Galilean generalized Robertson-Walker spacetimes: A new family of Galilean geometrical models
NASA Astrophysics Data System (ADS)
de la Fuente, Daniel; Rubio, Rafael M.
2018-02-01
We introduce a new family of Galilean spacetimes, the Galilean generalized Robertson-Walker spacetimes. This new family is relevant in the context of a generalized Newton-Cartan theory. We study its geometrical structure and analyse the completeness of its inextensible free falling observers. This sort of spacetimes constitutes the local geometric model of a much wider family of spacetimes admitting certain conformal symmetry. Moreover, we find some sufficient geometric conditions which guarantee a global splitting of a Galilean spacetime as a Galilean generalized Robertson-Walker spacetime.
Closed Conformal Killing-Yano Tensor and Uniqueness of Generalized Kerr-NUT-de Sitter Spacetime
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi
We classify all spacetimes with a rank-2 closed conformal Killing-Yano tensor. They give a generalization of Kerr-NUT-de Sitter spacetime. The Einstein condition is explicitly solved. The Kerr-NUT-de Sitter spacetime is obtained as a spacetime with a non-degenerate CKY tensor.
Space-Time Crystal and Space-Time Group
NASA Astrophysics Data System (ADS)
Xu, Shenglong; Wu, Congjun
2018-03-01
Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D +1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1 +1 D ) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2 +1 D , nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D +1 )-dimensional space-time crystal.
Space-Time Crystal and Space-Time Group.
Xu, Shenglong; Wu, Congjun
2018-03-02
Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.
NASA Astrophysics Data System (ADS)
Raine, D. J.; Heller, M.
Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics; Copernican kinematics; Newtonian dynamics; the space-time of classical dynamics; classical space-time in the presence of gravity; the space-time of special relativity; the space-time of general relativity; solutions and problems in general relativity; Mach's principle and the dynamics of space-time; theories of inertial mass; the integral formation of general relativity; and the frontiers of relativity (e.g., unified field theories and quantum gravity).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, D.J.; Heller, M.
1981-01-01
Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in generalmore » relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity (e.g., unified field theories and quantum gravity).« less
Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes
NASA Astrophysics Data System (ADS)
Smith, Graham
2018-06-01
We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.
Gravitational tension, spacetime pressure and black hole volume
NASA Astrophysics Data System (ADS)
Armas, Jay; Obers, Niels A.; Sanchioni, Marco
2016-09-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.
Gravitational Lensing from a Spacetime Perspective.
Perlick, Volker
2004-01-01
The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.
NASA Astrophysics Data System (ADS)
Romero, Alfonso; Rubio, Rafael M.; Salamanca, Juan J.
2013-06-01
A new technique for the study of noncompact complete spacelike hypersurfaces in generalized Robertson-Walker (GRW) spacetimes whose fiber is a parabolic Riemannian manifold is introduced. This class of spacetimes allows us to model open universes which extend to spacelike closed GRW spacetimes from the viewpoint of the geometric analysis of the fiber, and which, unlike those spacetimes, could be compatible with the holographic principle. First, under reasonable assumptions on the restriction of the warping function to the spacelike hypersurface and on the hyperbolic angle between the unit normal vector field and a certain timelike vector field, a complete spacelike hypersurface in a spatially parabolic GRW spacetime is shown to be parabolic, and the existence of a simply connected parabolic spacelike hypersurface in a GRW spacetime also leads to the parabolicity of its fiber. Then, all the complete maximal hypersurfaces in spatially parabolic GRW spacetimes are determined in several cases, extending, in particular, to this family of open cosmological models several well-known uniqueness results for the case of spatially closed GRW spacetimes. Moreover, new Calabi-Bernstein problems are solved.
Natural world physical, brain operational, and mind phenomenal space-time
NASA Astrophysics Data System (ADS)
Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.
2010-06-01
Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.
On Finsler spacetimes with a timelike Killing vector field
NASA Astrophysics Data System (ADS)
Caponio, Erasmo; Stancarone, Giuseppe
2018-04-01
We study Finsler spacetimes and Killing vector fields taking care of the fact that the generalised metric tensor associated to the Lorentz–Finsler function L is in general well defined only on a subset of the slit tangent bundle. We then introduce a new class of Finsler spacetimes endowed with a timelike Killing vector field that we call stationary splitting Finsler spacetimes. We characterize when a Finsler spacetime with a timelike Killing vector field is locally a stationary splitting. Finally, we show that the causal structure of a stationary splitting is the same of one of two Finslerian static spacetimes naturally associated to the stationary splitting.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge fieldmore » which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio
We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.
Unwrapping Closed Timelike Curves
NASA Astrophysics Data System (ADS)
Slobodov, Sergei
2008-12-01
Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to extend a local CTC-free patch of such a spacetime in a way that does not give rise to CTCs. One such procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This “unwrapping” singularity is similar to the string singularities. We define an unwrapping of a (locally) axisymmetric spacetime as the universal cover of the spacetime after one or more of the local axes of symmetry is removed. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Gödel spacetime. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Gödel spacetime still contains CTCs through every point. A “multiple unwrapping” procedure is devised to remove the remaining circular CTCs. We conclude that, based on the given examples, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications. Alternative extensions of spacetimes with CTCs tend to lead to other pathologies, such as naked quasi-regular singularities.
A Dream of Yukawa — Non-Local Fields out of Non-Commutative Spacetime —
NASA Astrophysics Data System (ADS)
Naka, Shigefumi; Toyoda, Haruki; Takanashi, Takahiro; Umezawa, Eizo
The coordinates of κ-Minkowski spacetime form Lie algebraic elements, in which time and space coordinates do not commute in spite of that space coordinates commute each other. The non-commutativity is realized by a Planck-length-scale constant κ - 1( ne 0), which is a universal constant other than the light velocity under the κ-Poincare transformation. Such a non-commutative structure can be realized by SO(1,4) generators in dS4 spacetime. In this work, we try to construct a κ-Minkowski like spacetime with commutative 4-dimensional spacetime based on Adsn+1 spacetime. Another aim of this work is to study invariant wave equations in this spacetime from the viewpoint of non-local field theory by H. Yukawa, who expected to realize elementary particle theories without divergence according to this viewpoint.
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Rath, Pratik; Salzetta, Nico
2018-05-01
The past decade has seen a tremendous effort toward unraveling the relationship between entanglement and emergent spacetime. These investigations have revealed that entanglement between holographic degrees of freedom is crucial for the existence of bulk spacetime. We examine this connection from the other end of the entanglement spectrum and clarify the assertion that maximally entangled states have no reconstructable spacetime. To do so, we first define the conditions for bulk reconstructability. Under these terms, we scrutinize two cases of maximally entangled holographic states. One is the familiar example of AdS black holes; these are dual to thermal states of the boundary conformal field theory. Sending the temperature to the cutoff scale makes the state maximally entangled and the respective black hole consumes the spacetime. We then examine the de Sitter limit of Friedmann-Robertson-Walker (FRW) spacetimes. This limit is maximally entangled if one formulates the boundary theory on the holographic screen. Paralleling the anti-de Sitter (AdS) black hole, we find the resulting reconstructable region of spacetime vanishes. Motivated by these results, we prove a theorem showing that maximally entangled states have no reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermediate entanglement. By studying the manner in which intermediate entanglement is achieved, we uncover important properties about the boundary theory of FRW spacetimes. With this clarified understanding, our final discussion elucidates the natural way in which holographic Hilbert spaces may house states dual to different geometries. This paper provides a coherent picture clarifying the link between spacetime and entanglement and develops many promising avenues of further work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momeni, D.; Ramazani-Arani, R.; Nouri-Zonoz, M.
Using the Ehlers transformation along with the gravitoelectromagnetic approach to stationary spacetimes we start from the Morgan-Morgan disk spacetime (without radial pressure) as the seed metric and find its corresponding stationary spacetime. As expected from the Ehlers transformation the stationary spacetime obtained suffers from a NUT-type singularity and the new parameter introduced in the stationary case could be interpreted as the gravitomagnetic monopole charge (or the NUT factor). Some of the properties of this spacetime including its particle velocity distribution, gravitational redshift, stability, and energy conditions are discussed.
Constant mean curvature slicings of Kantowski-Sachs spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Maximizers in Lipschitz spacetimes are either timelike or null
NASA Astrophysics Data System (ADS)
Graf, Melanie; Ling, Eric
2018-04-01
We prove that causal maximizers in C 0,1 spacetimes are either timelike or null. This question was posed in Sämann and Steinbauer (2017 arXiv:1710.10887) since bubbling regions in C0, α spacetimes (α <1 ) can produce causal maximizers that contain a segment which is timelike and a segment which is null, see Chruściel and Grant (2012 Class. Quantum Grav. 29 145001). While C 0,1 spacetimes do not produce bubbling regions, the causal character of maximizers for spacetimes with regularity at least C 0,1 but less than C 1,1 was unknown until now. As an application we show that timelike geodesically complete spacetimes are C 0,1-inextendible.
Spacetime symmetries and topology in bimetric relativity
NASA Astrophysics Data System (ADS)
Torsello, Francesco; Kocic, Mikica; Högâs, Marcus; Mörtsell, Edvard
2018-04-01
We explore spacetime symmetries and topologies of the two metric sectors in Hassan-Rosen bimetric theory. We show that, in vacuum, the two sectors can either share or have separate spacetime symmetries. If stress-energy tensors are present, a third case can arise, with different spacetime symmetries within the same sector. This raises the question of the best definition of spacetime symmetry in Hassan-Rosen bimetric theory. We emphasize the possibility of imposing ansatzes and looking for solutions having different Killing vector fields or different isometries in the two sectors, which has gained little attention so far. We also point out that the topology of spacetime imposes a constraint on possible metric combinations.
Misleading inferences from discretization of empty spacetime: Snyder-noncommutativity case study
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Astuti, Valerio
2015-06-01
Alternative approaches to the study of the quantum gravity problem are handling the role of spacetime very differently. Some are focusing on the analysis of one or another novel formulation of "empty spacetime", postponing to later stages the introduction of particles and fields, while other approaches assume that spacetime should only be an emergent entity. We here argue that recent progress in the covariant formulation of quantum mechanics, suggests that empty spacetime is not physically meaningful. We illustrate our general thesis in the specific context of the noncommutative Snyder spacetime, which is also of some intrinsic interest, since hundreds of studies were devoted to its analysis. We show that empty Snyder spacetime, described in terms of a suitable kinematical Hilbert space, is discrete, but this is only a formal artifact: the discreteness leaves no trace on the observable properties of particles on the physical Hilbert space.
ERIC Educational Resources Information Center
Range, Shannon K'doah; Mullins, Jennifer
This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3)…
Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schee, Jan; Stuchlík, Zdeněk, E-mail: jan.schee@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz
We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghostmore » direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region.« less
No ISCOs in Charged Myers Perry Spacetimes by Measuring Lyapunov Exponent
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2015-01-01
By computing coordinate time Lyapunov exponent, we prove that for more than four spacetime dimensions (N ≥ 3), there are no Innermost Stable Circular Orbit (ISCO) in charged Myers Perry blackhole spacetime.Using it, we show that the instability of equatorial circular geodesics, both massive and massless particles for such types of blackhole space-times.
Maxwell-Higgs equation on higher dimensional static curved spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulyanto, E-mail: mulyanto37@gmail.com; Akbar, Fiki Taufik, E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby Eka, E-mail: bobby@fi.itb.ac.id
In this paper we consider a class of solutions of Maxwell-Higgs equation in higher dimensional static curved spacetimes called Schwarzchild de-Sitter spacetimes. We obtain the general form of the electric fields and magnetic fields in background Schwarzchild de-Sitter spacetimes. However, determining the interaction between photons with the Higgs scalar fields is needed further studies.
NASA Astrophysics Data System (ADS)
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
The global monopole spacetime and its topological charge
NASA Astrophysics Data System (ADS)
Tan, Hongwei; Yang, Jinbo; Zhang, Jingyi; He, Tangmei
2018-03-01
We show that the global monopole spacetime is one of the exact solutions of the Einstein equations by treating the matter field as a non-linear sigma model, without the weak field approximation applied in the original derivation by Barriola and Vilenkin. Furthermore, we find the physical origin of the topological charge in the global monopole spacetime. Finally, we generalize the proposal which generates spacetime from thermodynamical laws to the case of spacetime with global monopole charge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11273009 and 11303006).
Structure of random discrete spacetime
NASA Technical Reports Server (NTRS)
Brightwell, Graham; Gregory, Ruth
1991-01-01
The usual picture of spacetime consists of a continuous manifold, together with a metric of Lorentzian signature which imposes a causal structure on the spacetime. A model, first suggested by Bombelli et al., is considered in which spacetime consists of a discrete set of points taken at random from a manifold, with only the causal structure on this set remaining. This structure constitutes a partially ordered set (or poset). Working from the poset alone, it is shown how to construct a metric on the space which closely approximates the metric on the original spacetime manifold, how to define the effective dimension of the spacetime, and how such quantities may depend on the scale of measurement. Possible desirable features of the model are discussed.
The structure of random discrete spacetime
NASA Technical Reports Server (NTRS)
Brightwell, Graham; Gregory, Ruth
1990-01-01
The usual picture of spacetime consists of a continuous manifold, together with a metric of Lorentzian signature which imposes a causal structure on the spacetime. A model, first suggested by Bombelli et al., is considered in which spacetime consists of a discrete set of points taken at random from a manifold, with only the causal structure on this set remaining. This structure constitutes a partially ordered set (or poset). Working from the poset alone, it is shown how to construct a metric on the space which closely approximates the metric on the original spacetime manifold, how to define the effective dimension of the spacetime, and how such quantities may depend on the scale of measurement. Possible desirable features of the model are discussed.
Toward a holographic theory for general spacetimes
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.
2017-04-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.
Space Geodesy, VLBI, and the Fourth Pillar of Geodesy - Spacetime Curvature
NASA Astrophysics Data System (ADS)
Combrinck, Ludwig
2014-12-01
Typically geodesy is described as having ``three pillars'': the variations in Earth's shape, gravity field, and rotation. These pillars form the conceptual and observational basis for the celestial and terrestrial reference frames required for Earth and space observations. However, it is no longer adequate to base the conceptual and observational basis on only three pillars. Spacetime curvature as described by the General Theory of Relativity (GTR) is an integral component of all space geodesy techniques and influences all measurements, techniques, and data reduction. Spacetime curvature is therefore the fourth pillar. It is the measurement of the shape of spacetime and its variations. Due to accuracies of Very Long Baseline Interferometry (VLBI) and optical celestial reference frame measurements reaching the tens of micro-arcsecond level in the near future, it is essential to recognize the impact of spacetime seeing on the accuracy objectives of the Global Geodetic Observing System. Spacetime seeing (resulting from spacetime curvature) is analogous to astronomical seeing (resulting from atmospheric conditions), as all of spacetime is affected by microlensing/weak lensing to some extent as a result of mass (normal baryonic and darkmatter) distribution, placing a limit on the realization of the celestial reference frame.
Accelerated observers and the notion of singular spacetime
NASA Astrophysics Data System (ADS)
Olmo, Gonzalo J.; Rubiera-Garcia, Diego; Sanchez-Puente, Antonio
2018-03-01
Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
On the proof of the C 0-inextendibility of the Schwarzschild spacetime
NASA Astrophysics Data System (ADS)
Sbierski, Jan
2018-02-01
This article presents a streamlined version of the author’s original proof of the C 0-inextendibility of the maximal analytic Schwarzschild spacetime. Firstly, we deviate from the original proof by using the result, recently established in collaboration with Galloway and Ling, that given a C 0-extension of a globally hyperbolic spacetime, one can find a timelike geodesic that leaves this spacetime. This result much simplifies the proof of the inextendibility through the exterior region of the Schwarzschild spacetime. Secondly, we give a more flexible and shorter argument for the inextendibility through the interior region. Furthermore, we present a small new structural result for the boundary of a globally hyperbolic spacetime within a C 0-extension which serves as a new and simpler starting point for the proof.
Resolution of quantum singularities
NASA Astrophysics Data System (ADS)
Konkowski, Deborah; Helliwell, Thomas
2017-01-01
A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.
Stability of generic thin shells in conformally flat spacetimes
NASA Astrophysics Data System (ADS)
Amirabi, Z.
2017-07-01
Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p=ω σ . It is shown that, for the physical domain of ω , i.e., 0<ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated.
A complete characterization of relativistic uniform acceleration
NASA Astrophysics Data System (ADS)
Scarr, Tzvi; Friedman, Yaakov
2017-05-01
We use the Frenet frame to define and completely characterize “uniform acceleration” in flat spacetime. We extend the definition to arbitrary curved spacetime and provide an example in Schwarzschild spacetime.
Proper projective symmetry in LRS Bianchi type V spacetimes
NASA Astrophysics Data System (ADS)
Shabbir, Ghulam; Mahomed, K. S.; Mahomed, F. M.; Moitsheki, R. J.
2018-04-01
In this paper, we investigate proper projective vector fields of locally rotationally symmetric (LRS) Bianchi type V spacetimes using direct integration and algebraic techniques. Despite the non-degeneracy in the Riemann tensor eigenvalues, we classify proper Bianchi type V spacetimes and show that the above spacetimes do not admit proper projective vector fields. Here, in all the cases projective vector fields are Killing vector fields.
Geometrodynamics: the nonlinear dynamics of curved spacetime
NASA Astrophysics Data System (ADS)
Scheel, M. A.; Thorne, K. S.
2014-04-01
We review discoveries in the nonlinear dynamics of curved spacetime, largely made possible by numerical solutions of Einstein's equations. We discuss critical phenomena and self-similarity in gravitational collapse, the behavior of spacetime curvature near singularities, the instability of black strings in five spacetime dimensions, and the collision of four-dimensional black holes. We also discuss the prospects for further discoveries in geometrodynamics via observations of gravitational waves.
Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2015-12-01
In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2010-09-01
Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K + relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K + (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.
No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2018-03-01
We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.
Fermion systems in discrete space-time
NASA Astrophysics Data System (ADS)
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Quantum estimation of parameters of classical spacetimes
NASA Astrophysics Data System (ADS)
Downes, T. G.; van Meter, J. R.; Knill, E.; Milburn, G. J.; Caves, C. M.
2017-11-01
We describe a quantum limit to the measurement of classical spacetimes. Specifically, we formulate a quantum Cramér-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to the detection of gravitational waves with the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.
Entropy of space-time outcome in a movement speed-accuracy task.
Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M
2015-12-01
The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
How to use retarded Green's functions in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Atsushi; Cheong, Lee Yen
2008-10-15
We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetismmore » in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.« less
(2+1)-dimensional spacetimes containing closed timelike curves
NASA Astrophysics Data System (ADS)
Headrick, Matthew P.; Gott, J. Richard, III
1994-12-01
We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the transformations undergone by tangent spaces upon parallel transport around closed curves. We critically discuss the use of the term ``total energy-momentum'' as a label for such parallel-transport transformations, pointing out several problems with it. We then investigate parallel-transport transformations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC's), and introduce a few new such spacetimes. Using the more specific concept of the holonomy of a closed curve, applicable in simply connected spacetimes, we emphasize that Gott's two-particle CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following modified version of Kabat's conjecture: if a CTC is deformable to spacelike or null infinity while remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its holonomy, if defined, cannot be a rotation other than through a multiple of 2π.
Entropy of Movement Outcome in Space-Time.
Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M
2015-07-01
Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.
Exact geodesic distances in FLRW spacetimes
NASA Astrophysics Data System (ADS)
Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri
2017-11-01
Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.
Beyond Discrete Vacuum Spacetimes
NASA Astrophysics Data System (ADS)
McDonald, Jonathan; Miller, Warner
2008-04-01
In applications to pre-geometric models of quantum gravity, one expects matter to play an important role in the geometry of the spacetime. Such models often posit that the matter fields play a crucial role in the determination of the spacetime geometry. However, it is not well understood at a fundamental level how one couples matter into the Regge geometry. In order to better understand the nature of such theories that rely on Regge Calculus, we must first gain a better understanding of the role of matter in a lattice spacetime. We investigate consistent methods of incorporating matter into spacetime, and particularly focus on the role of spinors in Regge Calculus. Since spinors are fundamental to fermionic fields, this investigation is crucial in understanding fermionic coupling to discrete spacetime. Our focus is primarily on the geometric interpretation of the fields on the lattice geometry with a goal on understanding the dynamic coupling between the fields and the geometry.
Cosmological power spectrum in a noncommutative spacetime
NASA Astrophysics Data System (ADS)
Kothari, Rahul; Rath, Pranati K.; Jain, Pankaj
2016-09-01
We propose a generalized star product that deviates from the standard one when the fields are considered at different spacetime points by introducing a form factor in the standard star product. We also introduce a recursive definition by which we calculate the explicit form of the generalized star product at any number of spacetime points. We show that our generalized star product is associative and cyclic at linear order. As a special case, we demonstrate that our recursive approach can be used to prove the associativity of standard star products for same or different spacetime points. The introduction of a form factor has no effect on the standard Lagrangian density in a noncommutative spacetime because it reduces to the standard star product when spacetime points become the same. We show that the generalized star product leads to physically consistent results and can fit the observed data on hemispherical anisotropy in the cosmic microwave background radiation.
Hypersurface-deformation algebroids and effective spacetime models
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Büyükçam, Umut; Brahma, Suddhasattwa; D'Ambrosio, Fabio
2016-11-01
In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators forming a Lie algebroid. Lie-algebroid morphisms, therefore, allow one to relate different versions of the brackets that correspond to the same spacetime structure. An application to examples of modified brackets found mainly in models of loop quantum gravity can, in some cases, map the spacetime structure back to the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies), signature change appears to be a generic feature of effective spacetime, and it is shown here to be a new quantum spacetime phenomenon which cannot be mapped to an equivalent classical structure. In low-curvature regimes, our constructions not only prove the existence of classical spacetime structures assumed elsewhere in models of loop quantum cosmology, they also show the existence of additional quantum corrections that have not always been included.
ER = EPR and non-perturbative action integrals for quantum gravity
NASA Astrophysics Data System (ADS)
Alsaleh, Salwa; Alasfar, Lina
In this paper, we construct and calculate non-perturbative path integrals in a multiply-connected spacetime. This is done by summing over homotopy classes of paths. The topology of the spacetime is defined by Einstein-Rosen bridges (ERB) forming from the entanglement of quantum foam described by virtual black holes. As these “bubbles” are entangled, they are connected by Planckian ERBs because of the ER = EPR conjecture. Hence, the spacetime will possess a large first Betti number B1. For any compact 2-surface in the spacetime, the topology (in particular the homotopy) of that surface is non-trivial due to the large number of Planckian ERBs that define homotopy through this surface. The quantization of spacetime with this topology — along with the proper choice of the 2-surfaces — is conjectured to allow non-perturbative path integrals of quantum gravity theory over the spacetime manifold.
Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de
Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects,more » such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.« less
Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time
NASA Astrophysics Data System (ADS)
de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan
2018-05-01
We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.
Radar orthogonality and radar length in Finsler and metric spacetime geometry
NASA Astrophysics Data System (ADS)
Pfeifer, Christian
2014-09-01
The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.
NASA Astrophysics Data System (ADS)
Atanasov, Victor
2017-07-01
We extend the superconductor's free energy to include an interaction of the order parameter with the curvature of space-time. This interaction leads to geometry dependent coherence length and Ginzburg-Landau parameter which suggests that the curvature of space-time can change the superconductor's type. The curvature of space-time doesn't affect the ideal diamagnetism of the superconductor but acts as chemical potential. In a particular circumstance, the geometric field becomes order-parameter dependent, therefore the superconductor's order parameter dynamics affects the curvature of space-time and electrical or internal quantum mechanical energy can be channelled into the curvature of space-time. Experimental consequences are discussed.
Quantum healing of spacetime singularities: A review
NASA Astrophysics Data System (ADS)
Konkowski, D. A.; Helliwell, T. M.
2018-02-01
Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.
Proca fields interpretation of spin 1 equation in Robertson-Walker space-time
NASA Astrophysics Data System (ADS)
Zecca, Antonio
2006-05-01
The general scheme for massive spin 1 equation in curved space-time is specialized to describe the Proca fields. The expressions of the Proca tensor fields are detailed in the Robertson-Walker space-time by means of the solutions of the spin 1 equation in a given tetrad and by the components of the tetrad itself. Asymptotic behaviours of the fields are discussed in the flat, closed and open space-time cases.
Black holes in loop quantum gravity: the complete space-time.
Gambini, Rodolfo; Pullin, Jorge
2008-10-17
We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.
Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure
NASA Astrophysics Data System (ADS)
Diethert, A.; Finster, F.; Schiefeneder, D.
As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.
Júnez-Ferreira, H E; Herrera, G S
2013-04-01
This paper presents a new methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space-time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space-time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space-time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space-time analysis corresponds to information of 273 wells located within the aquifer for the period 1970-2007. A total of 1,435 hydraulic head data were used to construct the experimental space-time variogram. The results show that from the existing monitoring program that consists of 418 space-time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.
Rates of Charged Clocks in an Electric Field.
NASA Astrophysics Data System (ADS)
Ozer, Murat
2008-04-01
The gravitational arguments leading to time dilation, redshift, and spacetime curvature are adapted to electric fields. The energy levels of two identical positively charged atoms at different potentials in a static electric field are shown to undergo blueshift. Secondly, the period of a charged simple pendulum (clock) in the electric field of a metallic sphere is shown to vary with the electric potential. The spacetime diagram for the world lines of two photons emitted and absorbed by two pendulums at different potentials at different times and the world lines of the pendulums, as in Schild's argument, is shown to be not a parallelogram in Minkowski spacetime, concluding that spacetime must be curved. A Pound-Rebka-Snider experiment in an electric field is proposed to confirm that photons undergo a frequency shift in an electric field and hence the spacetime manifold is curved. Next, Torretti's gravitational argument that spacetime around a mass distribution concentrated at a point is curved is extended to electric charge distributions to conclude that the nonuniform electric fields of such charge distributions too curve spacetime. Finally, the local equivalence of a uniform electric field times the charge to mass ratio to a uniform acceleration is shown through spacetime transformations and the electrical redshift is obtained in a uniformly accelerated frame by using this principle. These arguments lead to the conclusion that special relativistic electromagnetism is an approximation to a general relativistic multi-metric theory.
McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish
2017-06-01
Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals' everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients' space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants' everyday lives. We found that participants' everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants' everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off 'ripple effects' within participants' space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise and de-centre everyday human behaviour. Opportunities to support renal patients in managing illness and experiencing wellbeing outside the clinical setting lie in a space-time re-design of chronic care services. Copyright © 2017 Elsevier Ltd. All rights reserved.
McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish
2017-01-01
Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals’ everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients’ space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants’ everyday lives. We found that participants’ everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants’ everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off ‘ripple effects’ within participants’ space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise and de-centre everyday human behaviour. Opportunities to support renal patients in managing illness and experiencing wellbeing outside the clinical setting lie in a space-time re-design of chronic care services. PMID:28482275
A Note on the Problem of Proper Time in Weyl Space-Time
NASA Astrophysics Data System (ADS)
Avalos, R.; Dahia, F.; Romero, C.
2018-02-01
We discuss the question of whether or not a general Weyl structure is a suitable mathematical model of space-time. This is an issue that has been in debate since Weyl formulated his unified field theory for the first time. We do not present the discussion from the point of view of a particular unification theory, but instead from a more general standpoint, in which the viability of such a structure as a model of space-time is investigated. Our starting point is the well known axiomatic approach to space-time given by Elhers, Pirani and Schild (EPS). In this framework, we carry out an exhaustive analysis of what is required for a consistent definition for proper time and show that such a definition leads to the prediction of the so-called "second clock effect". We take the view that if, based on experience, we were to reject space-time models predicting this effect, this could be incorporated as the last axiom in the EPS approach. Finally, we provide a proof that, in this case, we are led to a Weyl integrable space-time as the most general structure that would be suitable to model space-time.
Quantum Spacetime: Mimicry of Paths and Black Holes
NASA Astrophysics Data System (ADS)
Spaans, Marco
2015-08-01
Since its inception, general relativity has been unreceptive to a marriage with the quantum aspects of our universe. Following the ideas of Einstein, one may pursue an approach that allows spacetime itself to take center stage. The quantum properties of matter are then carried by the dynamics of spacetime shape and connectivity. This monograph introduces the reader to the foundations of quantum spacetime in a manner accessible to researchers and students. Likewise, interested laymen that lack a strong background in quantum mechanics or spacetime studies but are keen to learn will find this book worthwhile. It is shown from first principles how spacetime is globally built up by paths which constitute entire histories in four dimensions. The central physical idea is that the collective existence of observers and observed derives from one mimicking the other unremittingly, thereby inducing tangible reality. This world of identity by mimicry creates a multitude of interacting histories. Throughout the text, thought experiments are used to derive physical principles. Obtained results are therefore intuitive and accessible to non-experts. This monograph also discusses consequences of quantum spacetime for black holes, dark energy, inflation, the Higgs boson, and the multiverse.
Existence and stability of circular orbits in static and axisymmetric spacetimes
NASA Astrophysics Data System (ADS)
Jia, Junji; Pang, Xiankai; Yang, Nan
2018-04-01
The existence and stability of timelike and null circular orbits (COs) in the equatorial plane of general static and axisymmetric (SAS) spacetime are investigated in this work. Using the fixed point approach, we first obtained a necessary and sufficient condition for the non-existence of timelike COs. It is then proven that there will always exist timelike COs at large ρ in an asymptotically flat SAS spacetime with a positive ADM mass and moreover, these timelike COs are stable. Some other sufficient conditions on the stability of timelike COs are also solved. We then found the necessary and sufficient condition on the existence of null COs. It is generally shown that the existence of timelike COs in SAS spacetime does not imply the existence of null COs, and vice-versa, regardless whether the spacetime is asymptotically flat or the ADM mass is positive or not. These results are then used to show the existence of timelike COs and their stability in an SAS Einstein-Yang-Mills-Dilaton spacetimes whose metric is not completely known. We also used the theorems to deduce the existence of timelike and null COs in some known SAS spacetimes.
[The application of the prospective space-time statistic in early warning of infectious disease].
Yin, Fei; Li, Xiao-Song; Feng, Zi-Jian; Ma, Jia-Qi
2007-06-01
To investigate the application of prospective space-time scan statistic in the early stage of detecting infectious disease outbreaks. The prospective space-time scan statistic was tested by mimicking daily prospective analyses of bacillary dysentery data of Chengdu city in 2005 (3212 cases in 102 towns and villages). And the results were compared with that of purely temporal scan statistic. The prospective space-time scan statistic could give specific messages both in spatial and temporal. The results of June indicated that the prospective space-time scan statistic could timely detect the outbreaks that started from the local site, and the early warning message was powerful (P = 0.007). When the merely temporal scan statistic for detecting the outbreak was sent two days later, and the signal was less powerful (P = 0.039). The prospective space-time scan statistic could make full use of the spatial and temporal information in infectious disease data and could timely and effectively detect the outbreaks that start from the local sites. The prospective space-time scan statistic could be an important tool for local and national CDC to set up early detection surveillance systems.
Schwarzschild-de Sitter spacetimes, McVittie coordinates, and trumpet geometries
NASA Astrophysics Data System (ADS)
Dennison, Kenneth A.; Baumgarte, Thomas W.
2017-12-01
Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat, however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean curvature trumpet slicings of Schwarzschild-de Sitter spacetimes. We then switch to a comoving isotropic radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances from the black hole the resulting metric asymptotes to a Friedmann-Lemaître-Robertson-Walker metric with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a "wormhole" geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in asymptotically de Sitter spacetimes.
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
NASA Astrophysics Data System (ADS)
Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.
2018-03-01
In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.
More on accreting black hole spacetime in equatorial plane
NASA Astrophysics Data System (ADS)
Salahshoor, K.; Nozari, K.; Khesali, A. R.
2017-02-01
Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.
Mapping superintegrable quantum mechanics to resonant spacetimes
NASA Astrophysics Data System (ADS)
Evnin, Oleg; Demirchian, Hovhannes; Nersessian, Armen
2018-01-01
We describe a procedure naturally associating relativistic Klein-Gordon equations in static curved spacetimes to nonrelativistic quantum motion on curved spaces in the presence of a potential. Our procedure is particularly attractive in application to (typically, superintegrable) problems whose energy spectrum is given by a quadratic function of the energy level number, since for such systems the spacetimes one obtains possess evenly spaced, resonant spectra of frequencies for scalar fields of a certain mass. This construction emerges as a generalization of the previously studied correspondence between the Higgs oscillator and anti-de Sitter spacetime, which has been useful for both understanding weakly nonlinear dynamics in anti-de Sitter spacetime and algebras of conserved quantities of the Higgs oscillator. Our conversion procedure ("Klein-Gordonization") reduces to a nonlinear elliptic equation closely reminiscent of the one emerging in relation to the celebrated Yamabe problem of differential geometry. As an illustration, we explicitly demonstrate how to apply this procedure to superintegrable Rosochatius systems, resulting in a large family of spacetimes with resonant spectra for massless wave equations.
Energy in higher-dimensional spacetimes
NASA Astrophysics Data System (ADS)
Barzegar, Hamed; Chruściel, Piotr T.; Hörzinger, Michael
2017-12-01
We derive expressions for the total Hamiltonian energy of gravitating systems in higher-dimensional theories in terms of the Riemann tensor, allowing a cosmological constant Λ ∈R . Our analysis covers asymptotically anti-de Sitter spacetimes, asymptotically flat spacetimes, as well as Kaluza-Klein asymptotically flat spacetimes. We show that the Komar mass equals the Arnowitt-Deser-Misner (ADM) mass in stationary asymptotically flat spacetimes in all dimensions, generalizing the four-dimensional result of Beig, and that this is no longer true with Kaluza-Klein asymptotics. We show that the Hamiltonian mass does not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat spacetimes, and that the Witten positivity argument provides a lower bound for the Hamiltonian mass—and not for the ADM mass—in terms of the electric charge. We illustrate our results on the five-dimensional Rasheed metrics, which we study in some detail, pointing out restrictions that arise from the requirement of regularity, which have gone seemingly unnoticed so far in the literature.
Space-time models based on random fields with local interactions
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios T.; Tsantili, Ivi C.
2016-08-01
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
NASA Astrophysics Data System (ADS)
Chen, Xiang
2012-11-01
We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.
On Mass, Spacetime Curvature, and Gravity
ERIC Educational Resources Information Center
Janis, Allen I.
2018-01-01
The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek
2016-04-01
Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel of land, the 4 digit postal code area or neighbourhood of a persons' home, circular areas around the home, and spatial probability distributions of space-time paths during commuting. Personal exposure was estimated by averaging concentrations over these space-time paths, for each individual in a cohort. Preliminary results show considerable differences of a persons' exposure using these various approaches of space-time path aggregation, presumably because air pollution shows large variation over short distances.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Conformal Yano-Killing Tensors for Space-times with Cosmological Constant
NASA Astrophysics Data System (ADS)
Czajka, P.; Jezierski, J.
We present a new method for constructing conformal Yano-Killing tensors in five-di\\-men\\-sio\\-nal Anti-de Sitter space-time. The found tensors are represented in two different coordinate systems. We also discuss, in terms of CYK tensors, global charges which are well defined for asymptotically (five-dimensional) Anti-de Sitter space-time. Additionally in Appendix we present our own derivation of conformal Killing one-forms in four-dimensional Anti-de Sitter space-time as an application of the Theorem presented in the paper.
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-05-01
The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.
Bespoke analogue space-times: meta-material mimics
NASA Astrophysics Data System (ADS)
Schuster, Sebastian; Visser, Matt
2018-06-01
Modern meta-materials allow one to construct electromagnetic media with almost arbitrary bespoke permittivity, permeability, and magneto-electric tensors. If (and only if) the permittivity, permeability, and magneto-electric tensors satisfy certain stringent compatibility conditions, can the meta-material be fully described (at the wave optics level) in terms of an effective Lorentzian metric—an analogue spacetime. We shall consider some of the standard black-hole spacetimes of primary interest in general relativity, in various coordinate systems, and determine the equivalent meta-material susceptibility tensors in a laboratory setting. In static black hole spacetimes (Schwarzschild and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the horizon. In stationary black hole spacetimes (Kerr and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the ergo-surface.
Three-variable solution in the (2+1)-dimensional null-surface formulation
NASA Astrophysics Data System (ADS)
Harriott, Tina A.; Williams, J. G.
2018-04-01
The null-surface formulation of general relativity (NSF) describes gravity by using families of null surfaces instead of a spacetime metric. Despite the fact that the NSF is (to within a conformal factor) equivalent to general relativity, the equations of the NSF are exceptionally difficult to solve, even in 2+1 dimensions. The present paper gives the first exact (2+1)-dimensional solution that depends nontrivially upon all three of the NSF's intrinsic spacetime variables. The metric derived from this solution is shown to represent a spacetime whose source is a massless scalar field that satisfies the general relativistic wave equation and the Einstein equations with minimal coupling. The spacetime is identified as one of a family of (2+1)-dimensional general relativistic spacetimes discovered by Cavaglià.
Energy conditions and junction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marolf, Donald; Yaida, Sho; Mathematics Department, UCSB, Santa Barbara, California 93106
2005-08-15
We consider the familiar junction conditions described by Israel for thin timelike walls in Einstein-Hilbert gravity. One such condition requires the induced metric to be continuous across the wall. Now, there are many spacetimes with sources confined to a thin wall for which this condition is violated and the Israel formalism does not apply. However, we explore the conjecture that the induced metric is in fact continuous for any thin wall which models spacetimes containing only positive energy matter. Thus, the usual junction conditions would hold for all positive energy spacetimes. This conjecture is proven in various special cases, includingmore » the case of static spacetimes with spherical or planar symmetry as well as settings without symmetry which may be sufficiently well approximated by smooth spacetimes with well-behaved null geodesic congruences.« less
NASA Astrophysics Data System (ADS)
Taravati, Sajjad
2018-06-01
This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.
Extended canonical field theory of matter and space-time
NASA Astrophysics Data System (ADS)
Struckmeier, J.; Vasak, D.; matter, H. Stoecker Field theory of; space-time
2015-11-01
Any physical theory that follows from an action principle should be invariant in its form under mappings of the reference frame in order to comply with the general principle of relativity. The required form-invariance of the action principle implies that the mapping must constitute a particular extended canonical transformation. In the realm of the covariant Hamiltonian formulation of field theory, the term ``extended'' implies that not only the fields but also the space-time geometry is subject to transformation. A canonical transformation maintains the general form of the action principle by simultaneously defining the appropriate transformation rules for the fields, the conjugate momentum fields, and the transformation rule for the Hamiltonian. Provided that the given system of fields exhibits a particular global symmetry, the associated extended canonical transformation determines an amended Hamiltonian that is form-invariant under the corresponding local symmetry. This will be worked out for a Hamiltonian system of scalar and vector fields that is presupposed to be form-invariant under space-time transformations xμ\\mapsto Xμ with partial Xμ/partial xν=const., hence under global space-time transformations such as the Poincaré transformation. The corresponding amended system that is form-invariant under local space-time transformations partial Xμ/partial xν≠qconst. then describes the coupling of the fields to the space-time geometry and thus yields the dynamics of space-time that is associated with the given physical system. Non-zero spin matter determines thereby the space-time curvature via a well-defined source term in a covariant Poisson-type equation for the Riemann tensor.
Spacetime and Euclidean geometry
NASA Astrophysics Data System (ADS)
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
Theorizing Space-Time Relations in Education: The Concept of Chronotope
ERIC Educational Resources Information Center
Ritella, Giuseppe; Ligorio, Maria Beatrice; Hakkarainen, Kai
2016-01-01
Due to ongoing cultural-historical transformations, the space-time of learning is radically changing, and theoretical conceptualizations are needed to investigate how such evolving space-time frames can function as a ground for learning. In this article, we argue that the concept of chronotope--from Greek chronos and topos, meaning time and…
Does three-dimensional electromagnetic field inherit the spacetime symmetries?
NASA Astrophysics Data System (ADS)
Cvitan, M.; Dominis Prester, P.; Smolić, I.
2016-04-01
We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.
Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk, E-mail: hana.kucakova@centrum.cz, E-mail: petr.slany@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz
Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It ismore » demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.« less
Quantum particles in general spacetimes: A tangent bundle formalism
NASA Astrophysics Data System (ADS)
Wohlfarth, Mattias N. R.
2018-06-01
Using tangent bundle geometry we construct an equivalent reformulation of classical field theory on flat spacetimes which simultaneously encodes the perspectives of multiple observers. Its generalization to curved spacetimes realizes a new type of nonminimal coupling of the fields and is shown to admit a canonical quantization procedure. For the resulting quantum theory we demonstrate the emergence of a particle interpretation, fully consistent with general relativistic geometry. The path dependency of parallel transport forces each observer to carry their own quantum state; we find that the communication of the corresponding quantum information may generate extra particles on curved spacetimes. A speculative link between quantum information and spacetime curvature is discussed which might lead to novel explanations for quantum decoherence and vanishing interference in double-slit or interaction-free measurement scenarios, in the mere presence of additional observers.
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
Unattainable extended spacetime regions in conformal gravity
NASA Astrophysics Data System (ADS)
Chakrabarty, Hrishikesh; Benavides-Gallego, Carlos A.; Bambi, Cosimo; Modesto, Leonardo
2018-03-01
The Janis-Newman-Winicour metric is a solution of Einstein's gravity minimally coupled to a real massless scalar field. The γ-metric is instead a vacuum solution of Einstein's gravity. Both spacetimes have no horizon and possess a naked singularity at a finite value of the radial coordinate, where curvature invariants diverge and the spacetimes are geodetically incomplete. In this paper, we reconsider these solutions in the framework of conformal gravity and we show that it is possible to solve the spacetime singularities with a suitable choice of the conformal factor. Now curvature invariants remain finite over the whole spacetime. Massive particles never reach the previous singular surface and massless particles can never do it with a finite value of their affine parameter. Our results support the conjecture according to which conformal gravity can fix the singularity problem that plagues Einstein's gravity.
Bose-Einstein condensates in charged black-hole spacetimes
NASA Astrophysics Data System (ADS)
Castellanos, Elías; Degollado, Juan Carlos; Lämmerzahl, Claus; Macías, Alfredo; Perlick, Volker
2018-01-01
We analyze Bose-Einstein condensates on three types of spherically symmetric and static charged black-hole spacetimes: the Reissner-Nordström spacetime, Hoffmann's Born-Infeld black-hole spacetime, and the regular Ayón-Beato-García spacetime. The Bose-Einstein condensate is modeled in terms of a massive scalar field that satisfies a Klein-Gordon equation with a self-interaction term. The scalar field is assumed to be uncharged and not self-gravitating. If the mass parameter of the scalar field is chosen sufficiently small, there are quasi-bound states of the scalar field that may be interpreted as dark matter clouds. We estimate the size and the total energy of such clouds around charged supermassive black holes and we investigate if their observable features can be used for discriminating between the different types of charged black holes.
Space-time topology and quantum gravity.
NASA Astrophysics Data System (ADS)
Friedman, J. L.
Characteristic features are discussed of a theory of quantum gravity that allows space-time with a non-Euclidean topology. The review begins with a summary of the manifolds that can occur as classical vacuum space-times and as space-times with positive energy. Local structures with non-Euclidean topology - topological geons - collapse, and one may conjecture that in asymptotically flat space-times non-Euclidean topology is hiden from view. In the quantum theory, large diffeos can act nontrivially on the space of states, leading to state vectors that transform as representations of the corresponding symmetry group π0(Diff). In particular, in a quantum theory that, at energies E < EPlanck, is a theory of the metric alone, there appear to be ground states with half-integral spin, and in higher-dimensional gravity, with the kinematical quantum numbers of fundamental fermions.
On the structure and applications of the Bondi-Metzner-Sachs group
NASA Astrophysics Data System (ADS)
Alessio, Francesco; Esposito, Giampiero
This work is a pedagogical review dedicated to a modern description of the Bondi-Metzner-Sachs (BMS) group. Minkowski space-time has an interesting and useful group of isometries, but, for a generic space-time, the isometry group is simply the identity and hence provides no significant informations. Yet symmetry groups have important role to play in physics; in particular, the Poincaré group describing the isometries of Minkowski space-time plays a role in the standard definitions of energy-momentum and angular-momentum. For this reason alone it would seem to be important to look for a generalization of the concept of isometry group that can apply in a useful way to suitable curved space-times. The curved space-times that will be taken into account are the ones that suitably approach, at infinity, Minkowski space-time. In particular we will focus on asymptotically flat space-times. In this work, the concept of asymptotic symmetry group of those space-times will be studied. In the first two sections we derive the asymptotic group following the classical approach which was basically developed by Bondi, van den Burg, Metzner and Sachs. This is essentially the group of transformations between coordinate systems of a certain type in asymptotically flat space-times. In the third section the conformal method and the notion of “asymptotic simplicity” are introduced, following mainly the works of Penrose. This section prepares us for another derivation of the BMS group which will involve the conformal structure, and is thus more geometrical and fundamental. In the subsequent sections we discuss the properties of the BMS group, e.g. its algebra and the possibility to obtain as its subgroup the Poincaré group, as we may expect. The paper ends with a review of the BMS invariance properties of classical gravitational scattering discovered by Strominger, that are finding application to black hole physics and quantum gravity in the literature.
Quantum thermodynamics and quantum entanglement entropies in an expanding universe
NASA Astrophysics Data System (ADS)
Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein
2017-05-01
We investigate an asymptotically spatially flat Robertson-Walker space-time from two different perspectives. First, using von Neumann entropy, we evaluate the entanglement generation due to the encoded information in space-time. Then, we work out the entropy of particle creation based on the quantum thermodynamics of the scalar field on the underlying space-time. We show that the general behavior of both entropies are the same. Therefore, the entanglement can be applied to the customary quantum thermodynamics of the universe. Also, using these entropies, we can recover some information about the parameters of space-time.
NASA Astrophysics Data System (ADS)
Sadiq, Jam; Zlochower, Yosef; Nakano, Hiroyuki
2018-04-01
We introduce a new geometrically invariant prescription for comparing two different spacetimes based on geodesic deviation. We use this method to compare a family of recently introduced analytical spacetime representing inspiraling black-hole binaries to fully nonlinear numerical solutions to the Einstein equations. Our method can be used to improve analytical spacetime models by providing a local measure of the effects that violations of the Einstein equations will have on timelike geodesics, and indirectly, gas dynamics. We also discuss the advantages and limitations of this method.
Topological interactions in spacetimes with thick line defects
NASA Astrophysics Data System (ADS)
Moraes, Fernando; Carvalho, A. M.; Costa, Ismael V.; Oliveira, F. A.; Furtado, Claudio
2003-08-01
In this work we study the topologically induced electric self-energy and self-force on a long, straight, wire in two distinct, but similar, spacetimes: (i) the Gott-Hiscock thick cosmic string spacetime, and (ii) the spacetime of a continuous distribution of infinitely thin cosmic strings over a disk of finite radius. In each case we obtain the electric self-energy and self-force both in the internal and external regions of the defect distribution. The self-force is always repulsive, independently of the sign of the charge, and is maximum on the string’s surface, in both cases.
One-dimensional sections of exotic spacetimes with superconducting circuits
NASA Astrophysics Data System (ADS)
Sabín, Carlos
2018-05-01
We introduce analogue quantum simulations of 1 + 1 dimensional sections of exotic 3 + 1 dimensional spacetimes, such as Alcubierre warp-drive spacetime, Gödel rotating universe and Kerr highly-rotating black hole metric. Suitable magnetic flux profiles along a SQUID array embedded in a superconducting transmission line allow to generate an effective spatiotemporal dependence in the speed of light, which is able to mimic the corresponding light propagation in a dimensionally-reduced exotic spacetime. In each case, we discuss the technical constraints and the links with possible chronology protection mechanisms and we find the optimal region of parameters for the experimental implementation.
Vacuum Decay via Lorentzian Wormholes
NASA Astrophysics Data System (ADS)
Rosales, J. L.
We speculate about the space-time description due to the presence of Lorentzian worm-holes (handles in space-time joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordström space-times is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the value of the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete space-times should be acutally negligible in our physical Universe.
Circular motion and Polish Doughnuts in NUT spacetime
NASA Astrophysics Data System (ADS)
Jefremov, Paul I.
The astrophysical relevance of the NUT spacetime(s) is a matter of debate due to pathological properties exhibited by this solution. However, if it is realised in nature, then we should look for the characteristic imprints of it on possible observations. One of the major sources of data on black hole astrophysics is the accretion process. Using a simple but fully analytical ``Polish Doughnuts'' model of accretion disk one gets both qualitative and quantitative differences from the Kerr spacetime produced by the presence of the gravitomagnetic charge. The present paper is based on our work Jefremov & Perlick (2016).
Conjectures on the relations of linking and causality in causally simple spacetimes
NASA Astrophysics Data System (ADS)
Chernov, Vladimir
2018-05-01
We formulate the generalization of the Legendrian Low conjecture of Natario and Tod (proved by Nemirovski and myself before) to the case of causally simple spacetimes. We prove a weakened version of the corresponding statement. In all known examples, a causally simple spacetime can be conformally embedded as an open subset into some globally hyperbolic and the space of light rays in is an open submanifold of the space of light rays in . If this is always the case, this provides an approach to solving the conjectures relating causality and linking in causally simple spacetimes.
NASA Astrophysics Data System (ADS)
Wang, Zhi; Long, Zheng-wen; Long, Chao-yun; Teng, Jing
2015-05-01
We study the Schrödinger equation with a Coulomb ring-shaped potential in the spacetime of a cosmic string, and the solutions of the system are obtained by using the generalized parametric Nikiforov-Uvarov (NU) method. They show that the quantum dynamics of a physical system depend on the non-trivial topological features of the cosmic string spacetime and the energy levels of the considered quantum system depend explicitly on the angular deficit α which characterizes the global structure of the metric in the cosmic string spacetime.
Exploring extra dimensions with scalar fields
NASA Astrophysics Data System (ADS)
Brown, Katherine; Mathur, Harsh; Verostek, Mike
2018-05-01
This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.
Real-time Space-time Integration in GIScience and Geography.
Richardson, Douglas B
2013-01-01
Space-time integration has long been the topic of study and speculation in geography. However, in recent years an entirely new form of space-time integration has become possible in GIS and GIScience: real-time space-time integration and interaction. While real-time spatiotemporal data is now being generated almost ubiquitously, and its applications in research and commerce are widespread and rapidly accelerating, the ability to continuously create and interact with fused space-time data in geography and GIScience is a recent phenomenon, made possible by the invention and development of real-time interactive (RTI) GPS/GIS technology and functionality in the late 1980s and early 1990s. This innovation has since functioned as a core change agent in geography, cartography, GIScience and many related fields, profoundly realigning traditional relationships and structures, expanding research horizons, and transforming the ways geographic data is now collected, mapped, modeled, and used, both in geography and in science and society more broadly. Real-time space-time interactive functionality remains today the underlying process generating the current explosion of fused spatiotemporal data, new geographic research initiatives, and myriad geospatial applications in governments, businesses, and society. This essay addresses briefly the development of these real-time space-time functions and capabilities; their impact on geography, cartography, and GIScience; and some implications for how discovery and change can occur in geography and GIScience, and how we might foster continued innovation in these fields.
Fluidic Spacetime and Representation of Fields in the Tri-Space Model of the Universe
NASA Astrophysics Data System (ADS)
Meholic, Gregory V.
2009-03-01
The Tri-Space Model of the universe (see Meholic, 1998 and 2004) is based upon the premise that the governing mathematics of special relativity describe a symmetrical continuum that supports not just one, but three, independent spacetimes each with a unique set of physical laws founded on the velocity v to light speed c ratio. These realms are subluminal space (where v/c<1), luminal spacetime (where v/c = 1), and superluminal space (where v/c>1) together comprising the `tri-space' universe. Although real, measurable mass can exist in both the sub- and superluminal spaces, the adjacent luminal spacetime shared by the two spaces is the realm in which all electromagnetic and gravitational fields exist. Determining the true nature of spacetime, and hence the true nature of the fundamental forces, has been the driving objective for ideas such as string theory and quantum mechanics. The Tri-Space approach, however, merges the basic premises of these ideas with the philosophy that the three spatial realms, especially luminal spacetime, can be represented as a quasi-fluidic continuum whose behavior can be approximated through modified classical fluid-dynamic analogies with flow field structure and fluid properties. If the fluid-like properties of spacetime can be sufficiently defined, then a graphical representation of the fundamental structure and characterization of the basic forces in nature can be developed.
Analysis of the Fisher solution
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Shoom, Andrey A.
2010-01-01
We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the “scalar charge” Σ. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,Σ) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its “big bang” and “big crunch.” The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are “dual to the horizon.”
Analysis of the Fisher solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdolrahimi, Shohreh; Shoom, Andrey A.
2010-01-15
We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exteriormore » region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.« less
A Novel View of Spacetime Permitting Faster-Than-Light Travel
NASA Astrophysics Data System (ADS)
Meholic, Gregory V.
2004-02-01
Recent discoveries across many disciplines of physics have supported a driving need for a ``new'' science to explain the apparent relationship between phenomenon at cosmological scales and those at the quantum, subatomic level while still supporting the classical mechanics of motion, electromagnetism and relativity. A novel view of both the spacetime continuum and the universe is postulated that not only connects these fields of interest, but proposes a method to travel at superluminal speeds by examining the underlying equations of special relativity. The governing mathematics of special relativity describe a symmetrical continuum that supports not just one, but three, independent spacetimes each with a unique set of physical laws founded on the speed of light, c. These spacetimes are the subluminal (where v/c < 1), the luminal (where v/c = 1), and the superluminal (where v/c > 1) comprising a `tri-space' universe. Relativistic symmetry illustrates that there can be up to three velocities (one for each spacetime) for a given absolute energy state. The similar characteristics of mass and energy in each spacetime may permit faster-than-light (FTL) travel through a quantum transformation/exchange of energy and mass (at the quark level or beyond) between the subluminal and superluminal realms. Based on the suggested characteristics of superluminal spacetime, the `trans-space' method of FTL travel would allow a particle to traverse sublight space by traveling through the superlight continuum without incurring the penalties of special relativity or causal relations. In addition, the spacetime construct and superluminal realm of the `tri-space' universe may offer a different perspective than the current ideologies that could better represent physical phenomena including universal expansion, the zero-point field, dark matter, and the source of inertia.
New geometric and field theoretic aspects of a radiation dominated universe
NASA Astrophysics Data System (ADS)
Modak, Sujoy K.
2018-05-01
The homogeneous and isotropic radiation dominated universe, following the inflationary stage, is expressed as a spherically symmetric and inhomogeneous spacetime upon a power-law-type conformal transformation of the null (cosmological) coordinates. This new spacetime metric has many interesting properties. While the static observers, at a fixed position in this new spacetime, do not see any horizon, some nonstatic observers encounter a horizon due to their motion which is analogous to the situation of Rindler observers in Minkowski spacetime. The symmetry of the new metric offers a unitarily inequivalent quantization of the massless scalar field and provides a new example of particle creation. We calculate the particle content of the cosmological vacuum state with respect to the static observer in this new spacetime who, with respect to cosmological time, is freely falling in the asymptotic past and future but accelerated in between.
Electrodynamics and Spacetime Geometry: Foundations
NASA Astrophysics Data System (ADS)
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Stationary metrics and optical Zermelo-Randers-Finsler geometry
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Herdeiro, C. A. R.; Warnick, C. M.; Werner, M. C.
2009-02-01
We consider a triality between the Zermelo navigation problem, the geodesic flow on a Finslerian geometry of Randers type, and spacetimes in one dimension higher admitting a timelike conformal Killing vector field. From the latter viewpoint, the data of the Zermelo problem are encoded in a (conformally) Painlevé-Gullstrand form of the spacetime metric, whereas the data of the Randers problem are encoded in a stationary generalization of the usual optical metric. We discuss how the spacetime viewpoint gives a simple and physical perspective on various issues, including how Finsler geometries with constant flag curvature always map to conformally flat spacetimes and that the Finsler condition maps to either a causality condition or it breaks down at an ergo surface in the spacetime picture. The gauge equivalence in this network of relations is considered as well as the connection to analogue models and the viewpoint of magnetic flows. We provide a variety of examples.
Global structure of Gott's two-string spacetime
NASA Astrophysics Data System (ADS)
Cutler, Curt
1992-01-01
Gott has recently obtained exact solutions to Einstein's equation representing two infinitely long, straight cosmic strings that gravitationally scatter off each other. A remarkable feature of these solutions is that they contain closed timelike curves when the relative velocity of the strings is sufficiently high. In this paper we elucidate the global structure of Gott's two-string spacetime. In particular, we prove that the closed timelike curves are confined to a certain region of the spacetime, and that the spacetime contains complete spacelike, edgeless, achronal hypersurfaces, from which the causality-violating regions may be said to evolve. We then explicitly determine the boundary of the region containing closed timelike curves.
Classical black holes: the nonlinear dynamics of curved spacetime.
Thorne, Kip S
2012-08-03
Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.
Classical Black Holes: The Nonlinear Dynamics of Curved Spacetime
NASA Astrophysics Data System (ADS)
Thorne, Kip S.
2012-08-01
Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
Thermodynamics of de Sitter Black Holes in Massive Gravity
NASA Astrophysics Data System (ADS)
Ma, Yu-Bo; Zhang, Si-Xuan; Wu, Yan; Ma, Li; Cao, Shuo
2018-05-01
In this paper, by taking de Sitter space-time as a thermodynamic system, we study the effective thermodynamic quantities of de Sitter black holes in massive gravity, and furthermore obtain the effective thermodynamic quantities of the space-time. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordström-de Sitter space-time, which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future. Moreover, our analysis indicates that the effective thermodynamic quantities and relevant parameters play a very important role in the investigation of the stability and evolution of de Sitter space-time. Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos. 11605107 and 11503001, the National Natural Science Foundation of China under Grant No. 11475108, Program for the Innovative Talents of Higher Learning Institutions of Shanxi, the Natural Science Foundation of Shanxi Province under Grant No. 201601D102004, the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No. 201601D021022, and the Natural Science Foundation of Datong City under Grant No. 20150110
Reduced-order surrogate models for Green's functions in black hole spacetimes
NASA Astrophysics Data System (ADS)
Galley, Chad; Wardell, Barry
2016-03-01
The fundamental nature of linear wave propagation in curved spacetime is encoded in the retarded Green's function (or propagator). Green's functions are useful tools because almost any field quantity of interest can be computed via convolution integrals with a source. In addition, perturbation theories involving nonlinear wave propagation can be expressed in terms of multiple convolutions of the Green's function. Recently, numerical solutions for propagators in black hole spacetimes have been found that are globally valid and accurate for computing physical quantities. However, the data generated is too large for practical use because the propagator depends on two spacetime points that must be sampled finely to yield accurate convolutions. I describe how to build a reduced-order model that can be evaluated as a substitute, or surrogate, for solutions of the curved spacetime Green's function equation. The resulting surrogate accurately and quickly models the original and out-of-sample data. I discuss applications of the surrogate, including self-consistent evolutions and waveforms of extreme mass ratio binaries. Green's function surrogate models provide a new and practical way to handle many old problems involving wave propagation and motion in curved spacetimes.
Existence and stability of circular orbits in general static and spherically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Jia, Junji; Liu, Jiawei; Liu, Xionghui; Mo, Zhongyou; Pang, Xiankai; Wang, Yaoguang; Yang, Nan
2018-02-01
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large r will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that three SSS spacetimes whose metric function is not completely known will allow the existence of timelike and/or null COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.
A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.
Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine
2008-04-11
Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.
Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koke, Christian, E-mail: christian.koke@stud.uni-heidelberg.de; Noh, Changsuk, E-mail: changsuk@kias.re.kr; Angelakis, Dimitris G., E-mail: dimitris.angelakis@gmail.com
When quantum fields are coupled to gravitational fields, spontaneous particle creation may occur similarly to when they are coupled to external electromagnetic fields. A gravitational field can be incorporated as a background spacetime if the back-action of matter on the field can be neglected, resulting in modifications of the Dirac or Klein–Gordon equations for elementary fermions and bosons respectively. The semi-classical description predicts particle creation in many situations, including the expanding-universe scenario, near the event horizon of a black hole (the Hawking effect), and an accelerating observer in flat spacetime (the Unruh effect). In this work, we give a pedagogicalmore » introduction to the Dirac equation in a general 2D spacetime and show examples of spinor wave packet dynamics in flat and curved background spacetimes. In particular, we cover the phenomenon of particle creation in a time-dependent metric. Photonic analogs of these effects are then proposed, where classical light propagating in an array of coupled waveguides provides a visualisation of the Dirac spinor propagating in a curved 2D spacetime background. The extent to which such a single-particle description can be said to mimic particle creation is discussed.« less
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Real-time Space-time Integration in GIScience and Geography
Richardson, Douglas B.
2013-01-01
Space-time integration has long been the topic of study and speculation in geography. However, in recent years an entirely new form of space-time integration has become possible in GIS and GIScience: real-time space-time integration and interaction. While real-time spatiotemporal data is now being generated almost ubiquitously, and its applications in research and commerce are widespread and rapidly accelerating, the ability to continuously create and interact with fused space-time data in geography and GIScience is a recent phenomenon, made possible by the invention and development of real-time interactive (RTI) GPS/GIS technology and functionality in the late 1980s and early 1990s. This innovation has since functioned as a core change agent in geography, cartography, GIScience and many related fields, profoundly realigning traditional relationships and structures, expanding research horizons, and transforming the ways geographic data is now collected, mapped, modeled, and used, both in geography and in science and society more broadly. Real-time space-time interactive functionality remains today the underlying process generating the current explosion of fused spatiotemporal data, new geographic research initiatives, and myriad geospatial applications in governments, businesses, and society. This essay addresses briefly the development of these real-time space-time functions and capabilities; their impact on geography, cartography, and GIScience; and some implications for how discovery and change can occur in geography and GIScience, and how we might foster continued innovation in these fields. PMID:24587490
Numerical modeling of space-time wave extremes using WAVEWATCH III
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Alves, Jose-Henrique G. M.; Benetazzo, Alvise; Bergamasco, Filippo; Bertotti, Luciana; Carniel, Sandro; Cavaleri, Luigi; Y. Chao, Yung; Chawla, Arun; Ricchi, Antonio; Sclavo, Mauro; Tolman, Hendrik
2017-04-01
A novel implementation of parameters estimating the space-time wave extremes within the spectral wave model WAVEWATCH III (WW3) is presented. The new output parameters, available in WW3 version 5.16, rely on the theoretical model of Fedele (J Phys Oceanogr 42(9):1601-1615, 2012) extended by Benetazzo et al. (J Phys Oceanogr 45(9):2261-2275, 2015) to estimate the maximum second-order nonlinear crest height over a given space-time region. In order to assess the wave height associated to the maximum crest height and the maximum wave height (generally different in a broad-band stormy sea state), the linear quasi-determinism theory of Boccotti (2000) is considered. The new WW3 implementation is tested by simulating sea states and space-time extremes over the Mediterranean Sea (forced by the wind fields produced by the COSMO-ME atmospheric model). Model simulations are compared to space-time wave maxima observed on March 10th, 2014, in the northern Adriatic Sea (Italy), by a stereo camera system installed on-board the "Acqua Alta" oceanographic tower. Results show that modeled space-time extremes are in general agreement with observations. Differences are mostly ascribed to the accuracy of the wind forcing and, to a lesser extent, to the approximations introduced in the space-time extremes parameterizations. Model estimates are expected to be even more accurate over areas larger than the mean wavelength (for instance, the model grid size).
Semiclassical fermion pair creation in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome
2015-12-17
We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.
NASA Astrophysics Data System (ADS)
Paetz, Tim-Torben
2017-04-01
We characterize Cauchy data sets leading to vacuum space-times with vanishing Mars-Simon tensor. This approach provides an algorithmic procedure to check whether a given initial data set (Σ ,hi j,Ki j) evolves into a space-time which is locally isometric to a member of the Kerr-(A)(dS) family.
Stationary axisymmetric four dimensional space-time endowed with Einstein metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanuddin; Departments of Physics, Tanjungpura University, Jl Ahmad Yani Pontianak 78124 Indonesia bobby@fi.itb.ac.id; Azwar, A.
In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.
NASA Astrophysics Data System (ADS)
Nolan, Brien C.
2017-11-01
McVittie spacetimes embed the vacuum Schwarzschild(-(anti) de Sitter) spacetime in an isotropic, Friedmann-Lemaître-Robertson-Walker (FLRW) background universe. The global structure of such spacetimes is well understood when the FLRW background is spatially flat. In this paper, we study the global structure of McVittie spacetimes with spatially non-flat FLRW backgrounds. We derive some basic results on the metric, curvature and matter content of these spacetimes and provide a representation of the metric that makes the study of their global properties possible. In the closed case, we find that at each instant of time, the spacetime is confined to a region bounded by a (positive) minimum and a maximum area radius, and is bounded either to the future or to the past by a scalar curvature singularity. This allowed region only exists when the background scale factor is above a certain minimum, and so is bounded away from the Big Bang singularity, as in the flat case. In the open case, the situation is different, and we focus mainly on this case. In K<0 McVittie spacetimes, radial null geodesics originate in finite affine time in the past at a boundary formed by the union of the Big Bang singularity of the FLRW background and a hypersurface (of varying causal character) which is non-singular in the sense of scalar curvature. Furthermore, in the case of eternally expanding open universes with Λ≥slant0 , we prove that black holes are ubiquitous: ingoing radial null geodesics extend in finite affine time to a hypersurface that forms the boundary of the region from which photons can escape to future null infinity. We determine the structure of the conformal diagrams that can arise in the open case. Finally, we revisit the black hole interpretation of McVittie spacetimes in the spatially flat case, and show that this interpretation holds also in the case of a vanishing cosmological constant, contrary to a previous claim of ours.
Gravitational Radiation with a Positive Cosmological Constant
NASA Astrophysics Data System (ADS)
Bonga, Beatrice
Gravitational radiation is well-understood in spacetimes that are asymptotically flat. However, our Universe is currently expanding at an accelerated rate, which is best described by including a positive cosmological constant, Lambda, in Einstein's equations. Consequently, no matter how far one recedes from sources generating gravitational waves, spacetime curvature never dies and is not asymptotically flat. This dissertation provides first steps to incorporate Lambda in the study of gravitational radiation by analyzing linearized gravitational waves on a de Sitter background. Since the asymptotic structure of de Sitter is very different from that of Minkowski spacetime, many conceptual and technical difficulties arise. The limit Lambda → 0 can be discontinuous: Although energy carried by gravitational waves is always positive in Minkowski spacetime, it can be arbitrarily negative in de Sitter spacetime. Additionally, many of the standard techniques, including 1/r expansions, are no longer applicable. We generalize Einstein's celebrated quadrupole formula describing the power radiated on a flat background to de Sitter spacetime. Even a tiny Lambda brings in qualitatively new features such as contributions from pressure quadrupole moments. Nonetheless, corrections induced by Lambda are O(√Lambda tc) with tc the characteristic time scale of the source and are negligible for current gravitational wave observatories. We demonstrate this explicitly for a binary system in a circular orbit. Radiative modes are encoded in the transverse-traceless part of the spatial components of a gravitational perturbation. When Lambda = 0, one typically extracts these modes in the wave zone by projecting the gravitational perturbation onto the two-sphere orthogonal to the radial direction. We show that this method for waves emitted by spatially compact sources on Minkowski spacetime generically does not yield the transverse-traceless modes; not even infinitely far away. However, the difference between the transverse-traceless and projected modes is non-dynamical and disappears from all physical observables. When one is interested in 'Coulombic' information not captured by the radiative modes, the projection method does not suffice. This is, for example, important for angular momentum carried by gravitational waves. This result relies on Bondi-type expansions for asymptotically flat spacetimes. Therefore, the projection method is not applicable to de Sitter spacetimes.
On the initial value problem for the wave equation in Friedmann-Robertson-Walker space-times.
Abbasi, Bilal; Craig, Walter
2014-09-08
The propagator W ( t 0 , t 1 )( g , h ) for the wave equation in a given space-time takes initial data ( g ( x ), h ( x )) on a Cauchy surface {( t , x ) : t = t 0 } and evaluates the solution ( u ( t 1 , x ),∂ t u ( t 1 , x )) at other times t 1 . The Friedmann-Robertson-Walker space-times are defined for t 0 , t 1 >0, whereas for t 0 →0, there is a metric singularity. There is a spherical means representation for the general solution of the wave equation with the Friedmann-Robertson-Walker background metric in the three spatial dimensional cases of curvature K =0 and K =-1 given by S. Klainerman and P. Sarnak. We derive from the expression of their representation three results about the wave propagator for the Cauchy problem in these space-times. First, we give an elementary proof of the sharp rate of time decay of solutions with compactly supported data. Second, we observe that the sharp Huygens principle is not satisfied by solutions, unlike in the case of three-dimensional Minkowski space-time (the usual Huygens principle of finite propagation speed is satisfied, of course). Third, we show that for 0< t 0 < t the limit, [Formula: see text] exists, it is independent of h ( x ), and for all reasonable initial data g ( x ), it gives rise to a well-defined solution for all t >0 emanating from the space-time singularity at t =0. Under reflection t →- t , the Friedmann-Robertson-Walker metric gives a space-time metric for t <0 with a singular future at t =0, and the same solution formulae hold. We thus have constructed solutions u ( t , x ) of the wave equation in Friedmann-Robertson-Walker space-times which exist for all [Formula: see text] and [Formula: see text], where in conformally regularized coordinates, these solutions are continuous through the singularity t =0 of space-time, taking on specified data u (0,⋅)= g (⋅) at the singular time.
NASA Astrophysics Data System (ADS)
Pilkington, Terry
The classical definition of a black hole in terms of an event horizon relies on global properties of the spacetime. Realistic black holes have matter distributions surrounding them, which negates the asymptotic flatness needed for an event horizon. Using the (quasi-)local concept of marginally trapped surfaces, we investigate the Schwarzschild spacetime distorted by an axisymmetric matter distribution. We determine that it is possible to locate a future outer trapping horizon for a given foliation within certain value ranges of multipole moments. Furthermore, we show that there are no marginally trapped surfaces for arbitrary values of the multipole moment magnitudes. KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARGINALLY TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON
Spacetime can be neither discrete nor continuous
NASA Astrophysics Data System (ADS)
Corda, Christian
2018-04-01
We show that our recent Bohr-like approach to black hole (BH) quantum physics implies that spacetime quantization could be energy-dependent. Thus, in a certain sense, spacetime can be neither discrete nor continuous. Our approach also permits to show that the “volume quantum” of the Schwarzschild spacetime increases with increasing energy during BH evaporation and arrives at a maximum value when the Planck scale is reached and the generalized uncertainty principle (GUP) prevents the total BH evaporation. Remarkably, this result does not depend on the BH original mass. The interesting consequence is that the behavior of BH evaporation should be the same for all Schwarzschild BHs when the Planck scale is approached.
An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung
2011-01-01
In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less
NASA Astrophysics Data System (ADS)
Paliathanasis, A.; Tsamparlis, M.; Mustafa, M. T.
2018-02-01
A complete classification of the Lie and Noether point symmetries for the Klein-Gordon and the wave equation in pp-wave spacetimes is obtained. The classification analysis is carried out by reducing the problem of the determination of the point symmetries to the problem of existence of conformal killing vectors on the pp-wave spacetimes. Employing the existing results for the isometry classes of the pp-wave spacetimes, the functional form of the potential is determined for which the Klein-Gordon equation admits point symmetries and Noetherian conservation law. Finally the Lie and Noether point symmetries of the wave equation are derived.
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
NASA Astrophysics Data System (ADS)
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
Emergent spacetime according to effective field theory: From top-down and bottom-up
NASA Astrophysics Data System (ADS)
Crowther, Karen
2013-08-01
The framework of effective field theory (EFT) is a natural one in which to understand the claim that the spacetime of general relativity (GR) is an emergent low-energy phenomenon. I argue for a pragmatic understanding of EFT, given that the appropriate conception of emergence it suggests is necessarily epistemological in a sense. Analogue models of spacetime are examples of the top-down approach to EFT. They offer concrete illustrations of spacetime emergent within an EFT, and lure us toward a strong analogy between condensed matter physics and GR. I argue that we should be wary of this strong analogy, not least because the pragmatic view of EFT places limits on how much we can legitimately draw from it. On the other hand, programs that treat GR as an EFT and calculate quantum corrections are an example of the bottom-up approach and are explicitly pragmatic in character. I explore what we may learn about the nature of emergent spacetime by comparing these two approaches.
Accelerating the discovery of space-time patterns of infectious diseases using parallel computing.
Hohl, Alexander; Delmelle, Eric; Tang, Wenwu; Casas, Irene
2016-11-01
Infectious diseases have complex transmission cycles, and effective public health responses require the ability to monitor outbreaks in a timely manner. Space-time statistics facilitate the discovery of disease dynamics including rate of spread and seasonal cyclic patterns, but are computationally demanding, especially for datasets of increasing size, diversity and availability. High-performance computing reduces the effort required to identify these patterns, however heterogeneity in the data must be accounted for. We develop an adaptive space-time domain decomposition approach for parallel computation of the space-time kernel density. We apply our methodology to individual reported dengue cases from 2010 to 2011 in the city of Cali, Colombia. The parallel implementation reaches significant speedup compared to sequential counterparts. Density values are visualized in an interactive 3D environment, which facilitates the identification and communication of uneven space-time distribution of disease events. Our framework has the potential to enhance the timely monitoring of infectious diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum Gravity, Information Theory and the CMB
NASA Astrophysics Data System (ADS)
Kempf, Achim
2018-04-01
We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.
Gravity as Elasticity of Spacetime:
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
It is very likely that the quantum description of spacetime is quite different from what we perceive at large scales, l≫(Gℏ/c3)1/2. The long wavelength description of spacetime, based on Einstein's equations, is similar to the description of a continuum solid made of a large number of microscopic degrees of freedom. This paradigm provides a novel interpretation of coordinate transformations as deformations of "spacetime solid" and allows one to obtain Einstein's equations as a consistency condition in the long wavelength limit. The entropy contributed by the microscopic degrees of freedom reduces to a pure surface contribution when Einstein's equations are satisfied. The horizons arises as "defects" in the "spacetime solid" (in the sense of well-defined singular points) and contributes an entropy which is one quarter of the horizon area. Finally, the response of the microstructure to vacuum energy leads to a near cancellation of the cosmological constant, leaving behind a tiny fluctuation which matches with the observed value.
Spacetime encodings. II. Pictures of integrability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
I visually explore the features of geodesic orbits in arbitrary stationary axisymmetric vacuum (SAV) spacetimes that are constructed from a complex Ernst potential. Some of the geometric features of integrable and chaotic orbits are highlighted. The geodesic problem for these SAV spacetimes is rewritten as a 2 degree of freedom problem and the connection between current ideas in dynamical systems and the study of two manifolds sought. The relationship between the Hamilton-Jacobi equations, canonical transformations, constants of motion, and Killing tensors are commented on. Wherever possible I illustrate the concepts by means of examples from general relativity. This investigation ismore » designed to build the readers' intuition about how integrability arises, and to summarize some of the known facts about 2 degree of freedom systems. Evidence is given, in the form of an orbit-crossing structure, that geodesics in SAV spacetimes might admit a fourth constant of motion that is quartic in momentum (by contrast with Kerr spacetime, where Carter's fourth constant is quadratic)« less
Scalar field coupling to Einstein tensor in regular black hole spacetime
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wu, Chen
2018-02-01
In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.
Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime
NASA Astrophysics Data System (ADS)
Övgün, A.; Sakalli, I.
2018-02-01
In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.
A note on the electromagnetic irradiation in a holed spatial region: A space-time approach
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2017-02-01
We study the role of the homological topological property of a space-time with holes (a multiple connected manifold) on the formal solution of the electromagnetic irradiation problem taking place on these “holed” space-times. In this paper, in addition to the main focus of study, we present as well important studies on this irradiation problem on other mathematical frameworks.
Tensor-product preconditioners for a space-time discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2014-10-01
A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel.
Ullah, Sami; Daud, Hanita; Dass, Sarat C; Khan, Habib Nawaz; Khalil, Alamgir
2017-11-06
Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.
NASA Astrophysics Data System (ADS)
Kastor, David; Ray, Sourya; Traschen, Jennie
2017-02-01
We show that asymptotically future de Sitter (AFdS) spacetimes carry ‘genuine’ cosmic hair; information that is analogous to the mass and angular momentum of asymptotically flat spacetimes and that characterizes how an AFdS spacetime approaches its asymptotic form. We define new ‘cosmological tension’ charges associated with future asymptotic spatial translation symmetries, which are analytic continuations of the ADM mass and tensions of asymptotically planar AdS spacetimes, and which measure the leading anisotropic corrections to the isotropic, exponential de Sitter expansion rate. A cosmological Smarr relation, holding for AFdS spacetimes having exact spatial translation symmetry, is derived. This formula relates cosmological tension, which is evaluated at future infinity, to properties of the cosmology at early times, together with a ‘cosmological volume’ contribution that is analogous to the thermodynamic volume of AdS black holes. Smarr relations for different spatial directions imply that the difference in expansion rates between two directions at late times is related in a simple way to their difference at early times. Hence information about the very early universe can be inferred from cosmic hair, which is potentially observable in a late time de Sitter phase. Cosmological tension charges and related quantities are evaluated for Kasner-de Sitter spacetimes, which serve as our primary examples.
NASA Astrophysics Data System (ADS)
Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff
2011-04-01
Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.
The Volume Field Model about Strong Interaction and Weak Interaction
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2016-03-01
For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.
The Happiest thought of Einstein's Life
NASA Astrophysics Data System (ADS)
Heller, Michael
Finally, let us have a closer look at the place of the equivalence principle in the logical scheme of Einstein's general relativity theory. First, Einstein new well, from Minkowski's geometric formulation of his own special relativity, that accelerated motions should be represented as curved lines in a flat space-time. Second, the Galileo principle asserts that all bodies are accelerated in the same way in a given gravitational field, and consequently their motions are represented in the flat space-time by curved lines, all exactly in the same way. Third, since all lines representing free motions are curved exactly in the same way in the flat space-time, one can say that the lines remain straight (as far as possible) but the space-time itself becomes curved. Fourth, and last, since acceleration is (locally) equivalent to a gravitational field (here we have the equivalence principle), one is entitled to assert that it is the gravitational field (and not acceleration) that is represented as the curvature of space-time. This looks almost like an Aristotelian syllogism. However, to put all the pieces of evidence into the logical chain took Einstein a few years of hard thinking. The result has been incorporated into the field equations which quantitatively show how the curvature of space-time and gravity are linked together.
Static vacuum solutions on curved space-times with torsion
NASA Astrophysics Data System (ADS)
Shabani, Hamid; Ziaie, Amir Hadi
2018-06-01
The Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity naturally extends Einstein’s general relativity (GR) to include intrinsic angular momentum (spin) of matter. The main feature of this theory consists of an algebraic relation between space-time torsion and spin of matter, which indeed deprives the torsion of its dynamical content. The Lagrangian of ECKS gravity is proportional to the Ricci curvature scalar constructed out of a general affine connection so that owing to the influence of matter energy-momentum and spin, curvature and torsion are produced and interact only through the space-time metric. In the absence of spin, the space-time torsion vanishes and the theory reduces to GR. It is however possible to have torsion propagation in vacuum by resorting to a model endowed with a nonminimal coupling between curvature and torsion. In the present work we try to investigate possible effects of the higher order terms that can be constructed from space-time curvature and torsion, as the two basic constituents of Riemann-Cartan geometry. We consider Lagrangians that include fourth-order scalar invariants from curvature and torsion and then investigate the resulting field equations. The solutions that we find show that there could exist, even in vacuum, nontrivial static space-times that admit both black holes and naked singularities.
Spacetime encodings. III. Second order Killing tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
2010-01-15
This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture ofmore » what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.« less
Hyperunified field theory and gravitational gauge-geometry duality
NASA Astrophysics Data System (ADS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.
Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek
2012-01-01
Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.
Revisiting Special Relativity: A Natural Algebraic Alternative to Minkowski Spacetime
Chappell, James M.; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek
2012-01-01
Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis and . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane. PMID:23300566
The Historical Origins of Spacetime
NASA Astrophysics Data System (ADS)
Walter, Scott
The idea of spacetime investigated in this chapter, with a view toward understanding its immediate sources and development, is the one formulated and proposed by Hermann Minkowski in 1908. Until recently, the principle source used to form historical narratives of Minkowski's discovery of spacetime has been Minkowski's own discovery account, outlined in the lecture he delivered in Cologne, entitled Space and time [1]. Minkowski's lecture is usually considered as a bona fide first-person narrative of lived events. According to this received view, spacetime was a natural outgrowth of Felix Klein's successful project to promote the study of geometries via their characteristic groups of transformations. Or as Minkowski expressed the same basic thought himself, the theory of relativity discovered by physicists in 1905 could just as well have been proposed by some late-nineteenth-century mathematician, by simply reflecting upon the groups of transformations that left invariant the form of the equation of a propagating light wave. Minkowski's publications and research notes provide a contrasting picture of the discovery of spacetime, in which group theory plays no direct part. In order to relate the steps of Minkowski's discovery, we begin with an account of Poincaré's theory of gravitation, where Minkowski found some of the germs of spacetime. Poincaré's geometric interpretation of the Lorentz transformation is examined, along with his reasons for not pursuing a four-dimensional vector calculus. In the second section, Minkowski's discovery and presentation of the notion of a world line in spacetime is presented. In the third and final section, Poincaré's and Minkowski's diagrammatic interpretations of the Lorentz transformation are compared.
NASA Astrophysics Data System (ADS)
Iorio, Alfredo; Lambiase, Gaetano
2014-07-01
The solutions of many issues, of the ongoing efforts to make deformed graphene a tabletop quantum field theory in curved spacetimes, are presented. A detailed explanation of the special features of curved spacetimes, originating from embedding portions of the Lobachevsky plane into R3, is given, and the special role of coordinates for the physical realizations in graphene is explicitly shown, in general, and for various examples. The Rindler spacetime is reobtained, with new important differences with respect to earlier results. The de Sitter spacetime naturally emerges, for the first time, paving the way to future applications in cosmology. The role of the Bañados, Teitelboim, and Zanelli (BTZ) black hole is also briefly addressed. The singular boundary of the pseudospheres, "Hilbert horizon," is seen to be closely related to the event horizon of the Rindler, de Sitter, and BTZ kind. This gives new, and stronger, arguments for the Hawking phenomenon to take place. An important geometric parameter, c, overlooked in earlier work, takes here its place for physical applications, and it is shown to be related to graphene's lattice spacing, ℓ. It is shown that all surfaces of constant negative curvature, K =-r-2, are unified, in the limit c/r→0, where they are locally applicable to the Beltrami pseudosphere. This, and c=ℓ, allow us (a) to have a phenomenological control on the reaching of the horizon; (b) to use spacetimes different from the Rindler spacetime for the Hawking phenomenon; and (c) to approach the generic surface of the family. An improved expression for the thermal LDOS is obtained. A nonthermal term for the total LDOS is found. It takes into account (i) the peculiarities of the graphene-based Rindler spacetime; (ii) the finiteness of a laboratory surface; and (iii) the optimal use of the Minkowski quantum vacuum, through the choice of this Minkowski-static boundary.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Creating 3, 4, 6 and 10-dimensional spacetime from W3 symmetry
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Watabiki, Y.
2017-07-01
We describe a model where breaking of W3 symmetry will lead to the emergence of time and subsequently of space. Surprisingly the simplest such models which lead to higher dimensional spacetimes are based on the four ;magical; Jordan algebras of 3 × 3 Hermitian matrices with real, complex, quaternion and octonion entries, respectively. The simplest symmetry breaking leads to universes with spacetime dimensions 3, 4, 6, and 10.
The representation of spacetime through steep time functions
NASA Astrophysics Data System (ADS)
Minguzzi, Ettore
2018-02-01
In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid for globally hyperbolic Lorentzian spacetimes.
NASA Astrophysics Data System (ADS)
Carmona, J. M.; Cortés, J. L.; Relancio, J. J.
2018-03-01
A new proposal for the notion of spacetime in a relativistic generalization of special relativity based on a modification of the composition law of momenta is presented. Locality of interactions is the principle which defines the spacetime structure for a system of particles. The formulation based on κ -Poincaré Hopf algebra is shown to be contained in this framework as a particular example.
2015-08-01
optimized space-time interpolation method. Tangible geospatial modeling system was further developed to support the analysis of changing elevation surfaces...Evolution Mapped by Terrestrial Laser Scanning, talk, AGU Fall 2012 *Hardin E, Mitas L, Mitasova H., Simulation of Wind -Blown Sand for...Geomorphological Applications: A Smoothed Particle Hydrodynamics Approach, GSA 2012 *Russ, E. Mitasova, H., Time series and space-time cube analyses on
On the Application of Time-Reversed Space-Time Block Code to Aeronautical Telemetry
2014-06-01
Keying (SOQPSK), bit error rate (BER), Orthogonal Frequency Division Multiplexing ( OFDM ), Generalized time-reversed space-time block codes (GTR-STBC) 16...Alamouti code [4]) is optimum [2]. Although OFDM is generally applied on a per subcarrier basis in frequency selective fading, it is not a viable...Calderbank, “Finite-length MIMO decision feedback equal- ization for space-time block-coded signals over multipath-fading channels,” IEEE Transac- tions on
On Light-Like Extremal Surfaces in Curved Spacetimes
NASA Astrophysics Data System (ADS)
Huang, Shou-Jun; He, Chun-Lei
2014-01-01
In this paper, we are concerned with light-like extremal surfaces in curved spacetimes. It is interesting to find that under a diffeomorphic transformation of variables, the light-like extremal surfaces can be described by a system of nonlinear geodesic equations. Particularly, we investigate the light-like extremal surfaces in Schwarzschild spacetime in detail and some new special solutions are derived systematically with aim to compare with the known results and to illustrate the method.
Asympotics with positive cosmological constant
NASA Astrophysics Data System (ADS)
Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna
2014-03-01
Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.
Stable photon orbits in stationary axisymmetric electrovacuum spacetimes
NASA Astrophysics Data System (ADS)
Dolan, Sam R.; Shipley, Jake O.
2016-08-01
We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we review the classification of equatorial circular photon orbits on Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordström diholes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a toroidal region around a dihole, via a selection of Poincaré sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electro vacuum, but not in pure vacuum.
Scalar fields in black hole spacetimes
NASA Astrophysics Data System (ADS)
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
Duggal, K L
2016-01-01
A new technique is used to study a family of time-dependent null horizons, called " Evolving Null Horizons " (ENHs), of generalized Robertson-Walker (GRW) space-time [Formula: see text] such that the metric [Formula: see text] satisfies a kinematic condition. This work is different from our early papers on the same issue where we used (1 + n )-splitting space-time but only some special subcases of GRW space-time have this formalism. Also, in contrast to previous work, we have proved that each member of ENHs is totally umbilical in [Formula: see text]. Finally, we show that there exists an ENH which is always a null horizon evolving into a black hole event horizon and suggest some open problems.
Repulsive Effect for Unbound High Energy Particles Along Rotation Axis in Kerr-Taub-NUT Spacetime
NASA Astrophysics Data System (ADS)
Zhang, Lu; Chen, Song-Bai
2018-04-01
We have investigated the acceleration of the unbound high energy particles moving along the rotation axis in the Kerr-Taub-NUT spacetime, and then study the dependence of the repulsive effects on the NUT charge for the particles in the spacetime. Whether the repulsive effects with the NUT charge become stronger depends on the Carter constant, the position and velocity of the particles themselves. We also present numerically the changes of the observable velocity and acceleration with the NUT charge for the unbound particles in the Kerr-Taub-NUT spacetime. Supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 17A124, and the Construct Program of Key Disciplines in Hunan Province
Subjective spacetime derived from a causal histories approach
NASA Astrophysics Data System (ADS)
Gunji, Yukio-Pegio; Haruna, Taichi; Uragami, Daisuke; Nishikawa, Asaki
2009-10-01
The internal description of spacetime can reveal ambiguity regarding an observer’s perception of the present, where an observer can refer to the present as if he were outside spacetime while actually existing in the present. This ambiguity can be expressed as the compatibility between an element and a set, and is here called a/{a}-compatibility. We describe a causal set as a lattice and a causal history as a quotient lattice, and implement the a/{a}-compatibility in the framework of a causal histories approach. This leads to a perpetual change of a pair of causal set and causal history, and can be used to describe subjective spacetime including the déjà vu experience and/or schizophrenic time.
Geometric optics for a coupling model of electromagnetic and gravitational fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Jiliang, E-mail: jljing@hunnu.edu.cn; Chen, Songbai; Pan, Qiyuan
2016-04-15
The coupling between the electromagnetic and gravitational fields results in “faster than light” photons, and then the first and third laws of geometric optics are invalid in usual spacetime. By introducing an effective spacetime, we find that the wave vector can be casted into null and then it obeys the geodesic equation, the polarization vector is perpendicular to the rays, and the number of photons is conserved. That is to say, the laws of geometric optics are valid for the modified theory in the effective spacetime. We also show that the focusing theorem of light rays for the modified theorymore » in the effective spacetime can be cast into the usual form.« less
Conformal Killing horizons and their thermodynamics
NASA Astrophysics Data System (ADS)
Nielsen, Alex B.; Shoom, Andrey A.
2018-05-01
Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.
Conformal geodesics in spherically symmetric vacuum spacetimes with cosmological constant
NASA Astrophysics Data System (ADS)
García-Parrado Gómez-Lobo, A.; Gasperín, E.; Valiente Kroon, J. A.
2018-02-01
An analysis of conformal geodesics in the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter families of spacetimes is given. For both families of spacetimes we show that initial data on a spacelike hypersurface can be given such that the congruence of conformal geodesics arising from this data cover the whole maximal extension of canonical conformal representations of the spacetimes without forming caustic points. For the Schwarzschild–de Sitter family, the resulting congruence can be used to obtain global conformal Gaussian systems of coordinates of the conformal representation. In the case of the Schwarzschild–anti-de Sitter family, the natural parameter of the curves only covers a restricted time span so that these global conformal Gaussian systems do not exist.
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2015-06-01
Consideration of vacuum polarization in quantum electrodynamics may affect the momentum dispersion relation for photons for a non-trivial background, due to the appearance of curvature dependent terms in the effective action. We investigate the effect of a positive cosmological constant on this at one-loop order for stationary -vacuum spacetimes. To the best of our knowledge, so far it only has been shown that affects the propagation in a time dependent black hole spacetime. Here we consider the static de Sitter cosmic string and the Kerr-de Sitter spacetime to show that there might occur a non-vanishing effect due to for physical polarizations. The consistency of these results with the polarization sum rule is discussed.
A tale of two velocities: Threading versus slicing
NASA Astrophysics Data System (ADS)
Gharechahi, Razieh; Nouri-Zonoz, Mohammad; Tavanfar, Alireza
One of the important quantities in cosmology and astrophysics is the 3-velocity of an object. Specifically, when the gravitational fields are strong, one should require the employment of general relativity both in its definition and measurement. Looking into the literature for GR-based definitions of 3-velocity, one usually finds different ad hoc definitions applied according to the case under consideration. Here, we introduce and analyze systematically the two principal definitions of 3-velocity assigned to a test particle following the timelike trajectories in stationary spacetimes. These definitions are based on the 1 + 3 (threading) and 3 + 1 (slicing) spacetime decomposition formalisms and defined relative to two different sets of observers. After showing that Synge’s definition of spatial distance and 3-velocity is equivalent to those defined in the 1 + 3 (threading) formalism, we exemplify the differences between these two definitions by calculating them for particles in circular orbits in axially symmetric stationary spacetimes. Illustrating its geometric nature, the relative linear velocity between the corresponding observers is obtained in terms of the spacetime metric components. Circular particle orbits in the Kerr spacetime, as the prototype and the most well known of stationary spacetimes, are examined with respect to these definitions to highlight their observer-dependent nature. We also examine the Kerr-NUT spacetime in which the NUT parameter, contributing to the off-diagonal terms in the metric, is mainly interpreted not as a rotation parameter but as a gravitomagnetic monopole charge. Finally, in a specific astrophysical setup which includes rotating black holes, it is shown how the local velocity of an orbiting star could be related to its spectral line shifts measured by distant observers.
MEST- avoid next extinction by a space-time effect
NASA Astrophysics Data System (ADS)
Cao, Dayong
2013-03-01
Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA
Relative-observer definition of the Simon tensor
NASA Astrophysics Data System (ADS)
Bini, Donato; Geralico, Andrea
2018-05-01
The definition of the Simon tensor, originally given only in Kerr spacetime and associated with the static family of observers, is generalized to any spacetime and to any possible observer family. Such generalization is obtained by a standard ‘3 + 1’ splitting of the Bianchi identities, which are rewritten here as a ‘balance equation’ between various spatial fields, associated with the kinematical properties of the observer congruence and representing the spacetime curvature.
Weakly charged generalized Kerr-NUT-(A)dS spacetimes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David
2017-08-01
We find an explicit solution of the source free Maxwell equations in a generalized Kerr-NUT-(A)dS spacetime in all dimensions. This solution is obtained as a linear combination of the closed conformal Killing-Yano tensor hab, which is present in such a spacetime, and a derivative of the primary Killing vector, associated with hab. For the vanishing cosmological constant the obtained solution reduces to the Wald's electromagnetic field generated from the primary Killing vector.
Quantum Emulation of Gravitational Waves
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions
NASA Technical Reports Server (NTRS)
Lynnes, Chris; Beaumont, Bruce; Duerr, Ruth; Hua, Hook
2009-01-01
This slide presentation reviews a Space-time query system that has been developed to assist the user in finding Earth science data that fulfills the researchers needs. It reviews the reasons why finding Earth science data can be so difficult, and explains the workings of the Space-Time Query with OpenSearch and how this system can assist researchers in finding the required data, It also reviews the developments with client server systems.
Spacetime algebra as a powerful tool for electromagnetism
NASA Astrophysics Data System (ADS)
Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco
2015-08-01
We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.
NASA Astrophysics Data System (ADS)
Akhtar, S. S.; Hussain, T.; Bokhari, A. H.; Khan, F.
2018-04-01
We provide a complete classification of static plane symmetric space-times according to conformal Ricci collineations (CRCs) and conformal matter collineations (CMCs) in both the degenerate and nondegenerate cases. In the case of a nondegenerate Ricci tensor, we find a general form of the vector field generating CRCs in terms of unknown functions of t and x subject to some integrability conditions. We then solve the integrability conditions in different cases depending upon the nature of the Ricci tensor and conclude that the static plane symmetric space-times have a 7-, 10- or 15-dimensional Lie algebra of CRCs. Moreover, we find that these space-times admit an infinite number of CRCs if the Ricci tensor is degenerate. We use a similar procedure to study CMCs in the case of a degenerate or nondegenerate matter tensor. We obtain the exact form of some static plane symmetric space-time metrics that admit nontrivial CRCs and CMCs. Finally, we present some physical applications of our obtained results by considering a perfect fluid as a source of the energy-momentum tensor.
Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes
NASA Astrophysics Data System (ADS)
Saini, Sahil; Singh, Parampreet
2018-03-01
We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.
IDEAL characterization of isometry classes of FLRW and inflationary spacetimes
NASA Astrophysics Data System (ADS)
Canepa, Giovanni; Dappiaggi, Claudio; Khavkine, Igor
2018-02-01
In general relativity, an IDEAL (Intrinsic, Deductive, Explicit, ALgorithmic) characterization of a reference spacetime metric g 0 consists of a set of tensorial equations T[g] = 0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g 0. The same notion can be extended to also include scalar or tensor fields, where the equations T[g, φ]=0 are allowed to also depend on the extra fields ϕ. We give the first IDEAL characterization of cosmological FLRW spacetimes, with and without a dynamical scalar (inflaton) field. We restrict our attention to what we call regular geometries, which uniformly satisfy certain identities or inequalities. They roughly split into the following natural special cases: constant curvature spacetime, Einstein static universe, and flat or curved spatial slices. We also briefly comment on how the solution of this problem has implications, in general relativity and inflation theory, for the construction of local gauge invariant observables for linear cosmological perturbations and for stability analysis.
Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin?
NASA Astrophysics Data System (ADS)
Acuña, Pablo
2016-08-01
Michel Janssen and Harvey Brown have driven a prominent recent debate concerning the direction of an alleged arrow of explanation between Minkowski spacetime and Lorentz invariance of dynamical laws in special relativity. In this article, I critically assess this controversy with the aim of clarifying the explanatory foundations of the theory. First, I show that two assumptions shared by the parties-that the dispute is independent of issues concerning spacetime ontology, and that there is an urgent need for a constructive interpretation of special relativity-are problematic and negatively affect the debate. Second, I argue that the whole discussion relies on a misleading conception of the link between Minkowski spacetime structure and Lorentz invariance, a misconception that in turn sheds more shadows than light on our understanding of the explanatory nature and power of Einstein's theory. I state that the arrow connecting Lorentz invariance and Minkowski spacetime is not explanatory and unidirectional, but analytic and bidirectional, and that this analytic arrow grounds the chronogeometric explanations of physical phenomena that special relativity offers.
Fundamental photon orbits: Black hole shadows and spacetime instabilities
NASA Astrophysics Data System (ADS)
Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Radu, Eugen
2017-07-01
The standard black holes (BHs) in general relativity, as well as other ultracompact objects (with or without an event horizon) admit planar circular photon orbits. These light rings (LRs) determine several spacetime properties. For instance, stable LRs trigger instabilities and, in spherical symmetry, (unstable) LRs completely determine BH shadows. In generic stationary, axisymmetric spacetimes, nonplanar bound photon orbits may also exist, regardless of the integrability properties of the photon motion. We suggest a classification of these fundamental photon orbits (FPOs) and, using Poincaré maps, determine a criterion for their stability. For the Kerr BH, all FPOs are unstable (similar to its LRs) and completely determine the Kerr shadow. But in non-Kerr spacetimes, stable FPOs may also exist, even when all LRs are unstable, triggering new instabilities. We illustrate this for the case of Kerr BHs with Proca hair, wherein, moreover, qualitatively novel shadows with a cuspy edge exist, a feature that can be understood from the interplay between stable and unstable FPOs. FPOs are the natural generalization of LRs beyond spherical symmetry and should generalize the LRs key role in different spacetime properties.
Limit of Kerr-de Sitter spacetime with infinite angular-momentum parameter a
NASA Astrophysics Data System (ADS)
Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.
2018-01-01
We consider the limit a →∞ of the Kerr-de Sitter spacetime. The spacetime is a Petrov type-D solution of the vacuum Einstein field equations with a positive cosmological constant Λ , vanishing Mars-Simon tensor and conformally flat ℐ . It possesses an Abelian 2-dimensional group of symmetries whose orbits are spacelike or timelike in different regions, and it includes, as a particular case, de Sitter spacetime. The global structure of the solution is analyzed in detail, with particular attention to its Killing horizons: they are foliated by noncompact marginally trapped surfaces of finite area, and one of them "touches" the curvature singularity, which resembles a null 2-dimensional surface. Outside the region between these horizons there exist trapped surfaces that again are noncompact. The solution contains, apart from Λ , a unique free parameter which can be related to the angular momentum of the nonsingular horizon in a precise way. A maximal extension of the (axis of the) spacetime is explicitly built. We also analyze the structure of ℐ , whose topology is R3.
Application of hierarchical clustering method to classify of space-time rainfall patterns
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Chang, Tu-Je
2010-05-01
Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.
A bootstrap based space-time surveillance model with an application to crime occurrences
NASA Astrophysics Data System (ADS)
Kim, Youngho; O'Kelly, Morton
2008-06-01
This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.
Unified approach to redshift in cosmological/black hole spacetimes and synchronous frame
NASA Astrophysics Data System (ADS)
Toporensky, A. V.; Zaslavskii, O. B.; Popov, S. B.
2018-01-01
Usually, interpretation of redshift in static spacetimes (for example, near black holes) is opposed to that in cosmology. In this methodological note, we show that both explanations are unified in a natural picture. This is achieved if, considering the static spacetime, one (i) makes a transition to a synchronous frame, and (ii) returns to the original frame by means of local Lorentz boost. To reach our goal, we consider a rather general class of spherically symmetric spacetimes. In doing so, we construct frames that generalize the well-known Lemaitre and Painlevé-Gullstand ones and elucidate the relation between them. This helps us to understand, in a unifying approach, how gravitation reveals itself in different branches of general relativity. This framework can be useful for general relativity university courses.
2016-01-01
A new technique is used to study a family of time-dependent null horizons, called “Evolving Null Horizons” (ENHs), of generalized Robertson-Walker (GRW) space-time (M¯,g¯) such that the metric g¯ satisfies a kinematic condition. This work is different from our early papers on the same issue where we used (1 + n)-splitting space-time but only some special subcases of GRW space-time have this formalism. Also, in contrast to previous work, we have proved that each member of ENHs is totally umbilical in (M¯,g¯). Finally, we show that there exists an ENH which is always a null horizon evolving into a black hole event horizon and suggest some open problems. PMID:27722202
Integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes.
Kubizňák, David; Cariglia, Marco
2012-02-03
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.
Asymmetric thin-shell wormholes
NASA Astrophysics Data System (ADS)
Forghani, S. Danial; Mazharimousavi, S. Habib; Halilsoy, Mustafa
2018-06-01
Spacetime wormholes in isotropic spacetimes are represented traditionally by embedding diagrams which were symmetric paraboloids. This mirror symmetry, however, can be broken by considering different sources on different sides of the throat. This gives rise to an asymmetric thin-shell wormhole, whose stability is studied here in the framework of the linear stability analysis. Having constructed a general formulation, using a variable equation of state and related junction conditions, the results are tested for some examples of diverse geometries such as the cosmic string, Schwarzschild, Reissner-Nordström and Minkowski spacetimes. Based on our chosen spacetimes as examples, our finding suggests that symmetry is an important factor to make a wormhole more stable. Furthermore, the parameter γ , which corresponds to the radius dependency of the pressure on the wormholes's throat, can affect the stability in a great extent.
Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns
NASA Astrophysics Data System (ADS)
Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.
2017-12-01
A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.
Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation
NASA Astrophysics Data System (ADS)
Lim, Woei Chet; Regis, Marco; Clarkson, Chris
2013-10-01
We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.
Astrophysical constraints on Planck scale dissipative phenomena.
Liberati, Stefano; Maccione, Luca
2014-04-18
The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burko, Lior M.; Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899; Baumgarte, Thomas W.
2006-01-15
Beetle and Burko recently introduced a background-independent scalar curvature invariant for general relativity that carries information about the gravitational radiation in generic spacetimes, in cases where such radiation is incontrovertibly defined. In this paper we adopt a formalism that only uses spatial data as they are used in numerical relativity and compute the Beetle-Burko radiation scalar for a number of analytical examples, specifically linearized Einstein-Rosen cylindrical waves, linearized quadrupole waves, the Kerr spacetime, Bowen-York initial data, and the Kasner spacetime. These examples illustrate how the Beetle-Burko radiation scalar can be used to examine the gravitational wave content of numerically generatedmore » spacetimes, and how it may provide a useful diagnostic for initial data sets.« less
Histories approach to general relativity: I. The spacetime character of the canonical description
NASA Astrophysics Data System (ADS)
Savvidou, Ntina
2004-01-01
The problem of time in canonical quantum gravity is related to the fact that the canonical description is based on the prior choice of a spacelike foliation, hence making a reference to a spacetime metric. However, the metric is expected to be a dynamical, fluctuating quantity in quantum gravity. We show how this problem can be solved in the histories formulation of general relativity. We implement the 3 + 1 decomposition using metric-dependent foliations which remain spacelike with respect to all possible Lorentzian metrics. This allows us to find an explicit relation of covariant and canonical quantities which preserves the spacetime character of the canonical description. In this new construction, we also have the coexistence of the spacetime diffeomorphisms group, Diff(M), and the Dirac algebra of constraints.
Constructing entanglement wedges for Lifshitz spacetimes with Lifshitz gravity
NASA Astrophysics Data System (ADS)
Cheyne, Jonathan; Mattingly, David
2018-03-01
Holographic relationships between entanglement entropy on the boundary of a spacetime and the area of minimal surfaces in the bulk provide an important entry in the bulk/boundary dictionary. While constructing the necessary causal and entanglement wedges is well understood in asymptotically AdS spacetimes, less is known about the equivalent constructions in spacetimes with different asymptotics. In particular, recent attempts to construct entanglement and causal wedges for asymptotically Lifshitz solutions in relativistic gravitational theories have proven problematic. We note a simple observation, that a Lifshitz bulk theory, specifically a covariant formulation of Hořava-Lifshitz gravity coupled to matter, has causal propagation defined by Lifshitz modes. We use these modes to construct causal and entanglement wedges and compute the geometric entanglement entropy, which in such a construction matches the field theory prescription.
Quantum corrections in thermal states of fermions on anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Ambruş, Victor E.; Winstanley, Elizabeth
2017-12-01
We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.
Cauchy problem in spacetimes with closed timelike curves
NASA Astrophysics Data System (ADS)
Friedman, John; Morris, Michael S.; Novikov, Igor D.; Echeverria, Fernando; Klinkhammer, Gunnar; Thorne, Kip S.; Yurtsever, Ulvi
1990-09-01
The laws of physics might permit the existence, in the real Universe, of closed timelike curves (CTC's). Macroscopic CTC's might be a semiclassical consequence of Planck-scale, quantum gravitational, Lorentzian foam, if such foam exists. If CTC's are permitted, then the semiclassical laws of physics (the laws with gravity classical and other fields quantized or classical) should be augmented by a principle of self-consistency, which states that a local solution to the equations of physics can occur in the real Universe only if it can be extended to be part of a global solution, one which is well defined throughout the (nonsingular regions of) classical spacetime. The consequences of this principle are explored for the Cauchy problem of the evolution of a classical, massless scalar field Φ (satisfying □Φ=0) in several model spacetimes with CTC's. In general, self-consistency constrains the initial data for the field Φ. For a family of spacetimes with traversible wormholes, which initially possess no CTC's and then evolve them to the future of a stable Cauchy horizon scrH, self-consistency seems to place no constraints on initial data for Φ that are posed on past null infinity, and none on data posed on spacelike slices which precede scrH. By contrast, initial data posed in the future of scrH, where the CTC's reside, are constrained; but the constraints appear to be mild in the sense that in some neighborhood of every event one is free to specify initial data arbitrarily, with the initial data elsewhere being adjusted to guarantee self-consistent evolution. A spacetime whose self-consistency constraints have this property is defined to be ``benign with respect to the scalar field Φ.'' The question is posed as to whether benign spacetimes in some sense form a generic subset of all spacetimes with CTC's. It is shown that in the set of flat, spatially and temporally closed, 2-dimensional spacetimes the benign ones are not generic. However, it seems likely that every 4-dimensional, asymptotically flat space-time that is stable and has a topology of the form R×(S-one point), where S is a closed 3-manifold, is benign. Wormhole spacetimes are of this type, with S=S1×S2. We suspect that these types of self-consistency behavior of the scalar field Φ are typical for noninteracting (linearly superposing), classical fields. However, interacting classical systems can behave quite differently, as is demonstrated by a study of the motion of a hard-sphere billiard ball in a wormhole spacetime with closed timelike curves: If the ball is classical, then some choices of initial data (some values of the ball's initial position and velocity) give rise to unique, self-consistent motions of the ball; other choices produce two different self-consistent motions; and others might (but we are not yet sure) produce no self-consistent motions whatsoever. By contrast, in a path-integral formulation of the nonrelativistic quantum mechanics of such a billiard ball, there appears to be a unique, self-consistent set of probabilities for the outcomes of all measurements. This paper's conclusion, that CTC's may not be as nasty as people have assumed, is reinforced by the fact that they do not affect Gauss's theorem and thus do not affect the derivation of global conservation laws from differential ones. The standard conservation laws remain valid globally, and in asymptotically flat, wormhole spacetimes they retain a natural, quasilocal interpretation.
Spinor Field Nonlinearity and Space-Time Geometry
NASA Astrophysics Data System (ADS)
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.
Entropy in Spacetime and Topological Hair
NASA Astrophysics Data System (ADS)
Hyun, Young-Hwan; Kim, Yoonbai
2018-01-01
Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.
Gravitation: Foundations and Frontiers
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2010-01-01
1. Special relativity; 2. Scalar and electromagnetic fields in special relativity; 3. Gravity and spacetime geometry: the inescapable connection; 4. Metric tensor, geodesics and covariant derivative; 5. Curvature of spacetime; 6. Einstein's field equations and gravitational dynamics; 7. Spherically symmetric geometry; 8. Black holes; 9. Gravitational waves; 10. Relativistic cosmology; 11. Differential forms and exterior calculus; 12. Hamiltonian structure of general relativity; 13. Evolution of cosmological perturbations; 14. Quantum field theory in curved spacetime; 15. Gravity in higher and lower dimensions; 16. Gravity as an emergent phenomenon; Notes; Index.
Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes
NASA Astrophysics Data System (ADS)
Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang
2018-06-01
Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.
NASA Astrophysics Data System (ADS)
Ng, Keith K.; Mann, Robert B.; Martín-Martínez, Eduardo
2017-10-01
The RP3 geon and the Schwarzschild black hole are two black hole spacetimes which differ only behind the event horizon. We show that the thermal Hawking radiation emanating from the two black holes contains nontrivial correlations, that these correlations contain information about their interiors, and demonstrate that a particle detector can recover these correlations. In this manner, a simple particle detector can determine the structure behind the event horizon of an eternal black hole.
Observable Zitterbewegung in curved spacetimes
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca
2016-06-01
Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.
NASA Astrophysics Data System (ADS)
Mach, Patryk; Xie, Naqing
2017-10-01
We investigate toroidal marginally outer trapped surfaces (MOTS) and marginally outer trapped tubes (MOTT) in closed Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. They are constructed by embedding constant mean curvature (CMC) Clifford tori in a FLRW spacetime. This construction is used to assess the quality of certain isoperimetric inequalities, recently proved in axial symmetry. Similarly to spherically symmetric MOTS existing in FLRW spacetimes, the toroidal ones are also unstable.
Magnetofluid dynamics in curved spacetime
NASA Astrophysics Data System (ADS)
Bhattacharjee, Chinmoy; Das, Rupam; Mahajan, S. M.
2015-03-01
A grand unified field Mμ ν is constructed from Maxwell's field tensor and an appropriately modified flow field, both nonminimally coupled to gravity, to analyze the dynamics of hot charged fluids in curved background space-time. With a suitable 3 +1 decomposition, this new formalism of the hot fluid is then applied to investigate the vortical dynamics of the system. Finally, the equilibrium state for plasma with nonminimal coupling through Ricci scalar R to gravity is investigated to derive a double Beltrami equation in curved space-time.
Spacetime Dynamics and Slow Neutrino Background
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2018-06-01
Space is a form of existence of matter, while time is a measure of change of the matter in the space. Issac Newton suggested that the space and time are absolute, not affected by matter and its motion. His first law of motion or the law of inertia says that, without net force acts on it, an object in motion remains the motion in a straight line at a constant speed. Ernest Mach proposed that the inertia of a body results from the gravitational interaction on the body by the rest of the entire universe. As mass is a measure of inertia, Mach’s principle can be simply stated as mass here is affected by matter there. On the basis of Mach’s principle, Albert Einstein considered the space and time to be relative and developed two theories of relativities. One called special relativity describes the effect of motion on spacetime and the other called general relativity describes the effect of matter on spacetime. Recently, the author has further considered reactions of the influenced spacetime on the moving objects, including photons. A moving object including a photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, the author has modelled the effective gravitational force to be Newtonian and derived a new redshift-distance relation that not only perfectly explained the redshift-distance measurement of distant type Ia supernovae but also inherently obtained Hubble’s law as an approximate at small redshift. In this study, we will further analyse the reaction of the influenced spacetime on moving neutrinos and demonstrate the creation of slow neutrino (or tired neutrino) background that may be gravitationally orbiting around clusters, galaxies, and any celestial objects to play a role of dark mater in explaining the excess of galactic and clustery rotations. This work was supported by NSF/REU (Grant #: PHY-1559870) at Alabama A & M University.
Integrability of Spinning Particle Motion in Higher-Dimensional Rotating Black Hole Spacetimes
NASA Astrophysics Data System (ADS)
Kubizňák, David; Cariglia, Marco
2012-02-01
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.061102] on complete integrability of geodesic motion in these spacetimes.
Condensate of massive graviton and dark matter
NASA Astrophysics Data System (ADS)
Aoki, Katsuki; Maeda, Kei-ichi
2018-02-01
We study coherently oscillating massive gravitons in the ghost-free bigravity theory. This coherent field can be interpreted as a condensate of the massive gravitons. We first define the effective energy-momentum tensor of the coherent massive gravitons in a curved spacetime. We then study the background dynamics of the Universe and the cosmic structure formation including the effects of the coherent massive gravitons. We find that the condensate of the massive graviton behaves as a dark matter component of the Universe. From the geometrical point of view the condensate is regarded as a spacetime anisotropy. Hence, in our scenario, dark matter is originated from the tiny deformation of the spacetime. We also discuss a production of the spacetime anisotropy and find that the extragalactic magnetic field of a primordial origin can yield a sufficient amount for dark matter.
Rotating charged black hole spacetimes in quadratic f(R) gravitational theories
NASA Astrophysics Data System (ADS)
Nashed, G. G. L.
Motivated by the substantial modifications of gravitational theories and by the models that come out of f(R), we apply the field equation of the charged f(R) = R + βR2 as well as a general vector potential containing three unknown functions to two spherically symmetric spacetimes. We solve the output of the differential equations and derive a class of black holes that are electrically and magnetically rotating spacetimes. The asymptotic behavior of these black holes acts as anti-de Sitter spacetime. Moreover, these solutions have asymptotic curvature singularities as those of General Relativity. We investigate this by calculating the invariants of curvature. Also, we address the issue of the energy conditions and show that the strong energy condition is satisfied provided β > 0. Finally, we compute the conserved quantities like mass and angular momentum.
Snyder-like modified gravity in Newton's spacetime
NASA Astrophysics Data System (ADS)
Leiva, Carlos
This work is focused on searching a geodesic interpretation of the dynamics of a particle under the effects of a Snyder-like deformation in the background of the Kepler problem. In order to accomplish that task, a Newtonian spacetime is used. Newtonian spacetime is not a metric manifold, but allows to introduce a torsion-free connection in order to interpret the dynamic equations of the deformed Kepler problem as geodesics in a curved spacetime. These geodesics and the curvature terms of the Riemann and Ricci tensors show a mass and a fundamental length dependence as expected, but are velocity-independent that is a feature present in other classical approaches to the problem. In this sense, the effect of introducing a deformed algebra is examined and the corresponding curvature terms calculated, as well as the modifications of the integrals of motion.
Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2018-04-01
We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.
NASA Astrophysics Data System (ADS)
Cao, Dayong
2015-04-01
According to Einstein's equation and observation of flat universe, the paper gives new ideas both of dark massenergy and spacetime center, and supporses that some asteroids were comets which have spacetime center, and some comets were wraped up by rock in 2012. It explains of a observation about low density of the asteroid-1950 DA by spacetime center of the asteroid. (see Ben Rozitis, ``Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA,'' http://www. nature.com / nature / journal / v512 / n7513/full/nature13632.html) It also can explain of a rock hull of 67P/Churyumov-Gerasimenko. (see Jonathan O'Callaghan, ``Comets are like deep fried ICE CREAM: Nasa ice-box experiment confirms 67P is hard on the outside but fluffy on the inside,'' http://www.dailymail.co.uk/sciencetech/article-2949020/Comets-like-deep-fried-ICE-CREAM-Nasa-ice-box-experiment-confirms-67P-hard-outside-fluffy-inside.html) (See Dayong Cao, ``MEST-The dark hole, dark comet and dark matter are the space-time center'' and ``MEST- avoid next extinction by a space-time effect'') http://meetings.aps.org/link/BAPS.2014.APR.L1.3 http://meetings.aps.org/link/BAPS.2014.APR.L1.2 http://meetings.aps.org/link/BAPS.2015.APR.L1.2 http://meeting.aps.org/Meeting/CAL12/Session/H1.8 http://meetings.aps.org/link/BAPS.2012.APR.K1.79
Space-time correlations of fluctuating velocities in turbulent shear flows
NASA Astrophysics Data System (ADS)
Zhao, Xin; He, Guo-Wei
2009-04-01
Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Zhao, Liu
2017-04-01
Holographic entanglement entropies (HEE) associated with four-dimensional Schwarzschild and Reisner-Nordström (RN) black holes in asymptotically Minkowski spacetimes are investigated. Unlike the cases of asymptotically AdS spacetimes for which the boundaries are always taken at (timelike) conformal infinities, we take the boundaries at either large but finite radial coordinates (far boundary) or very close to the black hole event horizons (near horizon boundary). The reason for such choices is that such boundaries are similar to the conformal infinity of AdS spacetime in that they are all timelike, so that there may be some hope to define dual systems with ordinary time evolution on such boundaries. Our results indicate that, in the case of far boundaries, the leading-order contribution to HEEs comes from the background Minkowski spacetime; however, the next-to-leading-order contribution which arises from the presence of the black holes is always proportional to the black hole mass, which constitutes a version of the first law of HEE for asymptotically flat spacetimes, and the higher-order contributions are always negligibly small. In the case of near horizon boundaries, the leading-order contribution to HEE is always proportional to the area of the black hole event horizon, and the case of extremal RN black holes is distinguished from the cases of nonextremal black holes in that the minimal surface defining HEE is completely immersed inside the boundary up to the second order in the perturbative expansion.
Model-driven development of covariances for spatiotemporal environmental health assessment.
Kolovos, Alexander; Angulo, José Miguel; Modis, Konstantinos; Papantonopoulos, George; Wang, Jin-Feng; Christakos, George
2013-01-01
Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across space-time. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998-1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country.
Physics Meets Philosophy at the Planck Scale
NASA Astrophysics Data System (ADS)
Callender, Craig; Huggett, Nick
2001-04-01
Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.
ABC of multi-fractal spacetimes and fractional sea turtles
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2016-04-01
We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
Dirac field and gravity in NC SO(2,3)_\\star model
NASA Astrophysics Data System (ADS)
Gočanin, Dragoljub; Radovanović, Voja
2018-03-01
Action for the Dirac spinor field coupled to gravity on noncommutative (NC) Moyal-Weyl spacetime is obtained without prior knowledge of the metric tensor. We emphasize gauge origins of gravity and its interaction with fermions by demonstrating that a classical action invariant under SO(2, 3) gauge transformations can be exactly reduced to the Dirac action in curved spacetime after breaking the original symmetry down to the local Lorentz SO(1, 3) symmetry. The commutative SO(2, 3) invariant action can be straightforwardly deformed via Moyal-Weyl \\star -product to its NC SO(2,3)_\\star invariant version which can be expanded perturbatively in powers of the deformation parameter using the Seiberg-Witten map. The NC gravity-matter couplings in the expansion arise as an effect of the gauge symmetry breaking. We calculate in detail the first order NC correction to the classical Dirac action in curved spacetime and show that it does not vanish. Moreover, linear NC effects are apparent even in flat spacetime. We analyse NC deformation of the Dirac equation, Feynman propagator and dispersion relation for electrons in Minkowski spacetime and conclude that constant NC background acts as a birefringent medium for electrons propagating in it.
Forms of null Lagrangians in field theories of continuum mechanics
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Radaev, Yu. N.
2012-02-01
The divergence representation of a null Lagrangian that is regular in a star-shaped domain is used to obtain its general expression containing field gradients of order ≤ 1 in the case of spacetime of arbitrary dimension. It is shown that for a static three-component field in the three-dimensional space, a null Lagrangian can contain up to 15 independent elements in total. The general form of a null Lagrangian in the four-dimensional Minkowski spacetime is obtained (the number of physical field variables is assumed arbitrary). A complete theory of the null Lagrangian for the n-dimensional spacetime manifold (including the four-dimensional Minkowski spacetime as a special case) is given. Null Lagrangians are then used as a basis for solving an important variational problem of an integrating factor. This problem involves searching for factors that depend on the spacetime variables, field variables, and their gradients and, for a given system of partial differential equations, ensure the equality between the scalar product of a vector multiplier by the system vector and some divergence expression for arbitrary field variables and, hence, allow one to formulate a divergence conservation law on solutions to the system.
A space-time scan statistic for detecting emerging outbreaks.
Tango, Toshiro; Takahashi, Kunihiko; Kohriyama, Kazuaki
2011-03-01
As a major analytical method for outbreak detection, Kulldorff's space-time scan statistic (2001, Journal of the Royal Statistical Society, Series A 164, 61-72) has been implemented in many syndromic surveillance systems. Since, however, it is based on circular windows in space, it has difficulty correctly detecting actual noncircular clusters. Takahashi et al. (2008, International Journal of Health Geographics 7, 14) proposed a flexible space-time scan statistic with the capability of detecting noncircular areas. It seems to us, however, that the detection of the most likely cluster defined in these space-time scan statistics is not the same as the detection of localized emerging disease outbreaks because the former compares the observed number of cases with the conditional expected number of cases. In this article, we propose a new space-time scan statistic which compares the observed number of cases with the unconditional expected number of cases, takes a time-to-time variation of Poisson mean into account, and implements an outbreak model to capture localized emerging disease outbreaks more timely and correctly. The proposed models are illustrated with data from weekly surveillance of the number of absentees in primary schools in Kitakyushu-shi, Japan, 2006. © 2010, The International Biometric Society.
Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times
NASA Astrophysics Data System (ADS)
Finster, Felix; Strohmaier, Alexander
2015-08-01
We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.
Impact of new physics on the EW vacuum stability in a curved spacetime background
NASA Astrophysics Data System (ADS)
Bentivegna, E.; Branchina, V.; Contino, F.; Zappalà, D.
2017-12-01
It has been recently shown that, contrary to an intuitive decoupling argument, the presence of new physics at very large energy scales (say around the Planck scale) can have a strong impact on the electroweak vacuum lifetime. In particular, the vacuum could be totally destabilized. This study was performed in a flat spacetime background, and it is important to extend the analysis to curved spacetime since these are Planckian-physics effects. It is generally expected that under these extreme conditions gravity should totally quench the formation of true vacuum bubbles, thus washing out the destabilizing effect of new physics. In this work we extend the analysis to curved spacetime and show that, although gravity pushes toward stabilization, the destabilizing effect of new physics is still (by far) the dominating one. In order to get model independent results, high energy new physics is parametrized in two different independent ways: as higher order operators in the Higgs field, or introducing new particles with very large masses. The destabilizing effect is observed in both cases, hinting at a general mechanism that does not depend on the parametrization details for new physics, thus maintaining the results obtained from the analysis performed in flat spacetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild blackmore » hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.« less
Dimensionality in Supergravity Cosmology
NASA Astrophysics Data System (ADS)
Wu, Zhong Chao
2008-01-01
It is shown that in d = 11 supergravity, under a very reasonable ansatz, the observable spacetime must be 4-dimensional. The spacetime dimensionality, for the first time, is proven from the First Principle, instead of the Anthropic Principle.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1992-01-01
Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.
Motion of charged particles in a NUTty Einstein-Maxwell spacetime and causality violation
NASA Astrophysics Data System (ADS)
Clément, Gérard; Guenouche, Mourad
2018-06-01
We investigate the motion of electrically charged test particles in spacetimes with closed timelike curves, a subset of the black hole or wormhole Reissner-Nordström-NUT spacetimes without periodic identification of time. We show that, while in the wormhole case there are closed worldlines inside a potential well, the wordlines of initially distant charged observers moving under the action of the Lorentz force can never close or self-intersect. This means that for these observers causality is preserved, which is an instance of our weak chronology protection criterion.
Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations
NASA Astrophysics Data System (ADS)
Tawfik, Ashraf M.; Fichtner, Horst; Schlickeiser, Reinhard; Elhanbaly, A.
2018-02-01
The aim of this paper is to develop a fractional derivative model of energetic particle transport for both uniform and non-uniform large-scale magnetic field by studying the fractional Telegraph equation and the fractional advection-diffusion equation. Analytical solutions of the space-time fractional Telegraph equation and space-time fractional advection-diffusion equation are obtained by use of the Caputo fractional derivative and the Laplace-Fourier technique. The solutions are given in terms of Fox's H function. As an illustration they are applied to the case of solar energetic particles.
Two diverse models of embedding class one
NASA Astrophysics Data System (ADS)
Kuhfittig, Peter K. F.
2018-05-01
Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.
Green operators for low regularity spacetimes
NASA Astrophysics Data System (ADS)
Sanchez Sanchez, Yafet; Vickers, James
2018-02-01
In this paper we define and construct advanced and retarded Green operators for the wave operator on spacetimes with low regularity. In order to do so we require that the spacetime satisfies the condition of generalised hyperbolicity which is equivalent to well-posedness of the classical inhomogeneous problem with zero initial data where weak solutions are properly supported. Moreover, we provide an explicit formula for the kernel of the Green operators in terms of an arbitrary eigenbasis of H 1 and a suitable Green matrix that solves a system of second order ODEs.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes.
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-10
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Ling, Eric
2018-06-01
We consider globally hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with the presence of a positive cosmological constant. More specifically, for 3 + 1 dimensional spacetimes which satisfy the null energy condition and contain a future expanding compact Cauchy surface, we establish a precise connection between the topology of the Cauchy surfaces and the occurrence of past singularities. In addition to the Penrose singularity theorem, the proof makes use of some recent advances in the topology of 3-manifolds and of certain fundamental existence results for minimal surfaces.
Numerical implementation of equations for photon motion in Kerr spacetime
NASA Astrophysics Data System (ADS)
Bursa, Michal
2017-12-01
Raytracing is one of the essential tools for accurate modeling of spectra and variability of various astrophysical objects. It has a major importance in relativistic environments, where light endures to a number of relativistic effects. Because the trajectories of light rays in curved spacetimes, and in Kerr spacetime in particular, are highly non-trivial, we summarize the equations governing the motion of photon (or any other zero rest mass particle) and give analytic solution of the equations that can be further used in practical computer implementations.
From black holes to quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, N.
1987-01-01
Since modern physics now deals simultaneously with quantum theory, general relativity, cosmology and elementary particle physics, this volume caters to the need for a book of such a wide scope of interest. Aspects of grand unification, the thermodynamics of space-time, the loss of quantum coherence and the problem of time are expertly treated within a unified presentation. Contents: Introduction; The Global Structure of Space-time in the Classical Theory of General Relativity; Connection between the Structure of the Space-time and the Propagation of Quantum Fields; The Different Approaches to Quantization; Outlook and Conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerner, Ryan; Mann, R.B.
We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null-geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, including Rindler and nonstatic spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-AdS black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.
Noise kernels of stochastic gravity in conformally-flat spacetimes
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2015-03-01
The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.
Electromagnetic fields in curved spacetimes
NASA Astrophysics Data System (ADS)
Tsagas, Christos G.
2005-01-01
We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-01
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
NASA Astrophysics Data System (ADS)
Buchholz, Detlev; Florig, Martin; Summers, Stephen J.
2000-01-01
If the vacuum is passive for uniformly accelerated observers in anti-de Sitter spacetime (i.e. cannot be used by them to operate a perpetuum mobile ), they will (a) register a universal value of the Hawking-Unruh temperature, (b) discover a TCP symmetry and (c) find that observables in complementary wedge-shaped regions are commensurable (local) in the vacuum state. These results are model independent and hold in any theory which is compatible with some weak notion of spacetime localization.
New Metrics from a Fractional Gravitational Field
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2017-09-01
Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner-Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske-Kilbas-Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics.
Space-Time Error Representation and Estimation in Navier-Stokes Calculations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2006-01-01
The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.
Special Relativity Derived from Spacetime Magma
Greensite, Fred
2014-01-01
We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components and Euclidean which is consistent with an “inversion symmetry” constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of “inverse norms” which play major roles with respect to various unital -algebras more generally. PMID:24959889
NASA Astrophysics Data System (ADS)
Dai, Guowei; Romero, Alfonso; Torres, Pedro J.
2018-06-01
We study the existence of spacelike graphs for the prescribed mean curvature equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. By using a conformal change of variable, this problem is translated into an equivalent problem in the Lorentz-Minkowski spacetime. Then, by using Rabinowitz's global bifurcation method, we obtain the existence and multiplicity of positive solutions for this equation with 0-Dirichlet boundary condition on a ball. Moreover, the global structure of the positive solution set is studied.
NASA Astrophysics Data System (ADS)
Xiao, Lu; Lang, Yichao; Christakos, George
2018-01-01
With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.
Self-quartic interaction for a scalar field in an extended DFR noncommutative space-time
NASA Astrophysics Data System (ADS)
Abreu, Everton M. C.; Neves, M. J.
2014-07-01
The framework of Dopliche-Fredenhagen-Roberts (DFR) for a noncommutative (NC) space-time is considered as an alternative approach to study the NC space-time of the early Universe. Concerning this formalism, the NC constant parameter, θ, is promoted to coordinate of the space-time and consequently we can describe a field theory in a space-time with extra-dimensions. We will see that there is a canonical momentum associated with this new coordinate in which the effects of a new physics can emerge in the propagation of the fields along the extra-dimensions. The Fourier space of this framework is automatically extended by the addition of the new momenta components. The main concept that we would like to emphasize from the outset is that the formalism demonstrated here will not be constructed by introducing a NC parameter in the system, as usual. It will be generated naturally from an already NC space. We will review that when the components of the new momentum are zero, the (extended) DFR approach is reduced to the usual (canonical) NC case, in which θ is an antisymmetric constant matrix. In this work we will study a scalar field action with self-quartic interaction ϕ4⋆ defined in the DFR NC space-time. We will obtain the Feynman rules in the Fourier space for the scalar propagator and vertex of the model. With these rules we are able to build the radiative corrections to one loop order of the model propagator. The consequences of the NC scale, as well as the propagation of the field in extra-dimensions, will be analyzed in the ultraviolet divergences scenario. We will investigate about the actual possibility that this kμν conjugate momentum has the property of healing the combination of IR/UV divergences that emerges in this recently new NC spacetime quantum field theory.
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
Wong, Cheuk-Yin
2017-05-25
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
The rotation axis for stationary and axisymmetric space-times
NASA Astrophysics Data System (ADS)
van den Bergh, N.; Wils, P.
1985-03-01
A set of 'extended' regularity conditions is discussed which have to be satisfied on the rotation axis if the latter is assumed to be also an axis of symmetry. For a wide class of energy-momentum tensors these conditions can only hold at the origin of the Weyl canonical coordinate. For static and cylindrically symmetric space-times the conditions can be derived from the regularity of the Riemann tetrad coefficients on the axis. For stationary space-times, however, the extended conditions do not necessarily hold, even when 'elementary flatness' is satisfied and when there are no curvature singularities on the axis. The result by Davies and Caplan (1971) for cylindrically symmetric stationary Einstein-Maxwell fields is generalized by proving that only Minkowski space-time and a particular magnetostatic solution possess a regular axis of rotation. Further, several sets of solutions for neutral and charged, rigidly and differentially rotating dust are discussed.
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Krtouš, Pavel; Kubizňák, David
2011-07-01
We intrinsically characterize separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions. Namely, we explicitly demonstrate that, in such spacetimes, there exists a complete set of first-order mutually commuting operators, one of which is the Dirac operator, that allows for common eigenfunctions which can be found in a separated form and correspond precisely to the general solution of the Dirac equation found by Oota and Yasui [Phys. Lett. BPYLBAJ0370-2693 659, 688 (2008)10.1016/j.physletb.2007.11.057]. Since all the operators in the set can be generated from the principal conformal Killing-Yano tensor, this establishes the (up-to-now) missing link among the existence of hidden symmetry, presence of a complete set of commuting operators, and separability of the Dirac equation in these spacetimes.
Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Bavarsad, Ehsan; Kim, Sang Pyo; Stahl, Clément; Xue, She-Sheng
2018-01-01
We investigate the effect of a uniform magnetic field background on scalar QED pair production in a four-dimensional de Sitter spacetime (dS4 ). We obtain a pair production rate which agrees with the known Schwinger result in the limit of Minkowski spacetime and with Hawking radiation in dS spacetime in the zero electric field limit. Our results describe how the cosmic magnetic field affects the pair production rate in cosmological setups. In addition, using the zeta function regularization scheme we calculate the induced current and examine the effect of a magnetic field on the vacuum expectation value of the current operator. We find that, in the case of a strong electromagnetic background the current responds as E .B , while in the infrared regime, it responds as B /E , which leads to a phenomenon of infrared hyperconductivity. These results for the induced current have important applications for the cosmic magnetic field evolution.
Temporal and spatial foliations of spacetimes.
NASA Astrophysics Data System (ADS)
Herold, H.
For the solution of initial-value problems in numerical relativity usually the (3+1) splitting of Einstein's equations is employed. An important part of this splitting is the choice of the temporal gauge condition. In order to estimate the quality of time-evolution schemes, different time slicings of given well-known spherically symmetric spacetimes have been studied. Besides the maximal slicing condition the harmonic slicing prescription has been used to calculate temporal foliations of the Schwarzschild and the Oppenheimer-Snyder spacetime. Additionally, the author has studied a recently proposed, geometrically motivated spatial gauge condition, which is defined by considering the foliations of the three-dimensional space-like hypersurfaces by 2-surfaces of constant mean extrinsic curvature. Apart from the equations for the shift vector, which can be derived for this gauge condition, he has investigated such spatial foliations for well-known stationary axially symmetric spacetimes, namely for the Kerr metric and for numerically determined solutions for rapidly rotating neutron stars.
Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung
2010-08-01
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.
Sachs equations for light bundles in a cold plasma
NASA Astrophysics Data System (ADS)
Schulze-Koops, Karen; Perlick, Volker; Schwarz, Dominik J.
2017-11-01
We study the propagation of light bundles in non-empty spacetime, as most of the Universe is filled by baryonic matter in the form of a (dilute) plasma. Here we restrict to the case of a cold (i.e. pressureless) and non-magnetised plasma. Then the influence of the medium on the light rays is encoded in the spacetime dependent plasma frequency. Our result for a general spacetime generalises the Sachs equations to the case of a cold plasma Universe. We find that the reciprocity law (Etherington theorem), the relation that connects area distance with luminosity distance, is modified. Einstein’s field equation is not used, i.e. our results apply independently of whether or not the plasma is self-gravitating. As an example, our findings are applied to a homogeneous plasma in a Robertson-Walker spacetime. We find small modifications of the cosmological redshift of frequencies and of the Hubble law.
Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Dold, Dominic
2017-03-01
For any cosmological constant {Λ = -3/ℓ2 < 0} and any {α < 9/4}, we find a Kerr-AdS spacetime {({M}, g_{KAdS})}, in which the Klein-Gordon equation {Box_{g_{KAdS}}ψ + α/ℓ2ψ = 0} has an exponentially growing mode solution satisfying a Dirichlet boundary condition at infinity. The spacetime violates the Hawking-Reall bound {r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.
The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes
NASA Astrophysics Data System (ADS)
Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.
2004-11-01
We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.
Butterfly velocities for holographic theories of general spacetimes
Nomura, Yasunori; Salzetta, Nico
2017-10-01
The butterfly velocity characterizes the spread of correlations in a quantum system. Recent work has provided a method of calculating the butterfly velocity of a class of boundary operators using holographic duality. Utilizing this and a presumed extension of the canonical holographic correspondence of AdS/CFT, we investigate the butterfly velocities of operators with bulk duals living in general spacetimes. We analyze some ubiquitous issues in calculating butterfly velocities using the bulk effective theory, and then extend the previously proposed method to include operators in entanglement shadows. Here in this paper, we explicitly compute butterfly velocities for bulk local operators inmore » the holographic theory of flat Friedmann-Robertson-Walker spacetimes and find a universal scaling behavior for the spread of operators in the boundary theory, independent of dimension and fluid components. This result may suggest that a Lifshitz field theory with z = 4 is the appropriate holographic dual for these spacetimes.« less
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Cheuk-Yin
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
The problem of obtaining an explicit representation for the fourth invariant of geodesic motion (generalized Carter constant) of an arbitrary stationary axisymmetric vacuum spacetime generated from an Ernst potential is considered. The coupling between the nonlocal curvature content of the spacetime as encoded in the Weyl tensor, and the existence of a Killing tensor is explored and a constructive, algebraic test for a fourth-order Killing tensor suggested. The approach used exploits the variables defined for the Baecklund transformations to clarify the relationship between Weyl curvature, constants of geodesic motion, expressed as Killing tensors, and the solution-generation techniques. A new symmetricmore » noncovariant formulation of the Killing equations is given. This formulation transforms the problem of looking for fourth-order Killing tensors in 4D into one of looking for four interlocking two-manifolds admitting fourth-order Killing tensors in 2D.« less
Hadamard States for the Linearized Yang-Mills Equation on Curved Spacetime
NASA Astrophysics Data System (ADS)
Gérard, C.; Wrochna, M.
2015-07-01
We construct Hadamard states for the Yang-Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal . We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs. The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald. As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.
Nothing From Everything- A Unified Theory
NASA Astrophysics Data System (ADS)
Mehra, Vijay Kumar
2016-07-01
Nothing From Everything-A Unified Theory is a philosophical insight into principles of nature through principle of complementary spontaneity and principle of vertical continuity. This work is intended to explain various cosmological phenomena in light of behaviour of particles in range of their respective and relative speed of light. This theory explains creation of Universe from nothing or zero spacetime through scalar energy field collapsing into Higgs field resulting into giving mass to various particles. The energy particles taking origin from nothing while moving away from zero space-time would create space-time of their own order because energy/matter needs space to exist. The particles while moving away from zero space-time would end up in breaking symmetry of matter/energy at their mass infinity (highest possible mass of any particle, which is function of speed of spin). This break in symmetry would lead to curving of particles upon themselves and hence would lead to creation of antiparticles going back in time towards zero spacetime. Therefore the Universe could have been created by alternate layers of particles and antiparticles and also alternate layers of matter and antimatter with decelerating speed of light, which would lead to creation a closed and flat Universe. With increase in mass of Universe (creation of more and more Universe's matter from nothing), the gravitational force of Universe is bound to increase and hence with quantum by quantum increase in gravity, it would apply brakes on relative speed of photon/light out of its reference frame or designated space and hence speed of photon would decrease. If closed and flat Universe was created with decelerating speed of light, then such Universe is bound to contract back with accelerating speed of light which would have inverse impact on gravitational constant across various spacetime zones of Universe. And hence mass bodies would drift away spontaneously purely on basis and proportional to distance square between mass bodies with accelerating speed of light, but in actual such Universe would be contracting rather than expanding. Furthermore, this theory explains how particles (when moving away from zero space-time) acquire spin, whose force vector acts centrifugally and neutralizes the quantum gravitational force of particle which acts centripetally. While in case of antiparticles both spin force and gravitational force acts towards centre of particles and they are bound to create singularity of zero spacetime. This theory further explains motion of photon/anti-photon in light of space displacement. The time is nothing but is a measure of rate of space displacement. Where there is no space displacement, there is no time. Any force, like gravity, which acts against space displacement must act against time and hence such forces would lead to slowing of time. This theory further explains about curvature of space-time, relative existence of time orders across Universe, black holes including atomic black holes, other Universes, virtual Universe, time travel, existence of life on other planets, numbers of Universe which govern dynamics of Universe, quantum of Universe i.e. existence of particle-antiparticle in space-time and relation of particles with Higgs field, origin of spin and charge of particles, reason for uncertainty principle and Pauli's exclusion principle, space-time dimensions, and other relevant topics of Astrophysics and quantum Physics.
NASA Astrophysics Data System (ADS)
Quiñones, Diego A.; Oniga, Teodora; Varcoe, Benjamin T. H.; Wang, Charles H.-T.
2017-08-01
We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zero-point fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N2. Using such favorable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity.
Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Youngsoo; Carlberg, Kevin Thomas
Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less
Note on cosmological Levi-Civita spacetimes in higher dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarioglu, Oezguer; Tekin, Bayram
2009-04-15
We find a class of solutions to cosmological Einstein equations that generalizes the four dimensional cylindrically symmetric spacetimes to higher dimensions. The AdS soliton is a special member of this class with a unique singularity structure.
The mortality rates and the space-time patterns of John Snow's cholera epidemic map.
Shiode, Narushige; Shiode, Shino; Rod-Thatcher, Elodie; Rana, Sanjay; Vinten-Johansen, Peter
2015-06-17
Snow's work on the Broad Street map is widely known as a pioneering example of spatial epidemiology. It lacks, however, two significant attributes required in contemporary analyses of disease incidence: population at risk and the progression of the epidemic over time. Despite this has been repeatedly suggested in the literature, no systematic investigation of these two aspects was previously carried out. Using a series of historical documents, this study constructs own data to revisit Snow's study to examine the mortality rate at each street location and the space-time pattern of the cholera outbreak. This study brings together records from a series of historical documents, and prepares own data on the estimated number of residents at each house location as well as the space-time data of the victims, and these are processed in GIS to facilitate the spatial-temporal analysis. Mortality rates and the space-time pattern in the victims' records are explored using Kernel Density Estimation and network-based Scan Statistic, a recently developed method that detects significant concentrations of records such as the date and place of victims with respect to their distance from others along the street network. The results are visualised in a map form using a GIS platform. Data on mortality rates and space-time distribution of the victims were collected from various sources and were successfully merged and digitised, thus allowing the production of new map outputs and new interpretation of the 1854 cholera outbreak in London, covering more cases than Snow's original report and also adding new insights into their space-time distribution. They confirmed that areas in the immediate vicinity of the Broad Street pump indeed suffered from excessively high mortality rates, which has been suspected for the past 160 years but remained unconfirmed. No distinctive pattern was found in the space-time distribution of victims' locations. The high mortality rates identified around the Broad Street pump are consistent with Snow's theory about cholera being transmitted through contaminated water. The absence of a clear space-time pattern also indicates the water-bourne, rather than the then popular belief of air bourne, nature of cholera. The GIS data constructed in this study has an academic value and would cater for further research on Snow's map.
The Expanding Universe and the Large-Scale Geometry of Spacetime.
ERIC Educational Resources Information Center
Shu, Frank
1983-01-01
Presents a condensed version of textbook account of cosmological theory and principles. Topics discussed include quasars, general and special relativity, relativistic cosmology, and the curvature of spacetime. Some philosophical assumptions necessary to the theory are also discussed. (JM)
A note on Kundt spacetimes of type N with a cosmological constant
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello
2018-06-01
In recent literature there appeared conflicting claims about whether the Ozsváth–Robinson–Rózga family of type N electrovac spacetimes of the Kundt class with Λ is complete. We show that indeed it is.
Small black holes in global AdS spacetime
NASA Astrophysics Data System (ADS)
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
Large numbers hypothesis. IV - The cosmological constant and quantum physics
NASA Technical Reports Server (NTRS)
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Uniform circular motion in general relativity: existence and extendibility of the trajectories
NASA Astrophysics Data System (ADS)
de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.
2017-06-01
The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.
NASA Astrophysics Data System (ADS)
Liu, Qiao
2015-06-01
In recent paper [7], Y. Du and K. Wang (2013) proved that the global-in-time Koch-Tataru type solution (u, d) to the n-dimensional incompressible nematic liquid crystal flow with small initial data (u0, d0) in BMO-1 × BMO has arbitrary space-time derivative estimates in the so-called Koch-Tataru space norms. The purpose of this paper is to show that the Koch-Tataru type solution satisfies the decay estimates for any space-time derivative involving some borderline Besov space norms.
A multi-element cosmological model with a complex space-time topology
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Lipatova, L. N.; Novikov, I. D.; Shatskiy, A. A.
2015-02-01
Wormhole models with a complex topology having one entrance and two exits into the same space-time of another universe are considered, as well as models with two entrances from the same space-time and one exit to another universe. These models are used to build a model of a multi-sheeted universe (a multi-element model of the "Multiverse") with a complex topology. Spherical symmetry is assumed in all the models. A Reissner-Norström black-hole model having no singularity beyond the horizon is constructed. The strength of the central singularity of the black hole is analyzed.
Conformal Yano-Killing Tensors in General Relativity
NASA Astrophysics Data System (ADS)
Jezierski, Jacek
2011-09-01
How CYK tensors appear in General Relativity? Geometric definition of the asymptotic flat spacetime: strong asymptotic flatness, which guarantees well defined total angular momentum [2, 3, 4] Conserved quantities - asymptotic charges (ℐ, 𝓲0) [2, 3, 4, 5, 6, 9] Quasi-local mass and "rotational energy" for Kerr black hole [5] Constants of motion along geodesics and symmetric Killing tensors [5, 6] Spacetimes possessing CYK tensor [10]: Minkowski (quadratic polynomials) [5] (Anti-)deSitter (natural construction) [7, 8, 9] Kerr (type D spacetime) [5] Taub-NUT (new symmetric conformal Killing tensors) [6] Other applications: Symmetries of Dirac operator Symmetries of Maxwell equations
Relativistic Newtonian Dynamics under a central force
NASA Astrophysics Data System (ADS)
Friedman, Yaakov
2016-10-01
Planck's formula and General Relativity indicate that potential energy influences spacetime. Using Einstein's Equivalence Principle and an extension of his Clock Hypothesis, an explicit description of this influence is derived. We present a new relativity model by incorporating the influence of the potential energy on spacetime in Newton's dynamics for motion under a central force. This model extends the model used by Friedman and Steiner (EPL, 113 (2016) 39001) to obtain the exact precession of Mercury without curving spacetime. We also present a solution of this model for a hydrogen-like atom, which explains the reason for a probabilistic description.
Exact Solutions in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
Covariant information-density cutoff in curved space-time.
Kempf, Achim
2004-06-04
In information theory, the link between continuous information and discrete information is established through well-known sampling theorems. Sampling theory explains, for example, how frequency-filtered music signals are reconstructible perfectly from discrete samples. In this Letter, sampling theory is generalized to pseudo-Riemannian manifolds. This provides a new set of mathematical tools for the study of space-time at the Planck scale: theories formulated on a differentiable space-time manifold can be equivalent to lattice theories. There is a close connection to generalized uncertainty relations which have appeared in string theory and other studies of quantum gravity.
Special relativity derived from spacetime magma.
Greensite, Fred
2014-01-01
We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.
Covariant hamiltonian spin dynamics in curved space-time
NASA Astrophysics Data System (ADS)
d'Ambrosi, G.; Satish Kumar, S.; van Holten, J. W.
2015-04-01
The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.
2009-11-15
In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.
Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin
2018-06-01
We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.
Mode-sum regularization of ⟨ϕ2⟩ in the angular-splitting method
NASA Astrophysics Data System (ADS)
Levi, Adam; Ori, Amos
2016-08-01
The computation of the renormalized stress-energy tensor or ⟨ϕ2⟩ren in curved spacetime is a challenging task, at both the conceptual and technical levels. Recently we developed a new approach to compute such renormalized quantities in asymptotically flat curved spacetimes, based on the point-splitting procedure. Our approach requires the spacetime to admit some symmetry. We already implemented this approach to compute ⟨ϕ2⟩ren in a stationary spacetime using t splitting, namely splitting in the time-translation direction. Here we present the angular-splitting version of this approach, aimed for computing renormalized quantities in a general (possibly dynamical) spherically symmetric spacetime. To illustrate how the angular-splitting method works, we use it here to compute ⟨ϕ2⟩ren for a quantum massless scalar field in Schwarzschild background, in various quantum states (Boulware, Unruh, and Hartle-Hawking states). We find excellent agreement with the results obtained from the t -splitting variant and also with other methods. Our main goal in pursuing this new mode-sum approach was to enable the computation of the renormalized stress-energy tensor in a dynamical spherically symmetric background, e.g. an evaporating black hole. The angular-splitting variant presented here is most suitable to this purpose.
Sagnac delay in the Kerr-dS spacetime: Implications for Mach's principle
NASA Astrophysics Data System (ADS)
Karimov, R. Kh.; Izmailov, R. N.; Garipova, G. M.; Nandi, K. K.
2018-02-01
Relativistic twin paradox can have important implications for Mach's principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach's principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass M and cosmological constant Λ on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits M→ 0, spin a→ 0 and Λ → 0, while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.
Classical space-times from the S-matrix
NASA Astrophysics Data System (ADS)
Neill, Duff; Rothstein, Ira Z.
2013-12-01
We show that classical space-times can be derived directly from the S-matrix for a theory of massive particles coupled to a massless spin two particle. As an explicit example we derive the Schwarzchild space-time as a series in GN. At no point of the derivation is any use made of the Einstein-Hilbert action or the Einstein equations. The intermediate steps involve only on-shell S-matrix elements which are generated via BCFW recursion relations and unitarity sewing techniques. The notion of a space-time metric is only introduced at the end of the calculation where it is extracted by matching the potential determined by the S-matrix to the geodesic motion of a test particle. Other static space-times such as Kerr follow in a similar manner. Furthermore, given that the procedure is action independent and depends only upon the choice of the representation of the little group, solutions to Yang-Mills (YM) theory can be generated in the same fashion. Moreover, the squaring relation between the YM and gravity three point functions shows that the seeds that generate solutions in the two theories are algebraically related. From a technical standpoint our methodology can also be utilized to calculate quantities relevant for the binary inspiral problem more efficiently then the more traditional Feynman diagram approach.
Mediterranean space-time extremes of wind wave sea states
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro; Marcello Falcieri, Francesco; Bonaldo, Davide; Bergamasco, Andrea; Benetazzo, Alvise
2014-05-01
Traditionally, wind wave sea states during storms have been observed, modeled, and predicted mostly in the time domain, i.e. at a fixed point. In fact, the standard statistical models used in ocean waves analysis rely on the implicit assumption of long-crested waves. Nevertheless, waves in storms are mainly short-crested. Hence, spatio-temporal features of the wave field are crucial to accurately model the sea state characteristics and to provide reliable predictions, particurly of wave extremes. Indeed, the experimental evidence provided by novel instrumentations, e.g. WASS (Wave Acquisition Stereo System), showed that the maximum sea surface elevation gathered in time over an area, i.e. the space-time extreme, is larger than that one measured in time at a point, i.e. the time extreme. Recently, stochastic models used to estimate maxima of multidimensional Gaussian random fields have been applied to ocean waves statistics. These models are based either on Piterbarg's theorem or Adler and Taylor's Euler Characteristics approach. Besides a probability of exceedance of a certain threshold, they can provide the expected space-time extreme of a sea state, as long as space-time wave features (i.e. some parameters of the directional variance density spectrum) are known. These models have been recently validated against WASS observation from fixed and moving platforms. In this context, our focus was modeling and predicting extremes of wind waves during storms. Thus, to intensively gather space-time extremes data over the Mediterranean region, we used directional spectra provided by the numerical wave model SWAN (Simulating WAves Nearshore). Therefore, we set up a 6x6 km2 resolution grid entailing most of the Mediterranean Sea and we forced it with COSMO-I7 high resolution (7x7 km2) hourly wind fields, within 2007-2013 period. To obtain the space-time features, i.e. the spectral parameters, at each grid node and over the 6 simulated years, we developed a modified version of the SWAN model, the SWAN Space-Time (SWAN-ST). SWAN-ST results were post-processed to obtain the expected space-time extremes over the model domain. To this end, we applied the stochastic model of Fedele, developed starting from Adler and Taylor's approach, which we found to be more accurate and versatile with respect to Piterbarg's theorem. Results we obtained provide an alternative sight on Mediterranean extreme wave climate, which could represent the first step towards operationl forecasting of space-time wave extremes, on the one hand, and the basis for a novel statistical standard wave model, on the other. These results may benefit marine designers, seafarers and other subjects operating at sea and exposed to the frequent and severe hazard represented by extreme wave conditions.
NASA Astrophysics Data System (ADS)
Lake, Kayll
2010-12-01
The title immediately brings to mind a standard reference of almost the same title [1]. The authors are quick to point out the relationship between these two works: they are complementary. The purpose of this work is to explain what is known about a selection of exact solutions. As the authors state, it is often much easier to find a new solution of Einstein's equations than it is to understand it. Even at first glance it is very clear that great effort went into the production of this reference. The book is replete with beautifully detailed diagrams that reflect deep geometric intuition. In many parts of the text there are detailed calculations that are not readily available elsewhere. The book begins with a review of basic tools that allows the authors to set the notation. Then follows a discussion of Minkowski space with an emphasis on the conformal structure and applications such as simple cosmic strings. The next two chapters give an in-depth review of de Sitter space and then anti-de Sitter space. Both chapters contain a remarkable collection of useful diagrams. The standard model in cosmology these days is the ICDM model and whereas the chapter on the Friedmann-Lemaître-Robertson-Walker space-times contains much useful information, I found the discussion of the currently popular a representation rather too brief. After a brief but interesting excursion into electrovacuum, the authors consider the Schwarzschild space-time. This chapter does mention the Swiss cheese model but the discussion is too brief and certainly dated. Space-times related to Schwarzschild are covered in some detail and include not only the addition of charge and the cosmological constant but also the addition of radiation (the Vaidya solution). Just prior to a discussion of the Kerr space-time, static axially symmetric space-times are reviewed. Here one can find a very interesting discussion of the Curzon-Chazy space-time. The chapter on rotating black holes is rather brief and, for example, does not contain reference to the insights found by Pretorius and Israel [2]. This is perhaps justifiable in view of the many specialized texts devoted to the Kerr space-time (e.g. [3]). The large clear diagrams that one becomes accustomed to in this book show off the Taub-NUT (and related) space-times in the next chapter. After perhaps a somewhat standard discussion of stationary axially symmetric space-times, there is a very informative discussion of accelerating black holes. For example, the global structure of the C-metric is considered in detail. This is followed by a brief discussion of solutions for uniformly accelerating particles. The discussion of the Plebański-Demiański solutions contains two very useful flow charts that help to systematize two rather complex families of solutions. After a somewhat brief discussion of plane and pp-waves, the authors give an extensive discussion of the Kunt solutions. I note here that after this text was in production the importance of the Kunt space-times as regards the characterization of space-times by scalar curvature invariants was made clear [4]. The discussion of the Robinson-Trautman solutions that follows is extensive, containing, for example, details of the singularity structure and of the global structure. The final formal chapter in this text covers colliding plane waves. This contains, for example, discussions of the Khan-Penrose, Ferrari-Ibañez and Chandrasekhar-Xanthopoulos solutions. The text ends with a `final miscellany'. This covers a number of interesting topics, but I found the discussion of the Lemaître-Tolman solutions rather weak (compare e.g. [5]). The book has two quite useful appendices covering 2-spaces and 3-spaces of constant curvature. To conclude, I will quote from the dust jacket: `The book is an invaluable resource for both graduate students and academic researchers working in gravitational physics'. I highly recommend it. References [1] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein's Field Equations (Second Edition) (Cambridge: Cambridge University Press) [2] Pretorius F and Israel W 1998 Class. Quantum Grav.15 2289 [3] Wiltshire D, Visser M and Scott S (ed) 2008 The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge: Cambridge University Press) [4] Coley A, Hervik S and Pelavas N 2009 Class. Quantum Grav. 26 025013 [5] Plebański J and Krasiński A 2006 An Introduction to General Relativity and Cosmology (Cambridge: Cambridge University Press)
LETTER TO THE EDITOR: A theorem on topologically massive gravity
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
1996-03-01
We show that for three dimensional spacetimes admitting a hypersurface orthogonal Killing vector field, Deser, Jackiw and Templeton's vacuum field equations of topologically massive gravity allow only the trivial flat spacetime solution. Thus spin is necessary to support topological mass.
Imparting small vorticity to a Bianchi type-VIh empty spacetime
NASA Astrophysics Data System (ADS)
Batakis, Nikos A.
1981-04-01
We present and briefly discuss a Bianchi type-VIh empty spacetime. The field equations have been solved after being linearized with respect to a parameter which imparts vorticity to the model. The limit of zero vorticity is an already known solution.
Joint space-time geostatistical model for air quality surveillance
NASA Astrophysics Data System (ADS)
Russo, A.; Soares, A.; Pereira, M. J.
2009-04-01
Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.
Zhang, Yan; Wang, Ping; Guo, Lixin; Wang, Wei; Tian, Hongxin
2017-08-21
The average bit error rate (ABER) performance of an orbital angular momentum (OAM) multiplexing-based free-space optical (FSO) system with multiple-input multiple-output (MIMO) architecture has been investigated over atmospheric turbulence considering channel estimation and space-time coding. The impact of different types of space-time coding, modulation orders, turbulence strengths, receive antenna numbers on the transmission performance of this OAM-FSO system is also taken into account. On the basis of the proposed system model, the analytical expressions of the received signals carried by the k-th OAM mode of the n-th receive antenna for the vertical bell labs layered space-time (V-Blast) and space-time block codes (STBC) are derived, respectively. With the help of channel estimator carrying out with least square (LS) algorithm, the zero-forcing criterion with ordered successive interference cancellation criterion (ZF-OSIC) equalizer of V-Blast scheme and Alamouti decoder of STBC scheme are adopted to mitigate the performance degradation induced by the atmospheric turbulence. The results show that the ABERs obtained by channel estimation have excellent agreement with those of turbulence phase screen simulations. The ABERs of this OAM multiplexing-based MIMO system deteriorate with the increase of turbulence strengths. And both V-Blast and STBC schemes can significantly improve the system performance by mitigating the distortions of atmospheric turbulence as well as additive white Gaussian noise (AWGN). In addition, the ABER performances of both space-time coding schemes can be further enhanced by increasing the number of receive antennas for the diversity gain and STBC outperforms V-Blast in this system for data recovery. This work is beneficial to the OAM FSO system design.
Global properties of physically interesting Lorentzian spacetimes
NASA Astrophysics Data System (ADS)
Nawarajan, Deloshan; Visser, Matt
Under normal circumstances most members of the general relativity community focus almost exclusively on the local properties of spacetime, such as the locally Euclidean structure of the manifold and the Lorentzian signature of the metric tensor. When combined with the classical Einstein field equations this gives an extremely successful empirical model of classical gravity and classical matter — at least as long as one does not ask too many awkward questions about global issues, (such as global topology and global causal structure). We feel however that this is a tactical error — even without invoking full-fledged “quantum gravity” we know that the standard model of particle physics is also an extremely good representation of some parts of empirical reality; and we had better be able to carry over all the good features of the standard model of particle physics — at least into the realm of semi-classical quantum gravity. Doing so gives us some interesting global features that spacetime should possess: On physical grounds spacetime should be space-orientable, time-orientable, and spacetime-orientable, and it should possess a globally defined tetrad (vierbein, or in general a globally defined vielbein/n-bein). So on physical grounds spacetime should be parallelizable. This strongly suggests that the metric is not the fundamental physical quantity; a very good case can be made for the tetrad being more fundamental than the metric. Furthermore, a globally-defined “almost complex structure” is almost unavoidable. Ideas along these lines have previously been mooted, but much is buried in the pre-arXiv literature and is either forgotten or inaccessible. We shall revisit these ideas taking a perspective very much based on empirical physical observation.
NASA Technical Reports Server (NTRS)
Diosady, Laslo; Murman, Scott; Blonigan, Patrick; Garai, Anirban
2017-01-01
Presented space-time adjoint solver for turbulent compressible flows. Confirmed failure of traditional sensitivity methods for chaotic flows. Assessed rate of exponential growth of adjoint for practical 3D turbulent simulation. Demonstrated failure of short-window sensitivity approximations.
NASA Astrophysics Data System (ADS)
Majid, Shahn; Connes, With contributions by Alain; Heller, Michael; Penrose, Roger; Polkinghorne, John; Taylor, Andrew
2008-09-01
Preface; 1. The dark universe A. N. Taylor; 2. Quantum spacetime and physical reality S. Majid; 3. Causality, quantum theory and cosmology R. Penrose; 4. On the fine structure of spacetime A. Connes; 5. Where physics meets metaphysics M. Heller; 6. The nature of time J. C. Polkinghorne; Index.
NASA Astrophysics Data System (ADS)
Majid, Shahn; Polkinghorne, With contributions by John; Penrose, Roger; Taylor, Andrew; Connes, Alain; Heller, Michael
2012-03-01
Preface; 1. The dark universe A. N. Taylor; 2. Quantum spacetime and physical reality S. Majid; 3. Causality, quantum theory and cosmology R. Penrose; 4. On the fine structure of spacetime A. Connes; 5. Where physics meets metaphysics M. Heller; 6. The nature of time J. C. Polkinghorne; Index.
2003-10-30
KENNEDY SPACE CENTER, FLA. - This logo for the Gravity Probe B mission portrays the theory of curved spacetime and "frame-dragging," developed by Einstein and other scientists, that the mission will test. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit. Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring the effects. The experiment was developed by Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.
Casimir Effect in de Sitter Spacetime
NASA Astrophysics Data System (ADS)
Saharian, A. A.
2011-06-01
The vacuum expectation value of the energy-momentum tensor and the Casimir forces are investigated for a massive scalar field with an arbitrary curvature coupling parameter in the geometry of two parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. The vacuum energy-momentum tensor is non-diagonal, with the off-diagonal component corresponding to the energy flux along the direction normal to the plates. It is shown that the curvature of the background spacetime decisively influences the behavior of the Casimir forces at separations larger than the curvature radius of de Sitter spacetime. In dependence of the curvature coupling parameter and the mass of the field, two different regimes are realized, which exhibit monotonic or oscillatory behavior of the forces. The decay of the Casimir force at large plate separation is shown to be power-law, with independence of the value of the field mass.
Spacetime Singularities in Quantum Gravity
NASA Astrophysics Data System (ADS)
Minassian, Eric A.
2000-04-01
Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.
Spacetime Replication of Quantum Information Using (2 , 3) Quantum Secret Sharing and Teleportation
NASA Astrophysics Data System (ADS)
Wu, Yadong; Khalid, Abdullah; Davijani, Masoud; Sanders, Barry
The aim of this work is to construct a protocol to replicate quantum information in any valid configuration of causal diamonds and assess resources required to physically realize spacetime replication. We present a set of codes to replicate quantum information along with a scheme to realize these codes using continuous-variable quantum optics. We use our proposed experimental realizations to determine upper bounds on the quantum and classical resources required to simulate spacetime replication. For four causal diamonds, our implementation scheme is more efficient than the one proposed previously. Our codes are designed using a decomposition algorithm for complete directed graphs, (2 , 3) quantum secret sharing, quantum teleportation and entanglement swapping. These results show the simulation of spacetime replication of quantum information is feasible with existing experimental methods. Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-2644).
Imprints from the global cosmological expansion to the local spacetime dynamics.
Fahr, Hans J; Siewert, Mark
2008-05-01
We study the general relativistic spacetime metrics surrounding massive cosmological objects, such as suns, stars, galaxies or galaxy clusters. The question addressed here is the transition of local, object-related spacetime metrics into the global, cosmological Robertson-Walker metrics. We demonstrate that the answer often quoted for this problem from the literature, the so-called Einstein-Straus vacuole, which connects a static outer Schwarzschild solution with the time-dependent Robertson-Walker universe, is inadequate to describe the local spacetime of a gravitationally bound system. Thus, we derive here an alternative model describing such bound systems by a metrics more closely tied to the fundamental problem of structure formation in the early universe and obtain a multitude of solutions characterising the time-dependence of a local scale parameter. As we can show, a specific solution out of this multitude is able to, as a by-product, surprisingly enough, explain the presently much discussed phenomenon of the PIONEER anomaly.
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Shi, Jia-Dong; Ye, Liu
2018-06-01
In this letter, we mainly investigate how to enhance the damaged quantum entanglement under an open Dirac system with the Hawking effect within Schwarzschild space-time. We consider that particle A held by Alice undergoes generalized amplitude damping noise in a flat space-time, and that another particle B by Bob entangled with A is under a Schwarzschild space-time. Subsequently, we put forward a physical scheme to recover the damaged quantum entanglement by prior weak measurement on subsystem A before the interaction with the decoherence noise followed by post-measurement filtering operation. The results indicate that our scheme can effectively recover the damaged quantum entanglement affected by the Hawking effect and the noisy channel. Thus, our work might be beneficial to understand the dynamic behavior of the quantum state and recover the damaged quantum entanglement with open Dirac systems under the Hawking effect in the background of a Schwarzschild black hole.
Cosmological solutions and finite time singularities in Finslerian geometry
NASA Astrophysics Data System (ADS)
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Multipole moments of bumpy black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigeland, Sarah J.
General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metricmore » depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.« less
NASA Astrophysics Data System (ADS)
Collins, Nathan A.; Hughes, Scott A.
2004-06-01
Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured from an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are in fact the black holes of general relativity.
Quantum cosmology of a conformal multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, Salvador J.
2017-09-01
This paper studies the cosmology of a homogeneous and isotropic spacetime endorsed with a conformally coupled massless scalar field. We find six different solutions of the Friedmann equation that represent six different types of universes, and all of them are periodically distributed along the complex time axis. From a classical point of view, they are then isolated, separated by Euclidean regions that represent quantum mechanical barriers. Quantum mechanically, however, there is a nonzero probability for the state of the universes to tunnel out through a Euclidean instanton and suffer a sudden transition to another state of the spacetime. We compute the probability of transition for this and other nonlocal processes like the creation of universes in entangled pairs and, generally speaking, in multipartite entangled states. We obtain the quantum state of a single universe within the formalism of the Wheeler-DeWitt equation and give the semiclassical state of the universes that describes the quantum mechanics of a scalar field propagating in a de Sitter background spacetime. We show that the superposition principle of the quantum mechanics of matter fields alone is an emergent feature of the semiclassical description of the universe that is not valid, for instance, in the spacetime foam. We use the third quantization formalism to describe the creation of an entangled pair of universes with opposite signs of the momentum conjugated to the scale factor. Each universe of the entangled pair represents an expanding spacetime in terms of the Wentzel-Kramers-Brillouin (WKB) time experienced by internal observers in their particle physics experiments. We compute the effective value of the Friedmann equation of the background spacetime of the two entangled universes, and thus, the effect that the entanglement would have in their expansion rates. We analyze as well the effects of the interuniversal entanglement in the properties of the scalar fields that propagate in each spacetime of the entangled pair. We find that the largest modes of the scalar field are unaware of the entanglement between the universes, but the effects can be significant for the lowest modes, allowing us to compute, in principle, detailed observational imprints of the multiverse in the properties of a single universe like ours.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Homothetic matter collineations of LRS Bianchi type I spacetimes
NASA Astrophysics Data System (ADS)
Hussain, Tahir; Rahim, Waqas
2017-12-01
A complete classification of locally rotationally symmetric (LRS) Bianchi type I spacetimes via homothetic matter collineations (HMCs) is presented. For non-degenerate energy-momentum tensor, a general form of the vector field generating HMCs is found, subject to some integrability conditions. Solving the integrability conditions in different cases, it is found that the LRS Bianchi type I spacetimes admit 6-, 7-, 8-, 10- or 11-dimensional Lie algebra of HMCs. When the energy-momentum tensor is degenerate, two cases give 6 and 11 HMCs, while the remaining cases produce infinite number of HMCs. Some LRS Bianchi type I metrics are provided admitting HMCs.
Varying electric charge in multiscale spacetimes
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Magueijo, João; Fernández, David Rodríguez
2014-01-01
We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multifractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.
NASA Astrophysics Data System (ADS)
Swingle, Brian
2018-03-01
This is an idiosyncratic colloquium-style review of the idea that spacetime and gravity can emerge from entanglement. Drawing inspiration from the conjectured duality between quantum gravity in anti de Sitter space and certain conformal field theories, we argue that tensor networks can be used to define a discrete geometry that encodes entanglement geometrically. With the additional assumption that a continuum limit can be taken, the resulting geometry necessarily obeys Einstein's equations. The discussion takes the point of view that the emergence of spacetime and gravity is a mysterious phenomenon of quantum many-body physics that we would like to understand. We also briefly discuss possible experiments to detect emergent gravity in highly entangled quantum systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br; Belich, H., E-mail: belichjr@gmail.com
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Killing spinors and related symmetries in six dimensions
NASA Astrophysics Data System (ADS)
Batista, Carlos
2016-03-01
Benefiting from the index spinorial formalism, the Killing spinor equation is integrated in six-dimensional spacetimes. The integrability conditions for the existence of a Killing spinor are worked out and the Killing spinors are classified into two algebraic types; in the first type the scalar curvature of the spacetime must be negative, while in the second type the spacetime must be an Einstein manifold. In addition, the equations that define Killing-Yano (KY) and closed conformal Killing-Yano (CCKY) tensors are expressed in the index notation and, as consequence, all nonvanishing KY and CCKY tensors that can be generated from a Killing spinor are made explicit.
Building non-commutative spacetimes at the Planck length for Friedmann flat cosmologies
NASA Astrophysics Data System (ADS)
Tomassini, Luca; Viaggiu, Stefano
2014-09-01
We propose physically motivated spacetime uncertainty relations (STUR) for flat Friedmann-Lemaître cosmologies. We show that the physical features of these STUR crucially depend on whether a particle horizon is present or not. In particular, when this is the case we deduce the existence of a maximal value for the Hubble rate (or equivalently for the matter density), thus providing an indication that quantum effects may rule out a pointlike big bang singularity. Finally, we construct a concrete realization of the corresponding quantum Friedmann spacetime in terms of operators on a Hilbert space. In loving memory of Francesco Saverio de Blasi, mathematician and friend.
Are Singularities Integral to General Theory of Relativity?
NASA Astrophysics Data System (ADS)
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
Hawking radiation, Unruh radiation, and the equivalence principle.
Singleton, Douglas; Wilburn, Steve
2011-08-19
We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society
Unitals and ovals of symmetric block designs in LDPC and space-time coding
NASA Astrophysics Data System (ADS)
Andriamanalimanana, Bruno R.
2004-08-01
An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.
COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime.
NASA Astrophysics Data System (ADS)
El Naschie, M. S.
1998-08-01
The first part of the paper attempts to establish connections between hypersphere backing in infinite dimensions, the expectation value of dimE(∞) spacetime and the COBE measurement of the microwave background radiation. One of the main results reported here is that the mean sphere in S(∞) spans a four dimensional manifold and is thus equal to the expectation value of the topological dimension of E(∞). In the second part the author introduces within a general theory, a probabilistic justification for a compactification which reduces an infinite dimensional spacetime E(∞) (n = ∞) to a four dimensional one (DT = n = 4).
Reconstructing f(R) gravity from a Chaplygin scalar field in de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Sami, Heba; Namane, Neo; Ntahompagaze, Joseph; Elmardi, Maye; Abebe, Amare
We present a reconstruction technique for models of f(R) gravity from the Chaplygin scalar field in flat de Sitter spacetimes. Exploiting the equivalence between f(R) gravity and scalar-tensor (ST) theories, and treating the Chaplygin gas (CG) as a scalar field model in a universe without conventional matter forms, the Lagrangian densities for the f(R) action are derived. Exact f(R) models and corresponding scalar field potentials are obtained for asymptotically de Sitter spacetimes in early and late cosmological expansion histories. It is shown that the reconstructed f(R) models all have General Relativity (GR) as a limiting solution.
Hawking Tunneling Radiation of Black Holes in de Sitter and ANTI-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Li, Hui-Ling; Yang, Shu-Zheng; Chen, De-You
Applying Parikh-Wilczek's semiclassical quantum tunneling method, we investigate the tunneling radiation characteristics of a torus-like black hole and Kerr-Newman-Kausya de Sitter black hole. Both black holes have the cosmological constant Λ, but a torus-like black hole is in anti-de Sitter spacetime and the other black hole is in de Sitter spacetime. The derived results show that the tunneling rate is related to the change of Bekenstein-Hawking entropy, and the factual radiated spectrum is not precisely thermal, but is consistent with an underlying unitary theory, which gives a might explanation to the paradox of black hole information lost.
Optical isolation based on space-time engineered asymmetric photonic band gaps
NASA Astrophysics Data System (ADS)
Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe
2017-10-01
Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.
NASA Astrophysics Data System (ADS)
Guner, Ozkan; Korkmaz, Alper; Bekir, Ahmet
2017-02-01
Dark soliton solutions for space-time fractional Sharma-Tasso-Olver and space-time fractional potential Kadomtsev-Petviashvili equations are determined by using the properties of modified Riemann-Liouville derivative and fractional complex transform. After reducing both equations to nonlinear ODEs with constant coefficients, the \\tanh ansatz is substituted into the resultant nonlinear ODEs. The coefficients of the solutions in the ansatz are calculated by algebraic computer computations. Two different solutions are obtained for the Sharma-Tasso-Olver equation as only one solution for the potential Kadomtsev-Petviashvili equation. The solution profiles are demonstrated in 3D plots in finite domains of time and space.
Lorentz- and CPT-symmetry studies in subatomic physics
NASA Astrophysics Data System (ADS)
Lehnert, Ralf
2016-12-01
Subatomic systems provide an exquisite test bench for spacetime symmetries. This work motivates such measurements, reviews the effective field theory test framework for the description of Lorentz and CPT violation, and employs this framework to study the phenomenology of spacetime-symmetry breaking in various subatomic systems.
Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10
NASA Astrophysics Data System (ADS)
Demaret, Jacques; de Rop, Yves; Henneaux, Marc
1988-08-01
It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile
Pauli energy spectrum for twist-deformed spacetime
NASA Astrophysics Data System (ADS)
Daszkiewicz, Marcin
2018-04-01
In this paper, we define the Pauli Hamiltonian function for the twist-deformed N-enlarged Newton-Hooke spacetime provided by M. Daszkiewicz [Mod. Phys. Lett. A 27, 1250083 (2012)]. Further, we derive its energy spectrum, i.e. we find the corresponding eigenvalues as well as the proper eigenfunctions.
Maggi, Federico; Bosco, Domenico; Galetto, Luciana; Palmano, Sabrina; Marzachì, Cristina
2017-01-01
Analyses of space-time statistical features of a flavescence dorée (FD) epidemic in Vitis vinifera plants are presented. FD spread was surveyed from 2011 to 2015 in a vineyard of 17,500 m2 surface area in the Piemonte region, Italy; count and position of symptomatic plants were used to test the hypothesis of epidemic Complete Spatial Randomness and isotropicity in the space-time static (year-by-year) point pattern measure. Space-time dynamic (year-to-year) point pattern analyses were applied to newly infected and recovered plants to highlight statistics of FD progression and regression over time. Results highlighted point patterns ranging from disperse (at small scales) to aggregated (at large scales) over the years, suggesting that the FD epidemic is characterized by multiscale properties that may depend on infection incidence, vector population, and flight behavior. Dynamic analyses showed moderate preferential progression and regression along rows. Nearly uniform distributions of direction and negative exponential distributions of distance of newly symptomatic and recovered plants relative to existing symptomatic plants highlighted features of vector mobility similar to Brownian motion. These evidences indicate that space-time epidemics modeling should include environmental setting (e.g., vineyard geometry and topography) to capture anisotropicity as well as statistical features of vector flight behavior, plant recovery and susceptibility, and plant mortality. PMID:28111581
Superconformal quantum field theory in curved spacetime
NASA Astrophysics Data System (ADS)
de Medeiros, Paul; Hollands, Stefan
2013-09-01
By conformally coupling vector and hyper multiplets in Minkowski space, we obtain a class of field theories with extended rigid conformal supersymmetry on any Lorentzian 4-manifold admitting twistor spinors. We construct the conformal symmetry superalgebras which describe classical symmetries of these theories and derive an appropriate BRST operator in curved spacetime. In the process, we elucidate the general framework of cohomological algebra which underpins the construction. We then consider the corresponding perturbative quantum field theories. In particular, we examine the conditions necessary for conformal supersymmetries to be preserved at the quantum level, i.e. when the BRST operator commutes with the perturbatively defined S-matrix, which ensures superconformal invariance of amplitudes. To this end, we prescribe a renormalization scheme for time-ordered products that enter the perturbative S-matrix and show that such products obey certain Ward identities in curved spacetime. These identities allow us to recast the problem in terms of the cohomology of the BRST operator. Through a careful analysis of this cohomology, and of the renormalization group in curved spacetime, we establish precise criteria which ensure that all conformal supersymmetries are preserved at the quantum level. As a by-product, we provide a rigorous proof that the beta-function for such theories is one-loop exact. We also briefly discuss the construction of chiral rings and the role of non-perturbative effects in curved spacetime.
Quantum gravity as an information network self-organization of a 4D universe
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-10-01
I propose a quantum gravity model in which the fundamental degrees of freedom are information bits for both discrete space-time points and links connecting them. The Hamiltonian is a very simple network model consisting of a ferromagnetic Ising model for space-time vertices and an antiferromagnetic Ising model for the links. As a result of the frustration between these two terms, the ground state self-organizes as a new type of low-clustering graph with finite Hausdorff dimension 4. The spectral dimension is lower than the Hausdorff dimension: it coincides with the Hausdorff dimension 4 at a first quantum phase transition corresponding to an IR fixed point, while at a second quantum phase transition describing small scales space-time dissolves into disordered information bits. The large-scale dimension 4 of the universe is related to the upper critical dimension 4 of the Ising model. At finite temperatures the universe graph emerges without a big bang and without singularities from a ferromagnetic phase transition in which space-time itself forms out of a hot soup of information bits. When the temperature is lowered the universe graph unfolds and expands by lowering its connectivity, a mechanism I have called topological expansion. The model admits topological black hole excitations corresponding to graphs containing holes with no space-time inside and with "Schwarzschild-like" horizons with a lower spectral dimension.
Implications of Einstein-Weyl Causality on Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bendaniel, David
A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.
Improved Space-Time Forecasting of next Day Ozone Concentrations in the Eastern U.S.
There is an urgent need to provide accurate air quality information and forecasts to the general public and environmental health decision-makers. This paper develops a hierarchical space-time model for daily 8-hour maximum ozone concentration (O3) data covering much of the easter...
Texturing Space-Times in the Australian Curriculum: Cross-Curriculum Priorities
ERIC Educational Resources Information Center
Peacock, David; Lingard, Robert; Sellar, Sam
2015-01-01
The Australian curriculum, as a policy imagining what learning should take place in schools, and what that learning should achieve, involves the imagining and rescaling of social relations amongst students, their schools, the nation-state and the globe. Following David Harvey's theorisations of space-time and Norman Fairclough's operationalisation…
Nakedly singular non-vacuum gravitating equilibrium states
NASA Astrophysics Data System (ADS)
Woszczyna, Andrzej; Kutschera, Marek; Kubis, Sebastian; Czaja, Wojciech; Plaszczyk, Piotr; Golda, Zdzisław A.
2016-01-01
Non-vacuum static spherically symmetric spacetimes with central point-like repulsive gravity sources are investigated. Both the symmetries of spacetime and the degree of irregularity of curvature invariants, are the same as for the Schwarzschild case. The equilibrium configurations are modelled using the neutron star polytrope equation of state.
ERIC Educational Resources Information Center
Turmel, Andre
1986-01-01
The language used by scientists to discuss their work and the social logic underlying scientific research is examined, and viewed from the perspective and as an extension of the space-time continuum that scientists study. (Author/MSE)
Motions in Taub-NUT-de Sitter spinning spacetime
NASA Astrophysics Data System (ADS)
Banu, Akhtara
2012-09-01
We investigate the geodesic motion of pseudo-classical spinning particles in the Taub-NUT-de Sitter spacetime. We obtain the conserved quantities from the solutions of the generalized Killing equations for spinning spaces. Applying the formalism the motion of a pseudo-classical Dirac fermion is analyzed on a cone and plane.
Local structure of numerically generated worm hole spacetime.
NASA Astrophysics Data System (ADS)
Siino, M.
The author investigates the evolution of the apparent horizons in a numerically gererated worm hole spacetime. The behavior of the apparent horizons is affected by the dynamics of the matter field. By using the local mass of the system, he interprets the evolution of the worm hole structure.
Space-time modeling of timber prices
Mo Zhou; Joseph Buongriorno
2006-01-01
A space-time econometric model was developed for pine sawtimber timber prices of 21 geographically contiguous regions in the southern United States. The correlations between prices in neighboring regions helped predict future prices. The impulse response analysis showed that although southern pine sawtimber markets were not globally integrated, local supply and demand...
NASA Astrophysics Data System (ADS)
Gérard, Christian; Wrochna, Michał
2017-08-01
We consider the massive Klein-Gordon equation on a class of asymptotically static spacetimes (in the long range sense) with Cauchy surface of bounded geometry. We prove the existence and Hadamard property of the in and out states constructed by scattering theory methods.
the Cosmic Background Radiation as a tool to understand the structure and history of the Universe and its relation to the structure of space-time. Likewise, gravitational lensing, the search for evidence of cosmic strings, and the cosmic infrared background tell us about the structure of space-time and
On the existence of horizons in spacetimes with vanishing curvature invariants
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
2003-11-01
A direct very simple proof that there can be no closed trapped surfaces (ergo no black hole regions) in spacetimes with all curvature scalar invariants vanishing is given. Explicit examples of the recently introduced ``dynamical horizons'' which nevertheless do not enclose any trapped region are presented too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babb, James; Kunstatter, Gabor; Daghigh, Ramin
2011-10-15
Quasinormal modes provide valuable information about the structure of spacetime outside a black hole. There is also a conjectured relationship between the highly damped quasinormal modes and the semiclassical spectrum of the horizon area/entropy. In this paper, we show that for spacetimes characterized by more than one scale, the 'infinitely damped' modes in principle probe the structure of spacetime outside the horizon at the shortest length scales. We demonstrate this with the calculation of the highly damped quasinormal modes of the nonsingular, single-horizon, quantum corrected black hole derived in [A. Peltola and G. Kunstatter, Phys. Rev. D 79, 061501 (2009);more » ].« less
Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds
NASA Astrophysics Data System (ADS)
Lassas, Matti; Uhlmann, Gunther; Wang, Yiran
2018-06-01
We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.
On propagation of energy flux in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Hoque, Sk Jahanur; Virmani, Amitabh
2018-04-01
In this paper, we explore propagation of energy flux in the future Poincaré patch of de Sitter spacetime. We present two results. First, we compute the flux integral of energy using the symplectic current density of the covariant phase space approach on hypersurfaces of constant radial physical distance. Using this computation we show that in the tt-projection, the integrand in the energy flux expression on the cosmological horizon is same as that on the future null infinity. This suggests that propagation of energy flux in de Sitter spacetime is sharp. Second, we relate our energy flux expression in tt-projection to a previously obtained expression using the Isaacson stress-tensor approach.
The 1-loop effective potential for the Standard Model in curved spacetime
NASA Astrophysics Data System (ADS)
Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen
2018-06-01
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.
Conformal symmetries of Einstein's field equations and initial data
NASA Astrophysics Data System (ADS)
Sharma, Ramesh
2005-04-01
This paper examines the initial data for the evolution of the space-time solution of Einstein's equations admitting a conformal symmetry. Under certain conditions on the extrinsic curvature of the initial complete spacelike hypersurface and sectional curvature of the space-time with respect to sections containing the normal vector field, we have shown that the initial hypersurface is conformally diffeomorphic to a sphere or a flat space or a hyperbolic space or the product of an open real interval and a complete 2-manifold. It has been further shown that if the initial hypersurface is compact, then it is conformally diffeomorphic to a sphere. Finally, the conformal symmetries of a generalized Robertson-Walker space-time have been described.
Bianchi Type VI1 Viscous Fluid Cosmological Model in Wesson´s Theory of Gravitation
NASA Astrophysics Data System (ADS)
Khadekar, G. S.; Avachar, G. R.
2007-03-01
Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained in the presence of viscous fluid with the aid of Bianchi type VIh space-time with the time dependent gauge function (Dirac gauge). It is found that Bianchi type VIh (h = 1) space-time with viscous fluid is feasible in this theory, whereas Bianchi type VIh (h = -1, 0) space-times are not feasible in this theory, even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical and kinematical properties of the models.
Perturbations of the Kerr spacetime in horizon-penetrating coordinates
NASA Astrophysics Data System (ADS)
Campanelli, Manuela; Khanna, Gaurav; Laguna, Pablo; Pullin, Jorge; Ryan, Michael P.
2001-04-01
We derive the Teukolsky equation for perturbations of a Kerr spacetime when the spacetime metric is written in either ingoing or outgoing Kerr-Schild form. We also write explicit formulae for setting up the initial data for the Teukolsky equation in the time domain in terms of a 3-metric and an extrinsic curvature. The motivation of this work is to have in place a formalism to study the evolution in the `close limit' of two recently proposed solutions to the initial-value problem in general relativity that are based on Kerr-Schild slicings. A perturbative formalism in horizon-penetrating coordinates is also very desirable in connection with numerical relativity simulations using black hole `excision'.
Effects of Coherence and Polarization in Radiation and in Scattering Processes
2012-02-08
Beams in the Space-time and Space-frequency Domains”, Opt. Lett. 34, 2936- 2938 , (2009). 11. Lahiri and E. Wolf, “Beam Condition for Scattering on...in the space- time and space-frequency domains”, Opt. Lett. 34, 2936- 2938 , (2009). Although the theories of polarization in the space-time and space
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Ramadhan, H. S.
2017-07-01
Here we present some solutions with noncanonical global monopole in nonlinear sigma model in 4-dimensional spacetime. We discuss some blackhole solutions and its horizons. We also obtain some compactification solutions. We list some possible compactification channels from 4-space to 2 × 2-spaces of constant curvatures.
Higher-dimensional Bianchi type-VIh cosmologies
NASA Astrophysics Data System (ADS)
Lorenz-Petzold, D.
1985-09-01
The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.
Communicating with Accelerated Observers in Minkowski Spacetime
ERIC Educational Resources Information Center
FLores, F. J.
2008-01-01
Our goal here is to determine the spatial and temporal constraints on communication between two observers at least one of which moves with constant proper acceleration in two-dimensional Minkowski spacetime. We take as a simplified model of communication one observer bouncing a light signal off another observer. Our derivations use only elementary…
Twin Paradox in de Sitter Spacetime
ERIC Educational Resources Information Center
Boblest, Sebastian; Muller, Thomas; Wunner, Gunter
2011-01-01
The "twin paradox" of special relativity offers the possibility of making interstellar flights within a lifetime. For very long journeys with velocities close to the speed of light, however, we have to take into account the expansion of the universe. Inspired by the work of Rindler on hyperbolic motion in curved spacetime, we study the worldline…
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, beca...
Detecting the Curvature of de Sitter Universe with Two Entangled Atoms
NASA Astrophysics Data System (ADS)
Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej
2016-10-01
Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.
Detecting the Curvature of de Sitter Universe with Two Entangled Atoms.
Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej
2016-10-12
Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L 2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.
Detecting the Curvature of de Sitter Universe with Two Entangled Atoms
Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej
2016-01-01
Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes. PMID:27731419
Self-force as a probe of global structure
NASA Astrophysics Data System (ADS)
Davidson, Karl; Poisson, Eric
2018-05-01
We calculate the self-force on an electric charge and electric dipole held at rest in a closed universe that results from joining two copies of Minkowski spacetime at a common boundary. Spacetime is strictly flat on each side of the boundary, but there is curvature at the surface layer required to join the two Minkowski spacetimes. We find that the self-force on the charge is always directed away from the surface layer. This is analogous to the case of an electric charge held at rest inside a spherical shell of matter, for which the self-force is also directed away from the shell. For the dipole, the direction of the self-force is a function of the dipole's position and orientation. Both self-forces become infinite when the charge or dipole is made to approach the surface layer. This study reveals that a self-force can arise even when the Riemann tensor vanishes at the position of the charge or dipole; in such cases the self-force is a manifestation of the global curvature of spacetime.
Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2014-10-01
We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.
Cosmological perturbations in the entangled inflationary universe
NASA Astrophysics Data System (ADS)
Robles-Pérez, Salvador J.
2018-03-01
In this paper, the model of a multiverse made up of universes that are created in entangled pairs that conserve the total momentum conjugated to the scale factor is presented. For the background spacetime, assumed is a Friedmann-Robertson-Walker metric with a scalar field with mass m minimally coupled to gravity. For the fields that propagate in the entangled spacetimes, the perturbations of the spacetime and the scalar field, whose quantum states become entangled too, are considered. They turn out to be in a quasithermal state, and the corresponding thermodynamical magnitudes are computed. Three observables are expected to be caused by the creation of the universes in entangled pairs: a modification of the Friedmann equation because of the entanglement of the spacetimes, a modification of the effective value of the potential of the scalar field by the backreaction of the perturbation modes, and a modification of the spectrum of fluctuations because the thermal distribution is induced by the entanglement of the partner universes. The later would be a distinctive feature of the creation of universes in entangled pairs.
Quantization of spacetime based on a spacetime interval operator
NASA Astrophysics Data System (ADS)
Chiang, Hsu-Wen; Hu, Yao-Chieh; Chen, Pisin
2016-04-01
Motivated by both concepts of Adler's recent work on utilizing Clifford algebra as the linear line element d s =⟨γμ⟩ d Xμ and the fermionization of the cylindrical worldsheet Polyakov action, we introduce a new type of spacetime quantization that is fully covariant. The theory is based on the reinterpretation of Adler's linear line element as d s =γμ⟨λ γμ⟩ , where λ is the characteristic length of the theory. We name this new operator the "spacetime interval operator" and argue that it can be regarded as a natural extension to the one-forms in the U (s u (2 )) noncommutative geometry. By treating Fourier momentum as the particle momentum, the generalized uncertainty principle of the U (s u (2 )) noncommutative geometry, as an approximation to the generalized uncertainty principle of our theory, is derived and is shown to have a lowest order correction term of the order p2 similar to that of Snyder's. The holography nature of the theory is demonstrated and the predicted fuzziness of the geodesic is shown to be much smaller than conceivable astrophysical bounds.
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
The strong energy condition and the S-brane singularity problem
NASA Astrophysics Data System (ADS)
McInnes, Brett
2003-06-01
Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.
Collapsing shells and black holes: a quantum analysis
NASA Astrophysics Data System (ADS)
Leal, P.; Bernardini, A. E.; Bertolami, O.
2018-06-01
The quantization of a spherically symmetric null shells is performed and extended to the framework of phase-space noncommutative (NC) quantum mechanics. This shell is considered to be inside a black hole event horizon. The encountered properties are investigated making use of the Israel junction conditions on the shell, considering that it is the boundary between two spherically symmetric spacetimes. Using this method, and considering two different Kantowski–Sachs spacetimes as a representation for the Schwarzschild spacetime, the relevant quantities on the shell are computed, such as its stress-energy tensor and the action for the whole spacetime. From the obtained action, the Wheeler–deWitt equation is deduced in order to provide the quantum framework for the system. Solutions for the wave function of the system are found on both the commutative and NC scenarios. It is shown that, on the commutative version, the wave function has a purely oscillatory behavior in the interior of the shell. In the NC setting, it is shown that the wave function vanishes at the singularity, as well as, at the event horizon of the black hole.
Riemann curvature of a boosted spacetime geometry
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco
2016-10-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.
The Interface Theory of Perception.
Hoffman, Donald D; Singh, Manish; Prakash, Chetan
2015-12-01
Perception is a product of evolution. Our perceptual systems, like our limbs and livers, have been shaped by natural selection. The effects of selection on perception can be studied using evolutionary games and genetic algorithms. To this end, we define and classify perceptual strategies and allow them to compete in evolutionary games in a variety of worlds with a variety of fitness functions. We find that veridical perceptions--strategies tuned to the true structure of the world--are routinely dominated by nonveridical strategies tuned to fitness. Veridical perceptions escape extinction only if fitness varies monotonically with truth. Thus, a perceptual strategy favored by selection is best thought of not as a window on truth but as akin to a windows interface of a PC. Just as the color and shape of an icon for a text file do not entail that the text file itself has a color or shape, so also our perceptions of space-time and objects do not entail (by the Invention of Space-Time Theorem) that objective reality has the structure of space-time and objects. An interface serves to guide useful actions, not to resemble truth. Indeed, an interface hides the truth; for someone editing a paper or photo, seeing transistors and firmware is an irrelevant hindrance. For the perceptions of H. sapiens, space-time is the desktop and physical objects are the icons. Our perceptions of space-time and objects have been shaped by natural selection to hide the truth and guide adaptive behaviors. Perception is an adaptive interface.
An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan).
Yu, Hwa-Lung; Angulo, José M; Cheng, Ming-Hung; Wu, Jiaping; Christakos, George
2014-05-01
The emergence and re-emergence of disease epidemics is a complex question that may be influenced by diverse factors, including the space-time dynamics of human populations, environmental conditions, and associated uncertainties. This study proposes a stochastic framework to integrate space-time dynamics in the form of a Susceptible-Infected-Recovered (SIR) model, together with uncertain disease observations, into a Bayesian maximum entropy (BME) framework. The resulting model (BME-SIR) can be used to predict space-time disease spread. Specifically, it was applied to obtain a space-time prediction of the dengue fever (DF) epidemic that took place in Kaohsiung City (Taiwan) during 2002. In implementing the model, the SIR parameters were continually updated and information on new cases of infection was incorporated. The results obtained show that the proposed model is rigorous to user-specified initial values of unknown model parameters, that is, transmission and recovery rates. In general, this model provides a good characterization of the spatial diffusion of the DF epidemic, especially in the city districts proximal to the location of the outbreak. Prediction performance may be affected by various factors, such as virus serotypes and human intervention, which can change the space-time dynamics of disease diffusion. The proposed BME-SIR disease prediction model can provide government agencies with a valuable reference for the timely identification, control, and prevention of DF spread in space and time. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
McNally, Richard J Q; Rankin, Judith; Shirley, Mark D F; Rushton, Stephen P; Pless-Mulloli, Tanja
2008-10-01
Whilst maternal age is an established risk factor for Patau syndrome (trisomy 13), Edwards syndrome (trisomy 18) and Down syndrome (trisomy 21), the aetiology and contribution of genetic and environmental factors remains unclear. We analysed for space-time clustering using high quality fully population-based data from a geographically defined region. The study included all cases of Patau, Edwards and Down syndrome, delivered during 1985-2003 and resident in the former Northern Region of England, including terminations of pregnancy for fetal anomaly. We applied the K-function test for space-time clustering with fixed thresholds of close in space and time using residential addresses at time of delivery. The Knox test was used to indicate the range over which the clustering effect occurred. Tests were repeated using nearest neighbour (NN) thresholds to adjust for variable population density. The study analysed 116 cases of Patau syndrome, 240 cases of Edwards syndrome and 1084 cases of Down syndrome. There was evidence of space-time clustering for Down syndrome (fixed threshold of close in space: P = 0.01, NN threshold: P = 0.02), but little or no clustering for Patau (P = 0.57, P = 0.19) or Edwards (P = 0.37, P = 0.06) syndromes. Clustering of Down syndrome was associated with cases from more densely populated areas and evidence of clustering persisted when cases were restricted to maternal age <40 years. The highly novel space-time clustering for Down syndrome suggests an aetiological role for transient environmental factors, such as infections.
Topology and incompleteness for 2+1-dimensional cosmological spacetimes
NASA Astrophysics Data System (ADS)
Fajman, David
2017-06-01
We study the long-time behavior of the Einstein flow coupled to matter on 2-dimensional surfaces. We consider massless matter models such as collisionless matter composed of massless particles, massless scalar fields and radiation fluids and show that the maximal globally hyperbolic development of homogeneous and isotropic initial data on the 2-sphere is geodesically incomplete in both time directions, i.e. the spacetime recollapses. This behavior also holds for open sets of initial data. In particular, we construct classes of recollapsing 2+1-dimensional spacetimes with spherical spatial topology which provide evidence for a closed universe recollapse conjecture for massless matter models in 2+1 dimensions. Furthermore, we construct solutions with toroidal and higher genus topology for the massless matter fields, which in both cases are future complete. The spacetimes with toroidal topology are 2+1-dimensional analogies of the Einstein-de Sitter model. In addition, we point out a general relation between the energy-momentum tensor and the Kretschmann scalar in 2+1 dimensions and use it to infer strong cosmic censorship for all these models. In view of this relation, we also recall corresponding models containing massive particles, constructed in a previous work and determine the nature of their initial singularities. We conclude that the global structure of non-vacuum cosmological spacetimes in 2+1 dimensions is determined by the mass of particles and—in the homogeneous and isotropic setting studied here—verifies strong cosmic censorship.
An Adynamical, Graphical Approach to Quantum Gravity and Unification
NASA Astrophysics Data System (ADS)
Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy
We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum interference.
Sartorius, Benn
2013-01-24
There is a lack of reliable data in developing countries to inform policy and optimise resource allocation. Health and socio-demographic surveillance sites (HDSS) have the potential to address this gap. Mortality levels and trends have previously been documented in rural South Africa. However, complex space-time clustering of mortality, determinants, and their impact has not been fully examined. To integrate advanced methods enhance the understanding of the dynamics of mortality in space-time, to identify mortality risk factors and population attributable impact, to relate disparities in risk factor distributions to spatial mortality risk, and thus, to improve policy planning and resource allocation. Agincourt HDSS supplied data for the period 1992-2008. Advanced spatial techniques were used to identify significant age-specific mortality 'hotspots' in space-time. Multivariable Bayesian models were used to assess the effects of the most significant covariates on mortality. Disparities in risk factor profiles in identified hotspots were assessed. Increasing HIV-related mortality and a subsequent decrease possibly attributable to antiretroviral therapy introduction are evident in this rural population. Distinct space-time clustering and variation (even in a small geographic area) of mortality were observed. Several known and novel risk factors were identified, and population impact was quantified. Significant differences in the risk factor profiles of the identified 'hotspots' included ethnicity; maternal, partner, and household deaths; household head demographics; migrancy; education; and poverty. A complex interaction of highly attributable multilevel factors continues to demonstrate differential space-time influences on mortality risk (especially for HIV). High-risk households and villages displayed differential risk factor profiles. This integrated approach could prove valuable to decision makers. Tailored interventions for specific child and adult high-risk mortality areas are needed, such as preventing vertical transmission, ensuring maternal survival, and improving water and sanitation infrastructure. This framework can be applied in other settings within the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Ilya
The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holesmore » into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.« less
2011-01-01
Background The Prospective Space-Time scan statistic (PST) is widely used for the evaluation of space-time clusters of point event data. Usually a window of cylindrical shape is employed, with a circular or elliptical base in the space domain. Recently, the concept of Minimum Spanning Tree (MST) was applied to specify the set of potential clusters, through the Density-Equalizing Euclidean MST (DEEMST) method, for the detection of arbitrarily shaped clusters. The original map is cartogram transformed, such that the control points are spread uniformly. That method is quite effective, but the cartogram construction is computationally expensive and complicated. Results A fast method for the detection and inference of point data set space-time disease clusters is presented, the Voronoi Based Scan (VBScan). A Voronoi diagram is built for points representing population individuals (cases and controls). The number of Voronoi cells boundaries intercepted by the line segment joining two cases points defines the Voronoi distance between those points. That distance is used to approximate the density of the heterogeneous population and build the Voronoi distance MST linking the cases. The successive removal of edges from the Voronoi distance MST generates sub-trees which are the potential space-time clusters. Finally, those clusters are evaluated through the scan statistic. Monte Carlo replications of the original data are used to evaluate the significance of the clusters. An application for dengue fever in a small Brazilian city is presented. Conclusions The ability to promptly detect space-time clusters of disease outbreaks, when the number of individuals is large, was shown to be feasible, due to the reduced computational load of VBScan. Instead of changing the map, VBScan modifies the metric used to define the distance between cases, without requiring the cartogram construction. Numerical simulations showed that VBScan has higher power of detection, sensitivity and positive predicted value than the Elliptic PST. Furthermore, as VBScan also incorporates topological information from the point neighborhood structure, in addition to the usual geometric information, it is more robust than purely geometric methods such as the elliptic scan. Those advantages were illustrated in a real setting for dengue fever space-time clusters. PMID:21513556
NASA Astrophysics Data System (ADS)
Guendelman, E. I.; Kaganovich, A. B.
2008-12-01
The main conclusion of long-standing discussions concerning the role of solutions with degenerate metric (g ≡ det(gμν) = 0 and even with gμν = 0) was that in the first-order formalism they are physically acceptable and must be included in the path integral. In particular, they may describe topology changes and reduction of the 'metrical dimension' of spacetime. The latter implies disappearance of the volume element \\sqrt{-g}d^4x of a 4D spacetime in a neighborhood of the point with g = 0. We pay attention to the fact that besides \\sqrt{-g} , the 4D spacetime differentiable manifold also possesses a 'manifold volume measure' (MVM) described by a 4-form which is sign indefinite and generically independent of the metric. The first-order formalism proceeds with an originally independent connection and metric structures of the spacetime manifold. In this paper we bring up the question of whether the first-order formalism should be supplemented with degrees of freedom of the spacetime differentiable manifold itself, e.g. by means of the MVM. It turns out that adding the MVM degrees of freedom to the action principle in the first-order formalism one can realize very interesting dynamics. Such a two measures field theory (TMT) enables radically new approaches to the resolution of the cosmological constant problem. We show that fine tuning free solutions describing a transition to the Λ = 0 state involve oscillations of gμν and MVM around zero. The latter can be treated as a dynamics involving changes of orientation of the spacetime manifold. As we have shown earlier, in realistic scale invariant models (SIM), solutions formulated in the Einstein frame satisfy all existing tests of general relativity (GR). Here we reveal surprisingly that in SIM, all ground-state solutions with Λ ≠ 0 appear to be degenerate either in g00 or in MVM. Sign indefiniteness of MVM in a natural way yields a dynamical realization of a phantom cosmology (w < -1). It is very important that for all solutions, the metric tensor rewritten in the Einstein frame has regularity properties exactly as in GR. We discuss new physical effects which arise from this theory and in particular the strong gravity effect in high energy physics experiments.
Self-Energy in the Gott-Hiscock Space-Time
NASA Astrophysics Data System (ADS)
Khusnutdinov, Nail R.; Bezerra, Valdir B.
We calculate the self-energy for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. The self-energy continuously falls down out-ward from string's with maximum at the origin of the string. The plots of the numerical of the self-energy and the height of barrier are shown.
Static Orbits in Rotating Spacetimes
NASA Astrophysics Data System (ADS)
Collodel, Lucas G.; Kleihaus, Burkhard; Kunz, Jutta
2018-05-01
We show that under certain conditions an axisymmetric rotating spacetime contains a ring of points in the equatorial plane, where a particle at rest with respect to an asymptotic static observer remains at rest in a static orbit. We illustrate the emergence of such orbits for boson stars. Further examples are wormholes, hairy black holes, and Kerr-Newman solutions.
Utilizing Spectrum Efficiently (USE)
2011-02-28
18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was
Algorithm for space-time analysis of data on geomagnetic field
NASA Technical Reports Server (NTRS)
Kulanin, N. V.; Golokov, V. P. (Editor); Tyupkin, S. (Editor)
1984-01-01
The algorithm for the execution of the space-time analysis of data on geomagnetic fields is described. The primary constraints figuring in the specific realization of the algorithm on a computer stem exclusively from the limited possibilities of the computer involved. It is realized in the form of a program for the BESM-6 computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Alikram N.; Cebeci, Hakan; Dereli, Tekin
We present an exact solution describing a stationary and axisymmetric object with electromagnetic and dilaton fields. The solution generalizes the usual Kerr-Taub-NUT (Newman-Unti-Tamburino) spacetime in general relativity and is obtained by boosting this spacetime in the fifth dimension and performing a Kaluza-Klein reduction to four dimensions. We also discuss the physical parameters of this solution and calculate its gyromagnetic ratio.
Evolution of Degenerate Space-Time from Non-Degenerate Initial Value in Ashtekar's Formalism
NASA Astrophysics Data System (ADS)
Ma, Yongge; Liang, Canbin
1998-09-01
The possibility of evolving a degenerate space-time from non-degenerate initial value in Ashtekar's formalism is considered in a constructed example. It is found that this possibility could be realized in the time evolution given by Ashtekar's equations, but the topology change of space makes it fail to be a Cauchy evolution.
Simulation of Black Hole Collisions in Asymptotically anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Romatschke, Paul
2015-04-01
The main purpose of this talk is to describe, in detail, the necessary ingredients for achieving stable Cauchy evolution of black hole collisions in asymptotically anti-de Sitter (AdS) spacetimes. I will begin by motivating this program in terms of the heavy-ion physics it is intended to clarify. I will then give an overview of asymptotically AdS spacetimes, the mapping to the dual conformal field theory on the AdS boundary, and the method we use to numerically solve the fully non-linear Einstein field equations with AdS boundary conditions. As a concrete example of these ideas, I will describe the first proof of principle simulation of stable AdS black hole mergers in 5 dimensions.
Covariant fields on anti-de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Cotăescu, Ion I.
2018-02-01
The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.
Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.
Matthaeus, W H; Weygand, J M; Dasso, S
2016-06-17
Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.
A nonlinear dynamics for the scalar field in Randers spacetime
NASA Astrophysics Data System (ADS)
Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.
2017-03-01
We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.
Separation of variables in Maxwell equations in Plebański-Demiański spacetime
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Krtouš, Pavel; KubizÅák, David
2018-05-01
A new method for separating variables in the Maxwell equations in four- and higher-dimensional Kerr-(A)dS spacetimes proposed recently by Lunin is generalized to any off-shell metric that admits a principal Killing-Yano tensor. The key observation is that Lunin's ansatz for the vector potential can be formulated in a covariant form—in terms of the principal tensor. In particular, focusing on the four-dimensional case we demonstrate separability of Maxwell's equations in the Kerr-NUT-(A)dS and the Plebański-Demiański family of spacetimes. The new method of separation of variables is quite different from the standard approach based on the Newman-Penrose formalism.
Gibbons-Hawking radiation of gravitons in the Poincaré and static patches of de Sitter spacetime
NASA Astrophysics Data System (ADS)
Bernar, Rafael P.; Crispino, Luís C. B.; Higuchi, Atsushi
2018-04-01
We discuss the quantization of linearized gravity in the background de Sitter spacetime using a gauge-invariant formalism to write the perturbed gravitational field in the static patch. This field is quantized after fixing the gauge completely. The response rate of this field to monochromatic multipole sources is then computed in the thermal equilibrium state with the well-known Gibbons-Hawking temperature. We compare this response rate with the one obtained in the Bunch-Davies-like vacuum state defined in the Poincaré patch. These response rates are found to be the same as expected. This agreement serves as a verification of the infrared finite graviton two-point function in the static patch of de Sitter spacetime found previously.
Numerical relativity beyond astrophysics.
Garfinkle, David
2017-01-01
Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.
Individuation in Quantum Mechanics and Space-Time
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2010-10-01
Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.
Magnetic monopole in noncommutative space-time and Wu-Yang singularity-free gauge transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laangvik, Miklos; Salminen, Tapio; Tureanu, Anca
2011-04-15
We investigate the validity of the Dirac quantization condition for magnetic monopoles in noncommutative space-time. We use an approach which is based on an extension of the method introduced by Wu and Yang. To study the effects of noncommutativity of space-time, we consider the gauge transformations of U{sub *}(1) gauge fields and use the corresponding deformed Maxwell's equations. Using a perturbation expansion in the noncommutativity parameter {theta}, we show that the Dirac quantization condition remains unmodified up to the first order in the expansion parameter. The result is obtained for a class of noncommutative source terms, which reduce to themore » Dirac delta function in the commutative limit.« less
Dynamic wormhole solutions in Einstein-Cartan gravity
NASA Astrophysics Data System (ADS)
Mehdizadeh, Mohammad Reza; Ziaie, Amir Hadi
2017-12-01
In the present work, we investigate evolving wormhole configurations described by a constant redshift function in Einstein-Cartan theory. The matter content consists of a Weyssenhoff fluid along with an anisotropic matter which together generalize the anisotropic energy momentum tensor in general relativity in order to include the effects of intrinsic angular momentum (spin) of particles. Using a generalized Friedmann-Robertson-Walker spacetime, we derive analytical evolving wormhole geometries by assuming a particular equation of state for energy density and pressure profiles. We introduce exact asymptotically flat and anti-de Sitter spacetimes that admit traversable wormholes and respect energy conditions throughout the spacetime. The rate of expansion of these evolving wormholes is determined only by the Friedmann equation in the presence of spin effects.
Is the Lorentz signature of the metric of spacetime electromagnetic in origin?
NASA Astrophysics Data System (ADS)
Itin, Yakov; Hehl, Friedrich W.
2004-07-01
We formulate a premetric version of classical electrodynamics in terms of the excitation H=( H, D) and the field strength F=( E, B). A local, linear, and symmetric spacetime relation between H and F is assumed. It yields, if electric/magnetic reciprocity is postulated, a Lorentzian metric of spacetime thereby excluding Euclidean signature (which is, nevertheless, discussed in some detail). Moreover, we determine the Dufay law (repulsion of like charges and attraction of opposite ones), the Lenz rule (the relative sign in Faraday's law), and the sign of the electromagnetic energy. In this way, we get a systematic understanding of the sign rules and the sign conventions in electrodynamics. The question in the title of the paper is answered affirmatively.
Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass
NASA Astrophysics Data System (ADS)
Liu, Jian-Liang; Yu, Chengjie
2017-10-01
In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.
Global dynamics of asymptotically locally AdS spacetimes with negative mass
NASA Astrophysics Data System (ADS)
Dold, Dominic
2018-05-01
The Einstein vacuum equations in 5D with negative cosmological constant are studied in biaxial Bianchi IX symmetry. We show that if initial data of Eguchi–Hanson type, modelled after the 4D Riemannian Eguchi–Hanson space, have negative mass, the future maximal development does not contain horizons, i. e. the complement of the causal past of null infinity is empty. In particular, perturbations of Eguchi–Hanson–AdS spacetimes within the biaxial Bianchi IX symmetry class cannot form horizons, suggesting that such spacetimes are potential candidates for a naked singularity to form. The proof relies on an extension principle proven for this system and a priori estimates following from the monotonicity of the Hawking mass.
Palatini wormholes and energy conditions from the prism of general relativity.
Bejarano, Cecilia; Lobo, Francisco S N; Olmo, Gonzalo J; Rubiera-Garcia, Diego
2017-01-01
Wormholes are hypothetical shortcuts in spacetime that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.
EXACT RELATIVISTIC NEWTONIAN REPRESENTATION OF GRAVITATIONAL STATIC SPACETIME GEOMETRIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava, E-mail: sghosh@jcbose.ac.in, E-mail: ta.sa.nbu@hotmail.com, E-mail: aru_bhadra@yahoo.com
2016-09-01
We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite usefulmore » in studying a wide range of astrophysical phenomena, especially in strong field gravity.« less
Numerical relativity beyond astrophysics
NASA Astrophysics Data System (ADS)
Garfinkle, David
2017-01-01
Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.
Conventionalism and integrable Weyl geometry
NASA Astrophysics Data System (ADS)
Pucheu, M. L.
2015-03-01
Since the appearance of Einstein's general relativity, gravitation has been associated to the space-time curvature. This theory introduced a geometrodynamic language which became a convenient tool to predict matter behaviour. However, the properties of space-time itself cannot be measurable by experiments. Taking Poincaré idea that the geometry of space-time is merely a convention, we show that the general theory of relativity can be completely reformulated in a more general setting, a generalization of Riemannian geometry, namely, the Weyl integrable geometry. The choice of this new mathematical language implies, among other things, that the path of particles and light rays should now correspond to Weylian geodesies. Such modification in the dynamic of bodies brings a new perception of physical phenomena that we will explore.
A comparison between space-time video descriptors
NASA Astrophysics Data System (ADS)
Costantini, Luca; Capodiferro, Licia; Neri, Alessandro
2013-02-01
The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.
Detecting space-time cancer clusters using residential histories
NASA Astrophysics Data System (ADS)
Jacquez, Geoffrey M.; Meliker, Jaymie R.
2007-04-01
Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.
Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.
2015-09-01
We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.
Principle of Spacetime and Black Hole Equivalence
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2016-06-01
Modelling the universe without relying on a set of hypothetical entities (HEs) to explain observations and overcome problems and difficulties is essential to developing a physical cosmology. The well-known big bang cosmology, widely accepted as the standard model, stands on two fundamentals, which are Einstein’s general relativity (GR) that describes the effect of matter on spacetime and the cosmological principle (CP) of spacetime isotropy and homogeneity. The field equation of GR along with the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of spacetime derived from CP generates the Friedmann equation (FE) that governs the development and dynamics of the universe. The big bang theory has made impressive successes in explaining the universe, but still has problems and solutions of them rely on an increasing number of HEs such as inflation, dark matter, dark energy, and so on. Recently, the author has developed a new cosmological model called black hole universe, which, instead of making many those hypotheses, only includes a new single postulate (or a new principle) to the cosmology - Principle of Spacetime and Black Hole Equivalence (SBHEP) - to explain all the existing observations of the universe and overcome all the existing problems in conventional cosmologies. This study thoroughly demonstrates how this newly developed black hole universe model, which therefore stands on the three fundamentals (GR, CP, and SBHEP), can fully explain the universe as well as easily conquer the difficulties according to the well-developed physics, thus, neither needing any other hypotheses nor existing any unsolved difficulties. This work was supported by NSF/REU (Grant #: PHY-1263253) at Alabama A & M University.
Syndrome Surveillance Using Parametric Space-Time Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOCH, MARK W.; MCKENNA, SEAN A.; BILISOLY, ROGER L.
2002-11-01
As demonstrated by the anthrax attack through the United States mail, people infected by the biological agent itself will give the first indication of a bioterror attack. Thus, a distributed information system that can rapidly and efficiently gather and analyze public health data would aid epidemiologists in detecting and characterizing emerging diseases, including bioterror attacks. We propose using clusters of adverse health events in space and time to detect possible bioterror attacks. Space-time clusters can indicate exposure to infectious diseases or localized exposure to toxins. Most space-time clustering approaches require individual patient data. To protect the patient's privacy, we havemore » extended these approaches to aggregated data and have embedded this extension in a sequential probability ratio test (SPRT) framework. The real-time and sequential nature of health data makes the SPRT an ideal candidate. The result of space-time clustering gives the statistical significance of a cluster at every location in the surveillance area and can be thought of as a ''health-index'' of the people living in this area. As a surrogate to bioterrorism data, we have experimented with two flu data sets. For both databases, we show that space-time clustering can detect a flu epidemic up to 21 to 28 days earlier than a conventional periodic regression technique. We have also tested using simulated anthrax attack data on top of a respiratory illness diagnostic category. Results show we do very well at detecting an attack as early as the second or third day after infected people start becoming severely symptomatic.« less
NASA Astrophysics Data System (ADS)
Hu, Q.; Vidal, G.
2017-07-01
The generalization of the multiscale entanglement renormalization ansatz (MERA) to continuous systems, or cMERA [Haegeman et al., Phys. Rev. Lett. 110, 100402 (2013), 10.1103/PhysRevLett.110.100402], is expected to become a powerful variational ansatz for the ground state of strongly interacting quantum field theories. In this Letter, we investigate, in the simpler context of Gaussian cMERA for free theories, the extent to which the cMERA state |ΨΛ⟩ with finite UV cutoff Λ can capture the spacetime symmetries of the ground state |Ψ ⟩. For a free boson conformal field theory (CFT) in 1 +1 dimensions, as a concrete example, we build a quasilocal unitary transformation V that maps |Ψ ⟩ into |ΨΛ⟩ and show two main results. (i) Any spacetime symmetry of the ground state |Ψ ⟩ is also mapped by V into a spacetime symmetry of the cMERA |ΨΛ⟩. However, while in the CFT, the stress-energy tensor Tμ ν(x ) (in terms of which all the spacetime symmetry generators are expressed) is local, and the corresponding cMERA stress-energy tensor Tμν Λ(x )=V Tμ ν(x )V† is quasilocal. (ii) From the cMERA, we can extract quasilocal scaling operators OαΛ(x ) characterized by the exact same scaling dimensions Δα, conformal spins sα, operator product expansion coefficients Cα β γ, and central charge c as the original CFT. Finally, we argue that these results should also apply to interacting theories.
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Karma or Immortality: Can Religion Influence Space-Time Mappings?
Li, Heng; Cao, Yu
2018-04-01
People implicitly associate the "past" and "future" with "front" and "back" in their minds according to their cultural attitudes toward time. As the temporal focus hypothesis (TFH) proposes, future-oriented people tend to think about time according to the future-in-front mapping, whereas past-oriented people tend to think about time according to the past-in-front mapping (de la Fuente, Santiago, Román, Dumitrache, & Casasanto, 2014). Whereas previous studies have demonstrated that culture exerts an important influence on people's implicit spatializations of time, we focus specifically on religion, a prominent layer of culture, as potential additional influence on space-time mappings. In Experiment 1 and 2, we observed a difference between the two religious groups, with Buddhists being more past-focused and more frequently conceptualizing the past as ahead of them and the future as behind them, and Taoists more future-focused and exhibiting the opposite space-time mapping. In Experiment 3, we administered a religion prime, in which Buddhists were randomly assigned to visualize the picture of the Buddhas of the Past (Buddha Dipamkara) or the Future (Buddha Maitreya). Results showed that the pictorial icon of Dipamkara increased participants' tendency to conceptualize the past as in front of them. In contrast, the pictorial icon of Maitreya caused a dramatic increase in the rate of future-in-front responses. In Experiment 4, the causal effect of religion on implicit space-time mappings was replicated in atheists. Taken together, these findings provide converging evidence for the hypothesized causal role of religion for temporal focus in determining space-time mappings. Copyright © 2018 Cognitive Science Society, Inc.
The Evolution of Universe as Splitting of the ``Non Existing'' and Space-Time Expansion
NASA Astrophysics Data System (ADS)
Nassikas, A. A.
2010-09-01
The purpose of this paper is to show that the creation of Universe can be regarded as a splitting process of the ``non existing'', ``where'' there is no space-time and that the expansion of Universe is due to the compatibility between the stochastic-quantum space-time created and the surrounding ``non existing''. In this way it is not required that space time should pre-exist in contrast, as it can be shown, to the Universe creation from vacuum theory. The present point of view can be derived on the basis of a Minimum Contradictions Physics according to which stochastic-quantum space-time is matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. This point of view is compatible to the present knowledge of CERN and Fermi Lab experiments as well as to the neutron synthesis according to Rutherford, experimentally verified and theoretically explained through Hadronic Mechanics by R. M. Santilli. On the basis of the Minimum Contradictions Physics a quantum gravity formula is derived which implies either positive or negative gravitational acceleration; thus, bodies can be attracted while Universe can be expanded. Minimum Contradictions Physics, under certain simplifications, is compatible to Newton Mechanics, Relativity Theory and QM. This physics is compatible to language through which it is stated. On this basis the physical laws are the principles of language i.e.: the Classical Logic, the Sufficient Reason Principle the Communication Anterior-Posterior Axiom and the Claim for Minimum Contradictions; according to a theorem contradictions cannot be vanished.
Spacetime completeness of non-singular black holes in conformal gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: grzerach@gmail.com
We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new typesmore » of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring singularity in a finite amount of their proper time or of their affine parameter. Finally, we discuss the Raychaudhuri equation in a co-covariant theory and we show that the expansion parameter for congruences of both types of geodesics (for massless and massive particles) never reaches minus infinity. Actually, the null geodesics become parallel at the r =0 point in the Schwarzschild spacetime (the origin) and the focusing of geodesics is avoided. The arguments of regularity of curvature invariants, geodesic completeness, and finiteness of geodesics' expansion parameter ensure us that we are dealing with singularity-free and geodesically-complete black hole spacetimes.« less
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
Marginally outer trapped surfaces and symmetries
NASA Astrophysics Data System (ADS)
Carrasco, Alberto; Mars, Marc
2009-05-01
We study properties of outermost marginally outer trapped surfaces in slices of space-times possessing certain symmetries, like isometries, homotheties or conformal Killings. In particular, we find restrictions on these surfaces for the vector field generating the symmetry. As an application we give a result of non-existence of outermost marginally outer trapped surfaces in accelerated Friedmann-Lemaître-Roberson-Walker spacetimes.
A geometric description of Maxwell field in a Kerr spacetime
NASA Astrophysics Data System (ADS)
Jezierski, Jacek; Smołka, Tomasz
2016-06-01
We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
Fate of inhomogeneity in Schwarzschild-deSitter space-time
NASA Astrophysics Data System (ADS)
Nambu, Yasusada
1994-03-01
We investigate the global structure of the space-time with a spherically symmetric inhomogeneity using a metric junction, and classify all possible types. We found that a motion with a negative gravitational mass is possible although the energy condition of the matter is not violated. Using the result, formation of black hole and worm hole during the inflationary era is discussed.
Timelike Killing vectors and ergo surfaces in non-asymptotically flat spacetimes
NASA Astrophysics Data System (ADS)
Pelavas, N.
2005-02-01
Ergo surfaces are investigated in spacetimes with a cosmological constant. We find the existence of multiple timelike Killing vectors, each corresponding to a distinct ergo surface, with no one being preferred. Using a kinematic invariant, which provides a measure of hypersurface orthogonality, we explore its potential role in selecting a preferred timelike Killing vector and consequently a unique ergo surface.
General Relativity and Gravitation
NASA Astrophysics Data System (ADS)
Ehlers, J.; Murdin, P.
2000-11-01
The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...
Penrose inequality in anti-de Sitter space
NASA Astrophysics Data System (ADS)
Husain, Viqar; Singh, Suprit
2017-11-01
For asymptotically flat spacetimes the Penrose inequality gives an initial data test for the weak cosmic censorship hypothesis. We give a formulation of this inequality for asymptotically anti-de Sitter (AAdS) spacetimes, and show that the inequality holds for time asymmetric data in spherical symmetry. Our analysis is motivated by the constant-negative-spatial-curvature form of the AdS black hole metric.
Traversable braneworld wormholes supported by astrophysical observations
NASA Astrophysics Data System (ADS)
Wang, Deng; Meng, Xin-He
2018-02-01
In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze-Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2 σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2018-04-01
We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Rahaman, Farook; Banerjee, Ayan
2018-02-01
The theory of gravitational lensing has revealed many generic and fundamental properties of compact objects like black holes and wormholes. In this article, we utilize a recent formulation to compute the quantum effects on the deflection angle of a light ray, namely, the Gauss-Bonnet theorem (GBT) to explore the semiclassical gravitational effects in the spacetime of a point-like global monopole and a cosmic string. Previously, the Gauss-Bonnet theorem (Gibbons and Werner, 2008) was proposed as an alternative way to compute the deflection angle of light in a static, spherically symmetric and asymptotically flat spacetime. In the present article we have used the celebrated GBT that applied to the optical metric as well as the geodesic method in computing the deflection angle. Interestingly one can observe that we have found an exact result between GBT and the standard approach up to the third-order contributions terms by modifying the domain of integration for cosmic string and global monopole deflection angles. Finally we have considered the time delay in the cosmic string/global monopole spacetime and found that the delay in time is proportional to the linear mass density of the cosmic string and global monopole parameter, respectively.
Cosmological singularities in Bakry-Émery spacetimes
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Woolgar, Eric
2014-12-01
We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2018-01-01
We apply the new fall of conditions presented in the paper [1] on asymptotically flat spacetime solutions of Chern-Simons-like theories of gravity. We show that the considered fall of conditions asymptotically solve equations of motion of generalized minimal massive gravity. We demonstrate that there exist two type of solutions, one of those is trivial and the others are non-trivial. By looking at non-trivial solutions, for asymptotically flat spacetimes in the generalized minimal massive gravity, in contrast to Einstein gravity, cosmological parameter can be non-zero. We obtain the conserved charges of the asymptotically flat spacetimes in generalized minimal massive gravity, and by introducing Fourier modes we show that the asymptotic symmetry algebra is a semidirect product of a BMS3 algebra and two U (1) current algebras. Also we verify that the BMS3 algebra can be obtained by a contraction of the AdS3 asymptotic symmetry algebra when the AdS3 radius tends to infinity in the flat-space limit. Finally we find energy, angular momentum and entropy for a particular case and deduce that these quantities satisfy the first law of flat space cosmologies.
Space-time modeling of soil moisture
NASA Astrophysics Data System (ADS)
Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio
2017-11-01
A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.
Lorentz violations in multifractal spacetimes
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2017-05-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E_{*}>10^{14} {GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E_{*}> 10^{17} {GeV} or greater.
Concircular vector fields on Lorentzian manifold of Bianchi type-I spacetimes
NASA Astrophysics Data System (ADS)
Mahmood, Amjad; Ali, Ahmad T.; Khan, Suhail
2018-04-01
Our aim in this paper is to obtain concircular vector fields (CVFs) on the Lorentzian manifold of Bianchi type-I spacetimes. For this purpose, two different sets of coupled partial differential equations comprising ten equations each are obtained. The first ten equations, known as conformal Killing equations are solved completely and components of conformal Killing vector fields (CKVFs) are obtained in different possible cases. These CKVFs are then substituted into second set of ten differential equations to obtain CVFs. It comes out that Bianchi type-I spacetimes admit four-, five-, six-, seven- or 15-dimensional CVFs for particular choices of the metric functions. In many cases, the CKVFs of a particular metric are same as CVFs while there exists few cases where proper CKVFs are not CVFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
Killing and Noether Symmetries of Plane Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Shamir, M. Farasat; Jhangeer, Adil; Bhatti, Akhlaq Ahmad
2013-09-01
This paper is devoted to investigate the Killing and Noether symmetries of static plane symmetric spacetime. For this purpose, five different cases have been discussed. The Killing and Noether symmetries of Minkowski spacetime in cartesian coordinates are calculated as a special case and it is found that Lie algebra of the Lagrangian is 10 and 17 dimensional respectively. The symmetries of Taub's universe, anti-deSitter universe, self similar solutions of infinite kind for parallel perfect fluid case and self similar solutions of infinite kind for parallel dust case are also explored. In all the cases, the Noether generators are calculated in the presence of gauge term. All these examples justify the conjecture that Killing symmetries form a subalgebra of Noether symmetries (Bokhari et al. in Int. J. Theor. Phys. 45:1063, 2006).
Static models with conformal symmetry
NASA Astrophysics Data System (ADS)
Manjonjo, A. M.; Maharaj, S. D.; Moopanar, S.
2018-02-01
We study static spherically symmetric spacetimes with a spherical conformal symmetry and a nonstatic conformal factor associated with the conformal Killing field. With these assumptions we find an explicit relationship relating two metric components of the metric tensor field. This leads to the general solution of the Einstein field equations with a conformal symmetry in a static spherically symmetric spacetime. For perfect fluids we can find all metrics explicitly and show that the models always admit a barotropic equation of state. Contained within this class of spacetimes are the well known metrics of (interior) Schwarzschild, Tolman, Kuchowicz, Korkina and Orlyanskii, Patwardhan and Vaidya, and Buchdahl and Land. The isothermal metric of Saslaw et al also admits a conformal symmetry. For imperfect fluids an infinite family of exact solutions to the field equations can be generated.
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
2018-03-01
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Past incompleteness of a bouncing multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilenkin, Alexander; Zhang, Jun, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu
2014-06-01
According to classical GR, Anti-de Sitter (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by nonsingular bounces. This may have important implications for the beginning of the multiverse. Geodesics in cosmological spacetimes are known to be past-incomplete, as long as the average expansion rate along the geodesic is positive, but it is not clear that the latter condition is satisfied if the geodesic repeatedly passes through crunching AdS bubbles. We investigate this issue in a simple multiverse model, where the spacetime consistsmore » of a patchwork of FRW regions. The conclusion is that the spacetime is still past-incomplete, even in the presence of AdS bounces.« less
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.
Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor
2015-02-20
Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.
NASA Astrophysics Data System (ADS)
Page, Don N.
2018-01-01
In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .
Micro-Macro Duality and Space-Time Emergence
NASA Astrophysics Data System (ADS)
Ojima, Izumi
2011-03-01
The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).
A Tutorial Review on Fractal Spacetime and Fractional Calculus
NASA Astrophysics Data System (ADS)
He, Ji-Huan
2014-11-01
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.
Radiation reaction force on a particle in Schwarzschild spacetime
NASA Astrophysics Data System (ADS)
Tripathi, Swapnil; Wiseman, Alan
2007-04-01
The mathematical modelling of the radiation reaction force experienced by a particle in curved spacetime is very important for calculations of the templates used in detection of gravitational waves with LIGO, LISA etc. In particular, extreme mass ratio inspirals are strong candidates for gravitational wave detection with LISA. We model these systems as a particle in Schwarzschild spacetime, and use the Quinn Wald axioms to regularize the self force. Mode by mode expansion techniques are used for calculating the selfforce. Recent progress in this work is being reported in this talkootnotetextA. G. Wiseman, Phys. Rev. D 61 (2000) arXiv.org:gr-qc/084014 ootnotetextT.C. Quinn, Phys. Rev. D 62 (2000) arXiv.org:gr- qc/064029 ootnotetextT.C. Quinn, R.M. Wald Phys. Rev. D 56 (1997) 3381
Black hole evolution by spectral methods
NASA Astrophysics Data System (ADS)
Kidder, Lawrence E.; Scheel, Mark A.; Teukolsky, Saul A.; Carlson, Eric D.; Cook, Gregory B.
2000-10-01
Current methods of evolving a spacetime containing one or more black holes are plagued by instabilities that prohibit long-term evolution. Some of these instabilities may be due to the numerical method used, traditionally finite differencing. In this paper, we explore the use of a pseudospectral collocation (PSC) method for the evolution of a spherically symmetric black hole spacetime in one dimension using a hyperbolic formulation of Einstein's equations. We demonstrate that our PSC method is able to evolve a spherically symmetric black hole spacetime forever without enforcing constraints, even if we add dynamics via a Klein-Gordon scalar field. We find that, in contrast with finite-differencing methods, black hole excision is a trivial operation using PSC applied to a hyperbolic formulation of Einstein's equations. We discuss the extension of this method to three spatial dimensions.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Perspectives on Geometrodynamics: The Nonlinear Dynamics of Curved Spacetime
NASA Astrophysics Data System (ADS)
Thorne, Kip S.
2012-03-01
In the 1950s John Archibald Wheeler exhorted his students and colleagues to explore ``Geometrodynamics,'' i.e. the dynamical behavior of curved spacetime, as predicted by Einstein's general relativity theory. Unfortunately, the research tools of that era were inadequate for the task. This has changed over the past ten years and will change further in the coming decade, thanks to two new sets of tools - numerical relativity, and gravitational wave observations, coupled to theory. In this lecture, I will review the progress and prospects for geometrodynamics, focusing especially on: 1. Geometrodynamics near singularities, 2. Geometrodynamics triggered by colliding black holes, 3. Geometrodynamics triggered by black-string instabilities in four space dimensions, and 4. Preparations for observing the dynamics of curved spacetime with interferometric gravitational wave detectors: LIGO and its international partners.
Bartnik’s splitting conjecture and Lorentzian Busemann function
NASA Astrophysics Data System (ADS)
Amini, Roya; Sharifzadeh, Mehdi; Bahrampour, Yousof
2018-05-01
In 1988 Bartnik posed the splitting conjecture about the cosmological space-time. This conjecture has been proved by several people, with different approaches and by using some additional assumptions such as ‘S-ray condition’ and ‘level set condition’. It is known that the ‘S-ray condition’ yields the ‘level set condition’. We have proved that the two are indeed equivalent, by giving a different proof under the assumption of the ‘level set condition’. In addition, we have shown several properties of the cosmological space-time, under the presence of the ‘level set condition’. Finally we have provided a proof of the conjecture under a different assumption on the cosmological space-time. But we first prove some results without the timelike convergence condition which help us to state our proofs.
Trajectory data analyses for pedestrian space-time activity study.
Qi, Feng; Du, Fei
2013-02-25
It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an automatic module. Trajectory segmentation(5) involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one's activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping(6) and density volume rendering(7). We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies.
Smoothness of the future and past trapped sets in Kerr–Newman–Taub-NUT spacetimes
NASA Astrophysics Data System (ADS)
Paganini, Claudio F.; Oancea, Marius A.
2018-03-01
We consider the sets of future/past trapped null geodesics in the exterior region of a sub-extremal Kerr–Newman–Taub-NUT spacetime. We show that from the point of view of any timelike observer outside of such a black hole, trapping can be understood as two smooth sets of spacelike directions on the celestial sphere of the observer.
Chapter 5. Hidden Symmetry and Exact Solutions in Einstein Gravity
NASA Astrophysics Data System (ADS)
Yasui, Y.; Houri, T.
Conformal Killing-Yano tensors are introduced as ageneralization of Killing vectors. They describe symmetries of higher-dimensional rotating black holes. In particular, a rank-2 closed conformal Killing-Yano tensor generates the tower of both hidden symmetries and isometries. We review a classification of higher-dimensional spacetimes admitting such a tensor, and present exact solutions to the Einstein equations for these spacetimes.
Construction of a Penrose Diagram for a Spatially Coherent Evaporating Black Hole
NASA Technical Reports Server (NTRS)
Brown, Beth A.; Lindesay, James
2007-01-01
A Penrose diagram is constructed for an example black hole that evaporates at a steady rate as measured by a distant observer, until the mass vanishes, yielding a final state Minkowski space-time. Coordinate dependencies of significant features, such as the horizon and coordinate anomalies, are clearly demonstrated on the diagram. The large-scale causal structure of the space-time is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashinaka, Takahiro; Department of Physics, Graduate School of Science,The University of Tokyo, Bunkyo, Tokyo, 113-0033; Yokoyama, Jun’ichi
The covariant and gauge invariant calculation of the current expectation value in the homogeneous electric field in 1+3 dimensional de Sitter spacetime is shown. The result accords with previous work obtained by using adiabatic subtraction scheme. We therefore conclude the counterintuitive behaviors of the current in the infrared (IR) regime such as IR hyperconductivity and negative current are not artifacts of the renormalization scheme, but are real IR effects of the spacetime.
ERIC Educational Resources Information Center
Leander, Kevin M.; Lovvorn, Jason F.
2006-01-01
In this article, we offer an approach to conceiving of the relation between literacy practices and space-time. Literacy, embedded in other forms of activity, has a unique role in producing and organizing space-time relations, and such relations provide for different forms of cognition and learning. Closely examining how literacy practices produce…
Representations of spacetime: Formalism and ontological commitment
NASA Astrophysics Data System (ADS)
Bain, Jonathan Stanley
This dissertation consists of two parts. The first is on the relation between formalism and ontological commitment in the context of theories of spacetime, and the second is on scientific realism. The first part begins with a look at how the substantivalist/relationist debate over the ontological status of spacetime has been influenced by a particular mathematical formalism, that of tensor analysis on differential manifolds (TADM). This formalism has motivated the substantivalist position known as manifold substantivalism. Chapter 1 focuses on the hole argument which maintains that manifold substantivalism is incompatible with determinism. I claim that the realist motivations underlying manifold substantivalism can be upheld, and the hole argument avoided, by adopting structural realism with respect to spacetime. In this context, this is the claim that it is the structure that spacetime points enter into that warrants belief and not the points themselves. In Chapter 2, an elimination principle is defined by means of which a distinction can be made between surplus structure and essential structure with respect to formulations of a theory in two distinct mathematical formulations and some prior ontological commitments. This principle is then used to demonstrate that manifold points may be considered surplus structure in the formulation of field theories. This suggests that, if we are disposed to read field theories literally, then, at most, it should be the essential structure common to all alternative formulations of such theories that should be taken literally. I also investigate how the adoption of alternative formalisms informs other issues in the philosophy of spacetime. Chapter 3 offers a realist position which takes a semantic moral from the preceding investigation and an epistemic moral from work done on reliability. The semantic moral advises us to read only the essential structure of our theories literally. The epistemic moral shows us that such structure is robust under theory change, given an adequate reliabilist notion of epistemic warrant. I call the realist position that subscribes to these morals structural realism and attempt to demonstrate that it is immune to the semantic and epistemic versions of the underdetermination argument posed by the anti-realist.
Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes
NASA Astrophysics Data System (ADS)
Cant, John Fraser
This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector's acceleration and on the curvature of the spacetime, thereby encompassing previous results of Unruh (1976) and of Gibbons & Hawking (1977).
NASA Astrophysics Data System (ADS)
Starko, Darij; Craig, Walter
2018-04-01
Variations in redshift measurements of Type 1a supernovae and intensity observations from large sky surveys are an indicator of a component of acceleration in the rate of expansion of space-time. A key factor in the measurements is the intensity-distance relation for Maxwell's equations in Friedmann-Robertson-Walker (FRW) space-times. In view of future measurements of the decay of other fields on astronomical time and spatial scales, we determine the asymptotic behavior of the intensity-distance relationship for the solution of the wave equation in space-times with an FRW metric. This builds on previous work done on initial value problems for the wave equation in FRW space-time [Abbasi, B. and Craig, W., Proc. R. Soc. London, Ser. A 470, 20140361 (2014)]. In this paper, we focus on the precise intensity decay rates of the special cases for curvature k = 0 and k = -1, as well as giving a general derivation of the wave solution for -∞ < k < 0. We choose a Cauchy surface {(t, x) : t = t0 > 0} where t0 represents the time of an initial emission source, relative to the Big Bang singularity at t = 0. The initial data [g(x), h(x)] are assumed to be compactly supported; supp(g, h) ⊆ BR(0) and terms in the expression for the fundamental solution for the wave equation with the slowest decay rate are retained. The intensities calculated for coordinate time {t : t > 0} contain correction terms proportional to the ratio of t0 and the time differences ρ = t - t0. For the case of general curvature k, these expressions for the intensity reduce by scaling to the same form as for k = -1, from which we deduce the general formula. We note that for typical astronomical events such as Type 1a supernovae, the first order correction term for all curvatures -∞ < k < 0 is on the order of 10-4 smaller than the zeroth order term. These correction terms are small but may be significant in applications to alternative observations of cosmological space-time expansion rates.
Visceral leishmaniasis in the state of Sao Paulo, Brazil: spatial and space-time analysis
Cardim, Marisa Furtado Mozini; Guirado, Marluci Monteiro; Dibo, Margareth Regina; Chiaravalloti, Francisco
2016-01-01
ABSTRACT OBJECTIVE To perform both space and space-time evaluations of visceral leishmaniasis in humans in the state of Sao Paulo, Brazil. METHODS The population considered in the study comprised autochthonous cases of visceral leishmaniasis and deaths resulting from it in Sao Paulo, between 1999 and 2013. The analysis considered the western region of the state as its studied area. Thematic maps were created to show visceral leishmaniasis dissemination in humans in the municipality. Spatial analysis tools Kernel and Kernel ratio were used to respectively obtain the distribution of cases and deaths and the distribution of incidence and mortality. Scan statistics were used in order to identify spatial and space-time clusters of cases and deaths. RESULTS The visceral leishmaniasis cases in humans, during the studied period, were observed to occur in the western portion of Sao Paulo, and their territorial extension mainly followed the eastbound course of the Marechal Rondon highway. The incidences were characterized as two sequences of concentric ellipses of decreasing intensities. The first and more intense one was found to have its epicenter in the municipality of Castilho (where the Marechal Rondon highway crosses the border of the state of Mato Grosso do Sul) and the second one in Bauru. Mortality was found to have a similar behavior to incidence. The spatial and space-time clusters of cases were observed to coincide with the two areas of highest incidence. Both the space-time clusters identified, even without coinciding in time, were started three years after the human cases were detected and had the same duration, that is, six years. CONCLUSIONS The expansion of visceral leishmaniasis in Sao Paulo has been taking place in an eastbound direction, focusing on the role of highways, especially Marechal Rondon, in this process. The space-time analysis detected the disease occurred in cycles, in different spaces and time periods. These meetings, if considered, may contribute to the adoption of actions that aim to prevent the disease from spreading throughout the whole territory of São Paulo or to at least reducing its expansion speed. PMID:27533364
Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA
2016-01-01
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245
A new unified theory of electromagnetic and gravitational interactions
NASA Astrophysics Data System (ADS)
Li, Li-Xin
2016-12-01
In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.
NASA Astrophysics Data System (ADS)
Melas, Evangelos
2017-07-01
The original Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian radiating 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here we introduce the analogue B(2, 1) of the BMS group B in 3 space-time dimensions. B(2, 1) itself admits thirty-four analogues both real in all signatures and in complex space-times. In order to find the IRS of both B(2, 1) and its analogues, we need to extend Wigner-Mackey's theory of induced representations. The necessary extension is described and is reduced to the solution of three problems. These problems are solved in the case where B(2, 1) and its analogues are equipped with the Hilbert topology. The extended theory is necessary in order to construct the IRS of both B and its analogues in any number d of space-time dimensions, d ≥3 , and also in order to construct the IRS of their supersymmetric counterparts. We use the extended theory to obtain the necessary data in order to construct the IRS of B(2, 1). The main results of the representation theory are as follows: The IRS are induced from "little groups" which are compact. The finite "little groups" are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.
Topics in Non-Equilibrium Dynamics and the Emergence of Spacetime
NASA Astrophysics Data System (ADS)
Engelhardt, Dalit
The Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence that arises in string theory has had implications for the study of phenomena across a range of subfields in physics, from spacetime geometry to the behavior of condensed matter systems. Two major themes that have featured prominently in these investigations have been the behavior of systems out of equilibrium, and the emergence of spacetime. In this thesis, aspects of these themes are considered and analyzed. The question of equilibration and thermalization in 2D conformal field theories is addressed and refined via a number of observations about local versus global thermalization in such systems, the validity of particular diagnostics of thermalization, the dependence of the equilibration behavior of a conformal field theory on its operator spectrum, and the holographic dual of the generalized Gibbs ensemble that is of interest in studies of equilibration in systems with a large number of conserved quantities. A formalism for analyzing the non-equilibrium dynamics of 1+1-dimensional conformal field theories is discussed, and its physical relevance is motivated with an example connecting such a system to an experimental system that exhibited unusual equilibration behavior. Qualitative agreement is demonstrated between the CFT picture and the experimental observations. The emergence of spacetime geometry from quantum entanglement, while largely a byproduct of considerations from holographic dualities, has also been proposed to have a direct, non-holographic manifestation. Here a particular realization of such a direct emergence is presented through a demonstration that, in the presence of quantum entanglement alone, certain observations of electric fields in the entangled system appear qualitatively the same as the corresponding observations in a physically-connected geometric spacetime, so that the entanglement effectively mimics particular features associated with geometric connectivity.
Quantum Fluctuations and Thermodynamic Processes in the Presence of Closed Timelike Curves
NASA Astrophysics Data System (ADS)
Tanaka, Tsunefumi
1997-10-01
A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC's will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking's chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC's. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC's exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC's if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC's are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC's. But if the system is open, the final state will depend on the interaction with the environment. The second law of thermodynamics is shown to hold for both closed and open systems. A similar problem is investigated at a statistical level for a gas consisting of multiple selves of a single particle in a spacetime with CTC's.
Spatiotemporal modelling and mapping of the bubonic plague epidemic in India.
Yu, Hwa-Lung; Christakos, George
2006-03-17
This work studies the spatiotemporal evolution of bubonic plague in India during 1896-1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases.
Spatiotemporal modelling and mapping of the bubonic plague epidemic in India
Yu, Hwa-Lung; Christakos, George
2006-01-01
Background This work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Results Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Conclusion Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases. PMID:16545128
Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications
NASA Astrophysics Data System (ADS)
Arakida, Hideyoshi
2018-05-01
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.
Spacetime and orbits of bumpy black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigeland, Sarah J.; Hughes, Scott A.
2010-01-15
Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation ismore » zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.« less
NASA Astrophysics Data System (ADS)
Pappas, George
2015-12-01
In recent years, a lot of work was done that has revealed some very interesting properties of neutron stars. One can relate the first few multipole moments of a neutron star, or quantities that can be derived from them, with relations that are independent of the equation of state (EoS). This is a very significant result that has great implications for the description of neutron stars and in particular for the description of the spacetime around them. Additionally, it was recently shown that there is a four-parameter analytic spacetime, known as the two-soliton spacetime, which can accurately capture the properties of the geometry around neutron stars. This allows for the possibility of describing in a unified formalism the astrophysically relevant properties of the spacetime around a neutron star independently of the particulars of the EoS for the matter of the star. More precisely, the description of these astrophysical properties is done using an EoS omniscient spacetime that can describe the exterior of any neutron star. In the present work, we investigate properties such as the location of the innermost stable circular orbit RISCO (or the surface of the star when the latter overcomes the former), the various frequencies of perturbed circular equatorial geodesics, the efficiency of an accretion disc, its temperature distribution, and other properties associated with the emitted radiation from the disc, in a way that holds for all possible choices of a realistic EoS for the neutron star. Furthermore, we provide proof of principle that if one were to measure the right combinations of pairs of these properties, with the additional knowledge of the mass of the neutron star, one could determine the EoS of the star.
Unified Field Mechanics: A Brief Introduction
NASA Astrophysics Data System (ADS)
Amoroso, Richard L.
Recently we hear more and more physicists saying, `spacetime is doomed', `spacetime is a mirage', the `end of spacetime', `spacetime is not fundamental but emergent' etc. "Henceforth space by itself and time by itself are doomed to fade into the mere shadows, and only a union of the two will preserve an independent reality." - 1908 Hermann Minkowski. We have come full circle from the time of Minkowski's 1908 statement to the brink of an imminent new age of discovery. The basis of our understanding of the natural world has evolved in modern times from Newtonian Mechanics to the 2nd regime of Quantum Mechanics; and now to the threshold of a 3rd regime - Unified Field Mechanics (UFM). The Planck scale stochastic quantum realm can no longer be considered the `basement' or fundamental level of reality. As hard as quantum reality was to imagine so is the fact that the quantum domain is a manifold of finite radius; and that the `sacrosanct - indelible' Quantum Uncertainty Principle can now be surmounted. For decades main stream physicists have been stymied by efforts to reconcile General Relativity with Quantum Mechanics. The stumbling block lies with the two theories conflicting views of space and time: For quantum theory, space and time offer a fixed backcloth against which particles move. In Einstein's relativities, space and time are not only inextricably linked, but the resultant spacetime is warped by the matter within it. In our nascent UFM paradigm for arcane reasons the quantum manifold is not the regime of integration with gravity; it is instead integrated with the domain of the unified field where the forces of nature are deemed to unify. We give a simplistic survey of the fundamental premises of UFM and summarize experimental protocols to falsify the model at this stage of the paradigm's development.
The evolving block universe and the meshing together of times.
Ellis, George F R
2014-10-01
It has been proposed that spacetime should be regarded as an evolving block universe, bounded to the future by the present time, which continually extends to the future. This future boundary is defined at each time by measuring proper time along Ricci eigenlines from the start of the universe. A key point, then, is that physical reality can be represented at many different scales: hence, the passage of time may be seen as different at different scales, with quantum gravity determining the evolution of spacetime itself at the Planck scale, but quantum field theory and classical physics determining the evolution of events within spacetime at larger scales. The fundamental issue then arises as to how the effective times at different scales mesh together, leading to the concepts of global and local times. © 2014 New York Academy of Sciences.
Effect of Heat on Space-Time Correlations in Jets
NASA Technical Reports Server (NTRS)
Bridges, James
2006-01-01
Measurements of space-time correlations of velocity, acquired in jets from acoustic Mach number 0.5 to 1.5 and static temperature ratios up to 2.7 are presented and analyzed. Previous reports of these experiments concentrated on the experimental technique and on validating the data. In the present paper the dataset is analyzed to address the question of how space-time correlations of velocity are different in cold and hot jets. The analysis shows that turbulent kinetic energy intensities, lengthscales, and timescales are impacted by the addition of heat, but by relatively small amounts. This contradicts the models and assumptions of recent aeroacoustic theory trying to predict the noise of hot jets. Once the change in jet potential core length has been factored out, most one- and two-point statistics collapse for all hot and cold jets.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Baohe; Chen, Xiaosong
2018-02-01
The space-time coupled continuous time random walk model is a stochastic framework of anomalous diffusion with many applications in physics, geology and biology. In this manuscript the time averaged mean squared displacement and nonergodic property of a space-time coupled continuous time random walk model is studied, which is a prototype of the coupled continuous time random walk presented and researched intensively with various methods. The results in the present manuscript show that the time averaged mean squared displacements increase linearly with lag time which means ergodicity breaking occurs, besides, we find that the diffusion coefficient is intrinsically random which shows both aging and enhancement, the analysis indicates that the either aging or enhancement phenomena are determined by the competition between the correlation exponent γ and the waiting time's long-tailed index α.
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.
Observables and dispersion relations in κ-Minkowski spacetime
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna
2017-10-01
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
Restoration of the covariant gauge α in the initial field of gravity in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Lee Yen; Yan, Chew Xiao
2014-03-05
The gravitational field generated by a mass term and the initial surface through covariant retarded Green's function for linearized gravity in de Sitter spacetime was studied recently [4, 5] with the covariant gauges set to β = 2/3 and α = 5/3. In this paper we extend the work to restore the gauge parameter α in the field coming from the initial data using the method of shifting the parameter. The α terms in the initial field cancels exactly with the one coming from the source term. Consequently, the correct field configuration, with two equal mass points moving in itsmore » geodesic, one located at the North pole and another one located at the South pole, is reproduced in the whole manifold of de Sitter spacetime.« less
Is time enough in order to know where you are?
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo
2013-09-01
This talk discusses various aspects of the structure of space-time presenting mechanisms leading to the explanation of the "rigidity" of the manifold and to the emergence of time, i.e. of the Lorentzian signature. The proposed ingredient is the analog, in four dimensions, of the deformation energy associated with the common three-dimensional elasticity theory. The inclusion of this additional term in the Lagrangian of empty space-time accounts for gravity as an emergent feature from the microscopic structure of space-time. Once time has legitimately been introduced a global positioning method based on local measurements of proper times between the arrivals of electromagnetic pulses from independent distant sources is presented. The method considers both pulsars as well as artificial emitters located on celestial bodies of the solar system as pulsating beacons to be used for navigation and positioning.
Universal behavior of generalized causal set d’Alembertians in curved spacetime
NASA Astrophysics Data System (ADS)
Belenchia, Alessio
2016-07-01
Causal set non-local wave operators allow both for the definition of an action for causal set theory and the study of deviations from local physics that may have interesting phenomenological consequences. It was previously shown that, in all dimensions, the (unique) minimal discrete operators give averaged continuum non-local operators that reduce to \\square -R/2 in the local limit. Recently, dropping the constraint of minimality, it was shown that there exist an infinite number of discrete operators satisfying basic physical requirements and with the right local limit in flat spacetime. In this work, we consider this entire class of generalized causal set d’Alembertins in curved spacetimes and extend to them the result about the universality of the -R/2 factor. Finally, we comment on the relation of this result to the Einstein equivalence principle.
Inference of boundaries in causal sets
NASA Astrophysics Data System (ADS)
Cunningham, William J.
2018-05-01
We investigate the extrinsic geometry of causal sets in (1+1) -dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons–Hawking–York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space. We discuss algorithms to differentiate between different types of regions, consider when these distinctions are possible, and then apply the algorithms to several spacetime regions. Numerical results indicate the volumes of timelike boundaries can be measured to within 0.5% accuracy for flat boundaries and within 10% accuracy for highly curved boundaries for medium-sized causal sets with N = 214 spacetime elements.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Characterization of (asymptotically) Kerr-de Sitter-like spacetimes at null infinity
NASA Astrophysics Data System (ADS)
Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.; Simon, Walter
2016-08-01
We investigate solutions ({M},g) to Einstein's vacuum field equations with positive cosmological constant Λ which admit a smooth past null infinity {{I}}- à la Penrose and a Killing vector field whose associated Mars-Simon tensor (MST) vanishes. The main purpose of this work is to provide a characterization of these spacetimes in terms of their Cauchy data on {{I}}-. Along the way, we also study spacetimes for which the MST does not vanish. In that case there is an ambiguity in its definition which is captured by a scalar function Q. We analyze properties of the MST for different choices of Q. In doing so, we are led to a definition of ‘asymptotically Kerr-de Sitter-like spacetimes’, which we also characterize in terms of their asymptotic data on {{I}}-. Preprint UWThPh-2016-5.
Time-Symmetric Quantization in Spacetimes with Event Horizons
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Rodd, Nicholas
2013-08-01
The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a "reinterpretation postulate" to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.
Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model
NASA Astrophysics Data System (ADS)
Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.
2018-04-01
We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.
Effects on the CMB from compactification before inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontou, Eleni-Alexandra; Blanco-Pillado, Jose J.; Hertzberg, Mark P.
2017-04-01
Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both themore » four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.« less
Thermodynamics of charged Lovelock: AdS black holes
NASA Astrophysics Data System (ADS)
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
Stability of squashed Kaluza-Klein black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Masashi; Ishihara, Hideki; Murata, Keiju
2008-03-15
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1){approx_equal}U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Kleinmore » black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.« less
Gravastars with higher dimensional spacetimes
NASA Astrophysics Data System (ADS)
Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2018-07-01
We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
T-duality of singular spacetime compactifications in an H-flux
NASA Astrophysics Data System (ADS)
Linshaw, Andrew; Mathai, Varghese
2018-07-01
We begin by presenting a symmetric version of the circle equivariant T-duality result in a joint work of the second author with Siye Wu, thereby generalizing the results there. We then initiate the study of twisted equivariant Courant algebroids and equivariant generalized geometry and apply it to our context. As before, T-duality exchanges type IIA and type IIB string theories. In our theory, both spacetime and the T-dual spacetime can be singular spaces when the fixed point set is non-empty; the singularities correspond to Kaluza-Klein monopoles. We propose that the Ramond-Ramond charges of type II string theories on the singular spaces are classified by twisted equivariant cohomology groups, consistent with the previous work of Mathai and Wu, and prove that they are naturally isomorphic. We also establish the corresponding isomorphism of twisted equivariant Courant algebroids.
Force-free electrodynamics in dynamical curved spacetimes
NASA Astrophysics Data System (ADS)
McWilliams, Sean
2015-04-01
We present results on our study of force-free electrodynamics in curved spacetimes. Specifically, we present several improvements to what has become the established set of evolution equations, and we apply these to study the nonlinear stability of analytically known force-free solutions for the first time. We implement our method in a new pseudo-spectral code built on top of the SpEC code for evolving dynamic spacetimes. Finally, we revisit these known solutions and attempt to clarify some interesting properties that render them analytically tractable. Finally, we preview some new work that similarly revisits the established approach to solving another problem in numerical relativity: the post-merger recoil from asymmetric gravitational-wave emission. These new results may have significant implications for the parameter dependence of recoils, and consequently on the statistical expectations for recoil velocities of merged systems.
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio
2010-08-01
It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.
Spacelike matching to null infinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenginoglu, Anil; Tiglio, Manuel
2009-07-15
We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibilitymore » of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.« less
Divergence identities in curved space-time a resolution of the stress-energy problem
NASA Astrophysics Data System (ADS)
Yilmaz, Hüseyin
1989-03-01
It is noted that the joint use of two basic differential identities in curved space-time, namely, 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the "field stress-energy" problem of the gravitational theory. (A tribute to Eugene P. Wigner's 1957 presidential address to the APS)
An anthology of non-local QFT and QFT on non-commutative spacetime
NASA Astrophysics Data System (ADS)
Schroer, Bert
2005-09-01
Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject.
The Cauchy problem for space-time monopole equations in Sobolev spaces
NASA Astrophysics Data System (ADS)
Huh, Hyungjin; Yim, Jihyun
2018-04-01
We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).
Complete spacelike hypersurfaces in orthogonally splitted spacetimes
NASA Astrophysics Data System (ADS)
Colombo, Giulio; Rigoli, Marco
2017-10-01
We provide some "half-space theorems" for spacelike complete non-compact hypersurfaces into orthogonally splitted spacetimes. In particular we generalize some recent work of Rubio and Salamanca on maximal spacelike compact hypersurfaces. Beside compactness, we also relax some of their curvature assumptions and even consider the case of nonconstant mean curvature bounded from above. The analytic tools used in various arguments are based on some forms of the weak maximum principle.
NASA Astrophysics Data System (ADS)
Coughlan, Michael R.
2016-05-01
Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.
Imanishi, M; Newton, A E; Vieira, A R; Gonzalez-Aviles, G; Kendall Scott, M E; Manikonda, K; Maxwell, T N; Halpin, J L; Freeman, M M; Medalla, F; Ayers, T L; Derado, G; Mahon, B E; Mintz, E D
2015-08-01
Although rare, typhoid fever cases acquired in the United States continue to be reported. Detection and investigation of outbreaks in these domestically acquired cases offer opportunities to identify chronic carriers. We searched surveillance and laboratory databases for domestically acquired typhoid fever cases, used a space-time scan statistic to identify clusters, and classified clusters as outbreaks or non-outbreaks. From 1999 to 2010, domestically acquired cases accounted for 18% of 3373 reported typhoid fever cases; their isolates were less often multidrug-resistant (2% vs. 15%) compared to isolates from travel-associated cases. We identified 28 outbreaks and two possible outbreaks within 45 space-time clusters of ⩾2 domestically acquired cases, including three outbreaks involving ⩾2 molecular subtypes. The approach detected seven of the ten outbreaks published in the literature or reported to CDC. Although this approach did not definitively identify any previously unrecognized outbreaks, it showed the potential to detect outbreaks of typhoid fever that may escape detection by routine analysis of surveillance data. Sixteen outbreaks had been linked to a carrier. Every case of typhoid fever acquired in a non-endemic country warrants thorough investigation. Space-time scan statistics, together with shoe-leather epidemiology and molecular subtyping, may improve outbreak detection.
Rotating hairy black holes in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Erices, Cristián; Martínez, Cristián
2018-01-01
A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.
Finite energy quantization on a topology changing spacetime
NASA Astrophysics Data System (ADS)
Krasnikov, S.
2016-08-01
The "trousers" spacetime is a pair of flat two-dimensional cylinders ("legs") merging into a single one ("trunk"). In spite of its simplicity this spacetime has a few features (including, in particular, a naked singularity in the "crotch") each of which is presumably unphysical, but for none of which a mechanism is known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the frame of a free-falling observer.
The Einstein equations on the 3-brane world
NASA Astrophysics Data System (ADS)
Shiromizu, Tetsuya; Maeda, Kei-Ichi; Sasaki, Misao
2000-07-01
We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the brane with a negative tension is an antigravity world and hence should be excluded from the physical point of view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter spacetime, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well defined, such as in the case of the matter dominated by the potential energy of the scalar field.
Spatial and space-time clustering of tuberculosis in Gurage Zone, Southern Ethiopia.
Tadesse, Sebsibe; Enqueselassie, Fikre; Hagos, Seifu
2018-01-01
Spatial targeting is advocated as an effective method that contributes for achieving tuberculosis control in high-burden countries. However, there is a paucity of studies clarifying the spatial nature of the disease in these countries. This study aims to identify the location, size and risk of purely spatial and space-time clusters for high occurrence of tuberculosis in Gurage Zone, Southern Ethiopia during 2007 to 2016. A total of 15,805 patient data that were retrieved from unit TB registers were included in the final analyses. The spatial and space-time cluster analyses were performed using the global Moran's I, Getis-Ord [Formula: see text] and Kulldorff's scan statistics. Eleven purely spatial and three space-time clusters were detected (P <0.001).The clusters were concentrated in border areas of the Gurage Zone. There were considerable spatial variations in the risk of tuberculosis by year during the study period. This study showed that tuberculosis clusters were mainly concentrated at border areas of the Gurage Zone during the study period, suggesting that there has been sustained transmission of the disease within these locations. The findings may help intensify the implementation of tuberculosis control activities in these locations. Further study is warranted to explore the roles of various ecological factors on the observed spatial distribution of tuberculosis.
Solano, Rubén; Gómez-Barroso, Diana; Simón, Fernando; Lafuente, Sarah; Simón, Pere; Rius, Cristina; Gorrindo, Pilar; Toledo, Diana; Caylà, Joan A
2014-05-01
A retrospective, space-time study of whooping cough cases reported to the Public Health Agency of Barcelona, Spain between the years 2000 and 2011 is presented. It is based on 633 individual whooping cough cases and the 2006 population census from the Spanish National Statistics Institute, stratified by age and sex at the census tract level. Cluster identification was attempted using space-time scan statistic assuming a Poisson distribution and restricting temporal extent to 7 days and spatial distance to 500 m. Statistical calculations were performed with Stata 11 and SatScan and mapping was performed with ArcGis 10.0. Only clusters showing statistical significance (P <0.05) were mapped. The most likely cluster identified included five census tracts located in three neighbourhoods in central Barcelona during the week from 17 to 23 August 2011. This cluster included five cases compared with the expected level of 0.0021 (relative risk = 2436, P <0.001). In addition, 11 secondary significant space-time clusters were detected with secondary clusters occurring at different times and localizations. Spatial statistics is felt to be useful by complementing epidemiological surveillance systems through visualizing excess in the number of cases in space and time and thus increase the possibility of identifying outbreaks not reported by the surveillance system.
From black holes to white holes: a quantum gravitational, symmetric bounce
NASA Astrophysics Data System (ADS)
Olmedo, Javier; Saini, Sahil; Singh, Parampreet
2017-11-01
Recently, a consistent non-perturbative quantization of the Schwarzschild interior resulting in a bounce from black hole to white hole geometry has been obtained by loop quantizing the Kantowski-Sachs vacuum spacetime. As in other spacetimes where the singularity is dominated by the Weyl part of the spacetime curvature, the structure of the singularity is highly anisotropic in the Kantowski-Sachs vacuum spacetime. As a result, the bounce turns out to be in general asymmetric, creating a large mass difference between the parent black hole and the child white hole. In this manuscript, we investigate under what circumstances a symmetric bounce scenario can be constructed in the above quantization. Using the setting of Dirac observables and geometric clocks, we obtain a symmetric bounce condition which can be satisfied by a slight modification in the construction of loops over which holonomies are considered in the quantization procedure. These modifications can be viewed as quantization ambiguities, and are demonstrated in three different flavors, all of which lead to a non-singular black to white hole transition with identical masses. Our results show that quantization ambiguities can mitigate or even qualitatively change some key features of the physics of singularity resolution. Further, these results are potentially helpful in motivating and constructing symmetric black to white hole transition scenarios.
Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times
NASA Astrophysics Data System (ADS)
Tomita, K.
2014-12-01
Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.
Einstein-Cartan Theory of Gravitation: Kinematical Parameters and Maxwell Equations
NASA Astrophysics Data System (ADS)
Katkar, L. N.
2015-03-01
In the space-time manifold of Einstein-Cartan Theory (ECT) of gravitation, the expressions for the time-like kinematical parameters are derived and the propagation equation for expansion is obtained.It has been observed that when the spin tensor is u-orthogonal the spin of the gravitating matter has no influence on the propagation equation of expansion while it has influence when it is not u-orthogonal. The usual formula for the curl of gradient of a scalar function is not zero in ECT. So is the case with the divergence of the curl of a vector.Their expressions on the space-time manifold of ECT are derived. A new derivative operator d ∗ is introduced to develop the calculus on space-time manifold of ECT. It is obtained by taking the covariant derivative of an associated tensor of a form with respect to an asymmetric connections. We have used this differential operator to obtain the form of the Maxwell's equations in the ECT of gravitation. Cartan's equations of structure are also derived through the new derivative operator. It has been shown that unlike the consequences of exterior derivative in Einstein space-time, the repetition of d ∗ on a form of any degree is not zero.
Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density
NASA Astrophysics Data System (ADS)
Hohl, A.; Delmelle, E. M.; Tang, W.
2015-07-01
Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.
Exact solutions to quadratic gravity
NASA Astrophysics Data System (ADS)
Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.
2017-04-01
Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
Coughlan, Michael R
2016-05-01
Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.
Penfold, Robert B; Burgess, James F; Lee, Austin F; Li, Mingfei; Miller, Christopher J; Nealon Seibert, Marjorie; Semla, Todd P; Mohr, David C; Kazis, Lewis E; Bauer, Mark S
2018-02-01
To identify space-time clusters of changes in prescribing aripiprazole for bipolar disorder among providers in the VA. VA administrative data from 2002 to 2010 were used to identify prescriptions of aripiprazole for bipolar disorder. Prescriber characteristics were obtained using the Personnel and Accounting Integrated Database. We conducted a retrospective space-time cluster analysis using the space-time permutation statistic. All VA service users with a diagnosis of bipolar disorder were included in the patient population. Individuals with any schizophrenia spectrum diagnoses were excluded. We also identified all clinicians who wrote a prescription for any bipolar disorder medication. The study population included 32,630 prescribers. Of these, 8,643 wrote qualifying prescriptions. We identified three clusters of aripiprazole prescribing centered in Massachusetts, Ohio, and the Pacific Northwest. Clusters were associated with prescribing by VA-employed (vs. contracted) prescribers. Nurses with prescribing privileges were more likely to make a prescription for aripiprazole in cluster locations compared with psychiatrists. Primary care physicians were less likely. Early prescribing of aripiprazole for bipolar disorder clustered geographically and was associated with prescriber subgroups. These methods support prospective surveillance of practice changes and identification of associated health system characteristics. © Health Research and Educational Trust.
Methods of approaching decoherence in the flavor sector due to space-time foam
NASA Astrophysics Data System (ADS)
Mavromatos, N. E.; Sarkar, Sarben
2006-08-01
In the first part of this work we discuss possible effects of stochastic space-time foam configurations of quantum gravity on the propagation of “flavored” (Klein-Gordon and Dirac) neutral particles, such as neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on random averages of quantum fluctuations of space-time metrics over which the propagation of the matter particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law cutoff of the time-profile of the respective probability. In the second part we consider space-time foam configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.
Higher derivative theories for interacting massless gravitons in Minkowski spacetime
NASA Astrophysics Data System (ADS)
Bai, Dong; Xing, Yu-Hang
2018-07-01
We study a novel class of higher derivative theories for interacting massless gravitons in Minkowski spacetime. These theories were first discussed by Wald decades ago, and are characterized by scattering amplitudes essentially different from general relativity and many of its modifications. We discuss various aspects of these higher derivative theories, including the Lagrangian construction, violation of asymptotic causality, scattering amplitudes, non-renormalization, and possible implications in emergent gravitons from condensed matter systems.