Kristin; Gravdahl, Jan T.
2011-12-01
In this paper we derive the singularity-free dynamic equations of spacecraft-manipulator systems using a minimal representation. Spacecraft are normally modeled using Euler angles, which leads to singularities, or Euler parameters, which is not a minimal representation and thus not suited for Lagrange's equations. We circumvent these issues by introducing quasi-coordinates which allows us to derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates. This is a great advantage as the configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient and singularity-free formulation of the dynamic equations with the same complexity as the conventional Lagrangian approach. The closed form formulation makes the proposed approach well suited for system analysis and model-based control. This paper focuses on the dynamic properties of free-floating and free-flying spacecraft-manipulator systems and we show how to calculate the inertia and Coriolis matrices in such a way that this can be implemented for simulation and control purposes without extensive knowledge of the mathematical background. This paper represents the first detailed study of modeling of spacecraft-manipulator systems with a focus on a singularity free formulation using the proposed framework.
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
On-board emergent scheduling of autonomous spacecraft payload operations
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1994-01-01
This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.
The effects of spacecraft environments on some hydrolytic enzyme patterns in bacteria
NASA Technical Reports Server (NTRS)
Prescott, J. M.; Foster, B. G.
1971-01-01
The effects of space flight on the production and characteristics of proteolytic enzymes are studied for a number of bacterial species isolated from crew members and spacecraft. Enzymatic make-up and cultural characteristics of bacteria isolated from spacecraft crew members are determined. The organism Aeromonas proteolytica and the proteolytic enzymes which it produces are used as models for future spacecraft experiments.
Ontological Modeling for Integrated Spacecraft Analysis
NASA Technical Reports Server (NTRS)
Wicks, Erica
2011-01-01
Current spacecraft work as a cooperative group of a number of subsystems. Each of these requiresmodeling software for development, testing, and prediction. It is the goal of my team to create anoverarching software architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the discrete subsystems' models. Such a plan has been attempted in the past, and has failed due to the excessive scope of the project. Our goal in this version of ISCA is to use new resources to reduce the scope of the project, including using ontological models to help link the internal interfaces of subsystems' models with the ISCA architecture.I have created an ontology of functions specific to the modeling system of the navigation system of a spacecraft. The resulting ontology not only links, at an architectural level, language specificinstantiations of the modeling system's code, but also is web-viewable and can act as a documentation standard. This ontology is proof of the concept that ontological modeling can aid in the integration necessary for ISCA to work, and can act as the prototype for future ISCA ontologies.
First principles nickel-cadmium and nickel hydrogen spacecraft battery models
NASA Technical Reports Server (NTRS)
Timmerman, P.; Ratnakumar, B. V.; Distefano, S.
1996-01-01
The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.
Parameter Estimation of Spacecraft Fuel Slosh Model
NASA Technical Reports Server (NTRS)
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime
NASA Astrophysics Data System (ADS)
Turansky, Craig P.
The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.
NASA Technical Reports Server (NTRS)
Peterson, Jeremy D.; Brown, Jonathan M.
2015-01-01
The aim of this investigation is to determine the feasibility of mission disposal by inserting the spacecraft into a heliocentric orbit along the unstable manifold and then manipulating the Jacobi constant to prevent the spacecraft from returning to the Earth-Moon system. This investigation focuses around L1 orbits representative of ACE, WIND, and SOHO. It will model the impulsive delta-V necessary to close the zero velocity curves after escape through the L1 gateway in the circular restricted three body model and also include full ephemeris force models and higher fidelity finite maneuver models for the three spacecraft.
Applications of the hybrid coordinate method to the TOPS autopilot
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1978-01-01
Preliminary results are presented from the application of the hybrid coordinate method to modeling TOPS (thermoelectric outer planet spacecraft) structural dynamics. Computer simulated responses of the vehicle are included which illustrate the interaction of relatively flexible appendages with an autopilot control system. Comparisons were made between simplified single-axis models of the control loop, with spacecraft flexibility represented by hinged rigid bodies, and a very detailed three-axis spacecraft model whose flexible portions are described by modal coordinates. While single-axis system, root loci provided reasonable qualitative indications of stability margins in this case, they were quantitatively optimistic when matched against responses of the detailed model.
NASA Technical Reports Server (NTRS)
Gerberich, Matthew W.; Oleson, Steven R.
2013-01-01
The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.
An industrial information integration approach to in-orbit spacecraft
NASA Astrophysics Data System (ADS)
Du, Xiaoning; Wang, Hong; Du, Yuhao; Xu, Li Da; Chaudhry, Sohail; Bi, Zhuming; Guo, Rong; Huang, Yongxuan; Li, Jisheng
2017-01-01
To operate an in-orbit spacecraft, the spacecraft status has to be monitored autonomously by collecting and analysing real-time data, and then detecting abnormities and malfunctions of system components. To develop an information system for spacecraft state detection, we investigate the feasibility of using ontology-based artificial intelligence in the system development. We propose a new modelling technique based on the semantic web, agent, scenarios and ontologies model. In modelling, the subjects of astronautics fields are classified, corresponding agents and scenarios are defined, and they are connected by the semantic web to analyse data and detect failures. We introduce the modelling methodologies and the resulted framework of the status detection information system in this paper. We discuss system components as well as their interactions in details. The system has been prototyped and tested to illustrate its feasibility and effectiveness. The proposed modelling technique is generic which can be extended and applied to the system development of other large-scale and complex information systems.
Effect of the Ionosphere on Space and Terrestrial Systems
1978-01-01
adequately shielded and filtered, Voyager spacecraft was modified to include arc that the grounding of all conductive elements discharge sources...dependence. Reasons for such a a set of the associated "cutoff orbits ". We choice include the following: A realistic see from Fig. 8 that the included angle...which had been modified to produce an approxima- chronous- orbit spacecraft [De Forest, 1972; tely uniform flood beam up to 10cm in diameter
IMP-8. Volume 2: Scientific section. [Bibliography
NASA Technical Reports Server (NTRS)
1980-01-01
Results of the analysis of the IMP-8 data, which was collected during the first six and one-half years after launch of the IMP-8 spacecraft are presented. The plasma wave experiment data were processed and are available in an easily accessible summary form. These data continue to provide a valuable source for comparative studies with plasma wave experiments on other spacecraft operating in the solar wind and within the Earth's magnetosphere.
Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions
2009-10-23
missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their
A comparative study of electric power distribution systems for spacecraft
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.
1990-01-01
The electric power distribution systems for spacecraft are compared concentrating on two interrelated issues: the choice between dc and high frequency ac, and the converter/inverter topology to be used at the power source. The relative merits of dc and ac distribution are discussed. Specific converter and inverter topologies are identified and analyzed in detail for the purpose of detailed comparison. Finally, specific topologies are recommended for use in dc and ac systems.
Neutron measurements of the OGO-VI Spacecraft
NASA Technical Reports Server (NTRS)
Lockwood, J. A.
1973-01-01
The neutron measurements with the OGO-6 spacecraft are reported. Topics discussed include: the design and calibration of a neutron monitor for measuring the cosmic ray neutron leakages from the earth's atmosphere, determination of latitude dependence of cosmic ray leakage flux, determination of the angular distribution of neutron leakage flux as deduced by measurements of the altitude dependence, and verification of the solar modulation of the cosmic ray source for the neutron leakage.
SMOKE: Characterization of Smoke Particulate for Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, D. L.; Mulholland, G.; Yuan, Z. G.; Yang, J.; Cleary, T.
2001-01-01
'Smoke' is a flight definition investigation whose purpose is to characterize the smoke particulate from microgravity smoke sources to enable improved design of future space-craft smoke detectors. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 30 UV-sensing fire detectors. The Space Shuttle Orbiter has nine particle-ionization smoke detectors in the mid-deck and flight deck. The detectors for the US segments of the International Space Station (ISS) are laser-diode, forward-scattering, smoke detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have cooling air-flow. Due to the complete absence of microgravity data, all three of these detector systems were designed based upon 1-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection will grow significantly, necessitating more research into microgravity fire phenomena. In 1997 the Comparative Soot Diagnostics Experiment (CSD) flew in the Orbiter Middeck as a Glovebox payload. The CSD experiment was designed to produce small quantities of smoke from several sources to obtain particulate samples and to determine the response of the ISS and Orbiter smoke detectors to these sources. Marked differences in the performance of the detectors compared to their behavior in 1-g were observed. In extreme cases, the detector used in the orbiter was completely blind to easily visible smoke from sources that were readily detected in 1-g. It is hypothesized but as yet unverified that this performance difference was due to enhanced growth of liquid smoke droplets in low-g. These CSD results clearly demonstrate that spacecraft smoke detector design cannot be based on 1-g experience.
2009-07-16
A plaque presented to Harvey Allen in recognition of his outstanding solution of the reentry heating problem which has been indispensable to the design of the Mercury, Gemini, and Apollo spacecraft (Manned Spacecraft Center, November 14, 1968) Plaque contains samples of tested materials and models of spacecraft.
ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA
NASA Technical Reports Server (NTRS)
Sjogren, W. L.
1994-01-01
The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.
Comparisons of Ground Truth and Remote Spectral Measurements of the FORMOSAT and ANDE Spacecrafts
NASA Technical Reports Server (NTRS)
JorgensenAbercromby, Kira; Hamada, Kris; Okada, Jennifer; Guyote, Michael; Barker, Edwin
2006-01-01
Determining the material type of objects in space is conducted using laboratory spectral reflectance measurements from common spacecraft materials and comparing the results to remote spectra. This past year, two different ground-truth studies commenced. The first, FORMOSAT III, is a Taiwanese set of six satellites to be launched in March 2006. The second is ANDE (Atmospheric Neutral Density Experiment), a Naval Research Laboratory set of two satellites set to launch from the Space Shuttle in November 2006. Laboratory spectra were obtained of the spacecraft and a model of the anticipated spectra response was created for each set of satellites. The model takes into account phase angle and orientation of the spacecraft relative to the observer. Once launched, the spacecraft are observed once a month to determine the space aging effects of materials as deduced from the remote spectra. Preliminary results will be shown of the FORMOSAT III comparison with laboratory data and remote data while results from only the laboratory data will be shown for the ANDE spacecraft.
Nonlinear Dynamic Behavior in the Cassini Spacecraft Modal Survey
NASA Technical Reports Server (NTRS)
Carney, Kelly S.
1997-01-01
In October 1997, the 6-ton robotic spacecraft, Cassini, will lift off from Cape Canaveral atop a Titan IV B rocket, beginning a 7-year journey to Saturn. Upon completion of that voyage, Cassini will send the Huygens probe into the atmosphere of Saturn's largest moon, Titan. Cassini will then spend years studying Saturn's vast realm of rings, icy moons, and magnetic fields. The size and complexity of this endeavor mandates the involvement of many organizations. The Jet Propulsion Laboratory (JPL) manages the project for NASA and is responsible for the spacecraft design, development, and assembly. The NASA Lewis Research Center is the launch system integrator. As is typical for such a spacecraft, a test-verified finite element model is required for loads analysis. JPL had responsibility for the Cassini modal survey and the development of the spacecraft test-verified finite element model. Test verification is a complex and sometimes subjective process. Because of this, NASA Lewis independently verified and validated the Cassini spacecraft modal survey.
An operations and command systems for the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Korsmeyer, David J.; Olson, Eric C.; Wong, Gary
1994-01-01
About 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We briefly describe the EUVE mission and indicate why it is particularly suitable for the task. Then we briefly outline our current work in mission planning/scheduling and spacecraft and instrument health monitoring.
Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories
NASA Technical Reports Server (NTRS)
Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.;
2012-01-01
Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (LunaSOX), and Space Physics Data Facility (SPDF) services now provide a wide range of inner heliospheric spacecraft data that can be applied to space weathering of potential exploration destinations including the Moon, asteroids, and the moons of Mars, as well to radiation hazard assessment for the spacecraft and human explorers. For example, the new VEPO service for time-averaging of multi-source ion flux spectra enables the specification of composite flux spectra from a variety of ongoing and legacy missions for applications to surface interaction modeling. Apollo to Artemis data resources of LunaSOX enable specific space weathering investigations for the Moon, while VHO more generally covers the space field and plasma environments of the inner and outer solar system from the sunward-most perihelia of the twin Helios spacecraft to the ongoing heliosheath passages of the twin Voyagers. Composite multi-source spectra from VEPO can also be applied to the continuing compilation of accumulated 1-AU fluence spectra, mostly contributed by solar wind plasma and energetic particle events, for determination of time-averaged particle compositional and kinetic energy output from the Sun and for modeling of long-term irradiation impacts on planetary surfaces.
NASA Technical Reports Server (NTRS)
Neubert, Torsten; Banks, Peter M.
1990-01-01
Analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft are presented. The problem is described by two coupled nonlinear differential equations in the up-going (along a magnetic field line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results form the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere interaction are discussed. First, the limits on the electron beam current that can be emitted from a spacecraft without substantial spacecraft charging are investigated. This is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam electrons and thereby limits the ionization of the neutral atmosphere. As an example, we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1 to 10 keV electron beams from sounding rockets, completely balance the beam current, thereby allowing the emission of very high beam currents. Second, the amount of plasma production in the beam-streak is discussed. Results are shown for selected values of the beam energy, spacecraft velocity, and spacecraft altitude.
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila
2015-01-01
The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.
Streamlining the Design Tradespace for Earth Imaging Constellations
NASA Technical Reports Server (NTRS)
Nag, Sreeja; Hughes, Steven P.; Le Moigne, Jacqueline J.
2016-01-01
Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.
Characterize Human Forward Contamination Project
NASA Technical Reports Server (NTRS)
Rucker, Michelle
2015-01-01
Let's face it: wherever we go, we will inevitably carry along the little critters that live in and on us. Conventional wisdom has long held that it's unlikely those critters could survive the space environment, but in 2007 microscopic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the International Space Station (ISS). But what about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen-and how might they mutate with long-duration exposure? Unlike the Mars rovers that we cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? This project has four technical objectives: 1. TEST: Develop a test plan to leverage existing equipment (i.e. ISS) to characterize the kinds of organisms we can reasonably expect pressurized, crewed volumes to vent or leak overboard; as part of testing, we'll need to develop an Extravehicular Activity (EVA)-compatible tool that can withstand the pressure and temperature extremes of space, as well as collect, separate, and store multiple samples; 2. ANALYSIS: Develop an analysis plan to study those organisms in relevant destination environments, including spacecraft-induced conditions; 3. MODEL: Develop a modeling plan to model organism transport mechanisms in relevant destination environments; 4. SHARE: Develop a plan to disseminate findings and integrate recommendations into exploration requirements & ops. In short, we propose a system engineering approach to roadmap the necessary experiments, analysis, and modeling up front--rather than try to knit together disparate chunks of data into a sensible conclusion after the fact.
NASA Technical Reports Server (NTRS)
Laird, C. E.
1996-01-01
The Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) was designed to measure X-rays and gamma rays with energies from about 50 keV to above 2 MeV. As with many scientific investigations, the success of the original experiment lead to additional areas of research interest. In the case of BATSE the ability to observe the radiation from sources down to about 20 keV became readily apparent. This lead to a continuing program of measuring the spectrum of radiation from stellar objects at these lower energies. One of these, the Crab Nebula, has a very steady radiation flux and, thus, has become a "standard candle" for such measurements. The Large Area Detectors (LADS) on BATSE contain a 1.27-cm thick, 25.4-cm radius NaI(Tl) detector behind a 6.35-mm thick polystyrene Charged Particle Detector (CPD) used to "veto" charged particles signals. The detectors have been calibrated with a series of gamma and X-ray sources and the results carefully simulated with a Monte Carlo code. In the calibration process the computer simulation accounts for scattering from material in the counting room as well as the BATSE structure. For an orbiting detector, scattering from the entire spacecraft must be modeled as well as for all covering material over the detectors. Five years after CGRO was launched on April 5, 1991, a large body of observational data has been taken of the Crab Nebula. The technique used for these observations, and for many other X-ray sources, is Earth occultation. From the perspective of the spacecraft, the Earth occults most stellar objects once in orbit, i.e., the signal is lost as the source sets and is regained as the source rises. A careful analysis of the continuing signals from all sources measured allows for an accurate measurement of the spectrum of a given source. An analysis of this data from the Crab has indicated that the LADs are very responsive at energies as low as 20 keV-at energies below the range of calibration. While the model accounts for many of the interactions of the photons with the detectors, the observation of nonstatistical deviations at low energy and at small angles has suggested a need to recalibrate at energies where the attenuation effects are increasing exponentially.
Turbulent Transport in a Three-dimensional Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiota, D.; Zank, G. P.; Adhikari, L.
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for themore » temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.« less
Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation
NASA Technical Reports Server (NTRS)
Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.
1995-01-01
Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be used in February of 2001. The initial attitude and spin rate of Eros, as well as estimates of reference landmark locations, are obtained from images of the asteroid. These initial estimates are used as a priori values for a more precise refinement of these parameters by the orbit determination software which combines optical measurements with Doppler tracking data to obtain solutions for the required parameters. As the spacecraft is maneuvered; closer to the asteroid, estimates of spacecraft state, asteroid attitude, solar pressure, landmark locations and Eros physical parameters including mass, moments of inertia and gravity harmonics are determined with increasing precision. The determination of the elements of the inertia tensor of the asteroid is critical to spacecraft orbit determination and prediction of the asteroid attitude. The moments of inertia about the principal axes are also of scientific interest since they provide some insight into the internal mass distribution. Determination of the principal axes moments of inertia will depend on observing free precession in the asteroid's attitude dynamics. Gravity harmonics are in themselves of interest to science. When compared with the asteroid shape, some insight may be obtained into Eros' internal structure. The location of the center of mass derived from the first degree harmonic coefficients give a direct indication of overall mass distribution. The second degree harmonic coefficients relate to the radial distribution of mass. Higher degree harmonics may be compared with surface features to gain additional insight into mass distribution. In this paper, estimates of Eros physical parameters obtained from the December 23,1998 flyby will be presented. This new knowledge will be applied to simplification of Eros orbital operations in February of 2001. The resulting revision to the orbit determination strategy will also be discussed.
Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1995-01-01
Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.
New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Leverington, David
2001-02-01
Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.
Improved techniques for predicting spacecraft power
NASA Technical Reports Server (NTRS)
Chmielewski, A. B.
1987-01-01
Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance.
Orbital transfer of large space structures with nuclear electric rockets
NASA Technical Reports Server (NTRS)
Silva, T. H.; Byers, D. C.
1980-01-01
This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.
Application of Modern Fortran to Spacecraft Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Williams, Jacob; Falck, Robert D.; Beekman, Izaak B.
2018-01-01
In this paper, applications of the modern Fortran programming language to the field of spacecraft trajectory optimization and design are examined. Modern object-oriented Fortran has many advantages for scientific programming, although many legacy Fortran aerospace codes have not been upgraded to use the newer standards (or have been rewritten in other languages perceived to be more modern). NASA's Copernicus spacecraft trajectory optimization program, originally a combination of Fortran 77 and Fortran 95, has attempted to keep up with modern standards and makes significant use of the new language features. Various algorithms and methods are presented from trajectory tools such as Copernicus, as well as modern Fortran open source libraries and other projects.
2002-10-18
KENNEDY SPACE CENTER, FLA. - A worker ties down the container with the TDRS-J spacecraft onto a transport vehicle. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
Proceedings of the Spacecraft Charging Technology Conference: Executive Summary
NASA Technical Reports Server (NTRS)
Pike, C. P.; Whipple, E. C., Jr.; Stevens, N. J.; Minges, M. L.; Lehn, W. L.; Bunn, M. H.
1977-01-01
Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment.
General Methodology for Designing Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.
2012-01-01
A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.
Contamination of planets by nonsterile flight hardware.
NASA Technical Reports Server (NTRS)
Wolfson, R. P.; Craven, C. W.
1971-01-01
The various factors about space missions and spacecraft involved in the study of nonsterile space flight hardware with respect to their effects on planetary quarantine are reviewed. It is shown that methodology currently exists to evaluate the various potential contamination sources and to take appropriate steps in the design of spacecraft ha rdware and mission parameters so that quarantine constraints are met. This work should be done for each program so that the latest knowledge pertaining to various biological questions is utilized, and so that the specific hardware designs of the program can be assessed. The general trend of specific recommendations include: (1) biasing the launch trajectory away from planet to assure against accidental impact of the spacecraft; (2) selecting planetary orbits that meet quarantine requirements - both for accidental impact and for minimizing contamination probabilities due to ejecta; and (3) manufacturing and handling spacecraft under cleanliness conditions assuring minimum bioload.
2002-10-18
KENNEDY SPACE CENTER, FLA. - A crane is lifted from the SLF to attach to the container with the TDRS-J spacecraft inside (at left). The container will be placed on a transporter and taken to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
The Thermal Ion Dynamics Experiment and Plasma Source Instrument
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.;
1995-01-01
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.
Comparisons of Aquarius Measurements over Oceans with Radiative Transfer Models at L-Band
NASA Technical Reports Server (NTRS)
Dinnat, E.; LeVine, D.; Abraham, S.; DeMattheis, P.; Utku, C.
2012-01-01
The Aquarius/SAC-D spacecraft includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. It was launched in June 2011 by NASA and CONAE (Argentine space agency). We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons are used as part of the initial assessment of Aquarius data and to estimate the radiometer calibration bias and stability. Comparisons are also being performed to assess the performance of models used in the retrieval algorithm for correcting the effect of various sources of geophysical "noise" (e.g. Faraday rotation, surface roughness). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit on monthly global maps at 150 km by 150 km resolution.
Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair
NASA Astrophysics Data System (ADS)
Décréau, P. M. E.; Kougblénou, S.; Lointier, G.; Rauch, J.-L.; Trotignon, J.-G.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F.
2013-11-01
The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a large L value (L ~ 10) and a medium geomagnetic latitude (35° S). We discuss these untypical results within the frame of the geophysical conditions prevailing that day, i.e. a particularly quiet long time interval, followed by a short increase of magnetic activity.
Crew-Aided Autonomous Navigation Project
NASA Technical Reports Server (NTRS)
Holt, Greg
2015-01-01
Manual capability to perform star/planet-limb sightings provides a cheap, simple, and robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the loss-of-communications backup for all Apollo missions. This study seeks to procure and characterize error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions, and one goal of this study is to modernize and update those findings. This technique has the potential to deliver significant risk mitigation, validation, and backup to more complex low-TRL automated systems under development involving cameras.
Ion ejection from a permanent-magnet mini-helicon thruster
NASA Astrophysics Data System (ADS)
Chen, Francis F.
2014-09-01
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.
Ion ejection from a permanent-magnet mini-helicon thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Francis F.
2014-09-15
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant valuesmore » by applying to the endplate of the discharge a small voltage relative to spacecraft ground.« less
3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction
NASA Astrophysics Data System (ADS)
Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.
2018-05-01
3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.
Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam
NASA Technical Reports Server (NTRS)
Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson
2018-01-01
Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.
Description and User Instructions for the Quaternion_to_Orbit_v3 Software
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Kruizinga, Gerhard L.; Paik, Meegyeong; Yuan, Dah-Ning; Asmar, Sami W.
2012-01-01
For a given inertial frame of reference, the software combines the spacecraft orbits with the spacecraft attitude quaternions, and rotates the body-fixed reference frame of a particular spacecraft to the inertial reference frame. The conversion assumes that the two spacecraft are aligned with respect to the mutual line of sight, with a parameterized time tag. The software is implemented in Python and is completely open source. It is very versatile, and may be applied under various circumstances and for other related purposes. Based on the solid linear algebra analysis, it has an extra option for compensating the linear pitch. This software has been designed for simulation of the calibration maneuvers performed by the two spacecraft comprising the GRAIL mission to the Moon, but has potential use for other applications. In simulations of formation flights, one needs to coordinate the spacecraft orbits represented in an appropriate inertial reference frame and the spacecraft attitudes. The latter are usually given as the time series of quaternions rotating the body-fixed reference frame of a particular spacecraft to the inertial reference frame. It is often desirable to simulate the same maneuver for different segments of the orbit. It is also useful to study various maneuvers that could be performed at the same orbit segment. These two lines of study are more timeand labor-efficient if the attitude and orbit data are generated independently, so that the part of the data that has not been changed can be recycled in the course of multiple simulations.
2009-07-16
John W. 'Jack Boyd holds a plaque presented to Harvey Allen in recognition of his outstanding solution of the reentry heating problem which has been indispensable to the design of the Mercury, Gemini, and Apollo spacecraft (Manned Spacecraft Center, November 14, 1968) Plaque contains samples of tested materials and models of spacecraft.
Free-Flight Experiments in LISA Pathfinder
NASA Technical Reports Server (NTRS)
Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.
2014-01-01
The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.
Spacecraft Thermal and Optical Modeling Impacts on Estimation of the GRAIL Lunar Gravity Field
NASA Technical Reports Server (NTRS)
Fahnestock, Eugene G.; Park, Ryan S.; Yuan, Dah-Ning; Konopliv, Alex S.
2012-01-01
We summarize work performed involving thermo-optical modeling of the two Gravity Recovery And Interior Laboratory (GRAIL) spacecraft. We derived several reconciled spacecraft thermo-optical models having varying detail. We used the simplest in calculating SRP acceleration, and used the most detailed to calculate acceleration due to thermal re-radiation. For the latter, we used both the output of pre-launch finite-element-based thermal simulations and downlinked temperature sensor telemetry. The estimation process to recover the lunar gravity field utilizes both a nominal thermal re-radiation accleration history and an apriori error model derived from that plus an off-nominal history, which bounds parameter uncertainties as informed by sensitivity studies.
Comparative Soot Diagnostics Experiment Looks at the Smoky World of Microgravity Combustion
NASA Technical Reports Server (NTRS)
Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.
1997-01-01
From an economic standpoint, soot is one of the most important combustion intermediates and products. It is a major industrial product and is the dominant medium for radiant heat transport in most flames used to generate heat and power. The nonbuoyant structure of most flames of practical interest (turbulent flames) makes the understanding of soot processes in microgravity flames important to our ability to predict fire behavior on Earth. In addition, fires in spacecraft are considered a credible possibility. To respond to this risk, NASA has flown fire (or smoke) detectors on Skylab and the space shuttles and included them in the International Space Station design. The design of these detectors, however, was based entirely on normal gravity (1g) data. The detector used in the shuttle fleet is an ionization detector, whereas the system planned for the space station uses forward scattering of near-infrared light. The ionization detector, which is similar to smoke detectors used in homes, has a comparative advantage for submicron particulates. In fact, the space shuttle model uses a separation system that makes it blind to particles larger than a micron (believed to be dust). In the larger size range, the lightscattering detector is most sensitive. Without microgravity smoke data, the difference in the particle size sensitivities of the two detectors cannot be evaluated. As part of the Comparative Soot Diagnostics (CSD) experiment, these systems were tested to determine their response to particulates generated during long periods of low gravity. This experiment provided the first such measurements toward understanding soot processes on Earth and for designing and implementing improved spacecraft smoke detection systems. The objectives of CSD were to examine how particulates form from a variety of sources and to quantify the performance of several diagnostic techniques. The sources tested included four overheated materials (paper, silicone rubber, Teflon-coated (DuPont) wire, and Kapton-coated (DuPont) wires), each tested at three heating rates, and a candle tested at three air velocities. Paper, silicone rubber, and wire insulation, materials found in spacecraft crew cabins, were selected because of their different smoke properties. The candle yielded hydrocarbon soot typical of many 1g flames. Four diagnostic techniques were employed: thermophoretic sampling collected particulates for size analysis; laser light extinction measurements near the source tallied total particulate production; and laser light scattering and ionization detector measurements far from the particulate source provided data for evaluating the performance of smoke detection systems for these particulate sources.
Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design
NASA Astrophysics Data System (ADS)
Ramos Alarcon, Rafael
This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the successful characterization of an imaging system for a spacecraft is presented. The spacecraft is designed to take digital color images from low Earth orbit. The dominant drivers from each stage of the design process are indicated as they were identified, with the accompanying hardware development leading to the final configuration that comprises the flight spacecraft.
Design and architecture of the Mars relay network planning and analysis framework
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Lee, C. H.
2002-01-01
In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.
A Prototyping Effort for the Integrated Spacecraft Analysis System
NASA Technical Reports Server (NTRS)
Wong, Raymond; Tung, Yu-Wen; Maldague, Pierre
2011-01-01
Computer modeling and simulation has recently become an essential technique for predicting and validating spacecraft performance. However, most computer models only examine spacecraft subsystems, and the independent nature of the models creates integration problems, which lowers the possibilities of simulating a spacecraft as an integrated unit despite a desire for this type of analysis. A new project called Integrated Spacecraft Analysis was proposed to serve as a framework for an integrated simulation environment. The project is still in its infancy, but a software prototype would help future developers assess design issues. The prototype explores a service oriented design paradigm that theoretically allows programs written in different languages to communicate with one another. It includes creating a uniform interface to the SPICE libraries such that different in-house tools like APGEN or SEQGEN can exchange information with it without much change. Service orientation may result in a slower system as compared to a single application, and more research needs to be done on the different available technologies, but a service oriented approach could increase long term maintainability and extensibility.
On-orbit radiometric calibration over time and between spacecraft using the moon
Kieffer, H.H.; Stone, T.C.; Barnes, R.A.; Bender, S.; Eplee, R.E.; Mendenhall, J.; Ong, L.; ,
2002-01-01
The Robotic Lunar Observatory (ROLO) project has developed a spectral irradiance model of the Moon that accounts for variations with lunar phase through the bright half of a month, lunar librations, and the location of an Earth-orbiting spacecraft. The methodology of comparing spacecraft observations of the Moon with this model has been developed to a set of standardized procedures so that comparisons can be readily made. In the cases where observations extend over several years (e.g., SeaWiFS), instrument response degradation has been determined with precision of about 0.1% per year. Because of the strong dependence of lunar irradiance on geometric angles, observations by two spacecraft cannot be directly compared unless acquired at the same time and location. Rather, the lunar irradiance based on each spacecraft instrument calibration can be compared with the lunar irradiance model. Even single observations by an instrument allow inter-comparison of its radiometric scale with other instruments participating in the lunar calibration program. Observations by SeaWiFS, ALI, Hyperion and MTI are compared here.
Attitude tracking control of flexible spacecraft with large amplitude slosh
NASA Astrophysics Data System (ADS)
Deng, Mingle; Yue, Baozeng
2017-12-01
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.
NASA Technical Reports Server (NTRS)
Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.
2011-01-01
The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.
Human Modeling for Ground Processing Human Factors Engineering Analysis
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim
2011-01-01
There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs
NASA Technical Reports Server (NTRS)
Edwards, Paul; Terseck, Alex; Trout, Dawn
2016-01-01
Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2001-01-01
The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.
Spacecraft Doppler Tracking as a Xylophone Detector
NASA Technical Reports Server (NTRS)
Tinto, Massimo
1996-01-01
We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.
POwer WithOut Wire (POWOW): A SEP Concept for Space Exploration
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.; ONeill, Mark
2000-01-01
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 demonstrated electric propulsion as a primary propulsion source for a spacecraft. The POwer WithOut Wires (POWOW) concept has been developed as a solar electric propelled spacecraft that would travel to Mars, for example, enter selenosynchronous orbit and then use lasers to beam power to surface installations. This concept has been developed with industrial expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The paper will present the latest version of the spacecraft, the technologies involved, possible missions and trip times to Mars and laser beaming options. The POWOW spacecraft is a general purpose solar electric propulsion system that includes technologies that are directly applicable to commercial and government spacecraft with power levels ranging from 4 kW in Low Earth Orbits (LEO) to about 1 MW. The system is modular and expandable. Learning curve costing methodologies are used to demonstrate cost effectiveness of a modular system.
Space Optical Communications Using Laser Beam Amplification
NASA Technical Reports Server (NTRS)
Agrawal, Govind
2015-01-01
The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.
1982-12-27
accelerated to much higher energies, -i0 MeV, and appear to have a power -law velocity distribution. The second-stage acceleration mechanism may be...K. In the second stage electrons and ions are accelerated to relativistic energies and appear to have non-thermal power -law distributions. It is...indicated (Stewart, 1978). 3 X-ray bursts, In these models the electrons are impulsively heated in a small source region and relax to a near-Maxwellian
Testing relativity with solar system dynamics
NASA Technical Reports Server (NTRS)
Hellings, R. W.
1984-01-01
A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.
Ambient pressure environment surrounding the MSX spacecraft during the first year on orbit
NASA Astrophysics Data System (ADS)
Boies, Mark T.; Green, B. David; Galica, Gary E.; Uy, O. Manuel; Silver, David M.; Benson, Richard C.; Lesho, Jeffrey C.; Wood, Bob E.; Hall, David F.; Dyer, James S.
1998-10-01
The Total Pressure Sensor (TPS) on-board the Midcourse Space Experiment (MSX) Spacecraft has continuously measured the ambient local pressure since launch of MSX on April 24, 1996. The primary goals of the sensor are: 1) to monitor the ambient pressure surrounding the spacecraft's optical telescopes and to indicate when environmental conditions are acceptable for opening the protective covers, and 2) to monitor the long-term decay of the species outgassed from the spacecraft. The water-induced environment was expected to rapidly decay over the first few months to elves more closely approaching the natural environment. The data generally shows decay toward this level, however, the pressure is quite variable with time and can be influenced by discrete illumination and spacecraft orbital events. Several experiments, conducted approximately one year into the mission, indicate that the thermal blankets retain significant quantities of water. The local pressure due to water vapor is shown to increase by a factor of 100 from direct solar illumination of the blankets. Moreover, the multi-layer construction of the blankets causes them to form a deep reservoir, which continues to be a source of water vapor several tens of months into the mission. Additionally, the TPS has monitored numerous events in which the measured ambient pressure on the optics deck has exceeded 10-9 Torr. Several of these events did not include solar illumination of the blankets. These events indicate that sources other than the MLI blankets are the cause for certain high-pressure transients. Finally, these events are not limited to the early mission, outgassing phase of the program. They have been witnessed over a year into the mission. The results documented herein indicate that special consideration must be given in the design of optical sensors to account for long term outgassing of a spacecraft.
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb
2005-01-01
A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for consideration and measurements of resistivity for many typical spacecraft charging scenarios.
Majority of Solar Wind Intervals Support Ion-Driven Instabilities
NASA Astrophysics Data System (ADS)
Klein, K. G.; Alterman, B. L.; Stevens, M. L.; Vech, D.; Kasper, J. C.
2018-05-01
We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He2 + temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He2 + components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He2 + drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.
Majority of Solar Wind Intervals Support Ion-Driven Instabilities.
Klein, K G; Alterman, B L; Stevens, M L; Vech, D; Kasper, J C
2018-05-18
We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He^{2+} temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He^{2+} components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He^{2+} drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.
NASA Technical Reports Server (NTRS)
Dubos, Gregory F.; Cornford, Steven
2012-01-01
While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".
Application of blind source separation to gamma ray spectra acquired by GRaND around Vesta
NASA Astrophysics Data System (ADS)
Mizzon, H.; Toplis, M. J.; Forni, O.; Prettyman, T. H.; Raymond, C. A.; Russell, C. T.
2012-12-01
The bismuth germinate (BGO) scintillator is one of the sensors of the gamma ray and neutron detector (GRaND)1 on board the Dawn spacecraft, that has spent just over one year in orbit around the asteroid 4-Vesta. The BGO detector is excited by energetic gamma-rays produced by galactic cosmic rays (GCR) or energetic solar particles interacting either with Vesta and/or the Dawn spacecraft. In detail, during periods of quiet solar activity, gamma ray spectra produced by the scintillator can be considered as consisting of three signals: i) a contribution of gamma-rays from Vesta produced by GCR interactions at the asteroid's surface, ii) a contribution from the spacecraft excited by neutrons coming from Vesta, and iii) a contribution of the spacecraft excited by local interaction with galactic cosmic rays. While the first two contributions should be positive functions of the solid angle of Vesta in the field of view during acquisition, the last one should have a negative dependence because Vesta partly shields the spacecraft from GCR. This theoretical mix can be written formally as: S=aΩSV+bΩSSCNV+c(4π-Ω)SSCGCR (1) where S is the series of recorded spectra, Ω is the solid angle, SV is the contribution of gamma rays coming from Vesta, SSCNV is the contribution of gamma rays coming from the spacecraft excited by the neutron coming from Vesta and SSCGCR is the contribution of gamma rays coming from the spacecraft excited by GCR. A blind source separation method called independent component analysis enables separating additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals2. Applying this method to BGO spectra acquired during the first three months of the low-altitude measurement orbit (LAMO) reveals two main independent components. The first one is dominated by the positron electron annihilation peak and is positively correlated to the solid angle. The second is negatively correlated to the solid angle and displays peaks of elements present in the spacecraft, of energy in the range 1 to 3.5 MeV. At energy >3.5 MeV, the dominant independent component highlighted by this method has no significant peaks, suggesting that it is not influenced by Vesta itself which is known to have a strong signal associated with iron at 7.6 MeV. Our method therefore represents a first step in retrieving the contribution of the spacecraft that could be used in conjunction with the mixing equation (1) to determine the contribution from the planet itself. 1 : Prettyman, T. H., Mcsween, Jr., H. Y., Feldman, W. C., JUN 2010. Dawn's GRaND to map the chemical composition of asteroids Vesta and Ceres. Geochimica and Cosmochimica Acta 74 (12, 1), A832, Con- ference on Goldschmidt 2010 - Earth, Energy, and the Environment, Knoxville, TN, JUN 13-18, 2010. 2 : Hyvarinen, A., Oja, E., May-Jun 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4-5), 411-430.
Cabin Noise Studies for the Orion Spacecraft Crew Module
NASA Technical Reports Server (NTRS)
Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.
2010-01-01
Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.
NASA Technical Reports Server (NTRS)
Thurman, Sam W.; Estefan, Jeffrey A.
1991-01-01
Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.
2016-01-01
A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.
NASA Astrophysics Data System (ADS)
Fritze, Matthew D.
Fluid-structure interaction (FSI) modeling of spacecraft parachutes involves a number of computational challenges. The canopy complexity created by the hundreds of gaps and slits and design-related modification of that geometric porosity by removal of some of the sails and panels are among the formidable challenges. Disreefing from one stage to another when the parachute is used in multiple stages is another formidable challenge. This thesis addresses the computational challenges involved in disreefing of spacecraft parachutes and fully-open and reefed stages of the parachutes with modified geometric porosity. The special techniques developed to address these challenges are described and the FSI computations are be reported. The thesis also addresses the modeling and computation challenges involved in very early stages, where the sudden separation of a cover jettisoned to the spacecraft wake needs to be modeled. Higher-order temporal representations used in modeling the separation motion are described, and the computed separation and wake-induced forces acting on the cover are reported.
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
A model of the near-earth plasma environment and application to the ISEE-A and -B orbit
NASA Technical Reports Server (NTRS)
Chan, K. W.; Sawyer, K. W.; Vette, J. I.
1977-01-01
A model of the near-earth environment to obtain a best estimate of the average flux of protons and electrons in the energy range from 0.1 to 100 keV for the International Sun-Earth Explorer (ISEE)-A and -B spacecraft. The possible radiation damage to the thermal coating on these spinning spacecraft is also studied. Applications of the model to other high-altitude satellites can be obtained with the appropriate orbit averaging. This study is the first attempt to synthesize an overall quantitative environment of low-energy particles for high altitude spacecraft, using data from in situ measurements.
Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.
1997-01-01
Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.
Attitude Stability of a Spacecraft with Slosh Mass Subject to Parametric Excitation
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-09-01
The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.
Collision detection for spacecraft proximity operations. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Vaughan, Robin M.
1987-01-01
The development of a new collision detection algorithm to be used when two spacecraft are operating in the same vicinity is described. The two spacecraft are modeled as unions of convex polyhedra, where the polyhedron resulting from the union may be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. The algorithm determines if a collision is possible and, if so, predicts the time when the collision will take place. The theoretical basis for the new collision detection algorithm is the C-function formulation of the configuration space approach recently introduced by researchers in robotics. Three different types of C-functions are defined that model the contacts between the vertices, edges, and faces of the polyhedra representing the two spacecraft. The C-functions are shown to be transcendental functions of time for the assumed trajectory of the moving spacecraft. The capabilities of the new algorithm are demonstrated for several example cases.
Monte Carlo Technique Used to Model the Degradation of Internal Spacecraft Surfaces by Atomic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Miller, Sharon K.
2004-01-01
Atomic oxygen is one of the predominant constituents of Earth's upper atmosphere. It is created by the photodissociation of molecular oxygen (O2) into single O atoms by ultraviolet radiation. It is chemically very reactive because a single O atom readily combines with another O atom or with other atoms or molecules that can form a stable oxide. The effects of atomic oxygen on the external surfaces of spacecraft in low Earth orbit can have dire consequences for spacecraft life, and this is a well-known and much studied problem. Much less information is known about the effects of atomic oxygen on the internal surfaces of spacecraft. This degradation can occur when openings in components of the spacecraft exterior exist that allow the entry of atomic oxygen into regions that may not have direct atomic oxygen attack but rather scattered attack. Openings can exist because of spacecraft venting, microwave cavities, and apertures for Earth viewing, Sun sensors, or star trackers. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft were simulated at the NASA Glenn Research Center by using Monte Carlo computational techniques. A two-dimensional model was used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of the distance into a parallel-walled cavity. The model allows the atomic oxygen arrival direction, the Maxwell Boltzman temperature, and the ram energy to be varied along with the interaction parameters of the degree of recombination upon impact with polymer or nonreactive surfaces, the initial reaction probability, the reaction probability dependence upon energy and angle of attack, degree of specularity of scattering of reactive and nonreactive surfaces, and the degree of thermal accommodation upon impact with reactive and non-reactive surfaces to be varied to allow the model to produce atomic oxygen erosion geometries that replicate actual experimental results from space. The degree of erosion of various interior locations was compared with the erosion that would occur external to the spacecraft. Results of one cavity model indicate that, at depths into a two-dimensional cavity that are equal to 10 cavity widths, the erosion on the walls of the cavity is less than that on the top surface by over 2 orders of magnitude. Wall erosion near the surface of a cavity depends on which wall is receiving direct atomic oxygen attack. However, deep in the cavity little difference is present. Testing of various cavity models such as these gives spacecraft designers an indication of the level of threat to sensitive interior surfaces for different geometries. Even though the Monte Carlo model is two-dimensional, it can be used to provide qualitative information about spacecraft openings that are three-dimensional by offering reasonable insight as to the nature of the attenuation of damage that occurs within a spacecraft in low Earth orbit. As shown, there is more erosion on the side seeing direct atomic oxygen attack until a depth of approximately 5 times the width of the opening, where the erosion is the same on both sides.
The influence of crustal magnetic sources on the topology of the Martian magnetic environment
NASA Astrophysics Data System (ADS)
Brain, David Andrew
2002-09-01
In this thesis I use magnetometer data and magnetic field models to explore the morphology of magnetic fields close to Mars, with emphasis on the manner and extent to which crustal magnetic sources affect the magnetic field configuration. I analyze Mars Global Surveyor (MGS) Magnetometer (MAG) data to determine the relative importance of the solar wind and of crustal magnetic sources in the observations. Crustal sources locally modify the solar wind interaction, adding variability to the Martian magnetic environment that depends on planetary rotation. I identify trends in the vector magnetic field with respect to altitude, solar zenith angle, and geographic location. The influence of the strongest crustal source extends to 1300 1400 km. I then use MAG data to evaluate models for the magnetic field associated with Mars' crust and for the solar wind interaction with the Martian ionosphere. A linear superposition of a spherical harmonic crustal model and a gasdynamic solar wind model improves the fit to MAG data over that from either model individually. I use simple pressure balance to calculate the shape and size of the Martian solar wind obstacle under a variety of different conditions. The obstacle is irregularly shaped (“lumpy”) and varies over the course of a Martian rotation, over a Martian year, and with changes in the upstream pressure. The obstacle above strong crustal sources can exceed 1000 km and is always higher than the altitude of the MGS spacecraft in its mapping orbit. I use a superposition model to explore the magnetic field topology at Mars under a variety of conditions. The model field topology is sensitive to changes in the interplanetary magnetic field (IMF) strength and orientation, as well as to Mars' orientation with respect to the solar wind flow. Regions of open magnetic field are located above strong crustal sources in the models, where the magnetic field is radially oriented with respect to the Martian surface. An examination of MAG and electron reflectometer (ER) data above one of these regions reveals a sharp change in the electron energy spectrum coinciding with perturbations in the orientation of the magnetic field.
Back-diffusion plasma generator for ionosphere study
NASA Astrophysics Data System (ADS)
Fang, H. K.; Oyama, K.-I.; Chen, A. B.
2017-11-01
To produce ionospheric plasma environments at ground level is essential to get information not only for the development of CubeSat-class spacecraft but also for the design of ionospheric plasma instruments and to confirm their performance. In this paper, we describe the principle of plasma generation and characteristics of the back-diffusion plasma source, which can produce in-lab plasma similar to the Earth’s ionosphere, E and F regions, conditions of electron and ion temperature and density. The ion and electron energy distributions of the plasma generated by a back-diffusion source are measured by means of a cleaned Langmuir probe and gridded particle energy analyzers. The ion motion in front of the source is investigated by a hard-sphere collision model in SIMION software and the simulation results are comparable with the findings of our experiment. Furthermore, plasma densities and ion temperatures at different positions in front of the source are also demonstrated. The back-diffusion source has been accommodated for ionospheric plasma productions in several Asian institutes. The plasma characteristics of the source shown in this paper will benefit space research groups in the development of space plasma instruments.
NASA Technical Reports Server (NTRS)
Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward
2007-01-01
A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.
Improving Kepler Pipeline Sensitivity with Pixel Response Function Photometry.
NASA Astrophysics Data System (ADS)
Morris, Robert L.; Bryson, Steve; Jenkins, Jon Michael; Smith, Jeffrey C
2014-06-01
We present the results of our investigation into the feasibility and expected benefits of implementing PRF-fitting photometry in the Kepler Science Processing Pipeline. The Kepler Pixel Response Function (PRF) describes the expected system response to a point source at infinity and includes the effects of the optical point spread function, the CCD detector responsivity function, and spacecraft pointing jitter. Planet detection in the Kepler pipeline is currently based on simple aperture photometry (SAP), which is most effective when applied to uncrowded bright stars. Its effectiveness diminishes rapidly as target brightness decreases relative to the effects of noise sources such as detector electronics, background stars, and image motion. In contrast, PRF photometry is based on fitting an explicit model of image formation to the data and naturally accounts for image motion and contributions of background stars. The key to obtaining high-quality photometry from PRF fitting is a high-quality model of the system's PRF, while the key to efficiently processing the large number of Kepler targets is an accurate catalog and accurate mapping of celestial coordinates onto the focal plane. If the CCD coordinates of stellar centroids are known a priori then the problem of PRF fitting becomes linear. A model of the Kepler PRF was constructed at the time of spacecraft commissioning by fitting piecewise polynomial surfaces to data from dithered full frame images. While this model accurately captured the initial state of the system, the PRF has evolved dynamically since then and has been seen to deviate significantly from the initial (static) model. We construct a dynamic PRF model which is then used to recover photometry for all targets of interest. Both simulation tests and results from Kepler flight data demonstrate the effectiveness of our approach. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.
NASA Astrophysics Data System (ADS)
Hu, H.; Liu, Y. D.; Wang, R.; Zhao, X.; Zhu, B.; Yang, Z.
2017-12-01
We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO, STEREO, SOHO, VEX, and Wind. A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind, which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.
Earth horizon modeling and application to static Earth sensors on TRMM spacecraft
NASA Technical Reports Server (NTRS)
Keat, J.; Challa, M.; Tracewell, D.; Galal, K.
1995-01-01
Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.
Cluster electric current density measurements within a magnetic flux rope in the plasma sheet
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.
2003-01-01
On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.
Spacecraft VHF Radio Propagation Analysis in Ocean Environments Including Atmospheric Effects
NASA Technical Reports Server (NTRS)
Hwu, Shian; Moreno, Gerardo; Desilva, Kanishka; Jih, CIndy
2010-01-01
The Communication Systems Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)/Johnson Space Center (JSC) is tasked to perform spacecraft and ground network communication system simulations. The CSSL has developed simulation tools that model spacecraft communication systems and the space/ground environment in which they operate. This paper is to analyze a spacecraft's very high frequency (VHF) radio signal propagation and the impact to performance when landing in an ocean. Very little research work has been done for VHF radio systems in a maritime environment. Rigorous Radio Frequency (RF) modeling/simulation techniques were employed for various environmental effects. The simulation results illustrate the significance of the environmental effects on the VHF radio system performance.
A methodology to select a wire insulation for use in habitable spacecraft.
Paulos, T; Apostolakis, G
1998-08-01
This paper investigates electrical overheating events aboard a habitable spacecraft. The wire insulation involved in these failures plays a major role in the entire event scenario from threat development to detection and damage assessment. Ideally, if models of wire overheating events in microgravity existed, the various wire insulations under consideration could be quantitatively compared. However, these models do not exist. In this paper, a methodology is developed that can be used to select a wire insulation that is best suited for use in a habitable spacecraft. The results of this study show that, based upon the Analytic Hierarchy Process and simplifying assumptions, the criteria selected, and data used in the analysis, Tefzel is better than Teflon for use in a habitable spacecraft.
NASA Technical Reports Server (NTRS)
1988-01-01
Macrodyne, Inc.'s laser velocimeter (LV) is a system used in wind tunnel testing of aircraft, missiles and spacecraft employing electro optical techniques to probe the flow field as the tunnel blows air over a model of flight vehicle and to determine velocity of air and its direction at many points around the model. However, current state-of-the-art minicomputers cannot handle the massive flow of real time data from several sources simultaneously. Langley developed instrument Laser Velocimeter Autocovariance Buffer Interface (LVABI). LVABI is interconnecting instrument between LV and computer. It acquires data from as many as six LV channels at high real time data rates, stores it in memory and sends it to computer on command. LVABI has application in variety of research, industrial and defense functions requiring precise flow measurement.
NASA Technical Reports Server (NTRS)
Haste, Deepak; Ghoshal, Sudipto; Johnson, Stephen B.; Moore, Craig
2018-01-01
This paper describes the theory and considerations in the application of model-based techniques to assimilate information from disjoint knowledge sources for performing NASA's Fault Management (FM)-related activities using the TEAMS® toolset. FM consists of the operational mitigation of existing and impending spacecraft failures. NASA's FM directives have both design-phase and operational-phase goals. This paper highlights recent studies by QSI and DST of the capabilities required in the TEAMS® toolset for conducting FM activities with the aim of reducing operating costs, increasing autonomy, and conforming to time schedules. These studies use and extend the analytic capabilities of QSI's TEAMS® toolset to conduct a range of FM activities within a centralized platform.
Gravity and Macro-Model Tuning for the Geosat Follow-on Spacecraft
NASA Technical Reports Server (NTRS)
Lemoine, Frank G.; Rowlands, David D.; Marr, Gregory C.; Zelensky, Nikita P.; Luthcke, Scott B.; Cox, Christopher M.
1999-01-01
The US Navy's GEOSAT Follow-On (GFO) spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. The spacecraft tracking complement consisted of GPS receivers, a laser retroreflector and Doppler beacons. Since the GPS receivers have not yet returned reliable data, the only means of providing high-quality precise orbits has been though satellite laser ranging (SLR). The spacecraft has been tracked by the international satellite laser ranging network since April 22, 1998, and an average of 7.4 passes per day have been obtained from US and participating foreign stations. Since the predicted radial orbit error due to the gravity field is two to three cm, the largest contributor to the high SLR residuals (7-10 cm RMS for five day arcs) is the mismodelling of the non-conservative forces, not withstanding the development of a three-dimensional eight-panel model and an analytical attitude model for the GFO spacecraft. The SLR residuals show a clear correlation with beta-prime (solar elevation) angle, peaking in mid-August 1998 when the beta-prime angle reached -80 to -90 degrees. In this paper we discuss the tuning of the non-conservative force model, for GFO and report the subsequent addition of the GFO tracking data to the Earth gravity model solutions.
NASA Technical Reports Server (NTRS)
Ruley, John D.
1986-01-01
In the design of spacecraft for proper thermal balance, accurate information on the long-term optical behavior of the spacecraft outer skin materials is necessary. A phenomenological model for such behavior is given. The underlying principles are explained and some examples are given of the model's fit to actual measurements under simulated Earth-orbit conditions. Comments are given on the applicability of the model to materials testing and thermal modelling.
Adaptation of G-TAG Software for Validating Touch-and-Go Comet Surface Sampling Design Methodology
NASA Technical Reports Server (NTRS)
Mandic, Milan; Acikmese, Behcet; Blackmore, Lars
2011-01-01
The G-TAG software tool was developed under the R&TD on Integrated Autonomous Guidance, Navigation, and Control for Comet Sample Return, and represents a novel, multi-body dynamics simulation software tool for studying TAG sampling. The G-TAG multi-body simulation tool provides a simulation environment in which a Touch-and-Go (TAG) sampling event can be extensively tested. TAG sampling requires the spacecraft to descend to the surface, contact the surface with a sampling collection device, and then to ascend to a safe altitude. The TAG event lasts only a few seconds but is mission-critical with potentially high risk. Consequently, there is a need for the TAG event to be well characterized and studied by simulation and analysis in order for the proposal teams to converge on a reliable spacecraft design. This adaptation of the G-TAG tool was developed to support the Comet Odyssey proposal effort, and is specifically focused to address comet sample return missions. In this application, the spacecraft descends to and samples from the surface of a comet. Performance of the spacecraft during TAG is assessed based on survivability and sample collection performance. For the adaptation of the G-TAG simulation tool to comet scenarios, models are developed that accurately describe the properties of the spacecraft, approach trajectories, and descent velocities, as well as the models of the external forces and torques acting on the spacecraft. The adapted models of the spacecraft, descent profiles, and external sampling forces/torques were more sophisticated and customized for comets than those available in the basic G-TAG simulation tool. Scenarios implemented include the study of variations in requirements, spacecraft design (size, locations, etc. of the spacecraft components), and the environment (surface properties, slope, disturbances, etc.). The simulations, along with their visual representations using G-View, contributed to the Comet Odyssey New Frontiers proposal effort by indicating problems and/or benefits of different approaches and designs.
The Polarimeter for Relativistic Astrophysical X-ray Sources
NASA Astrophysics Data System (ADS)
Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru
2016-07-01
The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.
Automatic charge control system for satellites
NASA Technical Reports Server (NTRS)
Shuman, B. M.; Cohen, H. A.
1985-01-01
The SCATHA and the ATS-5 and 6 spacecraft provided insights to the problem of spacecraft charging at geosychronous altitudes. Reduction of the levels of both absolute and differential charging was indicated, by the emission of low energy neutral plasma. It is appropriate to complete the transition from experimental results to the development of a system that will sense the state-of-charge of a spacecraft, and, when a predetermined threshold is reached, will respond automatically to reduce it. A development program was initiated utilizing sensors comparable to the proton electrostatic analyzer, the surface potential monitor, and the transient pulse monitor that flew in SCATHA, and combine these outputs through a microprocessor controller to operate a rapid-start, low energy plasma source.
The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2007-01-01
Spacecraft and launch vehicle stages abandoned in Earth orbit have historically been a primary source of debris from accidental explosions. In the future, such satellites will become the principal cause of orbital debris via inadvertent collisions. To curtail both the near-term and far-term risks posed by derelict spacecraft and launch vehicle stages to operational space systems, numerous national and international orbital debris mitigation guidelines specifically recommend actions which could prevent or limit such future debris generation. Although considerable progress has been made in implementing these recommendations, some changes to existing vehicle designs can be difficult. Moreover, the nature of some missions also can present technological and budgetary challenges to be compliant with widely accepted orbital debris mitigation measures.